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The thermodynamic formalism allows one to access the chaotic properties of equi-
librium and out-of-equilibrium systems, by deriving those from a dynamical partition
function. The definition that has been given for this partition function within the frame-
work of discrete time Markov chains was not suitable for continuous time Markov dy-
namics. Here we propose another interpretation of the definition that allows us to apply
the thermodynamic formalism to continuous time.

We also generalize the formalism—a dynamical Gibbs ensemble construction—to a
whole family of observables and their associated large deviation functions. This allows
us to make the connection between the thermodynamic formalism and the observable
involved in the much-studied fluctuation theorem.

We illustrate our approach on various physical systems: random walks, exclusion pro-
cesses, an Ising model and the contact process. In the latter cases, we identify a signa-
ture of the occurrence of dynamical phase transitions. We show that this signature can
already be unraveled using the simplest dynamical ensemble one could define, based
on the number of configuration changes a system has undergone over an asymptotically
large time window.
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1. INTRODUCTION

1.1. Motivations and Outline

In trying to bridge the microscopics of a dynamical system to its macroscopic
properties, amenable to a statistical physics treatment, the main road is the study
of its chaotic properties. These revolve around such concepts as Lyapunov expo-
nents, Kolmogorov-Sinai entropy, and perhaps more refined still, that of dynami-
cal partition function. The latter was introduced by Ruelle (it is also called Ruelle
pressure), and can be seen (1) as a dynamical analog to the well-known equilib-
rium partition functions of statistical mechanics, except that it involves counting
trajectories in phase space rather than microscopic states. This so-called pressure,
in information theoretic language, is not but the Rényi entropy associated with
the measure over the set of possible trajectories in configuration space. (23) It can
then be connected to the dynamical entropies, like the Kolmogorov-Sinai entropy,
also viewed as the Shannon entropy over the set of trajectories, or the topological
entropy, which measures the growth rate of the number of allowed trajectories.
Back in the seventies, the dynamical partition function also appeared as a conve-
nient tool for characterizing, under prescribed mathematical conditions, NonEqui-
librium Steady-State (NESS) measures, now called Sinai-Ruelle-Bowen (SRB)
measures, (2) by means of a variational principle. The general framework behind
is that of temporal large deviations. A vast body of mathematical physics litera-
ture has been devoted to SRB measures and large deviations, with however rela-
tively few direct spinoffs for theoretical physics, let alone experimental physics.
Actually, though these notions were mathematically well established in various
frames (Hamiltonian dynamical systems, maps, Markov chains . . . ), physically
relevant explicit results for the Kolmogorov-Sinai entropy are scarce, with a few
exceptions for the Lorentz gas and hard-spheres. (20,25,26) There are also numerical
studies (27) of simple fluids attempting to relate the Kolmogorov-Sinai entropy to
the equilibrium excess entropy, or to the self-diffusion constant. When it comes
to determining the full topological pressure, existing results are confined to sim-
ple maps (19) or to simple Markov processes in discrete time such as the Lattice
Lorentz Gas. (21) However, recent years have witnessed the revival of large devia-
tions, both at the experimental and theoretical level. On the theoretical side, they
appeared as the natural language in which the fluctuation theorem of Gallavotti
and Cohen (3) was expressed. The latter can be seen as a symmetry property of
the large deviation function of the entropy current resulting from driving a sys-
tem into a NESS. Variations around that fluctuation relation, such as the earlier
Evans-Searles, (4) or the Jarzynski nonequilibrium work relation, (5) also rely on
the concept of large deviations. The experimental motivation lies in the belief
that global—i.e. space averaged—quantities, rather than local probes, are a bet-
ter way to approach and above all compare between themselves systems out of
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equilibrium. However, since the peculiarities of a NESS also result from its mi-
croscopic dynamics, it was suggested to measure time averaged (over a large time
interval) quantities, and to build up the corresponding distribution functions. More
recent experiments on electric circuits have been used to probe the hypotheses
underlying the mathematics of those relations (for a nonexhaustive list of experi-
mental references, see Ref. 6)

While the above deals with actual dynamical systems, there also exist
Markov dynamics counterparts to many of the results mentioned above, as far
as fluctuation theorems are concerned (see Ref. 7 or 8 for the fluctuation rela-
tion, and see (9) for the nonequilibrium work relation). The motivations for ad-
dressing systems with Markov dynamics (with continuous time) are to be found
both in the greater ease in performing numerical simulations (as cleverly pro-
posed in (10)) and in the analytical insight that can be gained through exact (11–15)

or approximate calculations. (16) To the best of our knowledge, these explicit cal-
culations have been attempted only for systems with Markov dynamics. Given
the successes of the Markov approach in understanding the various versions of
the fluctuation and work theorems, it seemed natural to turn to the more general
dynamical partition function. As briefly sketched in Ref. 17, by contrast with the
existing treatment of Markov chains (18–21) there had hitherto been no satisfac-
tory attempt to force the thermodynamic formalism of Ruelle into the framework
of systems endowed with continuous-time Markov dynamics. As this was already
noticed by Gaspard, (22) passing from discrete to continuous time raises specific
difficulties.

Therefore, our primary purpose in the present paper is to introduce the
dynamical partition function and the related topological (or Ruelle) pressure
for systems with Markov dynamics. Note however that our motivation for
determining this dynamical partition function is not rooted in our quest for the
Markov analog of an SRB measure. For finite systems with Markov dynamics
this is a dull endeavor since the stationary measure is known to be the unique
solution to the stationary master equation. (24) Instead, we have in mind gaining
physical insight into the topological pressure. It is often presented as a measure
of dynamical complexity, an interpretation which will appear quite clearly in
systems with ergodicity breaking transitions. Beyond, our general goal is to be
able to relate its properties (convexity, singularities, etc) to those of the system
at hand, the latter displaying nontrivial dynamics, and possibly featuring strong
interactions. Ideally, we would like to build up a picture gallery (28) for physically
acceptable topological pressures, but in practice we will have to be more modest
and we will focus on a restricted number of systems that we shall soon describe.
Further investigations aiming at pursuing this goal, most notably for systems
with glassy dynamics and for systems with quenched disorder, will be mentioned
in our conclusion.
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It will turn out that the dynamical partition function can be seen as the gen-
erating function of a physical observable. This will allow us to cast our findings
into the more general framework of temporal large deviations. In setting up our
mathematical approach, we will see that the latter observable is connected to—
but very different from—the one considered by Lebowitz and Spohn. (8) They both
are members of a rather general family of observables of which we shall further
single out yet another one that we now describe. Over a given trajectory in con-
figuration space, the simplest quantity of all to consider is the number of configu-
ration changes that the system undergoes over a given time interval. While this is
a seemingly trivial observable to consider, we will illustrate on specific examples
that much of the difficulties that pave the way to the full determination of, say,
the topological pressure, can already be read off the study of the statistics of this
event-counting observable. More important, we find that “dynamical phase tran-
sitions,” as defined for example in Ref. 23, can already be observed on this simple
observable, and not only on the topological pressure. We propose a new tool to
study how the structure of the trajectory space is affected by the dynamical phase
transition.

We now describe the various systems that we have chosen to illustrate our
approach. We begin with examining the simple lattice random walk case. We con-
tinue with an interacting lattice gas, namely the one dimensional exclusion pro-
cess with periodic boundary conditions, for which our analytic results are some-
what less extensive, but that has in the recent past (8, 11, 12, 29) served as a
testbench for many of the ideas discussed in this introduction. In the case of the
symmetric exclusion process we found that, though there is no first order dynam-
ical phase transition, the event-counting observable mentioned above shows signs
of a second order dynamical phase transition. Then we turn to two mean-field
models of interacting degrees of freedom. The first one is the well-known equilib-
rium Ising model, with a second order symmetry breaking phase transition to an
ordered state at low temperatures. We have shown that the thermodynamic phase
transition induces a first order dynamical phase transition, a signature of which
can already be found on the event-counting observable. Besides, we were able to
give a picture of the structure of the trajectory space through the transition. The
second one is the contact process, for which a supplementary difficulty arises,
as in the thermodynamic limit two stationary states—an active and an absorbing
one—exist.

But before embarking into the study of these physical systems, we devote
Section 2 to a reminder of the definitions of Lyapunov exponents, Kolmogorov-
Sinai entropy, and also of the state of the art (18) concerning systems with discrete-
time Markov dynamics. Section 3 contains our construction of the dynamical par-
tition function for systems with continuous-time Markov dynamics, and connects
to the existing literature. Sections 4, 5 and 6 are concerned with our physical
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examples. Conclusions and a number of future research directions are gathered
in Sec. 7.

2. KOLMOGOROV-SINAI ENTROPY IN THE THEORY
OF DYNAMICAL SYSTEMS

2.1. Dynamical Systems

Let �(t) be the coordinate of a dynamical system evolving according
to d�

dt =F(�). Consider now two infinitesimally close initial points �(0) and
�(0) + δ�(0) and follow the evolution of the difference δ�(t) between the two.
This will evolve according to dδ�

dt = ∂F
∂�

δ�. The eigenvalues of the linearized evo-
lution operator ∂F

∂�
, once averaged with respect to the stationary measure, make

up the Lyapunov spectrum {λi } of the dynamical system. There are as many Lya-
punov exponents as phase space dimensions. Each of them characterizes the dy-
namical instability of the system along an individual direction. A system with at
least one positive Lyapunov exponent is termed chaotic. In order to characterize
global, rather than individual, chaoticity, the Kolmogorov-Sinai entropy was de-
fined. Given a partition of phase space, within this coarse grained description, the
dynamics becomes probabilistic, and this allows one to construct a measure over
the set of physically realizable trajectories of the system over some time inter-
val [0, t] (which we also call histories). We define the Kolmogorov-Sinai (KS)
entropy as the Shannon entropy corresponding to the measure over the set of
histories:

hKS = − lim
t→∞

1

t

∑
histories from 0→t Prob {history} ln Prob {history}

∑
histories from 0→t Prob {history} (1)

where the supremum is taken over all possible partitions and the average is taken
over the initial configuration. The denominator is equal to 1 for a close system.
From its definition, it is clear that hKS measures the dynamical randomness of the
system at hand. It is also connected in a simple way to the Lyapunov spectrum,
by means of Pesin’s theorem, which states that

hKS = −γ +
∑

λi >0

λi (2)

where γ , defined for an open system, is its escape rate (and is otherwise zero).
Note that the KS entropy is defined for a system in a stationary state, in or out of
equilibrium. Even if one would like to relate hKS, at least in equilibrium situations,
to the standard Boltzmann entropy, there is no direct connection between both, the
latter being an intrinsically static object while the former is dynamical in essence.
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However, Boltzmann’s entropy variations are related to hKS. Finally, we turn to a
definition (1) of the dynamical partition function Z (s, t)

Z (s, t) =
∑

histories from 0→t
(Prob{history})1−s . (3)

In practice the so-called thermodynamic limit t very large is understood. We have
also substituted 1 − s for the canonical notation β which we keep for denoting an
inverse temperature (the reason for introducing s in this way will become obvious
when we shall express Z as a generating function). There is an alternative for-
mulation for the dynamical partition function, which involves the local stretching
factors (see e.g. Ref. 30 for a physical example). The intensive potential ψ+(s) as-
sociated to this partition function is the topological pressure (or Ruelle pressure),

ψ+(s) = lim
t→∞

1

t
ln Z (s, t) (4)

which can also be interpreted, (23) in information theoretic language, as the Rényi
entropy over the set of histories. It is possible to recover hKS from the topo-
logical pressure, hKS = ψ

′
+(0) (or hKS = ψ

′
+(0) − γ for an open system, with

γ = − ψ+(0)), along with other quantities such as the topological entropy htop,
which measures the grows rate of the number of possible histories as time is in-
creased, and is given by htop = ψ+(1).

