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This paper discusses the thermodynamic irreversibility realized in high-dimensional
Hamiltonian systems with a time-dependent parameter. A new quantity, the irreversible
information loss, is defined from the Lyapunov analysis so as to characterize the thermody-
namic irreversibility. It is proved that this new quantity satisfies an inequality associated
with the second law of thermodynamics. Based on the assumption that these systems possess
the mixing property and certain large deviation properties in the thermodynamic limit, it is
argued reasonably that the most probable value of the irreversible information loss is equal
to the change of the Boltzmann entropy in statistical mechanics, and that it is always a
non-negative value. The consistency of our argument is confirmed by numerical experiments
with the aid of the definition of a quantity we refer to as the excess information loss.

§1. Introduction

Thermodynamics formalizes a fundamental limitation of possible processes be-
tween equilibrium states. In particular, when a thermodynamic system is enclosed
by adiabatic walls, the limitation is represented by, for example, a fact that, given a
system in some initial state, it is not possible to lower the system’s energy by first
changing some of its other extensive variables and then returning them to their orig-
inal values. Contrastingly, the energy of the system can be increased by the similar
change of the other extensive variables. These two facts make clear the special nature
of energy as an extensive variable. This asymmetry is the basis of thermodynamic
irreversibility.

Thermodynamics is one of the most elegant theories being based on only a few
fundamental principles. 1) However, one may wonder how its principles emerge out
of purely mechanical systems. Thermodynamic systems consist of many molecules,
whose dynamics are described by Hamiltonian equations. Thus, in the idealized
limit of adiabatic walls, a thermodynamic system can be regarded as a Hamiltonian
system that is connected to some mechanical apparatus, but does not contact a
heat reservoir. With this in mind, it may be natural to expect that thermodynamic
irreversibility can be formalized in Hamiltonian systems.

Thermodynamic entropy plays a central role in the description of thermodynamic
irreversibility, and the thermodynamic entropy is generally thought to be given by
the logarithm of the number of micro-states. This relation, the Boltzmann formula,
seems well-established as far as the calculation of equilibrium values is concerned.
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2 S. Sasa and T. S. Komatsu

However, it has not yet been shown that the Boltzmann formula provides a complete
account of irreversibility. 2)

In this paper, we discuss thermodynamic irreversibility based on the nature of
high-dimensional Hamiltonian chaos. As our most notable result, we find a new
quantity which satisfies an inequality associated with thermodynamic irreversibility.
We define this quantity, the “irreversible information loss”, from dynamical system
considerations. Furthermore, we argue reasonably that the irreversible information
loss is related to the change of the Boltzmann entropy, and this leads us to conclude
that the Boltzmann entropy does not decrease for any processes in the thermody-
namic limit.

1.1. Related studies

This paper provides theoretical arguments for numerical results reported in a
previously published paper, 3) and contains a detailed description of the numerical
experiment.

The present study has been carried out under the influence of several related
studies. First, the attempt to construct steady state thermodynamics by Oono and
Paniconi has provided the direction of the present study. 4) They have proposed an
operational method to obtain non-equilibrium thermodynamic functions. In addi-
tion, from a more general viewpoint, they emphasize the importance of theory con-
cerning the relation between two different states. Following this manner of thinking,
we have set out to study thermodynamic irreversibility from dynamical systems.

The stochastic energetics proposed by Sekimoto has given a nice example of
the construction of thermodynamics from dynamical systems. 5) Stochastic energet-
ics formalizes energy transformation in Langevin dynamics with a clear distinction
between heat and work. Sekimoto and Sasa have demonstrated the minimum work
principle and defined the free energy from this principle. 6) Their argument also in-
cludes a complementary relation which defines a new thermodynamic function of
two state variables. Recently, Sekimoto and Oono have constructed an example of
steady state thermodynamics by analyzing a Langevin dynamical model. 7)

Jarzynski has proposed a new method to obtain the minimum work principle. 8)

In his approach, an equality is first proven, and then the inequality related to the
minimum work principle is derived by using the Jensen inequality. A similar idea
may be applied to other related problems. In fact, Hatano has proved a Jarzynski-
type equality for the transition between steady states under a certain condition and
has derived an inequality related to the steady state thermodynamics. 9)

As discussed by Crooks, 10) the Jarzynski equality is also related to the fluctu-
ation theorem proposed by Evans, Cohen and Morriss. 11) The fluctuation theorem
claims a peculiar property of the probability of the finite time average of the entropy
production in a non-equilibrium steady state. Gallovotti and Cohen have presented
a mathematical proof of the fluctuation theorem based on the assumption that the
steady state measure is given by the dynamical measure. 12) Since that time, it has
been shown that the fluctuation theorem holds even in stochastic systems. 13), 14) On
general grounds, Maes has presented an argument that the fluctuation theorem can
be understood by a Gibbs property of the space-time measure. 15)
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Thermodynamic Irreversibility from Hamiltonian Chaos 3

Transportation coefficients in non-equilibrium steady states have been expressed
in terms of dynamical system quantities. There are two different approaches for this.
In one approach, the viscosity is related to the sum of all Lyapunov exponents in a
Hamiltonian system supplemented with a deterministic thermostatting force. 16), 17)

The other approach applies to Hamiltonian systems with open boundary condi-
tions. Here, the diffusion constant is related to the escape rate which is obtained in
terms of the difference between the sum of the positive Lyapunov exponents and the
Kolmogorov-Sinai entropy. 18)

Finally, we mention some recent developments in the understanding of ther-
modynamics. Lieb and Yngvason wrote an important paper on axiomatic thermo-
dynamics. 1) They have given an explicit expression of the thermodynamic entropy
based on a set of axioms concerning the adiabatic accessibility, and have proven the
entropy principle, the second law of thermodynamics. Although their formulation
is fully mathematical, the idea of the explicit expression of thermodynamic entropy
can be translated into standard energetic thermodynamics. 19) - 21)

1.2. Outline of the paper

This paper consists of nine sections, each of which consists of several subsections.
In order to give a self-contained explanation, we include a review of thermodynamics,
Hamiltonian systems, Boltzmann entropy, and Lyapunov analysis. Some of these
are no doubt rather well-known topics to specialists. However, there are not a large
number of people who understand all of them well. Also, it was our intention to
write this paper so that it can be understood by non-specialists, who have interest
in the relation between thermodynamic irreversibility and dynamical systems. The
organization of the paper is summarized below.

