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We derive a Thermodynamic Uncertainty Relation bounding the mean squared displacement of a
Gaussian process with memory, driven out of equilibrium by unbalanced thermal baths and/or by
external forces. Our bound is tighter with respect to previous results and also holds at finite time.
We apply our findings to experimental and numerical data for a vibro-fluidized granular medium,
characterized by regimes of anomalous diffusion. In some cases, our relation can distinguish between
equilibrium and non-equilibrium behavior, a non-trivial inference task, particularly for Gaussian
processes.

I. INTRODUCTION

The relation between dynamical properties of a system
and its thermodynamics plays a central role in modern
non-equilibrium statistical physics. In systems composed
by many interacting particles, it is common to observe
different phenomena occurring at different timescales, the
paradigmatic example being the several regimes of struc-
tural relaxation in undercooled liquids [1]. This com-
plex dynamics usually gives place to a mean squared dis-
placement (MSD) of some fluctuating observable which
shows several non-diffusive regimes. For instance, the dif-
fusion of particles in liquids often displays transient sub-
diffusive or flat MSD corresponding to cage effects. In-
terestingly, these regimes are also observed in liquid-like
systems realized by replacing molecules with macroscopic
spheres, in the context of dense vibro-fluidized granular
materials, both in simulations and in experiments [2–5].
Additionally, these systems can display novel phenom-
ena such as a superdiffusive transient regime after the
cage stage and before the final asymptotic standard dif-
fusion [6]. While the molecular liquid case is typically
at thermal equilibrium (even if under sudden quench the
relaxation time may diverge and shift the system into
non-equilibrium), a vibrated granular medium is intrin-
sically out of equilibrium, even if stationary, because of
the presence of several energy flows from and into the sys-
tem (friction, inelastic collisions, external energy pump-
ing, etc). In principle, however, diffusion properties are
not evidently related to the status of equilibrium or non-
equilibrium [7]. It is therefore important to explore the
existence of physical constraints that could restrict the
possible behaviors of the MSD and relate certain obser-
vations to the thermodynamic status of the system [8].

Recently, an important step in building a bridge be-
tween anomalous dynamical regimes and thermodynamic
properties has been done exploiting the Thermodynamic
Uncertainty Relations (TUR) [9, 10]. These relations,
valid for quite a large class of stochastic processes, also
demonstrated through several different routes [11–14],

typically take the form

〈∆θ(t)2〉
〈θ(t)〉2

≥ 2

〈S(t)〉
, (1)

where ∆θ(t) = θ(t)− 〈θ(t)〉 and θ(t) =
∫ t

0
dt′ ω(t′) is an

integrated current over a time t, while S(t) is the entropy
produced by the system in the same time interval. Here
and in the next we fix kb = 1. Identifying θ(t) as the dis-
placement of a particle with velocity ω(t) and multiplying
both sides of (1) for 〈θ(t)〉2, one obtains a straightforward
application to the MSD, which has been applied to the
case of overdamped systems with two dynamical regimes,
one being anomalous and one being standard [15]. In par-
ticular it has been shown that the TUR implies a min-
imum (or maximum) time of validity for the super- (or
sub-) diffusion.

The application of this kind of results to non-
equilibrium systems with multiple characteristic
timescales requires a more general and effective bound,
which is the purpose of the present paper. Here we show
how to extend TURs for underdamped dynamics to the
case of systems with multiple timescales and multiple
baths, such as active liquids and vibrofluidized granular
media. We obtain a general formula to bound the MSD
in time, with the interesting and unexpected result that
only a part of the entropy production enters the bound,
making it tighter than that one would get using the
whole entropy production. We present analytical results
within the framework of Markovian continuous linear
systems, that can emerge from the Markovianization
of systems with memory, representing therefore a very
general tool for the study of coarse-grained variables
in presence of hydrodynamic backflow [16, 17] and in
out-of-equilibrium many-body systems [18–20], including
driven macroscopic dissipative systems such as granular
materials [21] and active matter [22]. We recall that gen-
eral thermodynamic bounds for underdamped dynamics
still represent an open problem [12, 23–25] while a TUR
for non-Markovian system has been previously derived
for a very general class of memory kernels but always
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assuming thermal equilibrium with a single thermostat
[26].

Our results are successfully applied to numerical and
experimental data coming from two different systems of
interacting particles where an intruder is immersed in a
vibrated granular fluid [4, 27]. Remarkably, our approach
also shows that, in the zero driving limit, we obtain a
TUR for the spontaneous diffusion that in fact can be
tested with systems in the absence of an external bias,
allowing one to distinguish between equilibrium and non-
equilibrium behavior.

II. THE MODEL

We consider a set of n + 1 coupled dynamical vari-
ables, each in contact with a different thermal bath.
The first variable represents the main observable, possi-
bly subject to a constant external force, while the other
n variables are auxiliary variables, representing mem-
ory terms. This kind of model can describe the under-
damped dynamics of a tracer in a fluid, when a separation
of timescales allows one to obtain an effective general-
ized Langevin equation (GLE) for the slow variable [28],
or systems with feedback control [29–32]. Defining the
vectors X = {ω,Ω1, . . . ,Ωn}, ξ = {ξ0, ξ1, . . . , ξn} and
F = {Fext, 0, . . . , 0}, the dynamics is described by the
coupled equations:

Ẋ = ÂX + B̂ξ + F , (2)

where ξi are uncorrelated white noises with zero mean
and unit variance while the two matrices Â and B̂ are
given by:

Â =


−1/τ 1/b1 . . . 1/bn
−a1b1 −1/τ1 0 0

... 0
. . . 0

−anbn 0 0 −1/τn

 , (3)

B̂ = diag

(√
2q/τ ,

√
2q1a1b21/τ1, . . . ,

√
2qnanb2n/τn

)
.