2.2. Markov Chains

Given the definitions above, there is a natural way, as explained by
Gaspard, (18,31) to extend the definitions of the dynamical partition function and
of the KS entropy to discrete time Markov processes. Consider a Markov process
governed by the discrete-time master equation for the probability P(C, t) to be in
state C after n steps:

P(C, t + τ ) − P(C, t) =
∑

C′ �=C
[w(C ′ → C)P(C ′, t) − w(C → C ′)P(C, t)] (5)

where τ is the time step (and t = nτ is the elapsed time). We have denoted by
w(C → C ′) the transition probability from configuration C to another configura-
tion C ′. The probability of a history C0 → . . . → Cn taking place between 0 and
t = nτ reads

P(C0 → . . . → Cn) = P(C0, 0)w(C0 → C1) · · · w(Cn−1 → Cn) (6)
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Note that successive configurations Ck , Ck+1 can be equal in the previous relation.
The corresponding probability of remaining in the same configuration C during a
time step is

w(C → C) = 1 −
∑

C′ �=C
w(C → C ′) (7)

By definition of the KS entropy we may directly write that

hKS = − lim
n→∞

1

nτ

∑

C0,..Cn

P(C0 → · · · → Cn) ln P(C0 → · · · → Cn). (8)

It is easy to see (22) that the above expression reduces to

hKS = − 1

τ

∑

C,C′
Pst(C)w(C → C ′) ln w(C → C ′)

= − 1

τ

〈∑

C′
w(C → C ′) ln w(C → C ′)

〉

st

(9)

where we have introduced the stationary measure Pst(C). Several explicit calcula-
tions of this quantity can be found in Dorfman (19) or in Gaspard. (18)

2.3. Taking the Continuous-Time Limit

We now wish to take the continuous-time limit of (9). We scale the transition
probabilities between different configurations with the time step τ :

w(C → C ′) = τW (C → C ′) (10)

in such a way that the master Eq. (5) yields its continuous time analog when the
limit τ → 0 is taken, namely

∂t P(C, t) =
∑

C′ �=C
[W (C ′ → C)P(C ′, t) − W (C → C ′)P(C, t)] (11)

As done in Refs. 22, 23, the KS entropy defined in (9) can be expressed in terms
of the transition rates W :

hKS = −
∑

C,C′
Pst(C)W (C → C ′) ln(τW (C → C ′)) (12)
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It is now clear that the limit τ → 0 in (12) does not exist, since the latter exhibits
a ln τ divergence as τ → 0. Given that the transition rates W are dimensionful
quantities, and given that apparently the only available time scale is τ , we cannot
expect to get rid of τ without further thoughts. This means that even if we were
tempted to retain in (12) only the finite contribution as τ → 0 as the meaningful
KS entropy, we would need to find an appropriate time scale to render this piece
well-defined (the argument of the logarithm must be dimensionless).

The one-dimensional lattice random walk perhaps constitutes the simplest
example of a Markov chain: let p (resp. q, r ) denote the probability of hopping to
the right (resp. to the left, not hopping), then we have that

hKS = − 1

τ
[p ln p + q ln q + r ln r ] (13)

It appears clearly that in the continuous-time limit, p and q become infinitesimally
small, which produces an indefinite hKS. Since we have in mind describing as
closely as possible dynamical systems, which evolve in continuous time, the goal
we set ourselves is to find a consistent approach, intrinsically viable for Markov
systems in continuous time.

3. SYSTEMS WITH CONTINUOUS-TIME MARKOV DYNAMICS

3.1. Histories and Dynamical Partition Function

We now consider a system with Markov dynamics, with transition rate
W (C → C ′) from configuration C to configuration C ′, in which the probability
P(C, t) to be in state C evolves according to the following master equation,

∂t P = WP (14)

where the evolution operator has the matrix elements

W(C, C ′) = W (C ′ → C) − r (C)δC,C′ (15)

and

r (C) =
∑

C′ �=C
W (C → C ′) (16)

is the rate of escape from configuration C. In order to overcome the difficul-
ties encountered in the previous section, an alternative is to consider histories
C0 → · · · → CK in configuration space, in the spirit of the study by van Beijeren,
Dorfman and collaborators (30,33) of the Lorentz gas and the Sinai billiard. To give
(1) or (3) a consistent meaning for continuous time dynamics, we first interpret
Prob[history] as the probability in the enumerable set of histories in configuration
space. A history in configuration space is a sequence C0 → · · · → CK of suc-
cessive configurations. An important difference between discrete and continuous



Thermodynamic Formalism for Systems with Markov Dynamics 59

time dynamics is that in the latter, the system stays in each state C for a random
time lapse drawn from an exponential distribution of parameter r (C) as defined in
(16), which is interpreted as the rate of escape from configuration C to any other
configuration. Then the system hops to its next state C ′ with probability W (C→C′)

r (C′) .
Given the initial state C0, the probability of the history C0 → · · · → CK is the
product of each jump probability

Prob{history} =
K−1∏

n=0

W (Cn → Cn+1)

r (Cn)
(17)

where K is the number of changes in configuration space.
We argue that in the same way as (1) and (3) are averaged over the initial

configuration when dealing with deterministic dynamical systems, we similarly
have to average over all possible stochastic time sequences t0, . . . , tK at which
configuration changes occur (K is a fluctuating number). We know from general
properties of a Markovian system (24) that the duration 	t = tn+1 − tn between
configurations Cn and Cn+1 is distributed according to the probability density

π (Cn,	t) = r (Cn)e−	t r (Cn ) (18)

Accordingly, if we take into account every possible history C0 → . . . → CK

between t0 and t , the dynamical partition function writes

Z (s, t |C0, t0) =
+∞∑

K=0

∑

C1,...,CK

∫ t

t0

dt1 π (C0, t1 − t0) · · ·

×
∫ t

tK−1

dtK π (CK−1, tK − tK−1)

× e−(t−tK )r (CK )

[
K∏

n=1

W (Cn−1 → Cn)

r (Cn−1)

]1−s

(19)

where the last exponential factor e−(t−tK )r (CK ) is the probability not to leave state
CK in the remaining interval between tK and t . We have assumed (Fig. 1) without
loss of generality that the system starts from a fixed initial configuration C0 (we
restrict our study for simplicity to systems which can take a finite number of
energy states).
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. . .

Fig. 1. One particular realization in time of a history C0 → · · · → CK of successive configurations.
Between tk and tk+1, the system stays in configuration Ck .

3.2. Kolmogorov-Sinai Entropy

In the same spirit as for the dynamical partition function, we interpret the
definition (1) for the Kolmogorov-Sinai entropy as

hKS = − lim
t→∞

1

t

+∞∑

K=0

∑

C1,...,CK

∫ t

t0

dt1 π (C0, t1 − t0) · · ·
∫ t

tK−1

dtK π (CK−1, tK − tK−1)

× e−(t−tK )r (CK ) [Prob{history}] ln [Prob{history}]
(20)

where we assume that the definition does not depend on the initial configuration
C0. For simplicity, we consider only closed systems (except otherwise stated).
Then we do recover the usual relation between hKS and Z (s, t), i.e.

hKS = lim
t→∞

1

t

∂ ln Z (s, t)

∂s

∣
∣
∣
∣
s=0

. (21)

An a posteriori justification of (19) and (20) is that it yields a finite result, which
does not depend on any external time scale nor on a particular choice of time
units. In fact there is a natural—yet fluctuating—time-scale 1/r (C) for each state
C which is occupied. Furthermore, as detailed below (see Sec. 3.7), the KS entropy
which results from (19) is intimately related to the entropy flow (8) of continuous
time Markov processes, exactly in the same way as was noted by Gaspard for
discrete time stochastic dynamics. (22)

We should emphasize that the definitions that we put forward in our approach
differ from those classically employed within the dynamical systems framework.
The original Kolmogorov-Sinai entropy corresponding to the measure over histo-
ries in time and in configuration space is infinite, (18) as the information needed
to describe the continuously distributed time intervals between configuration
changes is itself infinite. (34) As such, this point of view cannot be used to compare
different Markov processes in continuous time. As explained above (Sec. 3.1), we
instead preferred to focus on the information contained solely in the sequence of
configurations, handling separately the averaging over time intervals. We exem-
plify below in several examples that, in doing so, the original spirit and physical
content of the Ruelle thermodynamic formalism is preserved.
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3.3. Expressions in Terms of An Observable

It is possible to express both the dynamical partition function and the
Kolmogorov-Sinai entropy in terms of a history dependent observable Q+ de-
fined as

Q+ =
K−1∑

n=0

ln
W (Cn → Cn+1)

r (Cn)
(22)

We see that in the configuration space,

Prob{history} = eQ+ (23)

Hence, from (19), Z (s, t) can be identified as the generating function of Q+:

Z (s, t) = 〈e−s Q+〉 (24)

where 〈·〉 stands for an average in both configuration and time sequences spaces.
Further using the result (24) we also remark that

hKS = − lim
t→∞

1

t
〈Q+〉 (25)

3.4. Topological Pressure

The moment generating function of the physical observable Q+ defined in
(22) is precisely Z (s, t). The function ψ+(s) defined by

ψ+(s) = lim
t→∞

1

t
ln Z (s, t) (26)

is called the topological—or Ruelle—pressure in analogy with (4). This is also
the generating function for the cumulants of Q+:

lim
t→∞

〈Qn
+〉c

t
= (−1)n dnψ+

dsn

∣
∣
∣
∣
s=0

(27)

The dynamical partition function is expected to grow exponentially with time as
etψ+(s), and the growth rate ψ+(s) is the topological pressure. One immediately
recognizes that the KS entropy can be obtained from ψ+ through

hKS = dψ+
ds

∣
∣
∣
∣
s=0

(28)

In order not only to mathematically justify the existence of ψ+(s), but also to
relate it directly to the rates of the Markov process, we write an evolution equation
for the probability P(C, Q+, t) that the system is in state C at time t with the value
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Q+:

∂t P(C, Q+, t) =
∑

C′ �=C

[

W (C ′ → C)P

(

C ′, Q+ − ln
W (C ′ → C)

r (C ′)
, t

)

−W (C → C ′)P(C, Q+, t)

]

(29)

Noticing that the average 〈Q+〉 over the configuration and time sequences is the
same as

∑
C,Q+ Q+ P(C, Q+, t), we have

∂t 〈Q+〉 =
∑

C,C′ �=C
P(C, t)W (C → C ′) ln

W (C → C ′)
r (C)

(30)

Taking the long time limit, we find that hKS can be expressed as the mean value
in the stationary state

hKS = −
〈
∑

C′
W (C → C ′) ln

W (C → C ′)
r (C)

〉

st

(31)

of (the opposite of) an instantaneous observable

J+(C) =
∑

C′
W (C → C ′) ln

W (C → C ′)
r (C)

. (32)

Compared with the definition (9) for discrete time, the division by r allows to get
rid of the time scale inside the logarithm.

The master Eq. (29) also enables to have an insight on ψ+(s). We can first
point out that the Laplace transform of the joint probability distribution function
P(C, Q+, t)

P̂(C, s, t) =
∑

Q+

e−s Q+ P(C, Q+, t) (33)

obeys the master-equation-like evolution equation

∂t P̂(C, s, t) =
∑

C′ �=C
[W (C ′ → C)1−sr (C ′)s P̂(C ′, s, t)

− W (C → C ′)P̂(C, s, t)] (34)

which can be written as

∂t P̂ = W+ P̂ (35)

where the evolution operator has the following matrix elements

W+(C, C ′) = W (C ′ → C)1−sr (C ′)s − r (C)δC,C′ . (36)
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Then, as

Z (s, t) =
∑

C,Q+

e−s Q+ P(C, Q+, t) =
∑

C
P̂(C, s, t) (37)

we conclude that the topological pressure ψ+(s) is well defined by (26) and ap-
pears as the largest eigenvalue of the operator W+.

Likewise, in the context of deterministic dynamical system theory, the
topological pressure ψ+(s) appears as the maximum eigenvalue of the Perron-
Frobenius operator (18) (Sec. 4.5). The operator (36) is the stochastic counterpart
to the Perron-Frobenius operator.