In §2 we start with a review of thermodynamics in an adiabatic environment.
Thermodynamic irreversibility is precisely defined based on basic notions such as
state and process. The essence of the thermodynamic entropy is described by the
entropy principle. 1) We then explain the reason why a Hamiltonian system with a
time-dependent parameter provides a model for a thermodynamic system in an adia-
batic environment. We assume the microcanonical measure for the initial conditions
and that the systems possess the mixing property with respect to the measure. We
also assume the existence of certain large deviation properties in order to establish
correspondence with the extensivity of thermodynamics. 22) Based on these assump-
tions, we define the equilibrium state and most probable process in Hamiltonian
systems. After these preliminaries, we address a main question.

In §3 we first review the Boltzmann formula in statistical mechanics. In particu-
lar, defining the time-dependent Boltzmann entropy, we derive a simple form of the
Boltzmann entropy change for general processes. Using this formula, we calculate
the average of the Boltzmann entropy change for a step process, where the average
is taken over the initial conditions sampled from the microcanonical ensemble on an
energy surface. We show that the average value is positive in the thermodynamic
limit. We further find that the average value is related to the fluctuation of the
Boltzmann entropy change.

In §4 we review the Lyapunov analysis, which is a standard method to study
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4 S. Sasa and T. S. Komatsu

chaotic dynamical systems with numerical experiments. We start with the Gram-
Schmidt decomposition, because it is the easiest computational technique for the
Lyapunov analysis. 23) We then discuss the convergence property of an orthogonal
frame. Since the orthogonal frame obtained from convergence does not satisfy the
transitive property, we define Lyapunov vectors from the orthogonal frame so that
this property is satisfied. 24) Based on these Lyapunov vectors, we define Lyapunov
exponents, local expansion ratios, and the information loss rate. In order to recover
the symmetry of unstable and stable directions, we also define contraction ratios.
We then prove a relation between the expansion and contraction ratios. We also
derive an expression for the weight on trajectory segments.

In §5 we discuss the reversibility of Hamiltonian systems. We relate the evolu-
tion map, Lyapunov vectors, and local expansion rates for time-reversed systems to
those for the original system. The reversibility leads to a reversibility paradox. 25)

In order to resolve the paradox, we need to consider the measure for a set of the ini-
tial conditions for time-reversed systems. This consideration leads to a reversibility
relation expressed in terms of probability.

In §6 we begin with the definition of irreversible information loss. Using the
reversibility relation mentioned above, we prove that the irreversible information
loss averaged over the initial conditions is always non-negative. We define the most
probable value of the irreversible information loss in the thermodynamic limit, and
we present an argument that this most probable value is equal to the Boltzmann
entropy change.

In §7 we define a quantity we call excess information loss, because this quan-
tity is more tractable than the irreversible information loss. We present a relation
between the Boltzmann entropy change and the excess information loss based on
the assumption that the reversible part of the excess information loss is equal to the
quasi-static excess information loss. This relation is identical to an equality proposed
in a previous paper. 3) Furthermore, we briefly discuss a minimum excess information
loss principle, which may be analogous in some sense to the minimum work principle
in thermodynamics with an isothermal environment. We also explain the origin of
the quasi-static excess information loss using Lyapunov analysis.

In §8 we report results of numerical experiments on a Fermi-Pasta-Ulammodel 26)

with a time-dependent nonlinear term. With these, we numerically check the as-
sumptions in the arguments given in the previous sections, and numerically demon-
strate several properties of certain quantities such as the Lyapunov exponents and
Boltzmann entropy changes in this model. As the main numerical experiment, we
confirm the relation between the Boltzmann entropy change and the excess informa-
tion loss.

The final section is devoted to concluding remark.

1.3. Remarks

Our theoretical arguments include some non-rigorous, but intuitively reasonable
statements. To as great an extent as possible, we state explicitly when the assertions
we make are assumptions. There is one exception, however. We often use the
expression o(N) to represent a quantity of negligible magnitude compared to N in
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Thermodynamic Irreversibility from Hamiltonian Chaos 5

the limit N → ∞. This constitutes an order estimate valid in the case that the
system satisfies an appropriate condition. However, we do not discuss what this
condition is, nor do we explicitly state that an assumption is involved when we
neglect such a quantity. We simply expect that the condition is satisfied unless an
abnormal situation occurs.

We use the same font for numbers and vectors. We believe that the difference
can be understood in the context. Also, a matrix is expressed as A, and Aij denotes
the (ij)-element of this matrix.

§2. Preliminaries

In this section, we review thermodynamics and Hamiltonian systems. We clarify
basic assumptions of our theory and address the main question of this paper.

2.1. Thermodynamic irreversibility

A thermodynamic system is characterized by the internal energy U and a set of
work variables {Xi}. When the value of Xi is changed externally, an energy change
is induced. An infinitely small response dU is written as

dU =
∑
i

YidXi. (2.1)

In thermodynamics, Xi is chosen as an extensive or intensive variable. Then, since
the internal energy U is an extensive variable, Yi is an intensive or extensive variable,
respectively. The relation Eq. (2.1) is valid for the case that the system is enclosed
by adiabatic walls. More formally, Eq. (2.1) should be regarded as a mathemat-
ical expression of the physical situation that the system is placed in an adiabatic
environment.

