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Thermodynamic consistency of the optomechanical master equation
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We investigate the thermodynamic consistency of the master equation description of heat transport through an
optomechanical system attached to two heat baths, one optical and one mechanical. We employ three different
master equations to describe this scenario: (i) The standard master equation used in optomechanics, where each
bath acts only on the resonator that it is physically connected to; (ii) the so-called dressed-state master equation,
where the mechanical bath acts on the global system; and (iii) what we call the global master equation, where
both baths are treated nonlocally and affect both the optical and mechanical subsystems. Our main contribution is
to demonstrate that, under certain conditions including when the optomechanical coupling strength is weak, the
second law of thermodynamics is violated by the first two of these pictures. In order to have a thermodynamically
consistent description of an optomechanical system, therefore, one has to employ a global description of the
effect of the baths on the system.
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I. INTRODUCTION

The field of optomechanics [1,2] investigates composite
systems where an optical resonator is coupled to a mechanical
oscillator. A significant portion of the studies in the field
focus on its promise for testing fundamental quantum laws
using macroscopic objects, constructing probes for tiny forces
with quantum-limited sensitivity, and generating nonclassical
states [3–18]. In optomechanical systems, light interacts with
the mechanical motion of an oscillator, typically a micromir-
ror. This effect can be exploited in numerous ways, including
for facilitating long-distance quantum communication [19]
and quantum information processing [20,21], for performing
quantum state transfer between optical pulses and mechanical
excitations [22], for the transfer of energy between elec-
tromagnetic oscillators with large frequency differences or
storing quantum states in mechanical motion [23], and for
converting traveling phonons into photons [24]. This radia-
tion pressure interaction also generates quantum correlations
between the light and mechanical motion, which are important
for force metrology [25].

Attention has recently been devoted to thermodynamic
applications of optomechanical systems [26–34], including
proposals for optomechanical quantum heat engines [35] and
heat transport through optomechanical arrays [36]. Despite
this research, and somewhat surprisingly, it appears that a
thermodynamically consistent open system description of the
optomechanical interaction that is valid at arbitrary coupling
strength is still lacking. We remark, however, that significant
progress has been made very recently in deriving master equa-
tions for open quantum systems that are consistent with the
laws of thermodynamics starting from microscopic collision
models [37].
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In part because of the limitations of current experimental
setups, the typical description of an optomechanical system
is restricted in validity to the weak coupling regime. The
dynamical behavior in this scenario is typically studied us-
ing what we will refer to as the standard master equation
(SME), where the heat baths connected to the system are
assumed to influence only the system that they are attached
to [38]. As the coupling strength grows and the system enters
the strong-coupling regime, using the so-called dressed-state
master equation (DSME) has been suggested [39]. In effect,
this description includes the influence of the mechanical heat
bath on the optical resonator but neglects the effect of the
optical heat bath on the mechanical oscillator; one can say
that the optical reservoir is local whereas the mechanical one
global [40]. Recent proposals [41,42] have suggested ways in
which this regime may be rendered accessible, highlighting
the need for understanding which description of the dynamics
is to be used. Indeed, consistency of these different master
equations with the laws of thermodynamics is not guaranteed;
it is known, for example, that coupled simple harmonic res-
onators in certain parameter regimes require a fully global
treatment of the reservoirs to ensure thermodynamic consis-
tency [40,43–45].

Our main objective in this paper is to systematically exam-
ine the heat transport through an optomechanical system from
the point of view the first and second laws of thermodynam-
ics. We highlight the failure of both aforementioned master
equations in both weak and strong optomechanical coupling
to enforce consistency with the second law of thermody-
namics. We find nonvanishing heat flow in the system when
the coupled baths are at same temperature, independent of
the optomechanical coupling strength; i.e., both these master
equations violate the second law of thermodynamics even in
the weak optomechanical coupling regime, for certain values
of other system parameters. We propose a method based upon
a global master equation (GME) to ensure consistency at
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arbitrary optomechanical coupling strength. In particular, we
provide evidence showing that consistency with the second
law of thermodynamics requires phonon sideband modes to
be included in the master equation when the temperature of
the mechanical bath is greater than that of the optical bath.

