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When a material is subjected to an alternating stress field, there are temperature fluctua

tions throughout its volume due to the thermoelastic effect. The resulting irreversible heat 

conduction leads to entropy production that in tum is the cause of thermoelastic damp

ing. An analytical investigation of the entropy produced during a vibration cycle due to 

the reciprocity of temperature rise and strain yielded the change of the material damping 

factor as a function of the porosity of the material. A homogeneous, isotropic, elastic bar 

of cylindrical shape is considered with uniformly distributed spherical cavities under al

ternating uniform axial stress. The analytical calculation of the dynamic characteristics 

of the porous structure yielded the damping factor of the bar and the material damping 

factor. Exsperimental results on porous metals are in good correlation with an analysis. 

INTRODUCTION 

It is well known that porosity in a material is related 

to the decrease in its strength. The evaluation of the 

effect of inclusions on the strength of the material, es

pecially in relation to fatigue and brittle fracture, is a 

very important consideration in engineering design. 

Damping is also a very important material property 

when dealing with vibrating structures from the point 

of view of vibration isolation in many applications: 

bearings, filters, aircraft parts, and generally struc

tures made of porous materials. There are many damp

ing mechanisms for a material (Lazan, 1968), most 

of which contribute significantly to the total damping 
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over only a certain narrow range of frequency, temper

ature, or stress. Thermoelastic damping is due to the 

nonreversible heat conduction in the material. 

Thermodynamic damping was first studied by Zener 

(1937), for transverse vibrations of a homogeneous 

Euler-Bernoulli beam. The case of a general homo

geneous medium was investigated by Alblas (1961, 

1981), Biot (1956), Deresiewicz (1957), Gillis (1968), 

and Lucke (1956). Hom~geneous plates, shells, and 

Timoshenko beams were iiwestigated by Lee (1985), 

Shieh (1971, 1975, 1979), Tasi (1963), and Tasi and 

Herrmann (1964). The connection between the second 

law of thermodynamics and thermodynamic damping 

was also discussed by Goodman et al. (1962) and 
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Landau and Lifshitz (1986). Armstrong (1984) cal

culated thermodynamic damping of a I-dimensional 

composite consisting of successive slabs assuming 

identical thermal conductivity and specific heat for all 

slabs. Kinra and Milligan (1994) presented a general 

methodology for calculating thermodynamic damping 

in homogeneous or composite materials. Milligan and 

Kinra (1993a) extended the calculation to a single lin

ear inclusion in an unbounded matrix. The case of an 

Euler-Bernoulli beam was examined by Bishop and 

Kinra (1992), who also Bishop and Kinra (1993a) 

investigated the thermodynamic damping of a lami

nated beam in flexure and extension. They (Bishop and 

Kinra, 1993b) calculated the thermodynamic damp

ing of an N -layer metal matrix composite in a Carte

sian, cylindrical, and spherical coordinate system with 

perfect or imperfect thermal interfaces. Milligan and 

Kinra (1993b) calculated the thermodynamic damping 

of a fiber reinforced metal-matrix composite. 

ANALYTICAL MODEL 

The thermomechanical behavior of a linear, isotropic, 

homogeneous thermoelastic medium is described by 

the following equations. The first law of thermody

namics (Zemanski and Dittman, 1981) is 

Newton's law of motion conservation of linear mo

mentum (Frederick and Chang, 1972) is 

(2) 

The kinematic equation of linear thermoelasticity

strain displacement relations (Nowacki, 1962) is 

e" = 1/2(u· . + u 00). IJ I.J ],1 (3) 

The second law of thermodynamics (Zeman ski and 

Dittman, 1981) is 

Hooke's thermoelastic law (Nowacki, 1962) is 

Uij = E/(1 + v) (eij + v/(1 - 2v))ekkOij 

- E/(1 - 2v)aloij(T - To). 

(4) 

(5) 

The Fourier law of heat conduction (Ozisik and 

Necati, 1993) is 

qi = -kT,i. (6) 

In Eqs. (1)-(6) Uij is the stress tensor, eij is the strain 

tensor, Ui is the displacement vector, v is Poisson's ra

tio, E is Young's modulus, p is the density, s is the 

entropy produced per unit mass, T is the absolute tem

perature, To is the thermodynamic equilibrium temper

ature, qi is the heat flux vector, u is the internal energy 

per unit mass, Oij is the Kronecker delta, k is the ther

mal conductivity, al is the coefficient of thermal ex

pansion, and the indices i, j, k each have a value of 

1,2,3. 