(4)
Here the τis, the bis and the ais are positive parameters
with the dimension of time, time and inverse squared
time, respectively. We consider ω odd and the Ωis even
under time reversal. With this choice the fluctuating en-
tropy production takes the form of heat exchanges over
effective temperatures (see Appendix A 2). We also pro-
pose a physical interpretation of this time reversal sym-
metries in Appendix A 4. We note that Â is an arrowhead
matrix, namely it has non-zero elements only in the first
row, in the first column and in the principal diagonal.
This form has a physical meaning: The auxiliary vari-
ables describe the memory in the system, each one has a
characteristic relaxation time τi and is coupled with the
main observable only. The above equations are indeed

equivalent to the following GLE [19]:

ω̇(t) = −
∫ t

−∞
γ(t− t′)ω(t′)dt′ + ηs(t) + Fext, (5)

γ(t) =
2

τ
δ(t) +

n∑
k=1

ake
− t
τk , (6)

〈ηs(t)ηs(t′)〉 =
2q

τ
δ(|t− t′|) +

n∑
k=1

qkake
− |t−t

′|
τk , (7)

and the auxiliary variables are:

Ωk = −bk
∫ t

−∞
dt′e

− t−t
′

τk

[
akω(t′)−

√
2qkak
τk

ξk(t′)

]
.

(8)
Interestingly, a memory kernel which is a sum of a few
exponential decays can approximate also non-exponential
kernels, such as power-law decays typical of several trans-
port phenomena in dense systems [33] (see also Ap-
pendix E). We recall here that the use of exponential
memory kernels to describe the diffusion of an intruder
in a complex fluid is motivated by a typical approxima-
tion done for Brownian motion at high densities when
the coupling with hydrodynamic modes decaying expo-
nentially in time is taken into account [27, 34].

We point out that this model is built in such a way
to recover the fluctuation-dissipation relation of the sec-
ond kind 〈ηs(t)ηs(t′)〉 = qγ(|t− t′|) if all the thermostats
are at the same temperature qk = q. With this condi-
tion (and Fext = 0), thermodynamic equilibrium is prop-
erly described. In the Fokker-Planck formalism this is
equivalent to a null irreversible current [35] (see also Ap-
pendix A 3). The solution for the stationary probability
distribution function is a multivariate Gaussian P (X) ∝
exp

(
−∆X β̂∆X

/
2
)

where ∆X = X − 〈X〉 and β̂ is

the inverse of the covariance matrix σij = 〈∆Xi∆Xj〉.
Note that, thanks to the linearity of the model, β̂ and
σ̂ do not depend on Fext. Such a distribution is canoni-
cal (βij ∝ δij/q) at equilibrium (see Appendix A 1). We
remark that the model has two different sources of non-
equilibrium: The coupling with different thermal baths
(i.e. when q, qk are different) and the external force Fext.
Interestingly, the second ingredient triggers an average
drift 〈X〉 6= 0, while the first one does not.

The entropy production rate (EPR) [36] of the model
in the steady state reads (see A 2 for details):

〈Ṡ〉 = 〈Ṡ〉ext + 〈Ṡ〉th, (9)

where we defined an external contribution due to the
presence of forcing 〈Ṡ〉ext = 1

q 〈ω〉Fext +
∑
i(

1
q −

1
qi

) 〈ω〉〈Ωi〉bi

and one 〈Ṡ〉th =
∑
i

1
bi

( 1
q −

1
qi

)σ0i due only to the cou-

pling with baths at different temperatures. This last term
is positive because it is the only contribution in the ab-
sence of the external driving [37]. The mean values of
the dynamical variables in the steady state are:

〈ω〉 =
Fextτ

1 + τ
∑
k τkak

, 〈Ωi〉 = −τiaibi〈ω〉 (10)
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which imply that 〈Ṡ〉ext is proportional to F 2
ext.

III. TUR IN THE LARGE TIME LIMIT

We start by considering the bound for the diffusion
coefficient of the tracer obtained from the TUR [9, 11]
valid for overdamped dynamics in the large time limit of
the stationary state

lim
t→∞

〈∆θ(t)2〉
t

≥ 2〈ω〉2

〈Ṡ〉
(11)

where ∆θ(t) is defined as in Eq. (1). In our model,
all the terms of the above inequality can be explicitly
computed. Indeed, we can relate the spectrum and the
diffusion coefficient with the Wiener-Khinchin theorem
S00(0) = limt→∞〈∆θ(t)2〉/t, where the spectral matrix is
defined as the Fourier transform of the stationary corre-
lation matrix:

Ŝ(f) ≡
∫ +∞

−∞
dte−iftσ̂(t) = (Â+iÎf)−1B̂B̂T (ÂT−iÎf)−1

(12)

where σij(t− s) = 〈∆Xi(t)∆Xj(s)〉 and Î is the identity

matrix. Inverting the arrowhead matrix Â [38], we get
(see Appendix A 5)

S00(0) =
[
Â−1B̂B̂T (ÂT )−1

]
00

= Deq

[
1 + τ

∑
k
qk
q akτk

1 + τ
∑
k akτk

]
(13)

where Deq = 2qτ/(1 + τ
∑
k akτk) is the diffusion coeffi-

cient when qi = q ∀ i. Then, using Eqs. (9) and (10), we
have

2〈ω〉2

〈Ṡ〉ext

= Deq

[
1 + τ

∑
k akτk

1 + τ
∑
k
q
qk
akτk

]
. (14)

From this expression we arrive to the following relation
(see Appendix A 6 for details):

lim
t→∞

〈∆θ(t)2〉
t

≥ 2〈ω〉2

〈Ṡ〉ext

≥ 2〈ω〉2

〈Ṡ〉
. (15)

This shows that in our model a bound tighter than the
one of Eq. (11) can be obtained, by considering in the

EPR the contribution 〈Ṡ〉ext only. Below we extend this
result to finite times.