This paper is organized as follows. In Sec. II, we outline
our basic model and present the three master equations that
are the subject of our study. In Sec. III, we compare the three
approaches in terms of their consistency with the second law
of thermodynamics. We then sum up briefly and give our
conclusions in Sec. IV.

II. THE MODEL

Our model consists of a Fabry-Pérot cavity, one of whose
end mirrors is allowed to move; this model is shown schemat-
ically in Fig. 1 and is representative of a large class of phys-
ically equivalent systems containing a localized electromag-
netic field mode interacting with a mechanical oscillator. The
optical (mechanical) resonator in our model has frequency ωc

(ωm) and is attached to a thermal bath at temperature Tc (Tm).
Both these baths are independent and can possess any non-
negative finite temperature. Since the description of the baths
depends on the specific approach followed, as detailed below,
we defer this discussion to the forthcoming subsections.

The Hamiltonian governing the evolution of the isolated
system consisting of the optical and mechanical modes is
(we use units in our Hamiltonians such that h̄ = 1 for
convenience)

Ĥ = ωcâ
†â + ωmb̂†b − gâ†â(b̂ + b̂†). (1)

The first two terms in Ĥ are energies of the optical and
mechanical modes, respectively, whereas third term denotes
the optomechanical interaction with single-photon coupling
strength g. We denote the annihilation (creation) operator
of the optical mode by â (â†) and of the mechanical mode
by b̂ (b̂†).

FIG. 1. Schematic illustration of an optomechanical system, con-
sisting of a mechanical resonator with frequency ωm coupled to an
optical resonator with frequency ωc. In this illustration, an optical
cavity has a mobile end mirror (shown on the right) whose motion
is assumed to be harmonic. The two resonators are coupled to heat
baths, at temperatures Tm and Tc, respectively. We assume that these
two baths are independent and can posses any finite non-negative
temperature.

A. Three different master equations

We will now proceed to add to Ĥ the interaction of the two
isolated modes with two independent thermal baths. In this
subsection, we shall consider three different master equations
which may be used to describe the dynamics of the reduced
density matrix of the system after the two baths have been
traced out.

1. The standard master equation (SME)

Let us first consider the case where each of the two degrees
of freedom is coupled to an independent bath mode; these
baths can therefore be considered local, in the sense that
they interact with the localized field operators â and b̂. The
Hamiltonian describing the full system is

Ĥtot = Ĥ +
∑

λ

[ωc,λĉ
†
c,λĉc,λ + gc,λ(â†ĉc,λ + âĉ

†
c,λ)

+ωm,λĉ
†
m,λĉm,λ + gm,λ(b̂†ĉm,λ + b̂ĉ

†
m,λ)]. (2)

The sum in Ĥtot runs over the infinite number of bath modes,
indexed by λ (which may be regarded as a continuous or
discrete index) for both the optical and mechanical baths. The
first term in the sum represents the free Hamiltonians of the
optical bath modes, ωc,λ being the frequency of the bath mode
indexed by λ and ĉc (ĉ†c) its annihilation (creation) operator.
The second term represents the interaction between these bath
modes and the optical resonator, where the interaction with
the bath mode indexed by λ is governed by a strength gc,λ. The
last two terms in the sum are analogous to these first two, but
describe the mechanical bath modes and their interaction with
the mechanical resonator. The optical and mechanical baths
are assumed to be at thermal equilibrium at temperatures Tc

and Tm, respectively.
The standard way of deriving the master equation starts

off by making the Born-Markov approximation, the details
of which and whose regime of validity can be found in
Refs. [38,46]. In a second step, the weak coupling approxima-
tion is made, which finally results in a local master equation
without the need to make any secular approximation, i.e.,

dρ̂

dt
= −i[Ĥ , ρ̂] + L(s)

c ρ̂ + L(s)
m ρ̂, (3)

where

L(s)
c ρ̂ = Gc(ωc)D[â]ρ̂ + Gc(−ωc)D[â†]ρ̂ and (4)

L(s)
m ρ̂ = Gm(ωm)D[b̂]ρ̂ + Gm(−ωm)D[b̂†]ρ̂ (5)

are the Liouville superoperators of the optical and mechanical
baths, respectively. In these equations,