From the above equations the relation between tem

perature and strain (Frederick and Chang, 1972) is 

T,ii - (pc/k)3T/3t = [Eal/k(1 - 2v)]T3ekk/3t. 

(7) 
In this equation the term (T3ekk/3t) couples the 

temperature field with the mechanical field and leads 

to a nonlinear problem. One can replace T on the right 

side of Eq. (7) with the thermodynamic equilibrium 

temperature To, because the fluctuation in temperature 

caused by reasonable alternating stress levels is very 

small. This assumption linearizes the differential equa

tion. Equation (7) shows that for an isotropic material 

(Bishop and Kinra, 1994) 

(8) 

where C is the specific heat per unit volume. Because 

the temperature and mechanical fields are coupled, in

homogeneities in stress and material properties result 

in inhomogeneities in temperature. Heat is conducted 

from the high temperature regions to the low temper

ature regions and, as consequence of the second law 

of thermodynamics, entropy is produced that is man

ifested as a conversion of useful mechanical energy 

into heat. 

When the second law of thermodynamics is applied 

to heat conduction in solids, it results in the calculation 

of the flow of entropy produced per unit volume sp = 
dSp/dt due to irreversible heat conduction (Colleman 

and Mizel, 1964; Colleman and Noll, 1961): 

(9) 

The elastic energy WeI stored per unit volume and 

cycle of vibration is (Timoshenko and Goodier, 1951) 

WeI = (l/2E)(u;r + uz2z + uJo) 

(10) 

The entropy tu produced per unit volume and cycle 

of vibration is 

/)"s = t spdt, 

where Tp is the period of vibration. 

(11) 



Thermodynamic Damping in Porous Materials with Spherical Cavities 263 

From the Gouy-Stodola theorem (Bejan, 1982; 

Gouy, 1889; Stodola, 1910) the mechanical energy W 
dissipated per unit volume and per unit time is 

(12) 

The mechanical energy l:!. W dissipated per cycle of 

vibration in a medium of volume V is 

l:!.W = pTo Iv l:!.sdV. (13) 

Equation (13) relates the entropy produced in the 

material during one cycle of vibration to the elastic 

energy dissipated. 

Finally, the material damping factor (MDF) y 

is defined as the energy dissipated throughout the 

medium in one cycle, normalized in respect to the 

maximum elastic energy stored during that cycle (Di

marogonas, 1996): 

y = l:!. W /4n: Iv Wei dV. (14) 

The modal damping factor ~ is defined (Dimarog

onas, 1996) as 

(15) 

Equations (1)-(15) show the relationship between 

the stress field and the material or the modal damping 

factor of the bar due to thermoelastic effect. 

SPHERICAL CAVITY IN ISOTROPIC MEDIUM 

It has been observed in problems of materials with 

cavities that qualitative results can be obtained by 

using simple geometries for which analytical solu

tions are possible. Such analysis yields adequate re

sults for the effect of the concentration of the cavi

ties, while it cannot account for the effect of their true 

shape. 

To improve our understanding of the mechanism 

of energy conversion and the relation of the cyclic 

stresses to the vibration damping, the material cavity 

was modeled, as a first approximation, as a spherical 

cavity in the center of an elastic, isotropic, and ho

mogeneous unbounded medium submitted to uniform 

tension of magnitude S at infinity in the z direction of 

a cylindrical coordinate system (r, z, 8). The normal 

stresses at any point at distance R from the origin are 

(Timoshenko and Goodier, 1951) 

(16a) 

, " Iff S Uzz = Uz + Uz + Uz + , 
Uee = u~ + u~' + u~", 

where 

U; = 3C / RS (1 - 5 cos2 1{1 - 5 sin2 1{1 

+ 35 sin2 1{1 cos2 1{1), 

(16b) 

(16c) 

(17a) 

U~ = 3C/RS(1-30cos2 1{1+35cos4 1{1), (17b) 

u~ = 3C/Rs(1-5cos2 1{1), (17c) 

1{1 = arctan(z/r), 

(J;' = -Aa/az[Cl- 2v)z(r2 + Z2)-3/2 

_ 3r2z(r 2 + Z2)-S/2], 

u~' = Aa/az[ (1 - 2v)z(r2 + Z2)-3/2 

_ 3z3(r 2 + Z2)-S/2]. 