The equilibrium state Σ is assumed to be realized when the system is left for a
sufficiently long time after values of the work variables are fixed. This assumption
provides the operational definition of the equilibrium state. Also, the equilibrium
state Σ is assumed to be determined uniquely by the set of the values of (U, {Xi}).
That is, the state Σ is identified with (U, {Xi}). When the value of Xi is changed
externally, a transition from one equilibrium state Σ0 to another one Σ1 occurs.
This transition, which is denoted by Σ0

a→ Σ1, is called a thermodynamic process or
simply a process. More precisely, this process is called an adiabatic process realized
in an adiabatic environment. However, in the argument below, we use the term
“process” instead of “adiabatic process”.

Let Σ0 and Σ1 be arbitrary equilibrium states. We then ask whether or not
processes Σ0

a→ Σ1 and Σ1
a→ Σ0 are realizable. When both the processes are

realizable, these are called reversible processes. When only one process Σ0
a→ Σ1 is

realizable, this process is called an irreversible process. We can easily see that the
process

(U, {Xi}) a→ (U ′, {Xi}) (2.2)

provides an example of an irreversible process when U ′ > U .
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6 S. Sasa and T. S. Komatsu

The essence of thermodynamic entropy is described by the entropy principle: 1)

There exists an extensive variable S given by a function of Σ such that the inequality

S(Σ1) ≥ S(Σ0) (2.3)

is satisfied if and only if a process Σ0
a→ Σ1 is realizable. The extensive variable S

is determined uniquely up to multiplicative and additive arbitrary constants.
Lieb and Yngvason have proved the entropy principle based on axioms con-

cerning the adiabatic accessibility. 1) Also, in conventional thermodynamics based
on work and heat, the entropy principle can be proved with some physical assump-
tions. 20), 21)

2.2. Hamiltonian systems

A Hamiltonian system is characterized by a Hamiltonian function H(Γ ), where
Γ is a set of canonical coordinates {qi} and momenta {pi},

Γi = qi, (2.4)
ΓN+i = pi, (2.5)

where 1 ≤ i ≤ N . The equations of motion for qi and pi are given by

dqi
dt

=
∂H

∂pi
, (2.6)

dpi
dt

= −∂H
∂qi
. (2.7)

These equations can be formally written as

dΓ

dt
= −J ∂H

∂Γ
, (2.8)

where J is a 2N × 2N anti-symmetric matrix which satisfies

J 2 = −1. (2.9)

Under an initial condition Γ (0) given at t = 0, the phase space point at time t, Γ (t),
is determined by the equation of motion.

In this paper, we are concerned with Hamiltonian systems with a time-dependent
parameter α. The energy of the system E at time t is given by

E(t) = H(Γ (t), α(t)). (2.10)

We then obtain the equality

dE

dt
=
N∑
i=1

(
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

)
+
∂H

∂α

dα

dt
(2.11)

=
∂H

∂α

dα

dt
, (2.12)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Thermodynamic Irreversibility from Hamiltonian Chaos 7

where we have used the equations of motion. This equality can be rewritten as

dE = Adα, (2.13)

where
A =

∂H

∂α
. (2.14)

Comparing Eq. (2.13) with Eq. (2.1), we find that E and α correspond to the in-
ternal energy U and a work variable X. This suggests that a Hamiltonian system
with a time-dependent parameter can be a dynamical system model for thermody-
namics in an adiabatic environment. We proceed to our discussion based on this
expectation and attempt to find necessary properties so as to establish consistency
with thermodynamics.

Since we are particularly interested in thermodynamic processes, we assume that
the value of α is changed in a finite time interval [τi, τf ]; that is,

dα(t)
dt

= 0 (2.15)

when t �∈ [τi, τf ]. In the argument below, we assume the condition

0� τi ≤ τf (2.16)

without an explicit remark. Note that � in Eq. (2.16) has been assumed for a
technical reason. We also represent the protocol of the parameter change by α( ).

2.3. Measure

We assume that the initial condition given at t = 0 is sampled from the micro-
canonical ensemble on an energy surface Σ. The measure for the ensemble is given
by the microcanonical measure

µmc(dΓ ;Σ) =
1
|Σ|

1
|∇ΓH|

dσ, (2.17)

where dσ is the Lebesgue measure on the energy surface, and |Σ| is given by

|Σ| =
∫
dσ

1
|∇ΓH|

. (2.18)

The quantities µmc(Γ ;Σ) and |Σ| are rewritten as

µmc(dΓ ;Σ) =
1
|Σ|dΓδ(H(Γ )− E), (2.19)

|Σ| =
∫
dΓδ(H(Γ )−E), (2.20)

where dΓ is the 2N -dimensional Lebesgue volume element in the phase space. We
also note that Eq. (2.19) is given by

µmc(∆ε(Γ );Σ) = lim
δE→0

µL(∆ε(Γ ) ∩Σ ◦ δE)
µL(Σ ◦ δE)

, (2.21)
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8 S. Sasa and T. S. Komatsu

where Σ ◦ δE denotes a union of energy surfaces from E to E + δE, ∆ε(Γ ) is a
region with size ε which includes the point Γ , and µL is the 2N dimensional Lebesgue
measure.

We also assume that the systems in question are ergodic and possess the mixing
property. Here, a system is called “ergodic” with respect to the microcanonical
measure when the equality

lim
T→∞

1
T

∫ T
0
dtf(Γ (t)) =

∫
µmc(dΓ ;Σ)f(Γ ) (2.22)

holds for an arbitrary measurable function f and almost all initial conditions Γ (0)
with respect to the measure. The mixing property with respect to the microcanonical
measure means that the equality

lim
t→∞

∫
µmc(dΓ (0);Σ)f(Γ (0))g(Γ (t)) =

∫
µmc(dΓ ;Σ)f(Γ )

∫
µmc(dΓ ;Σ)g(Γ )

(2.23)
holds for arbitrary measurable functions f and g. It is easily proved that a mixing
system possesses ergodicity.