D[ô]ρ̂ := 1
2 (2ôρ̂ô† − ô†ôρ̂ − ρ̂ô†ô) (6)

is the Linblad dissipator. The spectral density functions Gx (ω)
(x = c, m) of the thermal baths are given by

Gx (ω) = γ (ω)[1 + n̄x (ω)] and (7)

Gx (−ω) = γ (ω)n̄x (ω), (8)

where

n̄x (ω) = 1

eh̄ω/(kBTx ) − 1
(9)
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are the Bose-Einstein distributions of the excitations in the
baths, with kB being the Boltzmann constant. The coefficients

γx (ω) = 2πh̄
fx (ω)gx (ω)2

ω
(10)

are determined by the density of modes of the baths, fx (ω),
and the interaction strength between the baths and their cor-
responding resonators, gx (ω). In the following, we assume
strictly Ohmic baths with a flat density of modes, in which
case γx (ω) becomes independent of ω and can be denoted by
γx (ω) = κx .

2. The dressed-state master equation (DSME)

In contrast with the standard master equation, where each
bath couples to a local degree of freedom, this is a semiglobal
approach. To derive the DSME, the reduced system
Hamiltonian is diagonalized by means of a polaron trans-
formation, and the system-bath interaction is described in
this new basis. Next, one makes the usual Born-Markov
approximation. An assumption is then made whereby the bath
attached to the mechanical resonator couples to both degrees
of freedom, but where the other bath couples only to the
optical resonator. This approximation is valid for sufficiently
flat spectral density and ωc � ωm, in which case phonon
sidebands can be ignored. In the DSME, one further assumes
that n̄m � 1. A detailed derivation of DSME is presented in
Ref. [39] and yields, finally,

dρ̂

dt
= −i[Ĥ , ρ̂] + L(d)

c ρ̂ + L(d)
m ρ̂ + L(d)

m,dρ̂, (11)

where

L(d)
c ρ̂ = Gc(ωc)D[â]ρ̂ + Gc(−ωc)D[â†]ρ̂, (12)

L(d)
m ρ̂ = Gm(ωm)D[b̂ − αn̂c]ρ̂

+Gm(−ωm)D[b̂† − αn̂c]ρ̂, and (13)

L(d)
m,dρ̂ = 4(κmTm/ωm)α2D[n̂c]ρ̂. (14)

The first two of these equations describe the dissipation of the
optical and mechanical modes, respectively, and the last equa-
tion represents dephasing of the optical mode. Furthermore,
n̂c = â†â and α = g/ωm. We note that this master equation
reduces identically to the SME in the limit g → 0.

3. The global master equation (GME)

The derivation in this case is similar to previous case,
except that here both baths are treated on an equal (global)
footing, and that phonon sidebands are not ignored. In the
interaction picture, the coupling between the baths and oscil-
lators is characterized by the interaction Hamiltonians

Ĥc,B = â†(t )ĉc(t ) + â(t )ĉ†c(t ) and (15a)

Ĥm,B = b̂†(t )ĉm(t ) + b̂(t )ĉ†m(t ). (15b)

Here we have defined ô(t ) = eiĤ t ôe−iĤ t and ĉc (ĉm) are non-
normalized optical (mechanical) bath operators, with ĉc =∑

λ gc,λe
−iωc,λt ĉc,λ and ĉm = ∑

λ gm,λe
−iωm,λt ĉm,λ.

The Hamiltonian of the reduced system, Ĥ , can be diago-
nalized using the transformation

Ŝ = e−αâ†â(b̂†−b̂), (16)

following which the Hamiltonian takes the form

H̃ = ωcã
†ã + ωmb̃†b̃ − g2

ωm
(ã†ã)2. (17)

The transformed operators then read

ã = âe−α(b̂†−b̂) and (18)

b̃ = b̂ − αâ†â. (19)

The system operators in Eqs. (15) evaluate to

â(t ) = ãe−iωct

∞∑
n=0

αn(b̃e−iωmt − b̃†eiωmt )n and (20a)

b̂(t ) = b̃e−iωmt + αã†ã. (20b)