As an additional remark, we note that completely ig-
noring the presence of thermostats with different temper-
atures can imply a violation of the associated inequal-
ity. Indeed, defining the contribution associated with
the drift 〈Ṡ〉drift = 〈ω〉Fext/q, one can verify that the

inequality S00(0) ≥ 2〈ω〉2/〈Ṡ〉drift = Deq is violated if∑
k(qk − q)akτk < 0.

IV. TUR AT FINITE TIMES

To derive the general finite-times expression of a TUR
with a tighter bound, we can proceed as in [13]. We
consider a fictive h-dynamics (generating 〈· · · 〉h averages
over a distribution Ph) that coincides with the original
one as h = 0, and write the Cramér-Rao inequality for
an unbiased estimator Θ of a function ψ(h):

Varh(Θ[Γt])

[∂h〈Θ[Γt]〉h]2
≥ 1

IF(h)
. (16)

Here Γt is the stochastic trajectory of duration t along
which the estimator is evaluated and IF is the Fisher
information [39]. Thus we have 〈Θ[Γt]〉h = ψ(h) and
we require that (∂h〈Θ[Γt]〉h)|h=0 = 〈Θ[Γt]〉, so that the
lhs of Eq. (16) calculated in h = 0 coincides with the
uncertainty of the generalized current 〈Θ[Γt]〉. Note that
this condition depends both on how the current is defined
and on the choice of the fictive dynamics [12, 24].

To derive the TUR with the tighter bound, we in-
troduce a perturbation to Eq. (2) in the form hV ,
where V = {〈ω〉/τ,−〈Ω1〉/τ1, . . . ,−〈Ωn〉/τn}. With this
choice, evaluating the Cramér-Rao inequality for h = 0 in
the stationary state, we get (see Appendix B for details)

〈∆θ(t)2〉
(〈ω〉t)2

≥ 2

∆Sext(t) + I
, (17)

where

I = 2

∫
dX

[∂hPh(X)]2|h=0

P (X)
, (18a)

∆Sext(t) =

∫ t

0

dt′

[
〈ω〉2

τq
+
∑
i

〈Ωi〉2

τiqiaib2i

]
= 〈Ṡ〉extt.

(18b)
The above expression coincides with the definition of
〈Ṡ〉ext below Eq. (9) (see Appeendix B 2). We then obtain
the following TUR for the MSD also valid at finite times
in the steady state, that is consistent with the improved
bound discussed for large times, Eq. (15)

〈∆θ(t)2〉 ≥ 2〈ω〉2t2

〈Ṡ〉extt+ I
. (19)

Exploiting the linearity of the model we can easily obtain
Ph from which we compute the explicit form of the non-
extensive term:

I = 2〈ω〉2β00. (20)

It is important to note that 〈ω〉2 simplifies in the rhs of
the TUR (19), making it independent of Fext, as the lhs.
Thus, for Fext → 0, the bound remains finite, at variance
with the weaker bound obtained from the total EPR 〈Ṡ〉.
Eq. (19) therefore also works in the case of force-free dif-
fusion, as shown in the following. We remark that even if
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the model is linear, an analytical form for the MSD when
n > 1 can be quite involved [16]. A bound with a sim-
ple functional form as the one provided by formula (19)
can be, therefore, precious. It is interesting to consider
also the consequence of some lack of information in the
modeling procedure: for instance one could overlook the
different thermostats, and could be tempted to use the
asymptotic bound considering just 〈Ṡ〉drift for the whole
available time-range (which is appealing as it is simpler
and does not require estimating I). We denote this case
as the “incomplete bound” (IB) and discuss its conse-
quences in the following examples.

V. TRACER DYNAMICS IN A DENSE
GRANULAR MEDIUM

In order to illustrate the validity of our results and to
show their relevance in physical systems, we apply them
in the case of diffusion in driven granular fluids. We con-
sider the case n = 1, that has been shown to describe the
behavior of a massive tracer in a moderately dense granu-
lar medium [27]. In this conditions the MSD of the tracer
can exhibit a subdiffusive behavior at intermediate times
due to the caging effect of the surrounding grains. We
compare the bound (19) with MSD of this kind obtained
in experiments [4] and molecular dynamics simulations
[27]. In the experiment, the tracer diffuses in a system
of steel spheres confined in a 3D box vertically driven by
an electrodynamic shaker, while numerical simulations
consider the 2D case of hard dissipative disks coupled to
a spatially homogeneous thermostat. We use the two-
dimensional form of Eq. (2) with a1 = α

ττ1
and b1 = τ

obtaining the same model used in [27]. The mean values
〈ω〉 = τFext/(1 + α) and 〈Ω1〉 = −α〈ω〉 appear in the
EPR:

〈Ṡ〉 =
1

q
〈ω〉Fext −

[
q1 − q
τqq1

]
α〈ω〉2 +

[
q1 − q
τqq1

]
σ̂01. (21)

The comparison of the bounds discussed above with
the MSD measured in experiments and simulations is
shown in Fig. 1(a). Here we see that the bound from
Eq. (19) (dashed lines) is close (from below) to the data
at all timescales. The IB (dot-dashed lines) is obtained
neglecting the different thermostats. Two possible situ-
ations may appear: i) the IB is valid at late times but
(as expected) violated at short times (see curves for the
2D simulations), ii) it is violated also in the diffusive
regime (see data for the 3D experiment). The difference
between these two conditions depends on the interplay of
characteristic times and temperatures. Since data come
from force-free diffusion, we used the bound in the limit
Fext → 0, which is meaningful for Eq. (19) while trivial
for Eq. (11). This is the reason why we don’t compare
our bound with the one obtained from the standard TUR
in Fig. 1(a).

