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Abstract The thermodynamic geometry has been proved

to be quite useful in understanding the microscopic struc-

ture of black holes. We investigate the phase structure, ther-

modynamic geometry and critical behavior of a Reissner–

Nordstrom-AdS black hole and a Reissner–Nordstrom black

hole in a cavity, which can reach equilibrium in a canonical

ensemble. Although the phase structure and critical behav-

ior of both cases show striking resemblance, we find that

there exist significant differences between the thermody-

namic geometry of these two cases. Our results imply that

there may be a connection between the black hole microstates

and its boundary condition.
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1 Introduction

The study of black hole thermodynamics has been playing

an increasingly prominent role in our understanding of the

interdisciplinary area of general relativity, quantum mechan-

ics, information theory and statistical physics. In the pioneer-

ing work [1–3], black holes were found to possess thermo-

dynamic properties such as entropy and temperature. Later,
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the Hawking-Page phase transition (i.e., a phase transition

between the thermal anti-de Sitter (AdS) space and a black

hole) was discovered in Schwarzschild-AdS black holes [4].

Unlike Schwarzschild black holes, Schwarzschild-AdS black

holes can be thermally stable since the AdS boundary acts as

a reflecting wall for the Hawking radiation. With the advent

of the AdS/CFT correspondence [5–7], there has been much

interest in studying the thermodynamics and phase structure

of various AdS black holes [8–15]. Specifically, it was found

that Reissner–Nordstrom-AdS (RN-AdS) black holes exhibit

a van der Waals-like phase transition (i.e., a phase transition

consisting of a first-order phase transition terminating at a

second-order critical point) in a canonical ensemble [9,10]

and a Hawking-Page-like phase transition in a grand canon-

ical ensemble [16].

Alternatively, one can make asymptotically flat black

holes thermally stable by placing them inside a cavity, on

the wall of which the metric is fixed. York first showed that

Schwarzschild black holes in cavity can be thermally sta-

ble and have quite similar phase structure and transition to

these of Schwarzschild-AdS black holes [17]. For Reissner–

Nordstrom (RN) black holes in a cavity, the thermodynamics

and phase structure have been studied in a grand canoni-

cal ensemble [18] and a canonical ensemble [19,20]. It also

showed that the phase structure of RN black holes in a cav-

ity and RN-AdS black holes has extensive similarities. The

phase structure of various black brane systems in a cavity

was investigated in [21–26], and most of the systems were

found to undergo Hawking-Page-like or van der Waals-like

phase transitions. Boson stars and hairy black holes in a cav-

ity were considered in [27–30], which showed that the phase

structure of the gravity system in a cavity is strikingly simi-

lar to that of holographic superconductors in the AdS gravity.

Moreover, the thermodynamic and critical behavior of de Sit-

ter black holes in a cavity were investigated in the extended

phase space [31]. Recently, we studied Born–Infeld black

holes enclosed in a cavity in a canonical ensemble [32] and a

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-7776-2&domain=pdf
mailto:pengw@scu.edu.cn
mailto:iverwu@scu.edu.cn
mailto:hyanga@scu.edu.cn


216 Page 2 of 14 Eur. Phys. J. C (2020) 80 :216

grand canonical ensemble [33], respectively, and found that

their phase structure has dissimilarities from that of Born–

Infeld-AdS black holes.

However, although it is believed that a black hole does

possess thermodynamic quantities and extremely interesting

phase structure, the statistical description of the black hole

microstates has not yet been fully understood. Even though

a complete quantum gravity theory is still absent, there have

been some attempts to understand microscopic structure of a

black hole [34–36]. Specifically, the thermodynamic geom-

etry method has led to many insights into microstructure of

a black hole. Following the pioneering work by Weinhold

[37], Ruppeiner [38] introduced a Riemannian thermody-

namic entropy metric to describe the thermodynamic fluc-

tuation theory and found a systematic way to calculate the

Ricci curvature scalar R of the Ruppeiner metric. Later, R

has been computed for various ordinary thermodynamic sys-

tems, such as ideal quantum gases [39], Ising models [40] and

anyon gas [41]. It showed that there is a relation between the

type of the interparticle interaction and the sign of R: R > 0

implies a repulsive interaction (e.g. ideal Bose gas) while

R < 0 means an attractive interaction (e.g. ideal Fermi gas),

and R = 0 corresponds to no interaction (e.g. ideal gas).1 It

has also been indicated that, at a critical point, |R| diverges as

the correlation volume for ordinary thermodynamic systems

[38].