From Eqs. (20), the master equation can be derived by
making standard Born-Markov and secular approximations.
We emphasize that the system and bath Hamiltonians in
Eqs. (15) are the same as those used for the DSME [39] or
for the SME. The dissipators associated with each model,
however, should be derived carefully. The SME leads to dis-
sipators which are local energy transfer channels between the
baths and the corresponding subsystems. The DSME allows
for another energy transfer channel from the mechanical bath
to the optical subsystem via a nonlocal dissipator, but it still
makes use of a local dissipator for the optical subsystem. The
differences between these two dissipators emerge after the
secular approximation is taken. In what follows, we present
a master equation whose dissipators are nonlocal for both the
mechanical and optical baths. We shall express them in terms
of transformed (dressed) operators, but we emphasize that the
dissipators remain nonlocal in terms of the original (bare)
operators as well. After the secular approximation is made,
one cannot get local dissipators by transformation back to the
bare operators.

For simplicity, we consider four sidebands, resulting in the
master equation

dρ̃

dt
= L(g)

c ρ̃ + L(g)
m ρ̃ + L(g)

m,dρ̃, (21)

where the dissipative and dephasing terms are given by

L(g)
c ρ̃ = Gc(ωc)

{
D[ã] + α4

4
(D[ãb̃b̃†] + D[ãb̃†b̃])

}
ρ̃

+Gc(−ωc)

{
D[ã†]+α4

4
(D[ã†b̃b̃†]+D[ã†b̃†b̃])

}
ρ̃

+
∑
n=1,2

α2n

n2
{Gc(ωc + nωm)D[ãb̃n]ρ̃

+Gc(−ωc − nωm)D[ã†b̃†n]ρ̃

+Gc(ωc − nωm)D[ãb̃†n]ρ̃

+Gc(−ωc + nωm)D[ã†b̃n]ρ̃}, (22)
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L(g)
m ρ̃ = Gm(ωm)D[b̃]ρ̃ + Gm(−ωm)D[b̃†]ρ̃, and (23)

L(g)
m,dρ̃ = Gm(0)α2D[n̂c]ρ̃. (24)

Upon transformation of the dressed operators back to the
bare ones, we see that heat flows through both direct and
cross-coupled channels between the baths and the subsystems.
Inclusion of more sidebands increases the effectiveness of the
cross-coupled channels, which allows the system to perform
the heat transfer in the direction dictated by the second law.

In principle, all the phonon sidebands should be considered
but, as we will show, for consistency with the second law of
thermodynamics it is sufficient to consider first few sidebands
even for rather strong single-photon coupling. In this work,
we will consider up to eight phonon sidebands and refer to
Eq. (21) as the global master equation with two and four side-
bands as GME2 and GME4, respectively. The dissipators of
for six and eight sidebands, giving rise to GME6 and GME8,
respectively, are too cumbersome to report here. We note that,
as required, in the limit g → 0, Eq. (21) reduces to SME (3).

B. Entropy production rate and heat current

According to the first law of thermodynamics, the energy
of an isolated system is conserved and can be split into heat
and work [47]. For a quantum system, the dynamical version
of second law of thermodynamics states that the entropy pro-
duction rate of an isolated system remains non-negative [48]:

ξ := dS

dt
−

∑
x

h̄Jx

kBTx

� 0. (25)

In this equation, S is the von Neumann entropy, given by
S(ρ̂ ) = −Tr(ρ̂ log ρ̂ ); in second term Jx represents the heat
flux from the bath, which is given as [48]

Jx = Tr
{(
L(γ )

x ρ̂
)
Ĥ

}
, (26)

where L(γ )
x represents the dissipative terms for the SME (γ =

s), the DSME (γ = d), or the GME (γ = g), as the case
requires. Noting that Tr{(L(γ )

m,dρ̂ )Ĥ } = 0 (x = d, g), at steady
state we therefore have Jc + Jm = 0 for all three models,
which corresponds to the energy balance dictated by the first
law of thermodynamics [48].