Suppose that the initial condition at time t = −t′ (t′ > 0) is sampled from an
ensemble with the measure

µf (dΓ (−t′);Σ) = µmc(dΓ (−t′);Σ)f(Γ (−t′)), (2.24)

where f is a measurable function normalized in such a way that∫
Σ
µmc(dΓ (−t′);Σ)f(Γ (−t′)) = 1. (2.25)

Then, the mixing property leads to

lim
t′→∞

∫
µf (dΓ (−t′);Σ)g(Γ (0)) =

∫
µmc(dΓ ;Σ)g(Γ ). (2.26)

That is, the average of g(Γ (0)) with respect to µf (dΓ (−t′);Σ) is the same as the
average of g(Γ (0)) with respect to µmc(dΓ (0);Σ) when t′ → ∞. Using Eq. (2.26),
we check numerically the validity of the mixing property and we can prepare the
microcanonical ensemble at t = 0 in the following way.

First, we prepare a set of initial conditions at t = −t′ sampled from an ensemble
with a measure absolutely continuous with respect to the Lebesgue measure on the
energy surface Σ. (This can be done easily in numerical experiments.) Then, we
take the average of a dynamical variable, for example A, at t = 0. We carry out two
experiments for two different measures assumed at t = −t′. If the average values
coincide, we may conclude that the system possesses the mixing property.∗) Also,
from Eq. (2.26), we find that this average value is the average for the microcanonical
measure at t = 0, µmc(dΓ ;Σ). This implies that we can prepare the microcanonical
ensemble at t = 0.

∗) However, precisely speaking, this is nothing but a confirmation of one of the necessary

conditions for the mixing property.
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Thermodynamic Irreversibility from Hamiltonian Chaos 9

2.4. Thermodynamic limit

In thermodynamics, the internal energy U is an extensive variable, and a work
variable is an extensive or intensive variable. In order to establish consistency with
thermodynamics, we assume the following large deviation property, 22) which may be
closely related to the extensivity of the energy: LetΠE(E1)dE be the probability that
the final energy after a parameter change takes a value in the region [E1, E1 + dE].
Then, ΠE can be written in the form

ΠE(E1) ∼ exp(−NφE(E1/N)) (2.27)

in the appropriate asymptotic limit, including N →∞.
Several remarks are made here. (i) The appropriate limit in Eq. (2.27) is called

the thermodynamic limit. In the argument below, the limit N → ∞ always implies
the thermodynamic limit without an explicit remark. (ii) The probability of the
final energy is induced from the measure for the ensemble of the initial conditions.
(iii) φE is called a rate function and is a non-negative convex function that takes
the value 0 at some point. The zero of φE , Ē1∗, is called the most probable value of
E1/N .

We next discuss the extensivity or intensivity of α. We consider particularly
the case that α is an intensive parameter. The variable A then turns out to be an
extensive variable, which is characterized by the following large deviation property:
Let ΠA(A′)dA be the probability that A takes a value in the region [A′, A′ + dA] at
t = 0. Then ΠA can be written in the form

ΠA(A′) ∼ exp(−NφA(A′/N)), (2.28)

in the thermodynamic limit.
Note that the probability density ΠA is determined by the measure for the

ensemble. Since the most probable value of A/N , Ā∗, exists for each energy surface,
we write Ā∗(Σ) when we wish to emphasize the state dependence.

2.5. Equilibrium state

We assume that the equilibrium state in thermodynamics corresponds uniquely
to the energy surface. This is the reason we used the same symbol Σ for an energy
surface in §2.3 and the equilibrium state in §2.1. Also, the energy surface is specified
by the set of quantities (E,α). In the argument below, Σ denotes an equilibrium
state, an energy surface, and a set of quantities (E,α).

Let us discuss the condition under which we can know whether or not the equi-
librium state is realized. The term ‘equilibrium’ implies that nothing changes. Thus,
it is natural to find a quantity which does not change at equilibrium. Although the
energy E does not change when t ≥ τf , it would be strange for the equilibrium state
to be realized immediately after the parameter change in question is completed.
Thus, the energy cannot be used as an indicator of the equilibrium state. The next
candidate of such an indicator may be the variable A. However, since the trajectory
never converges to a fixed point, the value of A remains time dependent. After elim-
inating such seemingly natural choices, we realize that the argument for the nature
of equilibrium should be developed with the thermodynamic limit.
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10 S. Sasa and T. S. Komatsu

Suppose that Γ (τf ) ∈ Σ1. In general, A(τf )/N is not equal to Ā∗(Σ1). However,
from the large deviation and mixing properties, we can expect

lim
t→∞

A(t)
N

→ Ā∗(Σ1) (2.29)

in the thermodynamic limit. When A(t)/N is sufficiently close to Ā∗(Σ1) up to
a certain time,∗) we assume that the state is at equilibrium. There may be other
important physical quantities to be checked. However, since we do not have any
criteria to judge their importance, we assume that the relaxation of the variable A
is enough to identify the equilibrium state.

2.6. Most probable process

Suppose that an equilibrium state Σ0 is realized at t = 0 and that another
equilibrium state is realized on an energy surface Σ1 a sufficiently long time after
t = τf . We call this transition a “process” in analogy to thermodynamics. However,
since Σ1 depends on Γ (0), Σ1 is not determined uniquely when we assume the initial
energy surface Σ0 and the protocol of the parameter change α( ). Here, in order to
establish the correspondence with thermodynamics, we assume the large deviation
property of the path of E: Let ΠE:path({E′(t), 0 ≤ t′ ≤ τ})∏t dE(t) be the path
probability that E(t) takes a value in the region [E′, E′ + dE(t)] at time t. Then,
ΠE:path can be written in the form

ΠE:path({E′(t), 0 ≤ t′ ≤ τ}) ∼ exp(−NφE:path({E′(t)/N, 0 ≤ t′ ≤ τ})) (2.30)

in the thermodynamic limit.
The probability density ΠE:path is determined by the measure for the ensemble

of the initial conditions. The rate function φE:path is a function of path segments
{E′(t)/N, 0 ≤ t′ ≤ τ}, and there is a most probable path {Ē∗(t′), 0 ≤ t′ ≤ τ} that
minimizes the rate function. Then, since the parameter is changed in a deterministic
way, the most probable process is defined as {(NĒ∗(t′), α(t′)), 0 ≤ t′ ≤ τf}. The
most probable process is denoted by

Σ0→∗Σ1, (2.31)

where Σ1 = (NĒ∗(τf ), α(τf )), and it is identified with the thermodynamic process
Σ0

a→ Σ1.