The Ruppeiner geometry was subsequently exploited to

probe the microstructure of a black hole. Since the work of

[42], thermodynamic geometry has been studied for vari-

ous black holes [43–56]. The result of [57] showed that a RN

black hole has a vanished R, suggesting it is a non-interacting

system. On the other hand, a Kerr–Newmann-AdS black can

reduce to a RN black hole by making certain thermodynamic

variables approach zero. In these limits, a RN black hole was

found to acquire a nontrivial R [58], implying that the phase

space adopted in [57] may be incomplete. Recently, by choos-

ing different thermodynamic coordinates, the authors of [59]

showed that a RN black hole is an interaction system dom-

inated by repulsive interaction. For a RN-AdS black hole,

R has been calculated, and it was observed that R can be

both positive and negative, and resembles the critical behav-

ior of ordinary thermodynamic systems near a critical point

[45,51,57,60,61]. The thermodynamic geometry has been

investigated recently in the extended state space [62–73],

in which the cosmological constant is treated as a thermody-

namic variable and acts like a pressure term [74–76]. Inspired

by the Ruppeiner geometry, a RN-AdS black hole was pro-

posed to be built of some unknown micromolecules, inter-

1 We use the sign convention of Weinberg, where R for the two-sphere

is negative. Note that there is a different sign convention, where R for

the two-sphere is positive, used in the literature (e.g., [39]). So the sign

of R in [39] is opposite to that of our R.

actions among which can be tested by R [64]. Recently, a

new scalar curvature R was introduced for a RN-AdS black

hole, and it showed that there is a large difference between

the microstructure of a black hole and the Van der Waals fluid

[71].

Although there have been a lot of work in progress on

thermodynamic geometry for various black holes of differ-

ent theories of gravity in spacetimes with differing asymp-

totics, little is known about thermodynamic geometry for a

black hole enclosed in a cavity. Unlike RN black holes, both

RN-AdS black holes and RN black holes in a cavity can be

thermally stable and hence provide an appropriate scenario

to explore whether or not the thermodynamic geometry is

sensitive to the boundary condition of black holes. In addi-

tion, it was recently proposed that the holographic dual of

T T̄ deformed CFT2 is a finite region of AdS3 with the wall

at finite radial distance [77,78], which further motivates us to

investigate the properties of a black hole in a cavity. To this

end, we undertake a study of the thermodynamic geometry

for a RN black hole in a cavity. We report that, although the

phase structure of a RN-AdS black hole and a RN black hole

in a cavity is analogous to the van der Waals fluid, there are

significant differences between the thermodynamic geome-

try of a RN-AdS black hole and that of a RN black hole in a

cavity.

The rest of this paper is organized as follows. In Sect. 2,

we first discuss the phase structure and thermodynamic

geometry of a RN-AdS black hole in a canonical ensem-

ble. Although the thermodynamic geometry in the thermo-

dynamic coordinates of the charge Q and potential � was

investigated in [45,51], we carry out the analysis in a more

through way with a broader survey of the parameter space

and find the R > 0 region in the phase diagrams. The phase

structure and thermodynamic geometry of a RN black hole

in a cavity are then studied in details, starting with a discus-

sion of its phase structure. In Sect. 3, the critical behavior of

the RN-AdS black hole and the RN black hole in a cavity is

obtained. We summarize our results with a brief discussion

in Sect. 4. For simplicity, we set G = h̄ = c = kB = 1 in

this paper.

2 Phase structure and thermodynamic geometry

In this section, we study phase structure and thermodynamic

geometry of RN-AdS black holes and RN black holes in a

cavity in a canonical ensemble. That said, the temperature

and charge of the system are fixed. Thermodynamic geom-

etry (Ruppeiner geometry) may provide a way to probe the

microscopic structure of black holes. Adopting the Ruppeiner

approach [38], one can define the Ruppeiner metric gR
μν for

a thermodynamic system of independent variables xμ as
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gR
μν = −

∂2S (x)

∂xμ∂xν
, (1)

where S is the entropy of the system. The Ruppeiner metric

can be used to measure the distance between two neighboring

fluctuation states [38]. More interestingly, the Ricci scalar of

the Ruppeiner metric or the Ruppeiner invariant R can shed

light on some information about the microscopic behavior of

the system, such as the strength and type of the dominated

interaction between particles in the system.

2.1 RN-AdS black holes

The 4-dimensional static charged RN-AdS black hole solu-

tion is described by

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2

(

dθ2 + sin2 θdφ2
)

,

A = At (r) dt = −
Q

r
dt , (2)

where the metric function f (r) is

f (r) = 1 −
2M

r
+

Q2

r2
+

r2

l2
, (3)

and l is the AdS radius. The parameters M and Q can be

interpreted as the black hole mass and charge, respectively.