U~' = -Aa/az[(1-2v)z(r2 +z2)-3/2], 

U;" = Ut cos 1{1, 
Iff . ,/, 

Uz = Ut SIn 'f' , 

If' 
Ue = Ut, 

and 

(18) 

(19a) 

(19b) 

(19c) 

(20a) 

(20b) 

(20c) 

(21) 

A = 5SRi/2/(7 - 5v), B = S(1 - 5v)Rt/(7 - 5v), 

C = SRi /2/(7 - 5v). (22) 

Equations (19) yield 

u;' = -A{ (1 - 2v)(r2 + z2)-3/2 

- [3(1 - 2v)Z2 + 3r2](r 2 + Z2)-S/2 

+ 15r2z2(r 2 + Z2)-7 /2}, (23a) 

u~' = A[ (1 - 2v)(r2 + Z2)-3/2 

+ 6z2(r 2 + Z2)-S/2 _ 15z4(r 2 + Z2)-7/2, 

(23b) 

u~' = A[3z2(r 2 + Z2)-S/2 - (r2 + Z2)-3/2]. (23c) 

Then the hydrostatic stress is 

Ukk = Urr + Uzz + uee· (24) 

In the above equations, Rl is the radius of the cav

ity. For a loading assumed to be timeharmonic, the 
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stress is harmonic (J = (Joe iwl and the rate of heat 

q (r, t) generated due to the thermoelastic effect is 

q(r, t) = -oq TO(a(Jkk/at) 

= -a I Toi wei wI C5kko, (25) 

where subscript 0 in the stresses is designated as am

plitude, w is the frequency of oscillation of the external 

load, and t is the time. Under this assumption the tran

sient heat conduction equation with heat generation in 

cylindrical coordinates can be written in the form 

a2T /ar 2 + l/raT jar + a2T /az2 + q(r, t)/ k 

= adiffaT fat, (26) 

where q(r, t) is the rate of heat generation term, k is 

the thermal conductivity, and adiff is the thermal dif

fusivity. Because C5kk is time harmonic and linearity is 

assumed, the fluctuations in T will necessarily be time 

harmonic; therefore, T can be assumed to be 

(27) 

Equations (25), (26), and (27) yield 

a2Tm/ar2 + l/raTm/ar + a2Tm/az2 

-aIToiweiwtC5kk/k = adiffaTm/at. (28) 

Because Tm is a complex number, Tm = Re{Tm} + 

i Im{Tm}, Eq. (28) yields the following two equations: 

a2 Re(Tm)/ar2 + l/ra Re(Tm)/ar + a2 Re(Tm)/az2 

+ w/adiff Im(Tm) = 0, (29) 

a2 Im(Tm)jar2 + l/ra Im(Tm)/ar + a2 Im(Tm)/az2 

- w/adiff Re(Tm) = al TOWC5kk/ k. (30) 

The temperature field is derived as the solution 

of differential Eqs. (29) and (30) and the following 

boundary conditions: 

aT/ar = 0, atr = RI, R2, Z = 0, H/2, (31) 

where R2 is the outer radius of the cylinder and H = 
2R2 is the height of the cylinder. 

It is assumed that the flow of heat from the solid 

toward the cavity is zero because the heat transfer from 

the solid to the cavity can be neglected due to the low 

thermal conductivity and the limited thermal capacity. 

The temperature field is computed as the solution of 

Eqs. (29) and (30) with the boundary conditions (31). 

This was done by replacing the system of Eqs. (29) 

and (30) by a system of finite difference equations and 

solving the resulting system of linear equations also 

using the boundary conditions. 

The mechanical energy f'... W dissipated in the solid 

per cycle of vibration is derived from Eqs. (9), (11), 

and (13) and the temperatures are calculated from the 

solution of Eqs. (29)-(31). Because the temperatures 

'Ii,) have been computed by a finite difference method 

at a lattice of points (i, j), the integration is replaced 

with a summation, using the trapezoidal rule 

f'... W = klrTp/2T" [ H /2jdr ~('Ii+I') - 'Ii-I,j )2ri ,j 

+dr/dZ~(Ti'i+1 - Ti,j_I)2 ri ,j} (32) 

where Tp = w /2rr, the period of vibration and dr, dz 

are the mesh spacings in the r, Z axes. 

Using the relationships among the invariants of 

the stress tensor, the energy of elastic deformation 

Wei stored per unit volume and cycle is derived from 

Eq. (10) as 

Wei = (1/2E)C5fk 

- (1 + v)/ E(C5rr C5zz + (Jzz(Jee + (JeeC5rr)' (33) 

The total energy Wei of elastic deformation per cy

cle in the volume V of the solid is 

Wei = Iv Wei dV. (34) 

Knowing that the stress concentration diminishes 

as we move away from the spherical cavity, we can 

superpose the stress fields in a lattice of spherical cav

ities and integrate over the volume, thus deriving the 

damping factor y from Eqs. (14) and (32)-(34). 