2.7. Main question

Let us summarize our basic assumptions and address the main question. When
one attempts to study thermodynamic irreversibility in Hamiltonian systems, there
seem to be three problems. The first problem is related to the measure for the initial
conditions, where, as one example, determining the condition for the most natural
measure is concerned. The second problem is related to the reason why macroscopic
variables behave in a deterministic way. The discussion of large deviation properties

∗) Formally, we should consider the limit N → ∞ before the limit t → ∞. In an experiment

with finite N , we should focus on an asymptotic regime up to a certain time.
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Thermodynamic Irreversibility from Hamiltonian Chaos 11

is one way to consider this problem. In this paper, we do not consider these problems
deeply. As mentioned above, we assume that the Hamiltonian systems in question
possess the mixing property with respect to the microcanonical measure, and we
also assume the large deviation properties of A and E in the thermodynamic limit.
Putting off discussion of such problems, we come to the third important problem:
We ask how the thermodynamic law is established. In other words, we ask whether
or not we can find a state variable satisfying the entropy principle from dynamical
systems. Let us write the question explicitly.

Let Σ0→∗Σ1 be an arbitrary most probable process. Then, find a state variable
S such that

S(Σ1) ≥ S(Σ0), (2.32)

where equality holds only when the reverse process Σ1→∗Σ0 is realizable.

§3. Statistical mechanics

In statistical mechanics, the thermodynamic entropy is calculated as the Boltz-
mann entropy. For this reason we review fundamental properties of the Boltzmann
entropy and discuss whether or not we can answer to the main question by using the
Boltzmann entropy.

The thermodynamic entropy takes a constant value along an arbitrary quasi-
static process Σ0

qs→ Σ1, which is realized by an infinitely slow change of the param-
eter value. Then, in developing statistical mechanics, we first attempt to find such
a quantity. 27) The adiabatic theorem ensures the existence of an invariant quantity
along quasi-static processes. We thus start with the adiabatic theorem.

3.1. Adiabatic theorem

Let Ω(Σ) be the phase space volume enclosed by an energy surface Σ = (E,α):

Ω(E,α) =
∫
dΓθ(E −H(Γ, α)). (3.1)

When the value of α is changed in time, the energy of the system changes. We define
the time evolution of the phase space volume as

Ω(t) = Ω(E(t), α(t)), (3.2)

where we note that E(t) depends on Γ (0). We then obtain

dΩ

dt
=
[
∂Ω

∂α
+
∂Ω

∂E
A

]
dα

dt
, (3.3)

where we have used the equality

dE

dt
= A

dα

dt
, (3.4)

which is given by Eq. (2.12).
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12 S. Sasa and T. S. Komatsu

By using the expression Eq. (3.1), we derive

∂Ω

∂E
= |Σ|, (3.5)

∂Ω

∂α
= −|Σ| 〈A〉Σ , (3.6)

where |Σ| and 〈f〉Σ are defined as

|Σ| =
∫
dΓδ(E −H(Γ, α)), (3.7)

〈f〉Σ =
1
|Σ|

∫
Σ

dσ

|∇ΓH|
f(Γ ). (3.8)

Here, 〈f〉Σ corresponds to the average of f over the micro-canonical ensemble on the
energy surface Σ. Substituting Eqs. (3.5) and (3.6) into Eq. (3.3), we obtain

dΩ

dt
= |Σ| [A− 〈A〉Σ ]

dα

dt
(3.9)

= |Σ|δAdα
dt
, (3.10)

where we have defined a new variable δA as

δA = A− 〈A〉Σ . (3.11)

We now prove the adiabatic theorem which states that the equality

Ω(Σ0) = Ω(Σ1) (3.12)

holds for an arbitrary quasi-static process Σ0
qs→ Σ1.

Proof First, set Σ0 = (E0, α0) and Σ1 = (E∞, α∞). Then, we decompose the
quasi-static process into n quasi-static processes such that

(αj , Ej)
qs→ (αj+1, Ej+1), (3.13)

where 0 ≤ j ≤ n− 1 and αj+1 = αj +∆α with

∆α =
α∞ − α0

n
. (3.14)

Note that αn = α∞ and En = E∞. We first assume

∆Ωj = Ω(Ej+1, αj+1)−Ω(Ej , αj) (3.15)
= O((∆α)2) (3.16)

for large n. We then obtain

Ω(E0, α0)−Ω(E∞, α∞) = lim
n→∞

n−1∑
j=1

O((∆α)2) (3.17)

= lim
n→∞O

(
1
n

)
(3.18)

= 0. (3.19)
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Thermodynamic Irreversibility from Hamiltonian Chaos 13

This proves the adiabatic theorem.
We next prove Eq. (3.16). Without loss of generality, we can assume that the

value of α is monotonically changed from αj to αj + ∆α. Defining the protocol of
the parameter change ατ ( ) as

ατ (t) = αj + (∆α)
t

τ
, (3.20)

we calculate ∆Ωj from Eq. (3.10) in the following way:

∆Ωj = lim
τ→∞

∫ τ
0
dt|Σ(t)|δA(t)dατ

dt
(3.21)

= lim
τ→∞

(∆α)
τ

∫ τ
0
dt|Σ(t)|δA(t). (3.22)

When ∆α is sufficiently small, ∆Ωj is evaluated as

∆Ωj = |Σ(0)| lim
τ→∞

(∆α)
τ

∫ τ
0
dtδA(t) +O((∆α)2) (3.23)

= O((∆α)2), (3.24)

where we have used

lim
τ→∞

1
τ

∫ τ
0
dtδA(t) = 0, (3.25)

which is equivalent to

lim
τ→∞

1
τ

∫ τ
0
dtA(t) = 〈A〉Σ . (3.26)

This equality holds for almost all initial conditions with respect to the Lebesgue
measure on the energy surface, because of the ergodicity with respect to the micro-
canonical measure.