The Hawking temperature T is given by

T =
1

4πr+

(

1 −
Q2

r2
+

+
3r2

+
l2

)

, (4)

where r+ is the radius of the outer event horizon. Since

f (r+) = 0, the mass M can be expressed in terms of r+:

M =
r+
2

(

1 +
Q2

r2
+

+
r2
+

l2

)

. (5)

It can show that the RN-AdS black satisfies the first law of

thermodynamics

d M = T d S + �d Q, (6)

where S = πr2
+ and � = Q/r+ is the entropy and potential

of the black hole, respectively. To study the phase structure

of the black hole in a canonical ensemble, we need to con-

sider the free energy. The free energy F can be obtained by

computing the Euclidean action in the semiclassical approx-

imation and is given by

F = M − T S. (7)

It was observed that the charge Q and potential � of a

RN-AdS black hole play similar roles as the pressure P and

volume V of the van der Waals-Maxwell fluid in terms of

determining the phase structure [45,51]. The correspondence

(�, Q) → (V, P) can establish the phase structure of the

RN-AdS black hole. In [45], it was also suggested that the

appropriate internal energy U of the RN-AdS black hole is

given by

U = M − Q�, (8)

where the contribution of the static electricity to the black

hole mass M is excluded. By analogy with the van der Waals

fluid, we consider the parameter space coordinates xμ =
(U,�). Therefore, the Ruppeiner metric becomes

gR
μνdxμdxν = dUd

(

1

T

)

−
Q

T 2
d�dT +

1

T
d Qd�. (9)

Using Eqs. (4) and (5), we find that the expression of the

Ruppeiner invariant R in terms of the horizon radius r+ and

the charge Q is

R = −
(

Q2 − r2
+
)2 + 3r2

+
(

10Q4 − 9Q2r2
+ + 3r4

+
)

/ l2 + 18r6
+

(

3Q2 − r2
+
)

/ l4

π
(

r2
+ − Q2 + 3r4

+/ l2
) (

3Q2 − r2
+ + 3r4

+/ l2
)2

. (10)

We plot R against r+ and Q in the left panel of Fig. 1, where

R > 0 and R < 0 in the yellow and green regions, respec-

tively. The RN-AdS black hole solution in the gray region

has negative temperature and hence is discarded. On the red

lines, one has R = −∞. The red line separating the “No

BH” region and the “R < 0” region is determined by T = 0,

which shows that R = −∞ for extremal RN-AdS black

holes. The red line in the green region is given by C−1
Q = 0,

where CQ is the heat capacity at constant Q:

CQ = T
∂S

∂T
|Q =

2πr+T

∂T/∂r+|Q

=
8π2r5

+T

3Q2 − r2
+ + 3r4

+/ l2
.

(11)

The divergence of CQ usually means that the black hole

would undergo a phase transition. Moreover, using the mass

representation of Ruppeiner metric, the authors of [80–82]

showed that there is a one to one correspondence between
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Fig. 1 The Ruppeiner invariant

R as a function of the outer

horizon radius r+ and the charge

Q. Left Panel For a RN-AdS

black hole, where l is the AdS

radius. Right Panel For a RN

black hole in a cavity, where is

rB the radius of the cavity. In the

green (yellow) regions, R < 0

(R > 0). The red lines

correspond to R = −∞. The

black dots denote the critical

points, which lie on the

R = −∞ lines. Black hole

solutions do not exist in the gray

regions

singularities of the Ruppeiner invariant and phase transitions

of CQ . For simplicity, we hereafter set l = 1.

To study the Ruppeiner invariant R as a function of the

temperature T and the charge Q, we need to use Eq. (4) to

express the horizon radius r+ in terms of the temperature T :

r+ = r+(T ). If r+(T ) is multivalued, there is more than one

black hole solution for fixed values of Q and T , correspond-

ing to multiple phases in the canonical ensemble. The critical

point is an inflection point and obtained by

∂T

∂r+
= 0 and

∂2T

∂r2
+

= 0

(

or equivalently
∂ Q

∂�
= 0 and

∂2 Q

∂�2
= 0

)

, (12)

which gives the corresponding quantities evaluated at the

critical point

(r+c, Tc, Qc,�c) ≈ (0.408, 0.260, 0.167, 0.408) . (13)

When Q < Qc ≈ 0.167, three black hole solutions coex-

ist for some range of T . We plot F and R against T for

Q = 0.11 in the left column of Fig. 2, which shows that

there are three black hole solutions, dubbed as Large BH,

Small BH and Intermediate BH, when T1 < T < T2. Note

that since ∂2 F/∂2T = −CQ , the thermally stable/unstable

black hole solution has a concave downward/upward T -F

curve. So the upper-left panel of Fig. 2 shows that Large BH

and Small BH are thermally stable while Intermediate BH is

thermally unstable. It also displays that there is a first-order

phase transition between Small BH and Large BH occurring

at T = Tp with T1 < Tp < T2. So the globally stable phase

is Large BH when T > Tp and Small BH when T < Tp. As

shown in the lower-left panel of Fig. 2, R of Small BH and

Intermediate BH is always negative, which means attractive

interactions between the possible BH molecules. For Small

BH, R = −∞ at T = 0 and T = T2, where
∣

∣CQ

∣

∣ = ∞.