3.5. Ruelle Zeta Function

The Ruelle Zeta function Z(s, z), as reviewed by Gaspard, (18) is defined as
the Laplace transform of the dynamical partition function Z (s, t) with respect to
time

Z(s, z) =
∫ ∞

0
= dt e−zt Z (s, t) (38)

The Ruelle Zeta function is analytic in the complex variable z except on some
poles. The topological pressure ψ+(s) is the pole which is the closest to 0, and
there are systems for which ψ+ is easier to access using that property. From the
explicit definition (19) of Z (s, t) we remark that the temporal integrals are just
interwoven convolutions which factorize after Laplace transform to yield

Z(s, z) =
+∞∑

K=0

∑

C1,...,CK

1

z + r (CK )

K∏

n=1

r s(Cn−1) W 1−s(Cn−1 → Cn)

z + r (Cn−1)
. (39)

3.6. Topological Pressure in Special Cases

3.6.1. Constant Rate of Escape r

From last section we remark that one situation is especially simple when
determining the topological pressure ψ+(s): if the jump rates W (C → C ′) are uni-
form in configuration space (we shall assume for definiteness that W (C → C ′)
takes only two values, 0 or W ), the local rate of escape from the configurations
visited by the system r (C) = r becomes independent of C and the topological pres-
sure is Poissonian

ψ+(s) = r
[( r

W

)s
− 1
]
. (40)

This result can be seen by directly finding the largest eigenvalue of the
Perron-Frobenius operator (36) or by the following line of reasoning. In the
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definition (19) for the dynamical partition function Z (s, t), the probability of con-
figurational histories Prob{hist} = eQ+ depends on the history C0 → · · · → CK

only through the number K of configuration changes: eQ+ = (
W
r

)K
. Thus, eQ+

decouples from the average over time sequences t0, . . . , tK . One can thus com-
pute separately the probability of this time sequence which is a convolution of
exponential laws of common parameter r , which all combine to yield a Poisson
law:

∫ t

t0

dt1 r e−r (t1−t0) · · ·
∫ t

tK−1

dtK r e−r (tK −tK−1) e−r (t−tK ) = e−r t r K t K

K !
(41)

Then Z (s, t) takes the simple form (independently of the initial configuration):

Z (s, t) =
+∞∑

K=0

( r

W

)K

︸ ︷︷ ︸
number of histories

e−r t r K t K

K !︸ ︷︷ ︸
probability of K jumps

[(
W

r

)1−s
]K

︸ ︷︷ ︸
Prob[hist]1−s

= e t r [( r
W )s−1] (42)

It could also have been possible to obtain this result by determining the Ruelle
Zeta function (39)

Z(s, z) = 1

z + r

+∞∑

K=0

(
W ( r

W )1+s

z + r

)K

= 1

z − r (( r
W )s − 1)

= 1

z − ψ+(s)
(43)

The computation was greatly simplified because all jumps of the history are
identical and independent.

3.6.2. Random Walk with Reflecting Boundary Conditions

To see what happens when jumps are not identical, we can consider a particle
jumping on a chain of three sites with reflecting boundary conditions. All jumps
occur a the same rate 1 except for one, whose rate is w. The corresponding Markov
matrix and the Perron-Frobenius operator read

W =

⎛

⎜
⎝

−1 1 0

w −w − 1 1

0 1 −1

⎞

⎟
⎠, W+ =

⎛

⎜
⎝

−1 (w + 1)s 0

w1−s −w − 1 1

0 (w + 1)s −1

⎞

⎟
⎠ (44)

The topological pressure follows

ψ+(s) = 1

2

{
−2 − w + w− s

2

√
ws+2 + 4(1 + w)s(ws + w)

}
(45)

and it does not correspond to Q+ being Poissonian.



Thermodynamic Formalism for Systems with Markov Dynamics 65

3.7. Large Deviation Formalism, Time-Reversed KS Entropy,
and Entropy Flow

As explained in Gaspard (see Ref. 18, Sec. 4.2), a variety of dynamical en-
sembles can be constructed following a similar procedure as the one we followed
with the variable Q+. In fact, any time integrated observable A(t) constructed
with an arbitrary function α according to

A(t) =
K−1∑

n=0

α(Cn, Cn+1) (46)

with K the number of configuration changes undergone by the process over the
time interval [0, t], can be exploited in the same vein. Admittedly, a limited num-
ber of choices will be physically relevant.

Due to the specific form of A, a master equation can be written for
P(C, A, t), and the Laplace transform P̂A(C, s, t) = ∑

A e−s A P(C, A, t) will then
evolve according to ∂t P̂A = WA P̂A, where

WA(C, C ′) = W (C ′ → C)e−sα(C′,C) − r (C)δC,C′ (47)

The largest eigenvalue ψA(s) of WA, with eigenvector P̃A(C, s), is the generat-
ing function of the cumulants of A, ψA(s) = limt→∞ 1

t ln〈e−s A〉. This is a con-
vex function of s. One can also access the first moment of A in the long time
limit, limt→∞〈A〉/t = 〈JA(C)〉st , with the related current JA(C) = ∑

C′ W (C →
C ′)α(C, C ′), relying on the sole knowledge of the stationary state distribution.
Besides, given that there exists a master equation governing the evolution of
P(C, A, t), its positivity is conserved, which means that also P̂A(C, s, t) ≥ 0 at
all times, and consequently

lim
t→∞ e−ψA(s)t P̂A(C, s, t) = P̃A(C, s) (48)

is also positive. This allows, after appropriate normalization, to interpret the
eigenvector P̃A as a probability distribution. Direct numerical access to ψA(s) but
also to P̃A(C, s), as recently proposed in Ref. 10 can be achieved by constructing
an auxiliary Markov process (based on WA) whose stationary distribution is pre-
cisely the normalized P̃A. Much physical insight can be gained from P̃A, as we
shall see throughout the study of the Ising model and the contact process.

An interesting A variable that we will spend quite some time on is the one ob-
tained by setting in (46) α = 1: this is K (t), the number of configuration changes
that have occurred over [0, t]. This is certainly the simplest one to consider, which
does not make its properties any trivial at all (at first sight one would be tempted
to see K as Poisson distributed, which is wrong in most cases). It will further
be shown to be intimately connected to Q+. We postpone our discussion to the
treatment of our physical examples.
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Another prominent variable is the action functional introduced by Lebowitz
and Spohn, (8) endowed with the meaning of an integrated entropy flow, defined
by

QS =
K−1∑

n = 0

ln
W (Cn → Cn+1)

W (Cn+1 → Cn)
. (49)

This is the observable whose cumulant generating function ψS(s) =
limt→∞ 1

t ln〈e−s QS 〉 verifies the symmetry property ψS(s) =ψS(1 − s), which
is one of the possible formulations of the well-known fluctuation theorem
(3, 7, 8, 18, 35–37). In boundary or field driven systems (8, 13, 14, 38–40), for
instance, this entropy flow is simply proportional to the particle current flowing
through the system, the proportionality constant being the force driving the
system out of equilibrium (a chemical potential or a temperature gradient, an
applied field, etc.). It is characterized by a nontrivial large deviation function
only for nonequilibrium systems (more precisely those breaking detailed balance
but for which W (C → C ′) �= 0 only if W (C ′ → C) �= 0). In general, this entropy
flow is a linear combination of the various currents (charge, particles, energy,
momentum) forced by an external drive, weighted with the conjugate forces (or
affinities). The interpretation of QS as an integrated entropy flow follows from the
remark (8,32,37) that the time-dependent entropy S(t) = −∑C P(C, t) ln P(C, t)
evolves according to

d S

dt
= σirr + σf (50)

where σirr is defined by

σirr = 1

2

∑

C,C′

[
W (C → C ′)P(C, t) − W (C ′ → C)P(C ′, t)

]

× ln
P(C, t)W (C → C ′)
P(C ′, t)W (C ′ → C)

(51)

and verifies σirr ≥ 0, with equality iff the system reaches equilibrium (with de-
tailed balance Peq(C ′)W (C ′ → C) = Peq(C)W (C → C ′)). The second term σf is
the entropy flow: it arises from the external forces that drive the system into a
nonequilibrium steady-state, for which σf = − σirr ≤ 0 and

σf = −〈JS(C)〉st = − lim
t→∞

〈QS〉
t

(52)

where JS(C) = ∑
C′ W (C → C ′) ln W (C→C′)

W (C′→C) .
It is of course desirable to make contact between entropy and the entropy

variation rates σirr or σf and the dynamical entropies. In order to achieve that
goal, we dwell into the presentation of Gaspard (22) (carried out for discrete time
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evolution) by introducing an additional observable Q− describing time-reversed
trajectories,

Q−(t) =
K−1∑

n=0

ln
W (Cn+1 → Cn)

r (Cn+1)
+ ln

r (CK )

r (C0)
(53)

The additional piece ln r (CK )
r (C0) appearing in (53) stands for aesthetic reasons: it is

non-extensive in time and could have been dropped without any physical con-
sequence. There exists a corresponding cumulant generating function ψ−(s) and
related time-reverse KS entropy h R

KS:

h R
KS = dψ−

ds

∣
∣
∣
∣
s=0

= − lim
t→∞

〈Q−〉
t

= −〈J−(C)〉st (54)

with J−(C) = ∑
C′ W (C → C ′) ln W (C′→C)

r (C) . By construction one immediately no-
tices that

(i) QS = Q+ − Q−, (ii) JS = J+ − J− (55)

and, in the steady state,

(iii) σf = hKS − h R
KS (56)

Equality (iii) in (56) also appears in the dynamical system literature: hKS (resp.
−h R

KS) is the sum of the positive (resp. negative) Lyapunov exponents and there-
fore σf is indeed the phase-space contraction rate (the sum of all Lyapunov
exponents). We have of course no such a microscopic interpretation within the
Markovian framework. Note that equalities (i) and (ii) in (55) hold for fluctuating
variables.

3.8. Analyticity Breaking of the Large Deviation Functions

In general, for small s, ψA(s) comes as the eigenvalue of a perturbation of the
(unique) stationary state. The uniqueness implies in particular that this function
is analytic in the vicinity of 0. However, it can happen that for s larger than some
threshold value sc, it has to be obtained from the perturbation of a state which is
not the stationary state anymore (we notice that since WA(s) is not a stochastic
matrix anymore for s �= 0, the Perron-Frobenius theorem does not apply and the
maximal eigenvalue of WA(s) can cross another eigenvalue while varying s). In
that case, we may have to examine the whole spectrum to determine ψA(s) for
s > sc.

Then, ψA(s) need not be analytic on the whole real line. Such “dynamical
phase transitions” have already abundantly been studied in the case of ψ+(s). (23)

But such “dynamical phase transition” can also be observed for other observables.
An example in the case of ψK (s) is given in Sec. 6.
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In some cases the situation is even worse: it happens that systems present
two stationary states in the thermodynamic limit, an absorbing state and a non-
trivial one (when the number of degrees of freedom becomes infinite, the Perron-
Frobenius theorem does not apply either). In that case, the change of perturbed
state can occur precisely at s = 0, and ψA(s) may not be analytic at s = 0. An
example of such a situation is studied in Sec. 7.

3.9. State-Dependent Dynamical Entropies hKS[P], hR
KS[P]

The Kolmogorov-Sinai entropy is intended to represent the dynamical ran-
domness of a system when following its evolution in phase space. When a system
evolves in time starting from an initial state P which is not the stationary solution
to the master equation, we expect the dynamical randomness to evolve in time,
or in other words, to depend on the state of the system. Expression (31) strongly
suggests to introduce the state-dependent dynamical entropies hKS[P], h R

KS[P]
through

hKS[P] = −
〈∑

C′
W (C → C ′) ln

W (C → C ′)
r (C)

〉

P

(57)

= −
∑

C,C′
P(C)W (C → C ′) ln

W (C → C ′)
r (C)

(58)

and similarly

h R
KS[P] = −

∑

C,C′
P(C)W (C → C ′) ln

W (C ′ → C)

r (C)
(59)

We study the example of an infinite range Ising spin system in Sec. 6.3.

4. PHYSICAL EXAMPLE 1: RANDOM WALKS

This simple example provides an interesting illustration of the difference be-
tween discrete and continuous time dynamics (Sec. 4.1). When the particle moves
on a lattice with open boundaries, it also constitutes an example of a system with
escape (Sec. 4.2).

4.1. Single Random Walk on a Lattice

4.1.1. Discrete Time Random Walk

We consider a particle moving on an infinite d-dimensional square lattice.
It hops with probability Dτ from one site to its 2d neighbors at each time step
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of duration τ of its evolution. The probability of not moving at each time step is
1 − 2d Dτ . The stationary state is uniform. The probability of a history of n = t/τ
steps with m particle jumps is equal to (Dτ )m(1 − 2d Dτ )n−m . The dynamical
partition function write

Z (s, nτ ) =
n∑

m=0

(
n

m

)

(2d)m[(Dτ )m(1 − 2d Dτ )n−m]1−s (60)

= [2d(Dτ )1−s + (1 − 2d Dτ )1−s]n (61)

The topological pressure is

ψ+(s) = 1

τ
ln[2d(Dτ )1−s + (1 − 2d Dτ )1−s] (62)

and the KS entropy

hKS = −2d D ln Dτ − 1

τ
(1 − 2d Dτ ) ln(1 − 2d Dτ ) (63)

When the time step τ is adjusted so that the particle moves at each time step
(2d Dτ = 1), we simply find

ψ+(s) = 2d Ds ln 2d and hKS = ψ
′
+(0) = 2d D ln 2d (64)

When sending the time step τ to zero, we have

ψ+(s) = −2d D(1 − s) + 2d D1−sτ−s + O(τ ) (65)

and

hKS = 2d D(1 − ln Dτ ) + O(τ ) (66)

As seen in the general case, the limit τ = 0 is not well defined.