The bound on the extent of non-diffusive regimes of
our model is discussed in Appendix D. We stress that a

FIG. 1. MSD of a large intruder immersed in a vibrated gran-
ular fluid at moderate density (a) and at high density (b). In
both cases the bounds are calculated with the numerical val-
ues of the model parameters obtained by fitting the data.
Details on the fitting procedure are given in Appendix C. In
panel b, the equilibrium guess is constructed by connecting
the two slopes of the ballistic and the diffusive regime fol-
lowing what we would expect at equilibrium from Eq. (22).
The inset shows an MSD (same experimental data of panel a)
whose form is compatible with thermodynamic equilibrium.

valid TUR without the hypothesis of velocity relaxation
is necessary in this class of model because, contrary to
what happens in [15], the MSD predicted by our model
always exhibits a ballistic regime at short times. Then, in
order to correctly bound the extent of anomalous diffu-
sion, we need a thermodynamic bound that is not simply
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linear in time.

VI. FORBIDDEN EQUILIBRIUM REGIMES

The derived bound Eq. (19) holds on a class of models
for which the analytical expression of many thermody-
namic quantities is available [16, 35]. Thus, it is im-
portant to specify for which practical purpose one can
exploit our bound. In view of this, here we show how
Eq. (19) can be used to directly infer non-equilibrium
signatures from data. We consider the rhs of Eq. (19) at
equilibrium and we refer to it as Beq(t). We equate all the
thermostats in Eqs. (14) and (13) and take σ̂ diagonal in
Eq. (20), obtaining

Beq(t) ∼ 〈∆θ(t)2〉 ∼

{
〈∆ω2〉t2 t� I/〈Ṡ〉ext

Deqt t� I/〈Ṡ〉ext.
(22)

Note that I/〈Ṡ〉 is always well defined at equilibrium
since the quadratic dependence on Fext cancels out. Pro-
vided that the system is in equilibrium, Eq. (22) shows
that the MSD and the bound coincide in both the short
and long time limit while for intermediate times the in-
equality holds. This observation allows one to exclude
the occurrence of certain transient anomalous diffusion
regimes at equilibrium or, equivalently, to ensure that
certain forms of MSD are compatible only with non-
equilibrium dynamics. This test for equilibrium com-
patibility can be done by connecting the two slopes of
the ballistic and diffusive regimes of a given MSD in a
log-log plot and considering this curve as a lower bound
from an equilibrium guess. Indeed, given the functional
form of the bound Eq. (19) and knowing that it reduces
to an equality at short and long times if qi = q ∀ i
(Eq. (22)), an MSD coming from an equilibrium dynam-
ics is expected to lie above the constructed curve at all
times. Then, when any tract of the MSD is found to lie
below the lower bound from the equilibrium guess, then
one can deduce that, if the dynamics follows Eq. (2),
(3) and (4), the observed MSD is not compatible with
thermodynamic equilibrium. To illustrate this applica-
tion, we consider the case n = 2, that can describe the
anomalous diffusion of a tracer in a dense granular system
with very slow characteristic times. We take a1 = α

ττ1
,

a2 = ε2

ττ2
and b1 = b2 = τ , where ε = τ/τ2. For ε → 0

and keeping finite the amplitude of the noise ξ2, we ob-
tain the same model described in [5]. As we can see in
Fig. 1(b), this model can properly reproduce the exper-
imental data of the MSD, characterized by a surprising
superdiffusive regime after the cage subdiffusion. Its ori-
gin relies on the presence of a slow collective motion of
the granular medium due to the interplay of disorder and
friction [6, 40]. As evident from Fig. 1(b), the behavior of
the MSD is not compatible with the bound guessed from
the equilibrium condition (22). Then, we can conclude

that the underlying dynamics is out of equilibrium with-
out performing any further analysis. In order to com-
plete the picture, we show in the inset of Fig. 1(b) the
application of this procedure to the experimental data
of Fig. 1(a) which come from a less dense system where
the slow collective motion and the consequent superdif-
fusive regime do not appear. In this case, the MSD lies
always above the equilibrium guess so we cannot draw
any conclusion on the non-equilibrium properties of the
dynamics without estimating the model’s parameters.

We point out that the proposed test for equilibrium
compatibility is especially relevant in the recent debate
on the possibility to deduce the non-equilibrium charac-
ter of a system from partial observation [8], in particular
recalling that the time-series of a scalar Gaussian pro-
cess (in our case ω(t)) is always symmetric under time-
reversal [41, 42].