However for Large BH, R can be negative or positive depend-

ing on the value of T . The inset shows that R > 0 at a high

enough temperature, and hence the interactions between the

BH molecules become repulsive. It shows that R of Large

BH is negative infinity at T = T1, where
∣

∣CQ

∣

∣ = ∞. Con-

sidering the globally stable phase, one has R = −∞ only

for the extremal black hole since Small BH at T = T2 or

Large BH at T = T1 is not globally stable. There is a cross-

ing of R of Large BH and Small BH between T1 and T2.

Such R-crossing was proposed to indicate a first-order phase

transition due to the equality of the correlation lengths for the

phases at the phase transition [79]. It is interesting to note that

the temperature of the R-crossing is different from Tp. When

Q > Qc, there is only one black hole solution. We display F

and R against T for Q = 0.25 in the right column of Fig. 2.

The upper-right panel of Fig. 2 shows that the black hole

solution is always thermally stable. The lower-right panel of

Fig. 2 shows that R = −∞ at T = 0, and R > 0 when the

temperature is high enough.

In Fig. 3, the globally stable phase of a RN-AdS black

hole, which is the black hole solution with the minimum

free energy, is displayed in the Q-T space. There is a

LBH/SBH first-order transition line for Q < Qc, which

terminates at the critical point. The Ruppeiner invariant R

is positive in the yellow region and negative infinity at

T = 0 and the critical point. Note that R is always pos-

itive for a large enough value of T . Across the first-order

transition line, the microstructure of the black hole changes

while the type of the interaction among the microstructure

is the same when 0.097 � Q < Qc. However, the type

of the interaction changes across the transition line when

Q � 0.097.

As discussed before, there is a correspondence (�, Q) →
(V, P) for a RN-AdS and the van der Waals fluid when

the phase structure is considered. To explore the resem-

blance between thermodynamics of these two systems, we

investigate Q and R as functions of T and �. According

to Fig. 3, there is no phase coexistence when T > Tc or
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Fig. 2 The free energy F and the Ruppeiner invariant R as functions of

the temperature T for a RN-AdS black hole with a fixed charge Q. Left

Column: Q = 0.11 < Qc. There are three the black hole solutions

when T1 < T < T2. A LBH/SBH first-order phase transition occurs

at T = Tp , and R = −∞ at T = T1 and T2. The inset shows that

R > 0 for the Large BH solution at a high enough temperature. Right

Column: Q = 0.25 > Qc. There is only one black hole solution. The

inset shows that R > 0 when the temperature is high enough

T < T0 ≈ 0.318, where T0 is the temperature of the first-

order phase transition line at Q = 0. For Tc < T < T0,

Large BH and Small BH can coexist for some range of �

with some value of Q, which is determined by the first-order

phase transition line (i.e., F (LBH) = F (SBH)). We plot

Q and R versus � for T = 0.274 in the left column of

Fig. 4, where the black line is the coexisting line of Large

BH and Small BH. Since Eq. (10) is not applicable on the

coexisting line, we do not plot R for the coexisting line. The

lower-left panel of Fig. 4 shows that R of Large BH is always

negative and becomes divergent at the minimum value of �,

where C−1
Q = 0 and LBH is unstable and undercharged. For

Small BH, R is negative and becomes divergent as � → 1.

The unstable and overcharged Small BH also has R = −∞
when C−1

Q = 0. The green and blue solid lines represent

the globally stable phase, R of which is always negative and

becomes divergent as � → 1.We plot Q and R versus �

for T = 0.3 in the right column of Fig. 4. The Maxwell

equal area rule is not applicable here since there is a jump

of the free energy at (�, Q) = (0, 0) on the isothermal �-

Q line. When � is small enough, the inset shows that R of

Large BH becomes positive. For the globally stable phase,

R > 0 for a small enough � and R → −∞ as � → 1.

Note that � → 1 corresponds to M → r+ (1 − 2πr+T ) and

Q → r+ (1 − 2πr+T ) with r+ → 0.

The globally stable phase of a RN-AdS black hole is plot-

ted in the �-T space in Fig. 5. It is shown in Fig. 4 that,

unlike the isothermal V -P lines in the van der Waals fluid, the

isothermal �-Q lines in the RN-AdS black hole are multival-

ued. In fact, there are two black hole solutions with different

charges for fixed values of � and T . The left frame of Fig. 5

displays the large charge solution while the right one displays

the small charge solution. Blow T = Tc, there is no phase

coexistence, and only one globally stable phase, dubbed as

Subcritical BH, exists. For Large BH, R can be positive when

� is small. As � → 1, R of Small BH is negative infinity.

When T � 0.286, the interactions among the microstructure

of the saturated Large BH and Small BH on the coexisting

line are both attractive. However when T � 0.286, the inter-

actions of the saturated Large BH and Small BH are repulsive

and attractive, respectively.
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Fig. 3 Phase structure of a RN-AdS black hole in the Q-T diagram.