4.1.2. Continuous Time Random Walk

We consider the continuous time version of the random walk considered in
the previous section: the particle now jumps with rate W (C → C ′) = D to one of
its neighboring sites. The topological pressure can be obtained directly from the
expressions (40)–(42) for a constant rate of escape

Z (s, t) = e t 2d D [(2d)s−1]; ψ+(s) = 2d D ((2d)s − 1) (67)

and

hKS = ψ
′
+(0) = 2d D ln 2d (68)

htop = ψ+(1) = 2d D (2d − 1) (69)
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We remark from (64) that even if the KS entropy is the same as in the discrete time
random walk with time step τ = 1/(2d D), the two topological pressures differ.
The fact that both KS entropies have the same expression is a simple consequence
of the relations (9) and (31) and from the observation that in the continuous time
RW, the rates of escape r (C) do not depend on the position of the particle. Then,
the discrete and continuous time dynamics are simply related by choosing the
discrete time step τ to be equal to the inverse of the configuration-independent
rate of escape r (C) = r .

On the contrary, we can interpret relation (31) by saying that in the continu-
ous time approach, the relevant time step τ differs upon each jump and is equal to
the inverse of the configuration-dependent rate of escape r (C).

In any case, one should keep in mind that, though (66) and (68) give the same
expressions, they were obtained for different definitions of hKS.

It can also be noted that, if one defines a Lyapunov exponent for the random
walk through an equivalent one-dimensional map, as described in Ref. 17, 19, 41,
we recover Pesin’s theorem (2).

4.2. Random Walk with Open Boundaries: An Example
of System with Escape

Consider now a d-dimensional lattice, infinite in d − 1 directions and finite
of width  in the remaining direction, embedded with absorbing boundaries. The
Perron-Frobenius operator W+ splits in a direct sum of d one-dimensional oper-
ators corresponding to the d independent directions of the lattice

W+ = W
()
+ ⊕ W

(∞)
+ ⊕ . . . ⊕ W

(∞)
+ (70)

with

W
()
+ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2D D(2d)s (0)

D(2d)s −2D D(2d)s

. . .
. . .

. . .

D(2d)s −2D D(2d)s

(0) D(2d)s −2D

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
elements

(71)

and W
(∞)
+ is the infinite version of W

()
+ . The topological pressure ψ+(s) is the

maximum eigenvalue of W+. We find

ψ+(s) = 2D

[

(2d)s

(

cos
π

 + 1
− 1

)

+ d((2d)s − 1)

]

(72)
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from which we get the escape rate

γ = −ψ+(0) = 2D

(

1 − cos
π

 + 1

)

(73)

expanding for large  to

γ = D
π2

2
. (74)

Gaspard and Nicolis (42) have shown that such relation holds in the discrete time
approach. Our continuous-time approach preserves the link (74) between trans-
port properties and escape rate in open systems.

4.3. Many Particle Random Walk: Different Points of View for hKS

We now consider N independent random walkers on a lattice of L sites
with periodic boundary conditions. Each one still hops with rate D, so that
r (C) = 2d N D. Then, with the same calculation as in Sec. 4.1.2, we find

ψ+(s) = 2d N D [(2d N )s − 1] (75)

The topological pressure, and the KS entropy hKS = ψ ′
+(0) = 2d N D ln(2d N ), are

not extensive in N anymore. It could have been tempting, as the particles are inde-
pendent, to rather write Z N (s, t) = (Z1(s, t))N , and then the topological pressure
2d DN [(2d)s − 1] would have been extensive. The difference comes from the
fact that in the first case, the order in which particles jump has been considered as
part of the configurational trajectory, and not in the last case. The first approach
seems the correct one, as it can be generalized to interacting particles. Besides, as
we shall see in the next section, the non-extensivity of hKS was already present
in discrete time with sequential update and is thus not specific to the continuous
time limit.

5. PHYSICAL EXAMPLE 2: EXCLUSION PROCESSES

We now consider interacting particles, more precisely, a simple exclu-
sion process, i.e. a gas of N mutually excluding particles diffusing on a one-
dimensional periodic lattice of L sites. We denote a generic configuration of the
system by n = (n1, . . . , nL ), with ni = 1 when site i is occupied by a particle or
ni = 0 otherwise.

5.1. Totally Asymmetric Simple Exclusion Process (TASEP)

We first consider the Totally Asymmetric Simple Exclusion Process
(TASEP) where particles can only jump to the site on their right. Though the
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full calculation of the topological pressure is quite intricate, hKS is much simpler
to obtain via its expressions (9) or (31). We calculate it now for various types of
dynamics.

5.1.1. TASEP: Parallel Updating

At each time step τ = 1, each particle may go forward with probability p if
the site in front is empty.

Let nc be the number of clusters in a configuration C. There are
(nc

k

)
config-

urations C ′ which are obtained from C by moving k particles. The corresponding
transition probability is w(C → C ′) = pk(1 − p)(nc−k). Then

hKS = −〈nc〉st [p ln p + (1 − p) ln(1 − p)] 

−Lρ(1 − ρ) [p ln p + (1 − p) ln(1 − p)] (76)

for large systems.

5.1.2. TASEP: Random Sequential Updating

At each time step τ = 1/L , one bond (i, i + 1) is chosen randomly. If ni (1 −
ni+1) = 1, the particle jumps forward with probability p.

If a configuration C ′ can be obtained from C by moving exactly 1 parti-
cle, the corresponding transition probability w(C → C ′) = p

L . There are nc such
configurations C ′. The probability to stay in the same configuration is w(C →
C) = 1 − nc

p
L . To leading order in L we find

hKS = pρ(1 − ρ)L ln L + O(L) (77)

Thus hKS is non extensive though the dynamics is still discrete in time (and thus
though hKS is still defined using (9)).

5.1.3. TASEP: Continuous Time Dynamics

For the continuous time dynamics, the transition rate between configuration
n and n′ = (. . . , 1 − ni , 1 − ni+1, . . .) is W (n → n′) = Dni (1 − ni+1).

In order to find a finite value for hKS, we are now using the definition (31).
We note that, at fixed number of particles N = ∑

i ni , the stationary state is uni-
form and each configuration has probability Pst(n) = 1/

(L
N

)
. Besides, W ln W is

equal to W ln D. Thus the KS entropy can be written

hKS = 〈
r (n) ln

r (n)

D

〉
st

(78)
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where the instantaneous rate of escape r (n) = D
∑

i ni (1 − ni+1). As the steady
state is perfectly random, we see (43) that all k-point correlation functions Ck have
simple expressions:

C1 ≡ 〈n1〉st = N

L
(79)

C2 ≡ 〈n1n2〉st = N (N − 1)

L(L − 1)
(80)

CM ≡ 〈n1n2 · · · nM 〉st = N (N − 1) · · · (N − M + 1)

L(L − 1) · · · (L − M + 1)
. (81)

In the thermodynamic limit N → ∞, L → ∞ with N/L = ρ, we get
〈r (n)〉st

L → Dρ(1 − ρ). For finite systems, the mean value of the instantaneous rate
of escape r (n) is, taking finite size corrections into account,

〈r (n)〉st = DL

(
N

L
− N (N − 1)

L(L − 1)

)

. (82)

Then r (n) can be split into two parts, its mean value, of order L , and a fluctuating
part defined as

r (n) = 〈r (n)〉st (1 + ξ/
√

L) from which we get ξ =
√

L
r (n) − 〈r (n)〉st

〈r (n)〉st
.

(83)
By definition, to all orders in L , we have 〈ξ 〉st = 0. Moreover,

〈ξ 2〉st = L
〈r (n)2〉st − 〈r (n)〉2

st

〈r (n)〉2
st

. (84)

Once the expression for 〈r (n)2〉st = 4L[C1 − C2 + (L − 3)(C2 − 2C3 + C4)] is
obtained, we get the exact expression

〈ξ 2〉st = L(N − 1)(L − N − 1)

N (L − N )(L − 2)
(85)

which expands in powers of L as 〈ξ 2〉st = 1 + O(1/L). This allows us to expand
hKS = 〈r (n) ln r (n)

D 〉st through

hKS = 〈r (n)〉st ln

〈
r (n)

D

〉

st

+ 1

2
〈r (n)〉st

〈ξ 2〉st

L
+ O(1/L) (86)

Denoting σ = Dρ(1 − ρ) and collecting all terms, we find

hKS = Lσ ln(Lσ ) + σ ln(Lσ ) + 3

2
σ + σ

L
ln L + O(1/L). (87)

We could also have developed r around its thermodynamic limit 〈r (n)〉st/L →
Dρ(1 − ρ). Then 〈ξ 〉st �= 0 but 〈ξ 2〉st = 1 + O(1/L).
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For the TASEP model, the number of configuration changes K is equal to the
total distance covered by all the particles within a certain time interval. The large
deviation function associated to this quantity has already been calculated both for
in the large system size limit and for finite systems in Ref. 11, 12.

5.2. Symmetric Exclusion Process (SEP)

We now consider the Symmetric Exclusion Process (SEP) where each par-
ticle hops with equal probability per unit time D to its right or left—if the target
sites are empty.

In this case we have calculated not only the KS entropy but also the large
deviation function associated with the observable K (t). Though this is a simpler
observable than Q+, the complexity of the calculations is already present. It gives
a cruder physical picture of the level of activity undergone by the system’s dy-
namics than Q+.

5.2.1. The Kolmogorov-Sinai Entropy

The same expression (87) as for TASEP holds, but now with σ = 2Dρ(1 −
ρ). For the SEP, the compressibility and the strength of the equilibrium current
fluctuations, as defined by Bodineau and Derrida, (13) are closely intertwined1 (see
Ref. 16). Thus one may speculate whether for another equilibrium model of inter-
acting particles, and beyond, for a realistic interacting gas, hKS can be expressed
solely in terms of the thermodynamic compressibility. This issue, which is remi-
niscent of earlier discussions (27) certainly deserves further investigation.

5.2.2. Number of Hops

Let K (t) be the number of hops performed by the Markov process on [0, t]
and let P(K , t) be the probability distribution function of K (t). We also introduce
the moment generating function P̂K (s, t) defined by

P̂K (s, t) = 〈e−sK 〉 (88)

and the related cumulant generating function

ψK (s) = lim
t→∞

ln P̂K (s, t)

t
(89)

1 The coefficients D(ρ) and σ (ρ) appearing in Ref. 13 verify σ (ρ)/D(ρ) = 2ρ2kB T χ (ρ), where χ is
the thermodynamic isothermal compressibility and T is the equilibrium temperature. For the SEP
one has D(ρ) = D and σ (ρ) = 2Dρ(1 − ρ).
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which turns out to be the largest eigenvalue of the operator WK (s) defined by (see
(47)).

WK (s; C, C ′) = e−s W (C ′ → C) − r (C)δC,C′ (90)

There are a number of ways to obtain ψK (s) in the regimes of interest s →
0± and s → ±∞. The results are summarized here, while technical details will
be published elsewhere. All these results are valid in the limit of large systems.

• In the limit s → −∞

lim
L→∞

ψK (s)/(DL) = 2e−s sin πρ

π
− 2ρ(1 − ρ) − 2

sin2(πρ)

π2
+ O(es)

(91)

This result relies on a mapping to weakly interacting fermions, by means
of a Jordan-Wigner transformation.

• In the limit s → 0−,

lim
L→∞

ψK (s)/(DL) = −2ρ(1 − ρ)s + 27/2

3π
[ρ(1 − ρ)]3/2|s|3/2 + O(s2)

(92)

The method that was used in this case—relying on a Bethe ansatz—could
not be applied to the s → 0+ case.

It is not so surprising to find a non-analytic behavior for ψK , as the
symmetric exclusion process has already revealed non-analytic behavior
for the particle current distribution function. (8,44)

As the first derivative of ψK (s) is still continuous in s = 0, one could
speak of a dynamical phase transition of order higher than one.