✷

3.2. Boltzmann entropy

We define the Boltzmann entropy SB as∗)

SB(Σ) = logΩ(Σ), (3.27)

where the Boltzmann constant is assumed to be unity. For later convenience, we
define the temperature T (Σ) as

T (Σ) =
(
∂SB

∂E

)−1

=
Ω(Σ)
|Σ| . (3.28)

∗) See p. 371 in Boltzmann’s book 28) for an explicit presentation of the Boltzmann formula.

However, the expression of Eq. (3.27) was first proposed by Gibbs as the quantity corresponding to

the thermodynamic entropy. See p. 128 in Gibbs’s book. 29) The monograph by P. Ehrenfest and T.

Ehrenfest is also useful for explanations of contemporary related ideas. 25)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022



14 S. Sasa and T. S. Komatsu

Although Eq. (3.27) is the formula which makes it possible for us to calculate the
thermodynamic entropy for the equilibrium state Σ, we define the time evolution of
SB as∗)

SB(t) = SB(Σ(t)). (3.29)

Then, from Eqs. (3.10), (3.27) and (3.28), we obtain

dSB

dt
=

1
T (Σ)

δA
dα

dt
. (3.30)

The integration of this equation over the time interval [0, τ ] leads to

∆SB =
∫ τ
0
dt
δA(t)
T (Σ(t))

dα

dt
. (3.31)

Here, we note that Adα is equal to the energy change ∆E during a time interval
[t, t+ dt] and that 〈A〉Σ dα may be interpreted as the quasi-static work, Wqs, calcu-
lated under the condition that the system stays virtually on the energy surface. Wqs

is identical to the work done in an actual process which can be realized when the
system contacts a heat bath with a slowly changing temperature. The quasi-static
heat Qqs from the heat bath is then given by

Qqs = ∆E −Wqs = δAdα. (3.32)

Using Qqs, we rewrite Eq. (3.31) as

∆SB =
∫ τ
0
dt
1
T

dQqs

dt
(3.33)

=
∫ τ
0

dQqs

T
. (3.34)

This should be compared with Clausius’s formula

∆S =
∫
d′Q
T
, (3.35)

where d′Q is an infinitely small quasi-static heat exported from a heat bath. In
this way, the Boltzmann entropy turns out to be identified with the thermodynamic
entropy.

3.3. Entropy change for step processes

We discuss the step process given by

dα

dt
= δ(t)∆α. (3.36)

In the argument below, Σ0 = (E0, α0) and Σ1 = (E1, α1) denote the initial and final
states, respectively. By substituting Eq. (3.36) into Eq. (3.31), we have

∆SB =
1
2

[
δA(0+)
T (Σ1)

+
δA(0−)
T (Σ0)

]
∆α, (3.37)

∗) Do not confuse this with the time evolution of the H-function in the H-theorem of Boltz-

mann. 25), 28)
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Thermodynamic Irreversibility from Hamiltonian Chaos 15

where we note that δA and T are discontinuous at t = 0. We consider the average over
initial conditions sampled from the microcanonical ensemble on the energy surface
Σ0. This average is denoted by 〈 〉0. We calculate 〈∆SB〉0 as

〈∆SB〉0 =
(∆α)2

2T0

[
1
Σ

∂Σ

∂E

〈
(δA)2

〉
0
+
∂

∂E

〈
(δA)2

〉
0

]
+ o((∆α)2), (3.38)

where T0 = T (Σ0). (The proof is given below.) Further, since the relation

∂

∂E

〈
(δA)2

〉
0
= o(N) (3.39)

is expected when N →∞, we obtain

〈∆SB〉0 =
(∆α)2

2T 2
0

〈
(δA)2

〉
0
+ o(N, (∆α)2) > 0, (3.40)

where we have used
1
Σ

∂Σ

∂E
=

1
T
+O

(
1
N

)
. (3.41)

In the thermodynamic limit, 〈∆SB〉0 is equal to the entropy difference SB(Σ1)−
SB(Σ0) for the most probable process Σ0→∗Σ1. Thus, we conclude

SB(Σ1) ≥ SB(Σ0) + o(N, (∆α)2) (3.42)

for the most probable step process Σ0→∗Σ1.
Furthermore, from Eq. (3.37), the fluctuation

〈
(∆SB)2

〉
0 is calculated as

〈
(∆SB)2

〉
0
=
〈
(δA)2

〉
0

T 2
0

(∆α)2 + o((∆α)2). (3.43)

Combining this result with Eq. (3.40), we obtain the equality

〈∆SB〉0 =
1
2

〈
(∆SB)2

〉
0
+ o((∆α)2, N). (3.44)

This is the fluctuation-response relation for the entropy change.
Now, we prove Eq. (3.38).