VII. CONCLUSIONS

TURs represent an impressive result with manifold ap-
plications, from the evaluation of the entropic cost for the
precision ratio of currents [43], to the estimation of en-
tropy production [44] in non-equilibrium systems, to the
identification of limits on the temporal regimes of anoma-
lous diffusion [15]. Considering a class of generalized
Langevin equations with several exponential timescales
and uniform external force, we have derived a bound for
the MSD (Eq. (19)) which improves the one obtained
through the standard TUR (Eq. (11)). Indeed, our bound
is tighter, valid at all times and useful also for freely
diffusing particles. The class of linear models we con-
sidered can describe the coupling between relevant de-
grees of freedom in many-body interacting systems. This
allowed us to test our results on experimental and nu-
merical data of a tracer diffusing in a granular medium.
Moreover, we showed how to use this bound as an im-
mediate tool for inferring non-equilibrium properties of
the dynamics from the shape of the MSD. Our approach
can be extended to other non-equilibrium systems where
several sources of dissipation are present, such as fluids
of active particles or driven mixtures. We also recall that
linearly coupled equations are the natural framework of
linear irreversible thermodynamics, valid (at small per-
turbations) also for periodically forced systems [45]. The
generalization of our results to non-linear cases such as
particles subjected to periodic potentials or non-linear
frictional forces represents a promising perspective.
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Appendix A: Details of calculations for the general model

In this section we report the calculations necessary to obtain some relevant quantities that are used in the main
text. For clarity reason we rewrite here the definition of the general model. We consider the multivariate linear
stochastic differential equation (SDE) Ẋ = ÂX + B̂ξ + F , where X = {ω,Ω1, . . . ,Ωn}, ξ = {ξ0, ξ1, . . . , ξn} and
F = {Fext, 0, . . . , 0}. The interaction and the noise matrices are give by:

Â =


−1/τ 1/b1 . . . 1/bn
−a1b1 −1/τ1 0 0

... 0
. . . 0

−anbn 0 0 −1/τn

 , (A1)

B̂ = diag

(√
2q/τ ,

√
2q1a1b21/τ1, . . . ,

√
2qnanb2n/τn

)
. (A2)

All the model parameters are assumed to be positive. As in the main text, we define ∆X = X − 〈X〉, β̂ = σ̂−1 and
σij = 〈∆Xi∆Xj〉.

1. Stationary probability distribution function

The stationary probability distribution function of the model is the multivariate Gaussian [35] P (X) ∝
exp

(
− 1

2∆Xβ̂∆X
)

. To have an explicit expression of that, one has to solve the following equation for the covariance

matrix σ̂:

Âσ̂ + σ̂ÂT = −B̂B̂T . (A3)

The solution of such a matrix equation for our model in the general case is cumbersome. Here we report the explicit
solution for n = 1:

σ̂ =
1

(1 + a1ττ1)(τ + τ1)

(
a1q1τ

2τ1 + q(τ + τ1 + a1ττ
2
1 ) a1b1ττ1(q1 − q)

a1b1ττ1(q1 − q) a1b1(a1qττ
2
1 + q1(τ + τ1 + a1τ

2τ1))

)
. (A4)

Our model is built in such a way to have thermodynamic equilibrium if qi = q ∀i and Fext = 0. In such a condition

we expect the equilibrium probability distribution function to be canonical (i.e. β̂eq
ij ∝ δij/q). Now we check that by

Eq. (A3). We assume σ̂eq
ij = ciδij and substitute it into Eq. (A3) with qi = q:(

Âσ̂eq + σ̂eqÂT
)
ij

= Aijcj + ciA
T
ij = −(Beq

ii )2δij . (A5)

For i = j = 0 we have c0 = −B2
00/A00 = 2q while if i = j 6= 0 one has ci = −(Beq

ii )2/Aii = 2qaib
2
i . With this solutions,

is easy to verify that the left hand side of Eq. (A5) is always zero if i 6= j. The equilibrium probability distribution
function is then given by:

Peq(X) ∝ exp

[
− 1

2q

(
ω2 +

n∑
i=1

Ω2
i

aib2i

)]
. (A6)

2. Entropy production

We consider the entropy production of the general model defined according to the Lebowitz and Spohn functional.
We use the relation reported in [46] that expresses the entropy production as the product of reversible and irreversible
components of the drift in the Langevin equation. Since we are interested in the entropy production in the stationary
state, we only consider the term that is extensive in time. We obtain

∆S(t) = log
Prob({ω(s),Ω1(s), · · ·Ωn(s)}τ0)

Prob({−ω(t− s),Ω1(t− s), · · · ,Ωn(t− s)}t0)
(A7)

=
1

Dω

∫ t

0

ds [Airrω (ω̇(s)−Arevω )] +

n∑
i=1

1

DΩi

∫ t

0

ds [AirrΩi (Ω̇i(s)−ArevΩi )] (A8)
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where Dω = q/τ,DΩi = qiaib
2
i /τi and

Arevω =

n∑
i=1

Ωi(s)

bi
+ Fext, Airrω = −ω(s)

τ
, ArevΩi = −aibiω(s), AirrΩ1

= −Ωi(s)

τi
(A9)

having used the fact that ω is odd and the Ωis are even under time reversal (see A 4 below). Therefore, for the entropy
production in the stationary state, we obtain

∆S(t) =
1

Dω

∫ t

0

ds

(
−ω(s)

τ

)[
ω̇(s)−

n∑
i=1

Ωi(s)

bi
− Fext

]
+

n∑
i=1

1

DΩi

∫ t

0

ds

(
−Ωi(s)

τi

)[
Ω̇i(s) + aibiω(s)

]
(A10)

=
1

Dω

[
−δω

2

2τ
+

1

τ

∫ t

0

ds ω(s)

(
n∑
i=1

Ωi(s)

bi
+ Fext

)]
+

n∑
i=1

1

DΩi

[
−δΩ

2
i

2τi
− aibi

τi

∫ t

0

ds ω(s)Ωi(s)

]
(A11)

= −δt(ω
2)

2q
−

n∑
i=1

δt(Ω
2
i )