The first-order phase transition line separating Large BH and Small BH

is displayed by the blue line and terminates at the critical point, marked

by the black dot. In the yellow region, R > 0

2.2 RN black holes in a cavity

The 4-dimensional RN black hole solution is

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2

(

dθ2 + sin2 θdφ2
)

,

f (r) = 1 −
r+
r

+
Q2

b

r2

(

1 −
r

r+

)

, A = At (r) dt = −
Qb

r
dt,

(14)

where Qb is the black hole charge, and r+ is the radius of

the outer event horizon. The Hawking temperature Tb of the

RN black hole is given by

Tb =
1

4πr+

(

1 −
Q2

b

r2
+

)

. (15)

We now consider a thermodynamic system with a RN black

holes enclosed in a cavity. Suppose that the wall of the cavity

enclosing the RN black hole is at r = rB , and the wall is

maintained at a temperature of T and a charge of Q. For this

system, the free energy F and the thermal energy E were

given in [19]

F = rB

[

1 −
√

f (rB)

]

− πT r2
+,

E = rB

[

1 −
√

f (rB)

]

. (16)

It also showed in [18] that the system temperature T and

charge Q can be related to the black hole temperature Tb and

charge Qb as

Q = Qb,

T =
Tb√
f (rB)

, (17)

which means that T, measured at r = rB , is blueshifted from

Tb, measured at r = ∞. The potential � measured on the

wall is [18]

� =
At (rB) − At (r+)

√
f (rb)

. (18)

As in the RN-AdS black hole, we define the internal energy

U by excluding the contribution of the static electricity from

the thermal energy E

U = E − Q�. (19)

The physical space of r+ is bounded by

re ≤ r+ ≤ rB , (20)

where re = Q is the horizon radius of the extremal black

hole.

In the parameter space coordinates xμ = (U,�), the Rup-

peiner metric is

gR
μνdxμdxν = dUd

(

1

T

)

−
Q

T 2
d�dT +

1

T
d Qd�, (21)

and the Ruppeiner invariant R as a function of the horizon

radius r+ and the charge Q is

R = −
(

r2
+ − Q2

)

(r+ − rB)
(

Q2 − r+rB

) [

Q4(12r+ − 5rB) − 8Q2r2
+rB + r3

+rB(4rB − 3r+)
]

πr2
+

[

Q4(6r+ − 5rB) − 2Q2r+
(

r2
+ + 3r+rB − 3r2

B

)

+ r3
+rB(3r+ − 2rB)

]2
. (22)

We plot R against r+ and Q in the right panel of Fig. 1,

where R > 0 and R < 0 in the yellow and green regions,

respectively, and the solution in the gray region does not

satisfy the constraint (20). The red line, on which R = −∞,

is also determined by C−1
Q = 0, where CQ is the heat capacity

at constant Q:
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Fig. 4 The charge Q and the Ruppeiner invariant R as functions of the

potential � for a RN-AdS black hole with a temperature T > Tc, which

possesses three solutions for some range of �. The �-Q diagrams bear

resemblance to that of the Van der Waals fluid. The coexisting lines of

Large BH and Small BH are represented by the black lines, and �l/�s

denotes the potential of the saturated Small/Large BH. The blue/green

dashed lines represent metastable overcharged Small BH/undercharged

Large BH while the red dashed lines denote unstable spinodal Inter-

mediate BH. Left Column T = 0.274. The Maxwell equal area rule

applies to determine the coexisting line, and R is always negative. Right

Column T = 0.3. The Maxwell equal area rule does not apply to deter-

mine the coexisting line due to the discontinuity of the free energy at

the origin. The inset shows that R > 0 for the Large BH solution with

a small enough potential

CQ =
16π2T r

9/2
+ (rB − r+)3/2

(

r+rB − Q2
)3/2

rB

[

Q4(6r+ − 5rB) − 2Q2r+
(

r2
+ + 3r+rB − 3r2

B

)

+ r3
+rB(3r+ − 2rB)

] . (23)

Unlike the RN-AdS black hole, Eq. (22) gives R = 0 for the

extremal RN black hole with Q = r+. Figure 1 shows that

the behavior of R of RN-AdS black holes is quite different

from that of RN black holes in a cavity. For simplicity, we

hereafter set rB = 1.

It was observed that the phase structure of a RN black hole

in a cavity is strikingly similar to that of a RN-AdS black hole

in the Q-T space of a canonical ensemble [19,20]. Actually,

a van der Waals-like phase transition occurs in both cases.