In Appendix B, we solve the SME and DSME models, thus
yielding the steady-state entropy production rate,

ξ ss = h̄gκc

kB

(
2gωm + ακmκ

ω2
m + κ2

)
n̄c(n̄c + 1)

(
1

Tm
− 1

Tc

)
, (27)

where κ = κc + κm
2 and n̄c ≡ n̄c(ωc). All the factors in this

expression but the last are non-negative, such that the sign
of ξ ss is dictated exclusively by the relative magnitude of the
non-negative temperatures Tc and Tm. We are not aware of any
concise expression for the steady-state entropy production rate
predicted by the GME.

III. RESULTS

In this section, we shall make use of the three differ-
ent master equations developed in the previous section to
present a comparative analysis of their consistency with the

first laws of thermodynamics for selected parameters. In our
simulations, we use the PYTHON quantum toolbox QuTiP [49]
to solve the master equations, and we take parameters rel-
evant to circuit QED optomechanical simulators [50]: ωc =
2π × 10 GHz, as well as ωm = 2π × 600 MHz, κc = 2π ×
200 MHz, and κm = 2π × 50 MHz. From this point on, all
our frequencies will be rescaled by ωc and thus rendered
dimensionless.

Recall that we are considering the situation when the
optical and mechanical resonators are coupled to two distinct
thermal baths at temperatures Tc and Tm, respectively. The two
baths are independent and can possess any finite non-negative
temperature. We shall analyze our models in three different
cases: Tc > Tm, Tc = Tm, and Tc < Tm.

A. Mechanics colder than optics, Tc > Tm

Since the optical and mechanical oscillators are connected
to two distinct heat baths, two heat currents, Jc and Jm,
are present in the system. The heat current equations for
the SME and DSME are given in Appendix B, while for
the GME we calculate heat currents numerically. Figure 2(a)
shows the steady-state heat currents J ss

c and J ss
m as a func-

tion of the coupling strength g. When the two subsystems
are uncoupled, both heat currents are zero as expected. The
local (SME, DSME) and global (GME) approaches coincide
in the limit g → 0. This result is in contrast with that in
Ref. [45], in which a comparison between local and global
master equations is performed for two interacting harmonic
oscillators with coupling (â†b̂ + âb̂†). In their case, when
the two harmonic oscillators are uncoupled and have the
same frequency, the SME gives correct (zero) heat currents
but the GME yields unphysical (nonzero) heat currents. The
divergence of SME and GME in Ref. [45] for the limit g → 0
is due to failure of secular approximation in this regime. In
contrast, in our case the GME reduces identically to the SME
in this limit, and we recover consistency with the second
law of thermodynamics. However, if ωc = ωm and the op-
tomechanical coupling strength g < κx (x = c, m) is not very
small, then the secular approximation is not well justified and
the GME will fail to yield consistent results [45,46]. The GME
is also known to fail, due to a failure of the secular approxi-
mation, in the case of a one-dimensional spin- 1

2 Heisenberg
chain coupled locally with two independent thermal baths at
different temperatures [51]. In this case, it has been shown that
heat current vanishes in the presence of a finite-temperature
gradient. Since we are considering an optomechanical system
in which the parameter regime where secular approximation
fails is not accessible, we are justified in using the GME for
our dynamical description.

The heat currents J ss
c and J ss

m increase as the coupling
strength grows. The heat current flows from the hot bath to the
cold one, i.e., J ss

c is positive and J ss
m is negative. Moreover,

both currents are equal at steady state, satisfying the energy
conservation requirement. The inclusion of up to four phonon
sidebands does not effect the qualitative behavior of the heat
currents in this case, but it results in a change of magnitude as
compared to the SME and the DSME.

Figure 2(b) shows the entropy production rate, which
remains non-negative for all the dynamical equations
considered, even in strong coupling regime. Therefore, in the
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(a) Steady state heat currents.

(b) Rates of entropy production.

FIG. 2. (a) The steady-state heat currents J ss
c and J ss

m and (b) the
rates of entropy production ξ ss, as a function of the normalized
coupling strength g for Tc > Tm. The results from the standard
master equation (SME) are illustrated by the solid blue curves, those
for the dressed-state master equation (DSME) by the red dashed
curves, and those for the global master equation (GME) by the green
dash-dotted curves (two sidebands) and the black dotted curves (four
sidebands). Parameters: κc = 0.02, κm = 0.005, ωc = 1, ωm = 0.06,
Tc = 106 mK, and Tm = 101 mK.

case of Tc > Tm all three dynamical equations are thermo-
dynamically consistent for both weak and strong coupling
regimes, although they do predict different dynamical behav-
iors, especially when g � ωm.