Proof We first find〈[
δA(0+)
T (Σ1)

+
δA(0−)
T (Σ0)

]〉
0

=
〈δA(0+)〉0

T0
+O((∆α)2). (3.45)

Then, from Eq. (3.37), we have

〈∆SB〉0 =
〈δA(0+)〉0

2T0
(∆α) +O((∆α)3). (3.46)

Let us evaluate 〈δA(0+)〉0 up to order ∆α, where

〈δA(0+)〉0 =
〈
∂H

∂α
(Γ (0+), α(0+))

〉
0
−
〈〈
∂H

∂α

〉
Σ1

〉
0

. (3.47)
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16 S. Sasa and T. S. Komatsu

Since Γ (0+) = Γ (0−), we expand the first term on the right-hand side in such a way
that

∂H

∂α
(Γ (0+), α(0+)) =

∂H

∂α
(Γ (0−), α(0−)) +

∂2H

∂α2
(Γ (0−), α(0−))∆α+O((∆α)2).

(3.48)
Taking the average over the initial conditions, we obtain

〈
∂H

∂α
(Γ (0+), α(0+))

〉
0
=
〈
∂H

∂α

〉
0
+

〈
∂2H

∂α2

〉
0

∆α+O((∆α)2). (3.49)

We next evaluate the second term on the right-hand side of Eq. (3.47):〈〈
∂H

∂α

〉
Σ1

〉
0

=
〈

1
|Σ1|

∫
dΓ
∂H

∂α
δ(H(Γ, α1)− E1)

〉
0

. (3.50)

We note that there are four terms which include ∆α in the right-hand side of
Eq. (3.50): (i) ∆α appears in 1/|Σ1|; (ii) it appears in ∂H/∂α in the integrand;
(iii) it appears in H(Γ, α1) in the Dirac delta function; and (iv) it appears in E1 in
the Dirac delta function. We extract the contribution proportional to ∆α from each
term.

(i)For the first term, the contribution is

− 1
|Σ|2

d|Σ|
dα

∣∣∣∣
0

∫
dΓ
∂H

∂α
δ(H(Γ, α0)−E0), (3.51)

where we have defined
d

dα
=
∂

∂α
+A

∂

∂E
. (3.52)

Here we note that the equality
dΩ

dα
= 0 (3.53)

holds owing to the adiabatic theorem. This equality and the relation Ω = |Σ|T lead
to

d|Σ|
dα

∣∣∣∣
0
= −|Σ0|

T0

dT

dα

∣∣∣∣
0
. (3.54)

Thus, Eq. (3.51) becomes
1
T0

∂T

∂α

∣∣∣∣
0
〈A〉0 . (3.55)

(ii) Without any calculation, the contribution from the second term is〈
∂2H

∂α2

〉
0

. (3.56)

(iii, iv) In deriving the third and fourth terms, we employ the following formula:∫
dΓδ′(H − E)f(Γ ) =

∫
dE′

∫
H=E′

dσ

|∇ΓH|
δ′(E′ − E)f(Γ ) (3.57)
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Thermodynamic Irreversibility from Hamiltonian Chaos 17

= − ∂

∂E′

[∫
H=E′

dσ

|∇ΓH|
f(Γ )

]∣∣∣∣
E′=E

(3.58)

= − ∂

∂E′
[
〈f〉(E′,α) |Σ(E′, α)|

]∣∣∣
E′=E

. (3.59)

Owing to this formula, we can calculate the contribution from the third term:

1
|Σ|0

∫
dΓ

(
∂H

∂α

)2

δ′(H(Γ, α0)−E0)

= − 1
|Σ|0

∂

∂E

[〈(
∂H

∂α

)2
〉
Σ

|Σ|
]∣∣∣∣∣

0

(3.60)

= − ∂

∂E

〈(
∂H

∂α

)2
〉
Σ

∣∣∣∣∣
0

− 1
|Σ|0

∂|Σ|
∂E

∣∣∣∣
0

〈(
∂H

∂α

)2
〉

0

. (3.61)

Similarly, the contribution from the fourth term is obtained as

− 1
|Σ|0

∫
dΓ
∂H

∂α
δ′(H(Γ, α0)− E0)

〈
∂H

∂α

〉
0

=
1
|Σ|0

∂

∂E

[〈
∂H

∂α

〉
|Σ|
]∣∣∣∣

0

〈
∂H

∂α

〉
0

(3.62)

=
〈
∂H

∂α

〉
0

∂

∂E

[〈
∂H

∂α

〉]∣∣∣∣
0
+

1
|Σ|0

∂|Σ|
∂E

∣∣∣∣
0

〈
∂H

∂α

〉2

. (3.63)

The contributions from the third and fourth terms can be combined in the form

− 1
Σ0

∂Σ

∂E

∣∣∣∣
0

〈
(δA)2

〉
0
− ∂

∂E

〈
(δA)2

〉
0

∣∣∣∣
0
− 〈A〉0

∂ 〈A〉Σ
∂E

∣∣∣∣
0
. (3.64)

Then, all the contributions given by Eqs. (3.55), (3.56) and (3.64) are summarized
as 〈〈

∂H

∂α

〉
Σ1

〉
0

=
〈
∂H

∂α

〉
0
+

〈
∂2H

∂α2

〉
0

∆α

− 1
Σ

∂Σ

∂E

〈
(δA)2

〉
0
∆α− ∂

∂E

〈
(δA)2

〉
0
∆α, (3.65)

where we have used the equality

1
T

∂T

∂α
− ∂ 〈A〉Σ

∂E
= 0. (3.66)

(The proof of this equality is given below.) Substitution of Eqs. (3.49) and (3.65)
into Eq. (3.47) yields

〈δA(0+)〉0 =
1
Σ0

∂Σ

∂E

∣∣∣∣
0

〈
(δA)2

〉
0
∆α+

∂

∂E

〈
(δA)2

〉
Σ

∣∣∣∣
0
∆α+O((∆α)2). (3.67)

Recalling Eq. (3.46), we finally obtain Eq. (3.38).
✷
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18 S. Sasa and T. S. Komatsu

We now give the proof of Eq. (3.66). One may find that Eq. (3.66) is equivalent
to a Maxwell’s relation.
Proof For simplicity, we use the abbreviation A for 〈A〉Σ . Then, A is a function
of (SB, α). Since we can write