Similar to the RN-AdS black hole, the RN black hole in a

cavity possesses a critical point, which is determined by

∂T

∂r+
= 0 and

∂2T

∂r2
+

= 0. (24)

Solving the above equations gives quantities evaluated at the

critical point

(r+c, Tc, Qc,�c) ≈ (0.528, 0.186, 0.236, 0.325) . (25)

The number of the solution(s) r+(T ) to T = T (r+) depends

on the value of Q. When Q < Qc ≈ 0.236, there are three

solutions coexisting for some range of T . We plot F and R

against T for Q = 0.15 in the left column of Fig. 6, which

shows that three solutions, dubbed as Large BH, Small BH

and Intermediate BH, coexist when T1 < T < T2. Note that

Large BH and Small BH are the thermally stable while Inter-

mediate BH is thermally unstable. The system undergoes a

first-order phase transition between Small BH and Large BH

occurring at T = Tp with T1 < Tp < T2. The lower-left
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Fig. 5 Phase structure of a RN-AdS black hole in the �-T diagram.

The critical point (black dot) separates the saturated Small BH and Large

BH, which are represented by the blue and red lines, respectively. Note

that there are two black hole solutions for a fixed value of �. The

left/right frame shows the large/small Q black hole solution. In the

yellow region, R > 0. The pink region is the coexistence region of

Small BH and Large BH

panel of Fig. 6 and the inset display that R of all three solu-

tions is always negative, which means attractive interactions

between the possible BH molecules. There is also a crossing

of R of Large BH and Small BH between T1 and T2. For Large

BH/Small BH, R = −∞ at T = T1/T2, where
∣

∣CQ

∣

∣ = ∞.

However, R = 0 when T = 0, which gives that R of the

globally stable phase is always finite. When Q > Qc, there

is only one solution. We depict F and R as functions of T

for Q = 0.4 in the right column of Fig. 6. The upper-right

panel of Fig. 6 shows that the solution is always thermally

stable. The lower-right panel of Fig. 6 and the inset show that

R is always finite, and R > 0 when the temperature is high

enough or low enough.

In Fig. 7, the globally stable phase of a RN black hole in

a cavity is displayed in the Q-T space. There is a LBH/SBH

first-order transition line for Q < Qc, which terminates at

the critical point. The Ruppeiner invariant R is positive in

the yellow region and negative infinity only at the critical

point. Note that R is always positive when Q is large enough.

Since R of Large BH above and Small BH below the tran-

sition line is negative, the type of the interaction among the

microstructure of the black hole stays the same when the

system undergoes the first-order transition.

We now investigate the phase structure of a RN black hole

in a cavity in the �-T space, which has not been discussed in

the literature. Similar to a RN-AdS black hole, there is phase

coexistence of Large BH and Small BH when Tc < T <

T0 ≈ 0.269. We plot Q and R versus � for T = 0.2 in the

left column of Fig. 8, where the black line is the coexisting

line of Large BH and Small BH. The upper bound on the

� of Large BH comes from r+ ≤ 1. The lower-left panel of

Fig. 8 displays that R of all three solutions is always negative

and becomes divergent when C−1
Q = 0 or � → 1. Note that

� → 1 corresponds to Q → r+ (1 − 2πr+T ) with r+ → 0.

We plot Q and R versus � for T = 0.3 in the right column

of Fig. 8. The inset shows that R of Large BH is always finite

and becomes positive when � is large enough. For Small BH,

R < 0 and R → −∞ as � → 1.

The globally stable phase of a RN-AdS black hole is plot-

ted in the �-T space in Fig. 9, the left/right frame of which

displays the large/small charge solution. There is Subcritical

BH and no phase coexistence blow T = Tc. For Large BH,

R can be positive when � is large enough. As � → 1, R of

Small BH approaches negative infinity. Unlike the RN-AdS

black hole case, the interactions among the microstructure of

the saturated Large BH and Small BH on the coexisting line

are always attractive.

3 Critical behavior

In this section, we investigate the thermodynamic behavior

near the critical point. The critical behavior in a RN-AdS

black hole has been discussed in [45,51], which showed that

the critical exponents for a RN-AdS black hole and the Van

der Waals fluid are identical. However, the critical exponents

for a RN black hole in cavity have not been calculated yet.

First, we define

t =
T − Tc

Tc

and φ =
� − �c

�c

. (26)

In the neighborhood of the critical point, we can expand Q

in terms of t and φ

Q =
∑

i, j=0

qi j t
iφ j , (27)

where q00 = Qc, and Eq. (12) gives q01 = q02 = 0. Specif-

ically for a RN-AdS black hole and a RN black hole in a

cavity, we find

Q =
1

6
−

φ3

3
+ t

(

−
2

3
+ 2φ − 8φ2 +

28

3
φ3

)

+ · · · ,

Q = 0.236 − 0.182φ3 + t
(

− 0.618 + 1.118φ

−2.834φ2 + 2.045φ3
)

+ · · · , (28)

respectively. Near the critical point, the Maxwell equal area

rule is applicable and gives

∫ �l

�s

�d Q = 0 with Q (�l) = Q (�s) , (29)

where �s and �l denote the potential of the saturated Small

BH and Large BH, respectively. Substituting Eq. (27) into
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Fig. 6 The free energy F and the Ruppeiner invariant R as functions

of the temperature T for a RN black hole in a cavity with a fixed charge

Q. Left Column Q = 0.15 < Qc. Three black hole solutions coexist

for T1 < T < T2. A LBH/SBH first-order phase transition occurs at

T = Tp , and R = −∞ at T = T1 and T2. The T -R diagram and the

inset show that R is always negative. Right Column Q = 0.4 > Qc.