It may appear from Fig. 2 that with the addition of more
sidebands, the global approach might converge to the local
description of the system. While the magnitudes of the heat
currents get closer, qualitative differences between the two
approaches become more pronounced, as can be seen in Fig. 3,
where we consider up to eight sidebands. Such qualitative
differences grow dramatically when we consider the cases of
equal temperatures for both baths or when the optics is colder
than the mechanics.

B. Equal temperatures, Tc = Tm

When both baths are at the same temperature, the second
law of thermodynamics dictates that the heat currents Jc and
Jm must stay zero all the time. However, we find that the

FIG. 3. The steady-state heat current J ss
c as a function of the

normalized coupling strength g for Tc > Tm. From the lowest curve
upward, the results shown are those for the global master equation
(GMEn) with two (n = 2), four (n = 4), six (n = 6), eight (n = 8)
sidebands, the standard master equation (SME), and for the dressed-
state master equation (DSME). Parameters: κc = 0.02, κm = 0.005,
ωc = 1, ωm = 0.06, Tc = 106 mK, and Tm = 101 mK.

SME and the DSME predict nonzero values of J ss
c and J ss

m ,
as shown in Fig. 4; this represents a violation of the second
law of thermodynamics as stated above. This sort of violation
of second law when baths attached to system are kept at
same temperature has been reported for Fermionic transport
models [52,53] and two interacting harmonic oscillators [40].
We find that this unphysical result disappears if the system is
described by the GME; when including the phonon sideband
terms in the master equation, both heat currents Jc and Jm

become zero. In Ref. [45], it was reported that when the
baths are at same temperature the global approach captures
an accurate description of the steady state of the system,

FIG. 4. The steady-state heat currents J ss
c and J ss

m as a function
of normalized coupling strength g for Tc = Tm. The results from
the standard master equation (SME) are illustrated by the solid
blue curves, those for the dressed-state master equation (DSME)
by the red dashed curves, and those for the global master equation
(GME) by the green dash-dotted curves (two sidebands) and the
black dotted curves (four sidebands). Parameters: Tc = 106 mK, and
Tm = 106 mK, with the rest of the parameters as in Fig. 2.
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(a) Steady state heat currents.

(b) Rates of entropy production.

FIG. 5. (a) The steady-state heat currents J ss
c and J ss

m , and (b) the
rates of entropy production ξ ss as a function of normalized coupling
strength g for Tc < Tm. The results from the standard master equation
(SME) are illustrated by the solid blue curves, those for the dressed-
state master equation (DSME) by the red dashed curves, and those
for the global master equation (GME) by the green dash-dotted
curves (two sidebands) and the black dotted curves (four sidebands).
Parameters: Tc = 101 mK and Tm = 106 mK, with the rest of the
parameters as in Fig. 2.

whereas the local approach fails even in weak coupling. We
expect, and indeed observe, similar results to hold in our case
as well.

C. Optics colder than mechanics, Tc < Tm

For the case where Tc < Tm, Fig. 5(a) shows the steady-
state heat currents J ss

c and J ss
m as a function of the normal-

ized coupling strength g. We see that for all values of g,
the two heat currents are equal and are therefore consistent
with energy conservation. Moreover, for g = 0 there is no
heat flow into or out of the system, as required, and as g

increases the heat currents increase in magnitude. According
to the Clausius statement of second law, heat must flow
from the hot to the cold bath. Figure 5(a), however, shows
that if the dynamics of the system is described by the SME
or the DSME, heat flows from the cold to the hot bath,
independent of the optomechanical coupling strength. It is

FIG. 6. The rates of entropy production ξ ss as a function of
normalized coupling strength g. From the lowest curve upward,
the results shown are those for the dressed-state master equation
(DSME), the standard master equation (SME), and for the global
master equation (GMEn) with two (n = 2), four (n = 4), six (n = 6),
and eight (n = 8) sidebands. All parameters are as in Fig. 5.

only when we include the phonon side modes in the master
equation that the direction of the heat current becomes cor-
rect and the violation of the second law of thermodynamics
disappears.