2qiaib2i
+

1

q

∫ t

0

ds ω(s)Fext +

n∑
i=1

1

bi

∫ t

0

ds

(
1

q
− 1

q1

)
ω(s)Ωi(s) (A12)

where we introduced the notation δt(z) = z(t)− z(0). Considering that in the stationary state we expect 〈∆S(t)〉 =

〈Ṡ〉t, the average entropy production rate is then

〈Ṡ〉 =
1

q
〈ω〉Fext +

n∑
i=1

1

bi

(
1

q
− 1

qi

)
〈ω〉〈Ωi〉+

n∑
i=1

1

bi

(
1

q
− 1

qi

)
σ0i (A13)

that coincides with the expression reported in Eq. (9) of the main text. It is also important to note that Eq. (A12) is
consistent with thermodynamic interpretation for which, at equilibrium, the only contribute to the fluctuating entropy
production is the work done by the thermal bath. Indeed, rescaling the auxiliary variables as Ω̃i = Ωi/

√
aib2i , one

obtains:

∆Seq(t) = −δt(ω
2)

2q
−

n∑
i=1

δt(Ω̃
2
i )

2q
(A14)

that is evidently zero when averaged on the stationary state. The interpretation of the above expression as the
total fluctuating work done by the thermostats is consistent with the equilibrium probability distribution function
(Eq. (A6)).

3. Equilibrium condition for the Fokker-Planck equation

The Fokker-Planck equation associated to Eq. (2) reads:

∂tP (X, t) = −∇ ·
(
J rev(X, t) + J irr(X, t)

)
(A15)

where:

J irr
i (X, t) =

[
Airr
i (X, t)− 1

2
B2
ii∂Xi

]
P (X, t) (A16)

J rev
i (X, t) = Arev

i (X, t)P (X, t). (A17)

From Eq. (A2) and (A9) it is easy to check that, as we expect, the probability distribution function given by Eq. (A6)
makes the irreversibe current J irr

i (X, t) equal to zero when qi = q ∀i.

4. Symmetry under time reversal of the auxiliary variables

The calculations done so far assume the auxiliary variables to be even under time reversal. This is a forced choice if
we want to obtain the correct thermodynamic interpretation expressed by Eq. (A14). Nevertheless, this choice may
seem unphysical because in our model the Ωis and ω can have the same physical dimensions (see Appendix C below)
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FIG. 2. Evolution of ω and Ω1, the arrow width corresponds to vector magnitude. a) directed trajectories of ω and Ω1: the
auxiliary variable increases the intruder’s velocity. We consider a limit in which Ω1 is not perturbed by the intruder to ease
the readability of the cartoon. b) Reversed trajectories with both the variables considered odd under time reversal. Here the
auxiliary field would naturally increase the intruder’s velocity so the observed slowing down is entirely originated by the action
of noise. c) Reversed trajectories considering ω odd and Ω1 even under time reversal. The auxiliary variable increases the
intruder’s velocity with the same probability.

so one expects them to follow the same symmetry under time reversal. Here we want to provide an argument that
clarifies why considering even Ωis is actually reasonable from a physical point of view. Let’s consider a particular case
of our general model where n = 1, q = q1, α = 0, Fext = 0 and τ1 � τ . The equations of motion then read:

ω̇ = −1

τ
(ω − Ω1) +

√
2q

τ
ξ0, Ω̇1 = 0. (A18)

These equations represent the diffusion of an intruder (ω) in a fluid with a local velocity field (Ω1) that relaxes on
timescales much larger than τ . If the two variables have the same(opposite) sign the velocity field fastens(slows down)
the intruder. Being a sub-case of the general model with q = q1 (i.e. thermodynamic equilibrium), we expect for the
trajectories of {ω(t),Ω1(t)} to have the same probability under time reversal. In Fig. 2, we show one possible directed
evolution of the two variables and the comparison between time reversal operations where Ω1 is considered odd or
even. It is clear that the case in which Ω1 is odd (b) requires a (very improbable) realization of the noise that is able
to slow down ω despite the positive contribute of Ω1. On the contrary, it is reasonable to think that the reversed
trajectories with even Ω1 (c) can be obtained with a realization of the noise that has the same probability of the
directed one. The conclusion we draw from this cartoon is that we must consider auxiliary variables as external fields.
Thus, we don’t change their sign under time reversal even if they have the same physical dimension of a velocity and
they are influenced by the intruder dynamics.
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5. Diffusion coefficient

To obtain general expression of the diffusion coefficient of our model: limt→∞〈∆θ(t)2〉/t = S00(0) =[
Â−1B̂B̂T (ÂT )−1

]
00

one needs to invert the arrowhead matrix ÂT . We first perform the matrix product and get:[
Â−1B̂B̂T (ÂT )−1

]
00

=
∑
kj

A−1
0j B

2
jjδjkA

−1
0k =

∑
k

(
A−1

0k Bkk
)2
, (A19)

where the sums run from 0 to n+ 1 and δjk is the Kronecker delta. From Ref. [38] we know that:

det(A)A−1
00 = (−1)n

n∏
j=1

1

τj
, det(A)A−1

0k = (−1)n
τk
bk

n∏
j=1

1

τj
, det(A) = (−1)n+1

n∏
j=1

1

τj

[
1

τ
+

n∑
i=1

aiτi

]
(A20)

and with some algebraic manipulation we arrive to

S00(0) = Deq

[
1 + τ

∑
k
qk
q akτk

1 + τ
∑
k akτk

]
(A21)

that coincides with Eq. (13) of the main text.