There is only one black hole solution. As shown in the T -R diagram and

the inset, R > 0 when the temperature is high enough or low enough

Eq. (29), we have

φl = −φs, φl =
√

−
q11

q03
t + O (t) , (30)

where φl/s ≡
(

�l/s − �c

)

/�c.

The critical exponents α, β, γ and δ are defined as follows:

• Exponent α describes the critical behavior of the specific

heat at constant �: C� ∝ |t |α . We find that, at the critical

point,

C� =
{

−4.189 for a RN-AdS BH,

−3.167 for a RN BH in a cavity,
(31)

which gives α = 0 in both cases.

• Exponent β describes the critical behavior of the order

parameter φl − φs : φl − φs ∝ |t |β . Equation (30) gives

φl − φs ∼
{

4.899
√

t for a RN-AdS BH,

4.952
√

t for a RN BH in a cavity,

which leads to β = 1/2 in both cases.

• Exponent γ describes the critical behavior of the isother-

mal compressibility:

κT = −
1

�

∂�

∂ Q
|T ∝ |t |−γ . (32)

Approaching the critical point along the coexistence

curve, we use Eq. (27) to obtain

κT ∼
1

2q11t
∼

{

0.25t−1 for a RN-AdS BH,

0.447t−1 for a RN BH in a cavity,

(33)

which gives γ = 1 in both cases.

• Exponent δ describes the critical behavior of |Q − Qc| ∝
|φ|δ when T = Tc. On the critical isotherm T = Tc, Eq.

(27) reduces to

|Q − Qc| ∼ |q03| φ3

∼
{

φ3/3 for a RN-AdS BH,

0.182φ3 for a RN BH in a cavity,
(34)
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Fig. 7 Phase structure of a RN black hole in a cavity in the Q-T dia-

gram. The first-order phase transition line separating Large BH and

Small BH is displayed by the blue line and terminates at the critical

points (black dot). In the yellow region, R > 0

which gives δ = 3 in both cases.

Our results show that the critical exponents of a RN black

hole in cavity are also identical to these of the Van der Waals

fluid predicted by the mean field theory. The critical expo-

nents are believed to be universal since they are insensitive

to the details of the physical system.

Finally, we study the critical behavior of the Ruppeiner

invariant R by expanding R along the saturated Small BH

and Large BH curves near the critical point. For the saturated

Small BH and Large BH, we have

r+l/s − r+c ≃
�l/s − �c

∂�/∂r |Q=Qc

≃ ±
�c

∂�/∂r |Q=Qc

√

−
q11

q03
t,

(35)

where +/− is for the saturated Large BH/Small BH, and

r+l/s is the horizon radius of the saturated Large BH/Small

BH. In addition, the charge Q for the coexisting line is given

by

Q ≃ Qc + q03φ
3
l/s + q10t + q11tφl/s ≃ Qc + q10t. (36)

Plugging Eqs. (35) and (36) into Eqs. (10) and (22), we can

expand R at t = 0 and obtain

R ∼
{

−0.030t−2 for a RN-AdS BH,

−0.016t−2 for a RN BH in a cavity,
(37)

where the leading order terms of the expansions are the same

for the saturated Small BH and Large BH. From Eqs. (31)

and (37), we find

lim
t→0

RC�t2 =
{

1/8 for a RN-AdS BH,

0.051 for a RN BH in a cavity,
(38)

which shows that the critical value of RC�t2 may depend

on the boundary conditions of the black hole. In [71], R of

an RN-AdS black hole was calculated in the thermodynamic

coordinates xμ = (T, V ), and it was found limt→0 RCV t2 =
−1/8, which agrees with the numerical result of the Van der

Waals fluid. However, there is a sign difference between our

AdS result in Eq. (38) and the result in [71], which comes

from C� < 0 at the critical point for a RN-AdS black hole.

4 Discussion and conclusion

In this paper, we studied the phase structure, thermody-

namic geometry and critical behavior of RN black holes in a

canonical ensemble by considering two boundary conditions,

namely the asymptotically AdS boundary and the Dirich-

let boundary in the asymptotically flat spacetime. The phase

structure of a RN-AdS black hole and a RN black hole in

a cavity in the Q-T space was displayed in Figs. 3 and 7,

respectively, and the phase structure in the �-T space was

shown in Figs. 5 and 9. It showed that the phase structure in

both cases are quite similar. Specifically, with a correspon-

dence (�, Q) → (V, P), the phase structure of the RN-AdS

black hole and the RN black hole in a cavity was rather sim-

ilar to that of the Van der Waals fluid. We also calculated

the critical exponents for the RN-AdS black hole and the RN

black hole in a cavity and found they are identical to these of

the Van der Waals fluid.