• In the limit s → +∞
lim

L→∞
ψK (z)/D = −2 + z2 + O(z3) (93)

This z → 0 behavior is quite distinct from that found by Derrida and Lebowitz (11)

studying the TASEP, who found ψK (z) = − 1 + zN (for N < L/2). This is due to
the strong irreversibility of the TASEP that prohibits backward jumps to take place
(if N < L/2, N jumps, instead of 2 for the SEP, are necessary to return to a single
cluster configuration).

6. PHYSICAL EXAMPLE 3: INFINITE RANGE ISING MODEL

We now turn to our next example, namely a system of N Ising spins
(N  1) σi = ±1 interacting with infinite range forces and equilibrated at the
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inverse temperature β. The Hamiltonian of this infinite range Ising model reads

H(σ = {σi }) = − 1

2N

∑

i, j

σiσ j = − M2

2N
(94)

where M = ∑
i σi is the magnetization. The equilibrium probability Peq(σ ) of

a spin configuration σ = {σi } is given by the Boltzmann-Gibbs factor P(σ ) ∝
exp[−βH(σ )]. In order to describe its time dependent and chaotic properties we
endow the system with a continuous time Glauber-like dynamics in which each
spin σi flips with a rate

W (σi → −σi ) = e−βσi
M
N (95)

This is precisely the evolution rule considered by Ruijgrok and Tjon (45) who first
studied the dynamics of this system. The rate of escape from a configuration with
magnetization M depends only on M and is equal to

r (M) = N cosh
βM

N
− M sinh

βM

N
(96)

The master equation can be cast in the form of an evolution equation for the state
vector |�〉= ∑

σ P(σ , t)|σ 〉,
d|�〉

dt
= W|�〉 (97)

where

W =
∑

j

[
σ x

j − 1
]

e−βσ z
j

Mz

N (98)

= (Mx − N ) cosh
βMz

N
+ (Mz + i M y) sinh

βMz

N
(99)

Here, the evolution operator W is expressed in terms of spin N operators
Mα , α = x, y, z (

∑
α Mα2 = N (N + 2)), with Mα = ∑

j σα
j (tensor products are

implied for the Pauli matrices σα
j acting on site j). Note that this expression is

obtained under the assumption that the probability P(σ , t) depends only on the
magnetization, which is the case in particular for the stationary state.

An alternative way to describe the system would be to follow another Markov
variable than the full configuration σ , such as the global magnetization M . That
M is a Markov variable is of course an artifact of our mean-field model. One
is now interested in the evolution equation for the magnetization state vector
|�(M)〉= ∑

M P(M, t)|M〉. It should be noted that (99) gives the evolution op-
erator for the state vector |�(M)〉 (with the Mα taken as operators acting on
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magnetization states), only if the states |M〉 are defined by

|M〉 =
∑

σ

(
N

N+M
2

)−1

δ
[

M −
∑

i

σi

]
|σ 〉. (100)

For the somewhat more intuitive definition

|M〉 =
∑

σ

δ
[

M −
∑

i

σi

]
|σ 〉, (101)

the evolution operator would rather be

W = Mx − i M y

2

N + Mz

N − Mz + 2
e−β Mz

N

+ Mx + i M y

2

N − Mz

N + Mz + 2
e+β Mz

N − r (Mz) (102)

as the escape rate from a given state |M〉 is still r (M). In the following, we shall
always refer to the description by the full spin-state |�〉, except when stated oth-
erwise.

We now turn to the topological pressure.

6.1. Topological Pressure—Paramagnetic State

The topological pressure is the largest eigenvalue of the operator W+ whose
expression reads

W+ = Mx cosh
(1 − s)βMz

N
r (Mz)s + i M y sinh

β(1 − s)Mz

N
r (Mz)s − r (Mz).

(103)

In the high temperature phase, it suffices to resort to the same Holstein-Primakoff
representation of the spin operator as that used in Ref. 45,

Mx = N − 2a†a, M y = −i
√

N (a† − a), Mz =
√

N (a† + a) (104)

in order to write W+ as a free boson operator whose ground-state energy yields
the following topological pressure

ψ+(s) = N (N s − 1) + N s(1 − (1 − s)β)

−N s/2
√

N s(1 + sβ(2 − β)) − β(2 − β) (105)

It is also possible to compute the large deviation function associated with the
observable, valid as long as one can assume a zero magnetization state, which is
the case for s < sc = − ln(β(2 − β)), as shown in Ref. 58.

QM =
K−1∑

n=0

ln
W (Mn → Mn+1)

r (Mn)
(106)
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and we find

ψM (s) = lim
t→∞

1

t
ln〈e−s QM 〉

= (2s − 1)N + 2s(1 − s)(1 − β)

−2s/2
√

2s(1 − s(1 − β)2) − β(2 − β). (107)

We remark that in (105) (resp. (107)), to leading order, the distribution of Q+
(resp. QM ) is a Poisson law of parameter ln N (resp. ln 2), which reflects the
completely randomized nature of the paramagnetic state. These results are valid
in the high temperature β < 1 phase, and for s not too large. We now address the
ordered state.

6.2. Topological Pressure—Ferromagnetic State

It appears that below the critical temperature, the topological pressure shows
much more complex features. The most notable of them is that the Q+ observ-
able ceases to be Poisson distributed around s = 0 even to leading order in the
system size. This is at variance with what has been observed for the paramagnetic
state. In order to gain some insight into the difference between the high and low
temperature behaviors, we decompose the fluctuating magnetization M(t) into

M(t) = Nm + ξ (t)
√

N . (108)

This defines the noise strength ξ (t), which we expect to remain of order unity.
The fluctuating escape rate from a configuration with magnetization M given by
(96) is, for N large, given by

r (M) = N
√

1 − m2 − ξ
m√

1 − m2

√
N + 1

2
ξ 2β

(

β − 2

1 − m2

)

+ O(1/
√

N )

(109)

where the mean-field equation of state tanh(βm) = m was used. From (109) we
see that r (M) shows only O(1) fluctuations at β < 1 (m = 0), rather than the gener-
ically expected O(

√
N ) fluctuations. Fluctuations in the high temperature regime

are thus much lower than in the ordered state. This will lead to more tedious
mathematics in the ordered phase.

Before tackling these, an interesting way to pinpoint the different nature of
the high and low temperature phases is to inspect first a simpler quantity, namely
the number K (t) of magnetization changes that have occurred over a time interval
[0, t]. It should be noticed that the value of K is the same, whether we describe
the system by its full configuration σ or only by its global magnetization M .

As explained in Sec. 3.7, the large deviation function for K , ψK (s) =
limt→∞ 1

t ln〈e−sK 〉 is the largest eigenvalue of WK , which has matrix



Thermodynamic Formalism for Systems with Markov Dynamics 79

elements

WK (M ∓ 2, M) = z
N ± M

2N
e∓βM/N − r (M)δM,M∓2, z = e−s (110)

We find, again using (104), above the critical temperature, that

ψK (z) = (z − 1)N + z(1 − β) −
√

z(z − β(2 − β)) (111)

Note that at the critical point, ψK (z) = N (z − 1) −√z(z − 1). The singularity has
moved from s = − ln β(2 − β) to s = 0 (z = e−s). Below the critical temperature,
expressing WK in terms of a and a† as defined in (104) does not yield a free
boson operator. We first quote our results and then sketch the route that has led to
them. Retaining the leading terms in N , we find that ψK has the following implicit
expression:

ψK (z) = N

[

z
√

1 − m2
K − cosh βmK + mK sinh βmK

]

+ z
1 − (1 − m2

K )β
√

1 − m2
K

+
√

φK (z) (112)

where

φK (z) = z2

1 − m2
K

[
3 − 6

(
1 − m2

K

)
β + 4

(
1 − m2

K

)2
β2
]

+βz
√

1 − m2
K

[
(2 − β) cosh βmK + βmK sinh βmK

][
1 − 2(1 − m2

K )β
]

(113)

and mK (β, z) is the solution of

mK β cosh βmK + (1 − β) sinh βmK = mK
√

1 − m2
K

z (114)

such that ψK (z) is the largest. When z = 1, Eq. (114) is of course solved by the
solution m(0)

K (β) of the mean-field equation

m(0)
K = tanh

(
βm(0)

K

)
(115)

From that remark, it is possible to expand ψK around s = 0 in powers of s
by searching solutions of (114) in the form mK = m(0)

K + m(1)
K s + · · ·. Defining

c0(β) = cosh m(0)
K (β), we find

1

N t
〈K 〉 = 1

c0
+ β

N

c2
0(2 − 3β) + β2

2c0
(
c2

0 − β
)2 + O(1/N 2) (116)



80 Lecomte, Appert-Rolland and van Wijland

1

N t
〈K 2〉c = 1

c0
+ c0

c2
0 − 1

(
c2

0 − β
)2 + O(1/N ) (117)

1

N t
〈K 3〉c = 1

c0
+ 3c0

c2
0 − 1

(
c2

0 − β
)5
[
c6

0 − (1 + β)c4
0 − β(1 − 3β)c2

0 − β3
]

+O(1/N ). (118)

An interesting spinoff of this s → 0 expansion is that it shows that in the low
temperature phase (c0 > 1), the number of steps K is not distributed according to
a Poisson distribution, even to leading order N (if it were so, only the 1/c0 term in
the right hand sides of Eqs. (116–118) would be present in the above cumulants).

The way the parameter mK (β, s) came out from the formalism is the follow-
ing. In the high temperature phase, the Holstein-Primakoff representation (104)—
with no rotation—allows directly to write W+ as a free boson operator. In the low
temperature phase, it is necessary to rotate the spin operators Mx , M y, Mz by
an angle θ around the y axis, in order that WK becomes a free boson operator,
with sin θ = mK (β, s) (after a suitable additional θ -dependent rotation around the
z axis).

It is intriguing that by expressing the escape rate r (M = NmK ) =
N (cosh(βmK ) − mK sinh(βmK )) as a function of p through mK (p) =

√
1 − p2,

one can see, by exploiting (114), that to leading order 1
N ψK (z) = maxp{zp −

1
N r (p)} (a property holding in the β < 1 phase as well).

The physical meaning of this mK (β, s) is interesting in itself: in order to ar-
rive at an expression for the evolution operator involving free bosons, one must
be describing its low lying excitations, which requires knowing its ground-state
eigenfunction (the state P̃K (M, s) appearing in Ref. (48) that has the eigenvalue
ψK (s)). In the high temperature phase, the average magnetization restricted to his-
tories with a prescribed value of K is zero for a large range of s values, including
s = 0. In the broken phase, the nonzero magnetization is itself a weighted aver-
age of average magnetizations corresponding to various values of K , and there is
no reason for each value of K to contribute equally to m(0)

K (β). Instead we have
that

mK (s, β) = lim
N→∞

1

N

∑

M

M P̃K (M, s) �= m(0)
K (β). (119)

After all, it is reasonable that histories with K far from its typical value are char-
acterized by different magnetizations. In order to further illustrate our point, we
have plotted s �→ mK (s, β = 1.4) in Fig. (2). There it can be seen that mK (s, β)
jumps from a nonzero value at s > 0 to zero at s < 0. On the one hand, at s > 0
one is probing the regime in which K/t is typically smaller than its average value
〈r (M)〉, which we expect to be more frozen than typical configurations, that is,
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Fig. 2. Plot of the rotation parameter mK (s, β) as a function of s at β = 1.4. The jump discontinuity
at s = 0, in finite size N , is smoothened into a continuous but steep drop centered around a critical
value sc = O(N−1) < 0.

more ordered: this accounts for mK (s, β) growing with s. On the other hand,
at s < 0, one is selecting histories that have a typical K/t larger than average,
so that the corresponding states should be less ordered. There is in fact a dy-
namical first order phase transition as s varies from 0+ to 0−, where mK (β, s)
jumps from a nonzero value to 0, which corresponds to a paramagnetic state.
The jump discontinuity of mK (β, s) yields a discontinuity in the derivative of
ψK (which itself, being convex, must be continuous) as shown in Fig. (3). which
reads

d

ds

[

lim
N→∞

ψK (s)

N

]∣
∣
∣
∣
0+

− d

ds

[

lim
N→∞

ψK (s)

N

]∣
∣
∣
∣
0−

=
√

1 − m(0)
K

2
(120)

where m(0)
K = mK (β, 0) is the solution to m(0)

K = tanh βm(0)
K . For finite N , both

derivatives are equal to
√

1 − m(0)
K

2
.