6. TUR in the large time limit

The TUR valid at large times reported in Eq. (15) of the main text has been derived by directly evaluating the
quantities involved in it from the general model:

lim
t→∞

〈∆θ(t)2〉
t

≥ 2〈ω〉2

〈Ṡ〉ext

≥ 2〈ω〉2

〈Ṡ〉
. (A22)

The first inequality follows from verifying that:[
1 + τ

∑
k
qk
q akτk

1 + τ
∑
k akτk

]
−

[
1 + τ

∑
k akτk

1 + τ
∑
k
q
qk
akτk

]
= τ

∑
k

akτk
qqk

(q − qk)
2

+ τ2
∑
j>k

τjajτkak
qkqj

(qj − qk)
2 ≥ 0. (A23)

The second inequality of (A22) is directly related to the decomposition of the entropy production rate 〈Ṡ〉 = 〈Ṡ〉ext +

〈Ṡ〉th and the positivity of 〈Ṡ〉th. We recall that 〈Ṡ〉th =
∑
i

1
bi

( 1
q −

1
qi

)σ̂0i ≥ 0 follows from the fact that in absence

of external force it is the only contribute to the entropy production rate and that its expression does not depend on
Fext thanks to the linearity of the model.

Appendix B: Underdamped TUR from Cramér-Rao inequality

1. Relation with previously derived TUR

The derivation of the TUR in the large time limit has been performed exploiting the fact that it is possible to
derive an explicit and compact expression for both the diffusion coefficient (Eq. (A21)) and the entropy production
rate (Eq. (A13)) in our model. Using the same procedure to derive a TUR valid at all timescales is much more
complicated because: i) one has to handle the general expression of the MSD of the model that is cumbersome, ii)
one has to guess a time-dependent functional form of the bound.

A TUR valid at all timescales for a general Langevin dynamics with a fully underdamped structure has been
derived in [24] following the method explained in [13]. With fully underdamped we mean a system where one half
of the degrees of freedom is even under time reversal and is obtained as the derivative of the other half that is odd
under time reversal. Such a TUR takes the following form:

Var(Θ(t))

〈Θ(t)〉2
≥ 1

∆S(t) + I
(B1)



10

where Θ(t) is a generalized integrated current, ∆S(t) is the total entropy production and I is a non-extensive term
in time. It is worth mentioning that (B1) represents an improvement with respect the underdamped TUR derived in
[12] because it has the correct large time limit. With some calculations (not shown) it is possible to show that the
same TUR can be derived also for our model that has a partial underdamped structure (i.e. ω is odd and all the Ωis
are even under time reversal). Nevertheless, the above TUR in the large time limit brings to an inequality that can
be improved by substituting ∆S(t) with ∆Sext(t). As reported in the main text, one of the main results of our work
is the derivation of the following TUR:

〈∆θ(t)2〉
(〈ω〉t)2

≥ 2

∆Sext(t) + I
(B2)

It is valid at all times in the steady state and brings to the improved inequality (A22) in the large time limit.

2. Details of the derivation

In order to derive the TUR (B2) from the Cramér-Rao inequality (Eq. (16) in the main text) we write the SDE of
our model with a perturbation depending on the parameter h:

dXi = fhi (X)dt+BiidW (t) (B3)

where dW (t) is the increment of the Wiener process and:

fhi (X) =
∑
j

AijXj + Fi + hVi. (B4)

We then apply the main results of Ref. [13]. Considering initial conditions in the steady state, the Fisher information
takes the following form

IF(h) = −〈∂2
h lnPh(X)〉h +

〈∫ t

0

dt′
∑
i

(
∂hf

h
i (X)

Bii

)2
〉
h

(B5)

where Ph(X) is the probability distribution function of the perturbed process and 〈·〉h refers to averages on such
a probability. Since the system is linear and the h-perturbation does not depend on X, the stationary probability
distribution associated to the fictive dynamics is still a multivariate Gaussian with the same covariance matrix but

different average values 〈Xi〉h. Thus, Ph(X) ∝ exp [(X − 〈X〉h)T β̂(X − 〈X〉h)/2]. Moreover, from Eq. (B4) one
has: ∂hf

h
i (X) = Vi. In order to make the Cramér-Rao inequality fully explicit, we then need to compute the average

values 〈Xi〉h. With the specific choice done in the main text V = {〈ω〉/τ,−〈Ω1〉/τ1, . . . ,−〈Ωn〉/τn}, the following
relations must be satisfied:

− 1

τ
〈ω〉h +

∑
i

〈Ωi〉h
bi

+ Fext + hV0 = 0 (B6a)

− 1

τi
〈Ωi〉h − aibi〈ω〉h − hVi = 0 (B6b)

from which we obtain 〈ω〉h = (1 + h)〈ω〉 and 〈Ωi〉h = 〈Ωi〉.
Substituting these relations in the Cramér-Rao inequality for h = 0 we find the TUR (B2). Indeed the Fisher

information becomes

IF(0) =

∫
dX

[∂hPh(X)]2|h=0

P (X)
+

1

2

[
〈ω〉2

τq
+
∑
i

〈Ωi〉2

τiqiaib2i

]
t =

1

2

[
I + 〈Ṡ〉extt

]
. (B7)

The relation between the first term of Eq. (B7) and Eq. (20) of the main text follows from the direct evaluation of
the probability distribution’s derivative with respect h:

∫
dX

[∂hPh(X)]2|h=0

P (X)
=

〈1

2

∑
jn

βjn∂h(∆Xh
j ∆Xh

n)

2〉
= 〈ω〉2

∑
jn

β0nβ0jσnj = 〈ω〉2β00, (B8)
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where we used ∆Xh
j = (Xj −〈Xj〉h) and ∂h∆Xh

j = 〈ω〉δ0j . Finally, using the relation between 〈ω〉 and 〈Ωi〉 (Eq. (10)
of the main text), we note that:

〈ω〉2

τq
=

1

q
ωFext +

∑
i

〈ω〉〈Ωi〉
qbi

and
〈Ωi〉2

τiqiaib2i
= −〈ω〉〈Ωi〉

qibi
. (B9)

So, we find that the second term of Eq. (B7) is directly related to the entropy production rate as expressed in Eq. (9).