The entropy production rate is plotted as a function of the
coupling strength g in Fig. 5(b). Since the entropy production
must be non-negative, this figure yet again demonstrates that
the local (SME) and the semiglobal (DSME) approaches are
inconsistent with second law of thermodynamics, even in the
weak coupling regime. Inclusion of phonon sidebands, as
per the GME, recovers consistency with the second law of
thermodynamics in both weak and strong coupling regimes.
Further investigation reveals that the source of this inconsis-
tency is the assumption of an unphysical flat bath spectrum
and the presence of nonsecular terms, both of which are
relaxed when deriving the GME. Indeed, if we reduce the
number of sidebands or consider a flat response function for
the baths, then even the dynamical description of the system
by the GME results in a violation of the second law of
thermodynamics.

To demonstrate the robustness of our investigation and
the convergence of the GME as the number of sidebands is
increased, we plot in Fig. 6 the rates of entropy production
for a number of different situations. Convergence of the GME
requires an increasing number of sidebands as g increases,
but the higher sidebands do not contribute significantly in the
regime where g � ωm. In any case, the inclusion of more
sidebands does not change the qualitative behavior of the heat
currents or the steady-state entropy production.

Similarly to Fig. 3, we can see from Fig. 5(a) that the mag-
nitude of the heat current in the global approach gets closer
to that of the local approach when we consider more phonon
sidebands. However, their behaviors are qualitatively different
when the optics is colder than the mechanics. In particular,
since the signs of the heat currents differ, these qualitative
differences may in fact increase when more sidebands are
taken into account.
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IV. CONCLUSIONS

We have studied a generic optomechanical system coupled
to two heat baths, one optical and one mechanical. Our
focal point was the consistency of its dynamics with second
law of thermodynamics, with respect to local and nonlocal
approaches to obtaining the master equation describing this
dynamics. When the two baths attached to the system are kept
at the same temperature, a nonzero heat current persists in
steady state in the standard and dressed-state pictures, which
violates the second law of thermodynamics. On the other
hand, when the system is described by means of a nonlocal
dynamical equation where each heat bath acquires a global
character, the heat currents vanish. When the mechanical
bath is held at a higher temperature, we have also seen that
the steady-state heat current flows from the cold to the hot
bath and that there is a negative entropy production rate in
steady state, under the first two descriptions. These violations
are present in both the weak and strong coupling regimes
that are typically investigated using these descriptions. In
order to obtain a thermodynamically consistent and physically
plausible result, we accounted for the phonon sidebands in
the master equation while taking into account the frequency
dependence of the bath occupation number. This corrects the
direction of the heat flow and restores consistency with the
second law of thermodynamics.

The fact that dramatic differences between the local and
global approaches emerge even in the weak coupling regime
means that our results are testable in current cavity op-
tomechanical systems. Further differences can be tested by
using systems that can simulate strong optomechanical-like
coupling, such as superconducting transmission line res-
onators [50].

In closing, we note that the implications of our results
are rather broad. Regardless of the regime in which one
operates, thermodynamic quantities such as the rate of entropy
production deduced from the standard or dressed-state master
equations differ quantitatively, if not qualitatively, from those
deduced from the global master equation. Because of the con-
sistency of the latter with the second law of thermodynamics,
we are drawn to the conclusion that when the mechanical
bath is hotter than the optical bath, and especially outside
the weak-coupling regime, any thermodynamic prediction for
optomechanical systems should be based on the global master
equation.
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APPENDIX A: DYNAMICS OF THE SYSTEM
USING THE SME OR THE DSME