Returning now to the topological pressure, we parallel the reasoning carried
out previously for K in terms of Q+: we write the corresponding operator W+
and perform a rotation of the magnetization operators Mα (the angle θ involved
is such that sin θ = m+(β, s)) in order that it can be expressed in terms of free
bosons, and we find that below the critical temperature

ψ+(s) = Nψ (N )(s) + ψ (0)(s) (121)
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Fig. 3. Plot of z �→ limN→∞ ψK (z)/N at β = 1.4, with z = e−s . The first derivative is discontinuous
at z = 1.

where the order N 1 and order N 0 coefficients are given by

ψ
(N )
+ (s) = p2−sqs − q

2
(122)

ψ
(0)
+ (s) = qs (1 − s)

(
1 − p2β

)
p−(1+s)

−
√

	0 +
(

q

p

)s

	1 +
(

q

p

)2s

	2 (123)

where we used the notation

p =
√

1 − m2+ (124)

q = 2
(

cosh βm+ − m+ sinh βm+
)

(125)

q = 2
(

sinh βm+ − m+ cosh βm+
)

(126)

	0 = −[βm+ cosh βm+ + (1 − β) sinh βm+
]2

(127)

	1 = −pβ
[
(2 − β) cosh βm+ + m+β sinh βm+

]
(128)

	2 = 2

p2
− 1 + 4s

p2q2

[
1

2
m+qq − p2(1 − p2β)2

]

(129)
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Fig. 4. Plot of s �→ m+(s, β) at β = 1.4 in the limit of large systems.

and the rotation parameter m+(s, β) is the solution of

p1+s [βm+ cosh βm+ + (1 − β) sinh βm+] = qs−1[m+q + sq(1 − p2β)]

(130)

such that ψ+(s) is the largest. Again the quantity m+(s, β) has the meaning of an
average magnetization biased, for s �= 0, over histories that are more (resp. less)
random than the typical history for s > 0 (resp. s < 0). For that reason we expect
m+(s, β) to be a decreasing function of s, as is confirmed by plotting m+(s, β)
obtained from (130) as a function of s for β > 1, see Fig. (4). Trajectories split
into two classes, ordered and disordered ones.

6.3. Kolmogorov Sinai Entropy and Chaoticity

Here we focus on the KS entropy related to the process M(t) —and defined
as before from the QM observable—which is luckily extensive. In the station-
ary state, hKS (in magnetization space) depends on β through c = cosh[β m(β)]
where m(β) is the solution of the mean field equation

lim
N→∞

1

N
hKS =

⎧
⎨

⎩

ln 2 if β < 1
1

c
ln 2 if β > 1.

(131)
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Fig. 5. Kolmogorov-Sinai entropy hKS in the stationary state, as a function of β. In the ordered phase
(β > 1), the variations of hKS are of order N , while in the disordered phase, they are of order 1 (inset).

To follow how hKS depends on β in the high temperature phase (β < 1) one has
to expand up to order 0. We find

hKS − N ln 2 = −1 + (ln 2 − 1)β(2 − β)

2(1 − β)
(132)

Results are shown in Fig. 5.
In a state P of average magnetization m, hKS[P] only depends, to leading

order in N , on m.

1

N
hKS[P] = eβm 1 − m

2
ln

[

1 + 1 + m

1 − m
e−2β m

]

+ e−βm 1 + m

2
ln

[

1 + 1 − m

1 + m
e2β m

]

. (133)

In a similar way

1

N
h R

KS[P] = eβm 1 − m

2
ln

[

1 + 1 − m

1 + m
e2β m

]

+ e−βm 1 + m

2
ln

[

1 + 1 + m

1 − m
e−2β m

]

. (134)

6.4. On the Extensivity of the KS Entropy

Though the hKS associated with the observable QM and calculated in the
previous section was luckily extensive, in general the hKS defined by (20) is not
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extensive in the number of degrees of freedom. Indeed, the dominant order for
hKS = ψ ′

+(0) obtained from (105) reads hKS ∼ N ln N . By contrast, in a dynam-
ical system, the Lyapunov spectrum, and the KS entropy, are extensive in the
number of degrees of freedom. The nonextensivity of the hKS calculated in this
paper was already briefly commented upon in Sec. 4.3. As this was pointed out
in Sec. 5.1.2, it is not specific to continuous time. Still, we wish here to suggest
some possible cures. In order to obtain an extensive topological pressure, we may
scale the probability of a step from C → C ′ with the number of available degrees
of freedom. In the case of our Ising system, we introduce the observable

H =
K−1∑

n=0

ln
N W (Cn → Cn+1)

r (Cn)
(135)

Note that the associated large deviation function ψH (s) = limt→∞ 1
t ln〈e−s H 〉, in

spite of remaining convex, will a priori no longer be a monotonously increasing
function of s, which is a defining property of a Rényi entropy. Skipping technical
details, we have found that in the high temperature phase

ψH (s) = 1 − β(1 − s) −
√

(1 − s)(1 − β)2 + s, ψH (s)
β = 1= s − √

s (136)

which has a trivial thermodynamic limit ψH/N → 0 as N → ∞. On the other
hand, for β > 1, we obtain

ψH (s)

N
= (r (Nm)/N ) − p(r (Nm)/N )s, p =

√
1 − m2 (137)

and with m solution to

m(r (Nm)/N )s − mpβ cosh βm − p(1 − β) sinh βm = 0 (138)

Combining these results into a single plot, Fig. 9, shows that some features present
in ψ+ (such as ψ+(s > 0) = 0) are unaffected in ψH (s): both are monotonous
(only to leading order in N for ψH (s)), and non-analytic in s = 0. We do not have
further argument in favor of using ψH/N as a bona fide topological pressure but
that it is simple and that it seems to be sharing similar properties as the origi-
nal ψ+, at least for the model at hand (yet it can be shown that ψ ′

H (0) ≤ 0, i.e.
opposite sign to hKS).

6.5. One Dimensional Ising Model

We consider an Ising chain of N spins in contact with a thermal bath at
inverse temperature β. The energy writes

H = −
∑

i

σiσi+1 (139)
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Fig. 6. Kolmogorov-Sinai entropy hKS[P] in a state P of mean magnetization m at fixed β = 1.2.

We endow the system with periodic boundary conditions and Glauber dynamics
with spin flip rate

Wi (σ ) = 1 − 1

2
γ σi (σi−1 + σi+1) where γ = tanh 2β (140)

The Kolmogorov-Sinai entropy is

hKS =
〈
∑

i

Wi (σ ) ln
Wi (σ )

r (σ )

〉

(141)

Fig. 7. Direct and time-reversed Kolmogorov-Sinai entropies in a state of mean magnetization m, in
the disordered phase (β = 0.8). Notice that, as expected, hKS ≤ h R

KS. These two dynamical entropies
are equal only at equilibrium magnetization meq = 0.
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Fig. 8. Direct and time-reversed Kolmogorov-Sinai entropies in a state of mean magnetization m, in
the ordered phase (β = 2). Notice that, as expected, hKS ≤ hKSR . These two dynamical entropies are
equal only at equilibrium magnetization meq 
 ± 0.956 or at m = 0, which is unstable.

In the limit N → ∞

hKS = N ln N

cosh 2β
+ N [2βγ tanh2 β − (1 + γ 2) ln cosh 2β]

+ 2 sinh2 β + O(ln N/N ) (142)

Fig. 9. Plot of s �→ limN→∞ ψH (s)/N at β = 1.4.
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which is computed using that the correlations read 〈σiσi+r 〉= tanhr β. It is, as
expected, an increasing function of temperature.

7. PHYSICAL EXAMPLE 4: CONTACT PROCESS

7.1. Motivations

We now turn our attention to the infinite-range contact process: each vertex
i of a fully connected graph of N vertices is either empty (ni = 0) or occupied by
a particle (ni = 1). The system is endowed with a Markov dynamics with rates

{
W (ni = 1 → ni = 0) = 1

W (ni = 0 → ni = 1) = λn/N
(143)

where n = ∑
i ni is the total number of occupied sites. This model has recently

resurfaced in the literature: Dickman and Vidigal (46) studied in detail one of its
defining properties, namely that it exhibits a nonequilibrium phase transition from
an active to an absorbing state as the branching rate λ is decreased below a critical
value λc = 1, with, in finite size, a single stable state, the absorbing one. There-
fore, the stationary state distribution in the active state is only quasi-stationary.
The lifetime of the active state, in finite size, was studied by Deroulers and
Monasson, (47) who also designed a systematic way to implement finite connec-
tivity effects. Broadly speaking, the contact process phase transition belongs to
the directed percolation universality class, and as such, is the paradigmatic model
of nonequilibrium phase transitions. Our motivation for looking at the contact
process with our own tools is precisely the existence of a phase transition, un-
like any equilibrium one, that is encountered in many guises in the literature (see
Hinrichsen for a review Ref. 48.) Interestingly, absorbing state transitions are now
invoked within the framework of the glass transition.(49−50) At the moment we do
not wish to address refined critical properties, and we shall be content with a
mean-field version that will enable us to get the global picture of how phase space
trajectories are affected by the presence, in the stationary state phase diagram, of
an absorbing state transition.

Much like the global magnetization in the infinite-range Ising model, the
total number of particles n(t) =∑i ni = 0, . . . , N is also a Markov process, with
the following rates

{
W (n → n − 1) = n

W (n → n + 1) = (N − n)λn/N
(144)

As a reminder, we first sketch the main properties of the stationary state. For finite
N , there is a single stationary state: this is the absorbing state where all sites are
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empty. The time evolution of the mean number of particles reads

d〈n〉
dt

=
〈

(N − n)
λn

N
− n

〉

(145)

Given the infinite range of the interactions, the mean field hypothesis will be valid
in the thermodynamic limit (n and N going to infinity, n/N → ρ). In the station-
ary state (145) simplifies into

ρ
[
λ(1 − ρ) − 1

] = 0 (146)

We conclude that there exist two regimes according to the value of λ. For λ ≤ 1,
the stationary state is the absorbing state, with all sites devoid of particles, and
when λ > 1, the system reaches almost certainly a quasi-stationary state with
mean density

ρ = 1 − 1

λ
, (147)

else it is trapped in the empty state. From here on, we shall assume λ > 1 and use
ρ as the only control parameter of the model. In order to circumvent the absorbing
state in finite size, it is convenient to add to the original model an additional local
injection process with rate h,

{
W (ni = 1 → ni = 0) = 1

W (ni = 0 → ni = 1) = h + λn/N
(148)

or
{

W (n → n − 1) = n

W (n → n + 1) = (N − n) [h + λn/N ]
(149)

The stationary state becomes unique for N → ∞, and the steady-state density ρ

is given by

λρ + h = ρ/(1 − ρ) (150)

For h > 0, explicit results will be expressed in terms of ρ and λ. We now want
to determine the large deviation functions of K (t), the number of configuration
changes that have occurred over a time interval [0, t], and of Q+(t), which gives
access to the topological pressure.

7.2. Special Point λ = 2ρ−1
(1−ρ)2

Our first paragraph deals with a special point in parameter space that, to the
best of our knowledge, has never been commented upon in the existing literature,
but whose mathematical structure is extremely simple. We decompose the total
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number of particles into an average and a fluctuating part,

n = Nρ + ξ
√

N (151)

and we express the fluctuating rate of escape from a configuration with n particles,
in the stationary state. In the absence of particle injection (h = 0), and replacing
λ by its expression (147) in terms of the stationary state density ρ, we arrive at

r (n) = 2ρN + ξ
2 − 3ρ

1 − ρ

√
N − ξ 2 1

1 − ρ
(152)

hence the special point ρ = 2/3 (or equivalently λ = 3) at which this escape rate
has relative fluctuations of order O(N−1) that are much weaker than the generi-
cally expected O(N−1/2). A similar phenomenon occurs for h > 0, using (150),

r (n) = 2ρN + ξ (1 − ρ)(λ − �)
√

N − λξ 2 (153)

where

� = 2ρ − 1

(1 − ρ)2
(154)

There the special point with low fluctuations is at λ = �. Under this constraint
λ = �, the interval covered by the stationary state density when the value of h
is varied is 1

2 < ρ < 2
3 . The λ = � behavior of r (n) bears much resemblance with

that already noted for the high-temperature phase of Ising model in (109), with
the formal correspondence β < 1 ↔ λ = � and β > 1 ↔ λ �= �. As will now be
seen, huge calculational simplifications occur at λ = �.