A numerical application was performed for the fol

lowing geometry of cavities and material properties 

for bars made out of 316L stainless steel: 

1. cavity radius, 0.001 ~ RI ~ 0.00685 m; 

2. cavity spacing, 2R2 = 0.0016 m; 

3. Young's modulus, E = 2 X 1011 Pa; 

4. Poisson's ratio, v = 0.3; 

5. density, p = 7860 kg/m3; 

6. coefficient of thermal expansion, 

al = 27 x 10-6 mm/DC; 

7. thermal conductivity, k = 45 W/moC; 

8. specific heat, C = 460 J/kg K. 

These calculations gave the followings stress val

ues for the stress at infinity S = 1 N/m2 , v = 0.3, at 

point on the axis of r with coordinates r = RI, Z = 0, 

1jr = rr /2, (Jrr = 0.09, C5zz = 2.045, (Jee = 0.45, 

and C5kk = 2.59. The lattice spacing of the cavities 
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FIGURE 1 Material damping factor versus void (%). Analytical-experimental results. 

Table 1. Bar Physical Characteristics and Measured Damping 

Young's Natural 

Porosity Length Width Height Modulus Density Frequency 

No. (%) (m) (m) (m) (N/m2 x 1011) (kg/m3) (Hz) 

0 0.3048 0.031 0.003175 2.0 7860 28 

2 25 0.25 0.031 0.003175 0.517 5895 28 

3 50 0.17 0.031 0.003175 0.158 3930 28 

4 60 0.19 0.031 0.003175 0.151 3144 28 

Measured 

Damping 

Factor 

0.003 

0.04 

0.08 

was assumed uniform, H = 2R2. The material ther

modynamic damping factor was plotted against differ

ent (%) void ratios, void = (VI/V2) = 2/3(RI/R2)3, 

and the same load oscillation frequency w (Fig. 1). 

EXPERIMENTAL STUDY 

natural frequency was calculated for bar 1. Then the 

lengths of bars 2-4 were selected to have the same first 

natural frequency. The experimental setup is shown in 

Fig. 2. Each bar had one fixed and one free end. An 

accelerometer of 1 g mass was fixed on the free end of 

the bar. The bar was set to free vibration from the ini

tial position by hitting it with a hammer in the z direc-

On the basis of the analytical results shown in Fig. 1, 

it is apparent that the damping change due to the ex

istence of porosity in the metal will be substantial. 

To test this hypothesis, changes in modal damping 

were evaluated experimentally. Tests have been per

formed on four metallic bars made out of 316L stain

less steel with varying porosities. The porous mate

rial was a product of Mott Metallurgical Corpora

tion with the commercial designation as Matt porous 

316L SS sheets, series 1100 with Micron Grades 0.5, 

40, and 100 for porosities of 25, 50, and 60%, re

spectively. The physical characteristics of the bars and 

the measured damping are shown in Table 1. The first 

z 

Accelerometer 

FIGURE 2 Experimental setup. 

x 
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tion. The metal response was measured directly at the 

same position through the accelerometer. The output 

of the latter after amplification was introduced through 

a Data Acquisition Card (Omega OMB-DAQBOOK-

1001-1201-200) to a PC and stored for further analy

sis. The sampling frequency was 3-5 kHz. The vibra

tion modal damping factor t was obtained by apply

ing the logarithmic decrement method (Dimarogonas, 

1986). Ten measurements of damping were performed 

on each bar. Their average was used to yield the dif

ference between the measured damping of the porous 

bar and the measured damping of the nonporous bar. 

This difference accounts for the thermoelastic damp

ing due to the porosity only and was compared with 

the analytical results in the same sense (Fig. 1). 

CONCLUSIONS 

The thermodynamic theory of damping was used in 

the preceding analysis to find the additional material 

damping due to the material porosity. What is usu

ally referred to as viscoelastic damping is not affected 

by the geometry of the viscoelastic solid because it 

is a material property. However, porosity and other 

stress raisers result in additional damping because of 

the nonreversible flow of heat from the areas of higher 

heat generation to the ones of lower heat generation. 

This phenomenon is due to the reciprocity between 

temperature rise and strain, usually encountered as 

strain due to temperature change. Because the inverse 

is true, namely that strain causes an increase in ma

terial temperature, there will be heat flow from areas 

of high strain and temperature to surrounding areas of 

lower strain and temperature. If the stress field is time 

harmonic, which is typical in the case of a vibrating 

body, there is a continuous source of heat that flows ir

reversibly and entropy is produced. The result is a con

tinuous conversion of mechanical energy into heat that 

appears macroscopically as increased material damp

ing. 