However, we found that the thermodynamic geometry in

the AdS and cavity cases is quite different. The Ruppeiner

invariant R as a function of the horizon radius r+ and the

charge Q was obtained in the AdS and cavity cases and plot-

ted in Fig. 1, which showed that the R > 0 regions (yel-

low regions) are dissimilar in the two cases. Moreover, the

extremal RN-AdS black hole has R = −∞ while R = 0 for

the extremal RN black hole in a cavity. We also discussed

R as a function of T and Q and summarize the results for

the AdS and cavity cases in Table 1. Moreover, we found

that the interactions among the microstructure of the black

hole always stay attractive before and after the LBH/SBH

first-order transition in the cavity case. However for a RN-

AdS black hole with Q � 0.097, the type of the interactions

changes when the black hole undergoes the phase transition.

The Ruppeiner invariant R as a function of � and T was

also discussed, and it showed that R → −∞ as � → 1 with

fixed T . Figures 5 and 9 displayed that Large BH with a small
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Fig. 8 The charge Q and the Ruppeiner invariant R as functions of the

potential � for a RN black hole in a cavity with a temperature T > Tc,

which possesses three solutions for some range of �. The black lines

denote the coexisting lines of Large BH and Small BH, and �s/�l

denotes the potential of the saturated Small/Large BH. The blue/green

dashed lines represent metastable overcharged Small BH/undercharged

Large BH while the red dashed lines denote unstable spinodal Interme-

diate BH. Left Column T = 0.2. R is always negative. Right Column

T = 0.24. The inset shows that R > 0 for the Large BH solution with

a large enough potential

enough � can have R > 0 in the AdS case while Large BH

with a large enough � can have R > 0 in the cavity case.

Furthermore, the interactions among the microstructure of

the saturated Large BH and Small BH on the coexisting line

are always attractive in the cavity case. However in the AdS

case, the interactions of the saturated Large BH and Small BH

are repulsive and attractive, respectively, when T � 0.286.

In this paper, we only considered different phases of RN

black hole solutions in a canonical ensemble, in which the

charge Q of the system is fixed. Note that, when Q = 0, the

thermal space filled with neutral radiation is also a classical

solution besides the black hole solution (i.e., a Schwarzschild

black hole). In some region of the parameter space, the free

energy of the thermal space can be less than that of the black

hole solution, which leads to a first-order phase transition

(e.g., the Hawking-Page phase transition in the AdS case).

For charged black holes, one may wonder whether there is

other solution of lower free energy with the same charge. One

natural candidate is the thermal space filled with a charged

gas. However, the backreaction of the non-negligible charge

of the gas on the geometry should be considered when the

free energy is calculated. It is inspiring to explore how this

possible equilibrium phase plays a role in the phase transi-

tions of charged black holes in the future studies.

In summary, although the phase structure of a RN-AdS

black hole and a RN black hole in a cavity is strikingly similar,

we found that the thermodynamic geometry in the two cases

behaves rather differently. It seems that the Ruppeiner invari-

ant R depends not only on what is inside the horizon, but also

on the imposed boundary condition. Our results show that

either R encodes more than the nature of black hole micro-

scopic properties, or there may be a connection between the

black hole microstates and the boundary condition. It would

be interesting to study how R depends on the boundary con-

dition in other black hole systems, which may shine further

light on the connection between the internal microstructure

of black holes and the boundary condition.
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Fig. 9 Phase structure of a RN black hole in a cavity in the �-T dia-

gram. The saturated Small BH (blue line) and Large BH (red line) are

separated by the critical point (black dot). For a fixed value of �, there

exist two black hole solutions, which are displayed in the left and right

frames, respectively. The pink region is the coexistence region of Small

BH and Large BH, and R > 0 in the yellow region

Table 1 The Ruppeiner invariant R for the black hole solutions in the

AdS and cavity cases. Tabulated are the regions where R > 0 and the

possible divergences of R. BH denotes the single black hole solution

when Q > Qc. GSP strands for “globally stable phase”

Black hole solution R > 0 |R| divergence

SBH in AdS None T = 0 and C−1
Q = 0

SBH in cavity None C−1
Q = 0

LBH in AdS Large T C−1
Q = 0

LBH in cavity None C−1
Q = 0

BH in AdS Large T T = 0

BH in cavity Large T or small

T or all T

None

GSP in AdS Large T T = 0 and critical point

GSP in cavity Large Q Critical point
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