The generating function for the cumulants of K (t), the number of configura-
tion changes that have occurred over a time interval [0, t] is the largest eigenvalue
of the following operator

WK (z) = −n̂ + (N − n̂)

[
λn̂

N
+ h

]

+ 1

2
z

[

(Mx + i M y)

[
λn̂

N
+ h

]

+ (Mx − i M y)

]

(155)

where n̂ = (N + Mz)/2 is the particle number operator and z = e−s . Given that
the detailed properties are being studied for the first time here, we shall provide
the reader with a few more technical details than in the previous section on the
Ising model.

The spectrum of WK can be found perturbatively in N using the Holstein-
Primakoff representation of the magnetization operators Mα . In general this con-
sists in rewriting the Mα’s as a carefully chosen rotation of another set Lα of spin
N operators for which we will use the following exact representation in terms of
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creation and annihilation operators

Lx = N − 2a†a (156)

i L y = a† (N − a†a
) 1

2 − (N − a†a
) 1

2 a (157)

Lz = a† (N − a†a
) 1

2 + (N − a†a
) 1

2 a (158)

The aforementioned rotation has to be chosen such that in the ground state, a†a re-
mains small, so that an expansion can be performed. In the present case (λ = �),
we shall assume that it is already the case without any rotation, and we shall use
directly Mα = Lα . We expand WK in powers of N anticipating that in the ground
state a†a will remain of O(1) as N → ∞. And because, up to a constant contri-
bution, WK is quadratic in terms of a and a† (with N -independent coefficients),
this is indeed the case and we find that the largest eigenvalue ψK (s) of WK has
the following expression

ψK (z) =
{

Root of a third degree polynomial if z < zc

2ρ (z − 1) N − z + z1/2

1−ρ

√
ρ(1 − 2ρ) + z(1 − 3ρ(1 − ρ)) if z > zc

(159)

provided the parameters verify λ = 2ρ−1
(1−ρ)2 . Note that for h = 0, that is at λ = 3,

zc = 1 and ψK (z ≤ 1) = 0, while ψK (z) = 4
3 (z − 1)N − z +√z(3z − 2) if z >

1. Interestingly, to leading order in N , the distribution of K is a Poissonian, as
was precisely the case for the Ising model in the high-temperature phase (111).
For h �= 0, we find that for z → 0 (that is for s → ∞)

ψK (z) = ρ
2 − 3ρ

(1 − ρ)2
+ z2 2 − 3ρ

2(1 − 2ρ)
+ O(z4) (160)

which describes reduced-activity histories with values of K much smaller than
〈K 〉.

In much a similar way, restricting our analysis to the Markov process n(t) =∑
i ni (t), the topological pressure ψ+(s) is the largest eigenvalue of the following

operator

−W+(s) = n̂ + (N − n̂)
λn̂

N

−1

2
(Mx + i M y)

(

h + λn̂

N

)1−s (

n̂ + h + λn̂

N

)s

(161)

−1

2
(Mx − i M y)

(

n̂ + h + λn̂

N

)s
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And again expanding the Mα’s in powers of N keeping a and a† of order 1,
leads to W+ being quadratic in a and a†, with N -independent coefficients. Using
the Bogoliubov-like transformation described in Appendix 8, it is thus a simple
matter to find the largest eigenvalue of W+, which reads

ψ+(s) =

⎧
⎪⎪⎨

⎪⎪⎩

2ρ (2s − 1)N + 2s(1 − s)

−
√

4s
[

1−3ρ(1−ρ)
(1−ρ)2 − s

]
+ 2s ρ(1−2ρ)

(1−ρ)2 + O(1/N ) s if s ≥ sc

−hN + O(1/N ) if s ≤ sc

(162)
where h = (2−3ρ)ρ

(1−ρ)2 . The critical value sc that emerges in (162) is given by

sc = log2
λρ

2
+ 1

N

1

2ρ ln 2

(
−2 + log2 λρ +√λρ − log2 λρ

)
+ O(1/N 2)

(163)

When s > 0, the expansion of the W+ is valid only when s � √
N . When N is

(large and) fixed, the asymptotics of ψ+(s) is

ψ+(s) ∼
√

hN

(
hN 2 + 2λρN − λ

N

)s

as s → ∞ (164)

In Fig. (10) we have plotted ψ+(s) as a function of s. The most remarkable fea-
ture is the presence of dynamical transition at the critical parameter s = sc. The
nontrivial convex branch ceases to correspond to the largest eigenvalue of W+ at
s < sc, and it is simply replaced by a plateau. This picture, which is customary
in equilibrium phase transitions, reflects the existence of an underlying first order
transition. As s is decreased from s = 0 (corresponding to typical histories) one is
selecting histories with less and less dynamical disorder. This indicates a phase-
separation like mechanism occurring in the space of histories. We now attack the
generic case for which the values of h and λ are unrestricted.

7.3. Generating Function of the Number of Events for any λ

The task remains that of finding the largest eigenvalue ψK (s) of WK as given
in (155). When directly expanded in N , the choice Mα = Lα leads to the follow-
ing expression for the evolution operator WK

−WK (z) = H (2) N +
(

H (1)
a a + H (1)

a† a†
)√

N + Ĥ (0) + O(
√

N ) (165)

where H (2), H (1)
a , H (1)

a† are c-numbers and Ĥ (0) is quadratic in a and a†. While

this seems a perfectly legitimate large N expansion, the presence of nonzero H (1)
a

or H (1)
a† terms in (165) signals that the ground state of −WK does not correspond
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Fig. 10. Topological pressure limN→∞ 1
N ψ+(s) on the special line (at ρ = 0.57). The dashed line is

the continuation of the strictly convex branch for s < sc .

to the zero boson state, but rather to an O(N ) boson state (on the special param-
eter subspace � = λ these coefficients of the linear terms in a and a† somehow
miraculously vanish). Indeed, in order to compute that spectrum we need to trans-
late the creation and annihilation operators2 by a constant of magnitude

√
N , but

this mixes the whole expansion (165) of WK (z) in powers of N . In particular,
unless H (1)

a = H (1)
a† = 0, the truncated expansion (165) is not sufficient to find the

eigenvalues of WK (z), even to lowest order in N . Given that we wish to describe
−WK ’s low lying excitations, with a†a ∼ O(1), we must now find a way to ex-
pand around the ground-state. By contrast to Ruijgrok and Tjon. (45) we must now
perform two successive rotations parametrized by α and m (around the y and the
z axes) of the initial Holstein-Primakoff representation (156-158). The evolution
operator WK (z) then reads

−WK (z) = n̂ + (N − n̂)
λn̂

N
− 1

2
z

[

α (Mx + i M y)
λn̂

N
+ α−1(Mx − i M y)

]

(166)

with M y = L y ,
(

Mx

Mz

)

=
(

p −m

m p

)(
Lx

Lz

)

, p =
√

1 − m2 and

{
−1 ≤ m ≤ 1

α ≥ 0

(167)

2 For instance, through similarity transformations such as eCaa†e−Ca = a† + C .
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The parameters of the two rotations, α and m, will now be chosen so that H (1)
a =

H (1)
a† = 0 in the truncated expansion (165) of (166). When these equations in α and

m have more than one solution, we have to choose the solution which gives the
highest value of ψK . Expanding WK (z) in powers of N and imposing H (1)

a = H (1)
a†

implies that α =
√

2 1−ρ

1+m and yields an expression of the form (165) with

H (2) = 1

4(1 − ρ)

(

4pz

√
1

2
(1 + m)(1 − ρ) − (3 − 2ρ − m)(1 + m)

)

(168)

H (1)
a = H (1)

a† = 1

2(1 − ρ)

(

z(3m − 1)

√
1

2
(1 + m)(1 − ρ) + p(1 − ρ − m)

)

(169)

From (169) we see that solving H (1)
a = H (1)

a† = 0 in m leads to either m = −1 or
m is one of the roots of third degree polynomial. If m = −1 is not the correct
solution, this root must be inserted back into the expressions of H (2) and Ĥ (0) to
get ψK (s). With a view to avoiding further technicalities, it is more convenient
to use algebraic elimination methods so as to find an equation on H (2) itself, and
on the coefficients of Ĥ (0). Skipping details, one finds that when m �= −1, H (2) is
one of the roots of the following polynomial

P(X ) = c3 X3 + c2 X2 + c1 X + c0 (170)

c3 = 16(1 − ρ)2

c2 = −27 z4 (−1 + ρ)3 + 12 z2 (−1 + ρ)2 (−4 + 3 ρ)

− 8
(−6 + 12 ρ − 7 ρ2 + ρ3

)

c1 = −12 z4 (−1 + ρ)2 (−4 + 3 ρ) − z2
(
96 − 228 ρ + 184 ρ2 − 53 ρ3+ ρ4

)

+ (−2 + ρ)2 (12 − 12 ρ + ρ2
)

c0 = (1 − z2)
[
4z2(1 − ρ) − (2 − ρ)2

]2
.

We first consider the case s ≥ 0. In that range of s, we see that by definition we
must have ψK (s) ≤ 0. However, the solution m = −1 of H (1)

a = H (1)
a† = 0 yields

ψK (s) = 0, which is the highest possible value of ψK (s). We thus have ψK (s) = 0
in the whole s ≥ 0 range. We now assume s < 0. And again by definition we must
have ψK (s) ≥ 0. The solution m = −1 still yields ψK (s) = 0. We thus have to
check whether P(X ) has any negative solution. The discriminant of P(X ) has the
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simple form

	 = − 1

228 33 (1 − ρ)5
z2 (2 + z2 (−1 + ρ) − ρ)

2

×{3[24z2(1 − ρ) + ρ2 + 12ρ − 12
]2 + (6 − ρ)3 (−2 + 3 ρ)}3 (171)

As 	< 0 in the range s < 0, P(X ) has three real valued roots. Moreover, from the
coefficients of (170) it is easy to see that the roots of P(X ) have a positive sum and
a negative product, which shows that P(X ) has only one negative root, namely,
H (2). From Cardano’s formula, setting q = (9c1c2c3 − 27c0c2

3 − 2c3
2)/(54c3

3) we
find3 that in the range s < 0

ψ
(2)
K (s) = − c2

3 c3
+ e2iπ/3(q + i

√−	)
1
3 + e−2iπ/3(q − i

√−	)
1
3 (172)

As a remark, we notice that the two rotations of parameters α and m could
also be understood as the result of suitable similarity transformations of the kind
eθ Mz

(· · ·)e−θ Mz
performed on WK (z) before expanding in N . In other words, find-

ing the roots of (170) enabled us to perform an appropriate resummation of (165)
to all orders in order to obtain a series whose truncation to lowest order has well
defined spectrum, which makes the large N expansion consistent.

In order to be more explicit, we now provide the limiting behavior of
ψK (s) = Nψ

(2)
K (s) + ψ

(0)
K (s) + O(N−1) in two limits of interest, namely for s →

0−,

ψ
(2)
K (s) = 2ρ(e−s − 1) + (2ρ − 3)2

[
s2

ρ
− s3 (−4 + ρ (4 + ρ))

ρ3

× s4 (432 + ρ (−1248 + ρ (1188 + ρ (−444 + 79 ρ))))

12 ρ5

]

+ O(s5)

and for s → −∞,

lim
s→−∞ esψ

(2)
K (s) = 1 (173)

The remaining O(1) piece in ψK is given by

ψ
(0)
K (s) = C +

√
D (174)

where C is a root from the polynomial

P = z2 (−2 + ρ)2 + 4 z4 (−1 + ρ) − 2 X3 (−1 + ρ)2

−X z2 (−1 + ρ) ρ + 4 X2 (−1 + ρ)
(
3 z2 (−1 + ρ) + 2 ρ

)
(175)

3 The expression of ψK takes real values but can’t be written with algebraic operations involving only
real quantities: this is the casus irreductibilis of Cardano’s formula.
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and D is a root from the polynomial

P = 256 X3 (−1 + ρ)5 + 16 X2 (−1 + ρ)3 (−27 z4 (−1 + ρ)2

+ 24 z2 (−1 + ρ) ρ − 4 ρ2) − z2 ((−2 + ρ)2

+ 4 z2 (−1 + ρ)) (108 z4 (−1 + ρ)2 + 8 ρ3

− 9 z2 (−1 + ρ) (−12 + ρ (12 + ρ)))

+ 8 X z2 (−1 + ρ)2 (−108 z4 (−1 + ρ)2

− 8 ρ3 + 9 z2 (−1 + ρ) (−12 + ρ (12 + ρ))
)

(176)

It is now time to summarize our findings, which we do in the following two plots
Figs. (11) and (12), showing respectively the full plot of ψK (s) as a function of s
and that of the density ρ(s) = (1 + m(s))/2 corresponding to the rotation param-
eter m(s) as a function of s.