Because our analysis and experiments are limited 

to elastic strains and relatively low frequencies, the 

temperatures developed are very small, probably non

measurable in many cases, but sufficient to produce 

a substantial change in the apparent material damp

ing, that is, the material damping factor that is mea

sured with vibration testing. While the microscopic 

MDF does not change, the apparent MDF depends on 

the porosity; thus, it becomes a material and a system 

property. 

In the presence of material discontinuities stress 

analysis presents insurmountable difficulties and only 

very simple cases admit analytical or approximate ana

lytical solutions. Numerical methods could be used, in 

principle, because pososity behaves well as compared 

with discontinuities like cracks. With the large number 

of cavities usually found in porous materials, such an 

approach would be of very substantial complexity and 

of very questionable validity. Thus, the approach used 

was to employ solutions for the infinite solid with a 

spherical cavity and constant hoop stress in one direc

tion only at infinity and a regular lattice of equidis

tant spherical cavities in a rectangular arrangement. 

Because the additional damping is due to the stress 

concentration at the spherical surface, the assumption 

was made that we were interested in small cavities 

only, as compared with the cavity spacing; thus, the 

effect of the stress at one cavity upon the stress in 

the vicinity of another cavity could be neglected. Of 

course, with the stress solution for a rectangular lattice 

of spherical cavities, this assumption does not need to 

be made. 

For the solution of the heat conduction problem, 

one can consider only a rectangular parallelepiped 

with a central spherical cavity and appropriate sym

metric boundary conditions on the parallelepiped (or 

cube for equal lattice spacing along the Cartesian co

ordinates). In principle, an analytical solution in the 

form of a multiple infinite summation of a series is 

possible; but it is again of high complexity and ques

tionable convergence and numerical efficiency. Thus, 

a finite difference scheme was used to solve the heat 

conduction equation along well-known lines. 

From there numerical integrations of the entropy 

flow and the elastic strain energy were performed and 

the apparent MDF was computed. Computations were 

performed for different diameters of the spherical cav

ities while keeping the lattice spacing constant, thus 

changing the void ratio, defined as the ratio of the total 

volume of the cavities divided by the total volume of 

the solid. 

The stress field about a spherical cavity in the elas

tic space with constant stress in one direction at infin

ity does not depend on the cavity diameter: for a very 

small void ratio one would expect very little increase 

in the apparent damping due to the cavities. It is the 

interaction, less from stress and more from thermal, 

that causes the apparent material damping factor to in

crease substantially with the void ratio. Thus, in Fig. 1 

we observe a nearly linear relationship between the ap

parent material damping factor and void ratio. We also 

observe an increasing numerical error in the form of 

scatter of the numerical results for higher voids. 

We did not find a material that conforms exactly 

with the model we used in the analysis. The commer

cially available material we found had nearly spheri

cal cavities but not in regular but rather random spac

ing. Moreover, some cavities were connected but oth

ers were of elliptical shape. Therefore, we would ex

pect the experimental results to show greater damping 
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as compared with the analytical. On the other hand, 

because the stress concentration is the same for spher

ical cavities regardless of size, the damping factor of 

the experiments and analysis should not differ appre

ciably if the majority of the cavities are spherical and 

the interaction of the stress fields about each cavity 

is not substantial. This proved to be the case and the 

analytical results do not differ appreciably, given the 

extent of the simplifying assumptions from the exper

imental ones (Fig. 1). Moreover, only materials with 

three different (and rather high) values of void ratio 

were available: 25, 50, and 60%. Above the 40% void 

ratio the analysis is problematic because the spheri

cal cavities come very close to one another; in addi

tion to the questionable validity of our assumptions, 

mainly the lack of interaction of the stress fields about 

the cavities, the numerical solution seems to be pro

gressively more inaccurate and numerically unstable. 

However, superposition of the analytical and experi

mental results in Fig. 1 showed that the latter agree 

with the analytical and numerical results for lower val

ues of the void but they become higher for higher void 

ratios. Perhaps this is due to the increased stress con

centration factor because the cavities are not perfectly 

spherical or the interaction of the stress fields, as dis

cussed above. Further work will clarify this point in 

the future. 

This analysis can be used in a number of engineer

ing problems: 

1. as a continuous quality control tool for the 

production of ceramics, glass, and similar 

materials whose quality is diminished with 

even a small porosity; 

2. as a design tool for the increasing use of porous 

materials for reduction of the structure-borne 

noise in automotive, aircraft, and other 

applications; and 

3. in the biomedical field as diagnostic and 

monitoring tools for osteoporosis and other 

conditions of bone loss in the form of 

increasing porosity. 
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