The equations of motions for the relevant dynamical ob-
servables of our system are determined from the DSME,
Eq. (11). The equations of motion read

d

dt
〈n̂c〉 = κc(n̄c − 〈n̂c〉),

d

dt
〈p̂〉 = −ωm〈q̂〉 − κm

2
〈p̂〉 + 2g〈n̂c〉,

d

dt
〈q̂〉 = ωm〈p̂〉 − κm

2
〈q̂〉 + κmα〈n̂c〉,

d

dt
〈(�n̂c)2〉 = κcn̄c + (2κcn̄c + κc)〈n̂c〉 − 2κc〈(�n̂c)2〉,
d

dt
〈n̂c, p̂〉 = −κ〈n̂c, p̂〉 − ωm〈n̂c, q̂〉 + 2g〈(�n̂c)2〉,

d

dt
〈n̂c, q̂〉 = −κ〈n̂c, q̂〉 + ωm〈n̂c, p̂〉 + κmα〈(�n̂c)2〉,
d

dt
〈n̂m〉 = −κm(〈n̂m〉 − n̄m) + g(〈n̂c, p̂〉 + 〈n̂c〉〈p̂〉)

+ κm

2
α(〈n̂c, q̂〉 + 〈n̂c〉〈q̂〉),

d

dt
〈n̂cp̂〉 = −κ〈n̂cp̂〉 − ωm〈n̂cq̂〉 + 2g

〈
n̂2

c

〉 + κcn̄c〈p̂〉,
d

dt
〈n̂cq̂〉 = −κ〈n̂cq〉 + ακm

〈
n̂2

c

〉 + κcn̄c〈q〉
+ ωm〈n̂cp̂〉, and

d

dt

〈
n̂2

c

〉 = κcn̄c − 2κc
〈
n̂2

c

〉 + κc(4n̄c + 1)〈n̂c〉,

where α = g/ωm, q̂ = b̂ + b̂†, p̂ = i(b̂ − b̂†), and κ = κc +
κm/2. The correlation functions between any two operators
ô1 and ô2 are denoted by 〈ô1, ô2〉 := 〈ô1ô2〉 − 〈ô1〉〈ô2〉. The
steady-state solutions of these dynamical equations in the long
time limit are as follows:

〈n̂c〉ss = n̄c,

〈q̂〉ss =
(

8gωm + 2ακ2
m

4ω2
m + κ2

m

)
〈n̂c〉ss,

〈p̂〉ss =
(

4gκm − 4αωmκm

4ω2
m + κ2

m

)
〈n̂c〉ss,

〈(�n̂c)2〉ss = n̄c(n̄c + 1),

〈n̂c, p̂〉ss = 2gκc

ω2
m + κ2

〈(�n̂c)2〉ss,

〈n̂c, q̂〉ss =
(

2gωm + ακmκ

ω2
m + κ2

)
〈(�n̂c)2〉ss,

〈n̂m〉ss = n̄m + g

κm
(〈n̂c, p̂〉ss + 〈n̂c〉ss〈p̂〉ss)

+ α

2
(〈n̂c, q̂〉ss + 〈n̂c〉ss〈q̂〉ss ),

〈n̂cq̂〉ss = A
[
κcn̄c(κ〈q〉ss + ωm〈p〉ss )

+ (κακm + 2gωm)
〈
n̂2

c

〉ss]
,
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〈n̂cp̂〉ss = A
[
κcn̄c(κ〈p〉ss − ωm〈q〉ss )

+ (2κg − ακmωm)
〈
n̂2

c

〉]
, and〈

n̂2
c

〉ss = n̄c(2n̄c + 1),

where A = 1/(κ2 + ω2
m) and n̄c ≡ n̄c(ωc). The corresponding

equations for the SME are found by setting α = 0.

APPENDIX B: HEAT CURRENTS USING THE SME
OR THE DSME

The heat currents to the optical and mechanical baths
to which the optomechanical system is attached are,

respectively,

Jc = κc(ωc − g〈q̂〉)(n̄c − 〈n̂c〉) + gκc〈n̂c, q̂〉, and

Jm = ωmκm(n̄m − 〈n̂m〉) + gκm(〈n̂c, q̂〉 + 〈n̂c〉〈q̂〉)

− gακm(〈(�n̂c)2〉 + 〈n̂c〉2).

At steady state, the heat currents are therefore given
by

J ss
c = gκc〈n̂c, q̂〉ss and

J ss
m = −gκc〈n̂c, q̂〉ss.

The results for the SME are once again found by setting
α = 0.
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