On Fig. (11) we notice that ψK (s) is not analytic at some critical point
sc which corresponds to the phase-separation like mechanism depicted by the
topological pressure ψ+(s) (see Fig. 10), but now at the level of the number of
events K . This result illustrates that this simple quantity—at least for infinite-
range systems—already contains much of the information given by Q+ on the
complexity of histories.

Fig. 11. Plot of limN→∞ ψK (s) as a function of s at λ = 2 and h = 0.3. Note the presence of a jump
in the first derivative at s = sc 
 0.16.
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Fig. 12. Plot of ρ(s) = 1+m(s)
2 in the N → ∞ limit as a function of s at λ = 2 and h = 0.3.

Note the presence of a jump at s = sc 
 0.16.

This is fully confirmed by Fig. (12). In analogy to the Ising case (119),
ρ(s) = 1+m(s)

2 represents the mean density in the biased state P̃K (n, s):

ρ(s) = 1

N

∑

n

n P̃K (n, s) (177)

As usual, at s = 0 we recover the density in the steady state. At s < 0 we probe
the regime in which the mean “activity” K/t of histories is typically larger than
in the steady state. They correspond to explored configurations where the density
is larger than the steady state density ρ. On the other hand, at s > 0 histories
with smaller K/t are favored. Increasing s leads to a sudden jump in the typical
density, which corresponds to a dramatic change in the kind of configurations
explored by histories with reduced activity K/t .

7.4. Topological Pressure: h = 0

We begin by attacking the h = 0 case for which the phase diagram possesses
two stationary states, the active and the absorbing one. The topological pressure
ψ+(s) is the largest eigenvalue of the operator W+(s) written out in (161). By
techniques similar to those mentioned above, we arrive at

ψ+(s) = Nψ
(N )
+ (s) + ψ

(0)
+ (s) (178)
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ψ
(N )
+ (s) = 1 + m

4

(

− r

1 − ρ
+
√

2qs

(1 + m)(1 − ρ)

)

(179)

ψ
(0)
+ (s) = (1 − s)

1 + m

4p

√
2qs(1 + m)

1 − ρ
(180)

−

√
√
√
√− p

4(1 − ρ)

√
2qs(1 + m)

1 − ρ
+ qs

4

1 + m

1 − ρ

(
	0 + s	1 + s2	2

)

(181)

where we used the notations

p =
√

1 − m2 (182)

r = 3 − m − 2ρ (183)

q = r2

2(1 − m)(1 − ρ)
(184)

	0 = 3

2
+ 1

1 − m
(185)

	1 = 2s

r2

(
p2 − 2r (1 + m − ρ)

)
(186)

	2 = − (1 + m)(1 + m − 2ρ)2

2(1 − m)r2
(187)

The rotation parameter m is the solution of

2pr (1 − m − ρ) =
√

2(1 − ρ)(1 + m)qs (s(1 + m)(1 + m − 2ρ) + (1 − 3m)r )
(188)

such that ψ (N )(s) has the largest value. The first cumulants can be determined
without toil,

1

N t
〈Q+〉 = 2ρ ln 2 − 1

4N

[
ρ

1 − ρ
− 8

1 − ρ

ρ
ln 2

]

+ O(1/N 2) (189)

1

N t
〈Q2

+〉c = ρ(ln 2)2 + (2 − 3ρ)2

ρ
(ln 2)2 + O(1/N ) (190)

Figure (13) shows the topological pressure ψ(s) and the corresponding den-
sity ρ(s) is represented on Fig. (14).
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Fig. 13. Plot of the topological pressure limN→∞ 1
N ψ+(s) as a function of s at λ = 5 and h = 0.

Note the presence of a jump in the first derivative at sc = 0.

7.5. Topological Pressure (ii): h > 0

Finally we turn to h > 0 for which the explicit formulas read

ψ(s) = Nψ (N )(s) + ψ (0)(s) (191)

Fig. 14. Plot of ρ(s) = 1+m(s)
2 as a function of s at λ = 5 and h = 0 in the large system limit N → ∞.

Note the presence of a jump at sc = 0.
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ψ (N )(s) = 1

4
(−r + 2p

√
r qs) (192)

ψ (0)(s) = (1 − s)u

2p

√
qs

r
−
√

qs
(
	0 + s	1 + s2	2

)
(193)

where we used the notations

p =
√

1 − m2 (194)

r = 2
(
2h + λ(1 + m)

)
(195)

r = 1

2
(1 − m)r + 2(1 + m) (196)

q = r

r p2
(197)

u = 4h + λ(1 + m)2 (198)

	0 = λ2 p2

4r
+ h

p2
+ λ

2

p2 + m

1 − m
(199)

	1 = 4 h (1 + m)2 λ
(−4 + (1 − m)2 λ

)

+ 4 h2
(−8 + (1 − m)2 (1 + m) λ

)

+ (1 + m)3 λ (−4 − 2 (1 + m) λ + (1 − m)2 λ2) (200)

	2 = −
(
r − 4(1 + m)

)2
u2

4r p2r2
(201)

and m is the solution of

pr (h + λm − 1)
√

r = su
(
r − 4(1 + m)

)+ r
(
4hm − λ(1 + m)(1 − 3m)

)

(202)
such that ψ (N )(s) has the highest value.

The values of the first two cumulants read

1

N t
〈Q+〉 = 2ρ ln 2 + 1

4N

[

λ − 1

1 − ρ
− 8λρ(1 − ρ)2

(
1 − λ(1 − ρ)

)2 ln 2

]

+ O(1/N 2)

(203)

1

N t
〈Q2

+〉c = ρ(ln 2)2 + ρ

(
1 − 2ρ + λ(1 − ρ)2

1 − λ(1 − ρ)2

)2

(ln 2)2 + O(1/N )

(204)
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The contact process also raises interest (47) in related computationally motivated
problems where similar absorbing-state phase transitions have been identified. We
believe that not only the KS entropy, but also the pieces of information contained
in P̃+ or P̃K , could shed a new light, with quantitative tools, on dynamical com-
plexity issues.

8. OUTLOOK

Before concluding, we would like to discuss (52) on a simple example, namely
Brownian motion, the difference between the Markov approach we were dealing
with in this paper, and another possible approach which also generated a lot of
literature in the field of dynamical and chaotic properties of systems.

Let us first adopt the Lorentz gas picture (19) in which a particle is scattered by
randomly placed obstacles. Over large distances, the particle is seen to perform a
diffusive motion. Furthermore, two infinitesimally close-by particles will quickly
follow exponentially diverging routes. This is a chaotic system. A Lorentz gas
is well approximated by a Markov process. The possibility of choosing a variety
of infinitesimally close initial conditions, leading to very different trajectories, is
replaced with the drawing of random numbers whose net effect is to account for
the chaotic nature of the Lorentz gas. Within this approach, such local characteri-
zation of chaos like individual Lyapunov exponents cannot be accessed.

An opposite approach to Brownian motion is the modeling in terms of a
Langevin equation, say for the particle velocity, which evolves under the effect of
an external position independent—yet random—force. Within this picture,(53−55)

the random force is viewed as an external field. Two close-by initial conditions
will be subjected to the same realization of the random force. Within this pic-
ture, a simple Brownian motion is not a chaotic system. What can possibly make
it chaotic lies in space-dependent forces due to interactions or to an external
field.

The difference in the two pictures lies in the observation scale compared
with the intrinsic correlation length of the surrounding medium. In the first ap-
proach, the noise source is very short range correlated in space, but with long
range time correlations. In the second approach, this is the exact opposite sit-
uation. When computing a Lyapunov exponent, before deciding which picture
applies, one must compare the typical physical scales of the medium giving birth
to a chaotic behavior. For times short with respect to the correlation time scale
and distances large with respect to the correlation length, the first approach—the
Markov one—applies.

If this is the case, we have shown that the thermodynamic formalism can suc-
cessfully be applied to Markov dynamics with continuous time, provided that the
proper interpretation is used for the definition of the dynamical partition function.
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In particular, a finite KS-entropy can be defined. This opens the door to explicit
expressions for realistic systems.

Besides, we have embedded this formalism into a more general picture. In-
deed, the dynamical partition function can be expressed as the generating function
of an observable. By noticing that other observables could be used as well, we are
able to relate the quantities used in the thermodynamic formalism with those in-
volved in the much studied Lebowitz-Spohn (8) fluctuation theorem. We also show
on specific examples that the simplest observable one could think of, namely the
number K of transitions occurring in a given time, is not as trivial as one could
think and contains already some relevant information on the system. For exam-
ple, for the infinite range Ising model, the cumulant generating function of K
already indicates that a dynamical phase transition occurs in the low temperature
phase. This is confirmed by the calculation of the more sophisticated topological
pressure.

We found also that one can gain some insight into these dynamical phase
transitions by looking at a new object: the aforementioned cumulant generating
function was obtained as the largest eigenvalue of a certain operator. If one also
computes the associated eigenvector, one can build a quantity that weights the tra-
jectories depending on the value the observable takes along them. In the example
of the infinite range Ising model, this allows to show that the dynamical phase
transition which occurs below the critical temperature gives rise to a splitting of
the trajectories into two families, respectively typical of a disordered and of an
ordered phase.

The general unifying picture behind all this is that of a Gibbs ensemble con-
struction carried out over the space of dynamical trajectories, rather than over
microscopic states.

We have illustrated our approach on several physical examples (an interact-
ing lattice gas, a system exhibiting an equilibrium second order phase transition
and one with a nonequilibrium phase transition). Our setup has allowed us to pro-
vide an intrinsically dynamical picture to phenomena that are always interpreted
in static terms. This constitutes a powerful tool that longs to be applied to systems
for which no static phenomena has ever been identified, like those possessing
glassy dynamics. It is tempting to speculate that ageing and other dynamical fea-
tures of glasses will be identified with a sharp signature on some appropriately
chosen dynamical potentials like those considered throughout this work. Some of
these ideas can already be found in. (56,57) But before addressing these challeng-
ing issues, many questions remain to be answered for more conventional systems.
As far as lattice gases are concerned, the general dependence of the KS entropy
on the diffusion constant and the compressibility is one such question. Driving
a lattice gas into a nonequilibrium steady-state (with a bulk or boundary field)
leads to distinct dynamical features. How do these reflect on the dynamical parti-
tion function? In the vicinity of a second-order transition, the dynamics possesses
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universal features, so that the dynamical potentials ψA(s) introduced in this paper
will obey universal scaling laws. Which are these? May be some universal scaling
functions as the one found in (12) could emerge. The influence of quenched dis-
order, generically known to slow the dynamics down is one more open research
route.

A NON-HERMITIAN QUADRATIC OPERATORS AND
BOGOLIUBOV-LIKE TRANSFORMATION

Holstein-Primakoff expansions of our evolution operators WA for infinite-
range models often lead to a “Hamiltonian” Ĥ that is quadratic in creation and
annihilation operators a and a†

Ĥ = Xa2 + 2Za†a + Y (a†)2 (205)

We are interested in the lowest energy level of Ĥ . In order that the latter exists we
shall have to assume that 	2 = Z2 − XY > 0 and Y ≤ 0.

Performing the similarity transformation P−1
1 (· · ·)P1 with

P1 = e
Z−	
2Y a2

(206)

does not alter a while it shifts a† according to

P−1
1 a†P1 = a† − Z − 	

Y
a (207)

Its purpose is to remove the a2 term in Ĥ :

Ĥ1 = P−1
1 Ĥ P1 = Y (a†)2 + 2	a†a + 	 − Z (208)

We now introduce the operator

P2 = e− Y
4	

(a†)2
(209)

It commutes with a† and shifts a according to

P−1
2 a P2 = a − Y

2	
a† (210)

Acting on Ĥ1, it yields

Ĥ2 = P−1
2 Ĥ P2 = 2	a†a + 	 − Z (211)

As the similarity transformations (207) and (210) do not modify the spectrum
of Ĥ (s), we see that the lowest energy level of Ĥ (s) is 	 − Z . When H is Her-
mitian (X = Y ), the Bogoliubov transformation leads to exactly the same result.
However, when H is not Hermitian, the Bogoliubov transformation cannot be
implemented: contrary to (207) and (210), it does not transform a and a† inde-
pendently, which was required here to obtain (211).
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