Appendix C: Fitting procedure

In order to fit the model’s parameter we used two distinct methods for numerical and experimental data. In the
numerical data, independent measurements of the auto-correlation and the response function of the granular intruder
are available [27]. The model we used for them is defined by the following matrices:

Â =

(
−1/τ 1/τ
−α/τ1 −1/τ1

)
, B̂ =

( √
2q/τ 0

0
√

2q1ατ/τ2
1

)
. (C1)

so it counts five parameters τ , q, α, τ1, q1. A multi-branch fit of auto-correlation and response allows to determine the
numerical value of such parameters without overfitting. Regarding the experiments performed at moderate density
(reported in Fig. 1a of the main text) we still use (C1) but here we have only data with which we can reconstruct
the autocorrelation, the MSD and the power spectral density of the velocity (PSDV) in the steady state. These are
all observables that store the same amount of information in different ways. Indeed, knowing the autocorrelation
function, we can obtain the MSD with the Kubo’s formula or the PSDV by a Fourier transform. In a linear model
with n + 1 variables, the autocorrelation function is a sum of n + 1 exponential decays each one identified by an
amplitude and a characteristic time. Thus, a fit of the autocorrelation or an equivalent observable alone, can be used
to estimate a maximum of 2(n + 1) parameters. In order to have four free parameters, we have fixed α = 1 before
doing the fit of the experimental data at moderate density. A similar procedure has to be done to fit the experimental
data at high density (shown in Fig. 1b of the main text). In this case the matrices of the model are given by:

Â =

 −1/τ 1/τ 1/τ
−α/τ1 −1/τ1 0
−ε2/τ2 0 −1/τ2

 , B̂ =


√

2q/τ 0 0

0
√

2q1ατ/τ2
1 0

0 0 ε3/2
√

2q2/τ2

 . (C2)

Remembering that ε = τ/τ2, we have seven parameters τ , q, α, τ1, q1, τ2, q2 and in order to not overfit we fixed
q = q1 before doing the fit.

With this fitting procedure we are able to reproduce the MSD and the PSDV (not shown) but dealing with a large
number of parameters we know that there is probably an entire region of the parameter space where we could find
a good agreement with the experimental data. In view of this, we stress that the important point of our analysis is
that there is a set of parameters well reproducing our data for which is important to take into account the correct
terms of EPR in the TUR. Nevertheless, it is also important to note that the arbitrariness in the estimate of model’s
parameters from data is a quite general issue. In light of this, we remark that the last result presented in the main
text (i.e. non-equilibrium signatures in the shape of the MSD) does not require any fit of the data.

Appendix D: Extent of the anomalous diffusion

Here we want to adapt the analysis done in [15] to the new bound derived in the main text. Considering a regime
where the MSD behave as 〈∆θ(t)2〉 ∼ Kνt

ν we have that:

Kνt
ν ≥ C1t

2

1 + C2t
∼

{
C1t

2 t→ 0
C1

C2
t t→∞

(D1)

where C1 = 2〈ω〉2/I and C2 = 〈Ṡ〉ext/I. The above inequality is satisfied only for times that solve tν−2 + C2t
ν−1 −

C1/Kν ≥ 0. We can take ν = 0 for an example of the subdiffusive case and ν = 2 for the superdiffusive one obtaining:

t∗sub ≤
2

C2

(√
1 +

4C1

C2
2K0

)−1

, t∗super ≥
1

C2

(
C1

K2
− 1

)
. (D2)
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We note that in the subdffusive case there is always a positive time that prevents the extension of the subdiffusion
after a certain time. On the other hand, the superdiffusive one has a meaningful bound only if K2 < C1 i.e. if the
anomalous diffusion coefficient is lower than the ballistic one of the bound. Having in mind a loglog plot, it means
that if the superdiffusive regime K2t

2 lays over the line C1t
2 it can holds for any positive times. In the opposite case

the onset of such regime can not occur before t∗super. This is consistent with the fact that the ballistic regime is always
present in an underdamped system for t ∼ 0. The bound applies to the anomalous superdiffusive regimes that may
appear at larger times as the one shown in Fig. 1b of the main text.

FIG. 3. Comparison between a power law decay f(t) and two approximations given by sum of exponentials. See text for the
definition of the parameters.

Appendix E: Power law decay and sum of exponentials

It is interesting to realize that the choice of a memory kernel which is sum of exponentials with different decay rates
can reproduce physical situations where memory decays as a power law, of course with a maximum time cut-off. We
are not able to provide a general theory, but visual examples constitute an empirical proof. In Fig. 3 we compare the
following three decaying functions of time t:

f(x) = t−3/2 (E1)

f3(x) =

3∑
k=1

ak
τk
e−t/τk (E2)

f6(x) =

6∑
k=1

ak
τk
e−t/τk (E3)

with ak = τ
−1/2
k and τ ≡ {1, 10, 100, 0.01, 0.1, 1000}. (E4)

A more systematic study about how to use exponential functions to approximate power laws is also provided in [47].
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