A = A(SB, α) =
(
∂E

∂α

)
SB

, (3.68)

we calculate (
∂A

∂E

)
α
=
(
∂A

∂SB

)
α

(
∂SB

∂E

)
α

(3.69)

=
1
T

∂2E

∂SB∂α
(3.70)

=
1
T

∂T

∂α
. (3.71)

✷

3.4. Remark

In this section, we have shown that ∆SB is positive for most probable step
processes. One may then ask whether or not ∆SB is positive for arbitrary processes.
As one example, one may evaluate ∆SB near quasi-static processes based on several
physical assumptions. However, if we consider this question from the definition of
∆SB, it seems hard to obtain any general results. Nevertheless, since SB is equivalent
to the thermodynamic entropy, we expect the inequality

∆SB ≥ o(N) (3.72)

to hold for most probable processes in general. We discuss the validity of Eq. (3.72)
in §6.2 based on Lyapunov analysis of chaotic systems. We now leave statistical
mechanics and enter into discussion on Lyapunov analysis.

§4. Lyapunov analysis

One of essential features of chaotic systems is sensitivity to initial conditions.
Consider a trajectory segment, {Γ (t), 0 ≤ t ≤ ∞}. Almost all trajectories starting
from phase space points in a neighborhood at Γ (0) separate exponentially in time
from the trajectory Γ ( ). Such behavior can be studied quantitatively by measuring
the expansion of vectors in the tangent spaces around the trajectory. More generally,
we can discuss the time evolution of the k-dimensional volume element, which is
given by the exterior product of k independent vectors in the tangent space. (See the
Appendix for the basic properties of the volume element and exterior product.) Such
an argument includes Liouville’s theorem as a special case (k = 2N), which states
that the 2N dimensional volume element maintains its volume along the trajectory.
From the observation for both the cases that k = 1 and k = 2N , we expect that
the tangent space at each point can be decomposed into subspaces associated with
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Thermodynamic Irreversibility from Hamiltonian Chaos 19

the expansion ratios. Indeed, it is known that the multiplicative ergodic theorem
of Oseledets provides a mathematical description of this naive expectation. 30) In
recent years, the analysis of tangent spaces, which is often referred to as Lyapunov
analysis, has become a standard technique to study chaos owing to the establishment
of a numerical calculation methods. 23)

In this section, we consider Hamiltonian systems without a parameter change,
except for the final two subsections, and we review Lyapunov analysis, emphasizing
its computational aspects.

When the value of α is not changed in time, the evolution map from t = t0 to
t = t1 takes the form Ut1−t0 and satisfies

Γ (t) = Ut(Γ (0)). (4.1)

The change of the trajectory at time t, δΓ (t), with respect to an infinitely small
change of the initial condition, δΓ (0), can be written as

δΓ (t) = Ut(Γ (0) + δΓ (0))− Ut(Γ (0)) (4.2)
= T (t, Γ (0))δΓ (0). (4.3)

Here, T (t, Γ (0)) is called the “linearized evolution map” and is calculated by numer-
ical integration of the linearized evolution equation. Note that the matrix T (t, Γ (0))
is determined by the trajectory segment {Γ (t′), 0 ≤ t′ ≤ t}. We analyze the matrix
T (t, Γ (0)) below.

4.1. Gram-Schmidt decomposition

Let {ei, 1 ≤ i ≤ 2N} be a set of orthogonal unit vectors given randomly in the
tangent space at Γ (0). For the time being, we use the abbreviation T for T (t, Γ (0)).
Since almost all vectors expand in the most unstable direction, the direction of the
vector T e1 may approach the most unstable direction when t is sufficiently large.
We thus define a unit vector in the tangent space at Γ (t) as

f1 =
T e1
|T e1|

. (4.4)

The vector f1 is expected to indicate the most unstable direction at Γ (t) as t→∞.
Similarly, we define the most unstable direction in the orthogonal co-space of f1:

f2 =
T e2 − (T e2, f1)
|T e2 − (T e2, f1)|

. (4.5)

With similar consideration, we define the i-th unstable direction:

fi =
T ei −

∑i−1
j=1(T ei, fj)fj

|T ei −
∑i−1
j=1(T ei, fj)fj|

. (4.6)

Since {fi, 1 ≤ i ≤ 2N} is a set of orthonormal unit vectors in the tangent space at
Γ (t), we can find an orthogonal matrix F(t, Γ (0)) given by

fi = F(t, Γ (0))ei. (4.7)
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20 S. Sasa and T. S. Komatsu

Further, from Eq. (4.6), T ei can be written as

T (t, Γ (0))ei =
∑
k

Lik(t, Γ (0))F(t, Γ (0))ek, (4.8)

where Lij is the (i, j)-element of a lower triangle matrix L. Equation (4.8) is the
Gram-Schmidt decomposition of the matrix T . Since the diagonal element is partic-
ularly important below, we write it explicitly as

Lii =

∣∣∣∣∣∣T ei −
i−1∑
j=1

(T ei, fj)fj

∣∣∣∣∣∣ . (4.9)

4.2. Convergence property

As mentioned above, fi indicates the i-th unstable direction only as t→∞. Let
ei∗(Γ (t)) be the ‘true’ i-th unstable direction at Γ (t). In order to have ei∗(Γ (t))
within a certain accuracy, we need to confirm

d(F(t, Γ (0))ei, e∗i(Γ (t))) ≤ ε, (4.10)

where ε is a small number related to the accuracy we require, and d(e, e′) is the
absolute value of the sine of the angle between two unit vectors e and e′:

d(e, e′) =
√
1− (e, e′)2. (4.11)

However, since we do not have e∗i(Γ (t)) yet, we cannot confirm whether or not
Eq. (4.10) is satisfied. Then, instead of Eq. (4.10), we check the condition

d(F(t, Γ (0))ei,F(t, Γ (0))e′i) ≤ ε (4.12)

for two sets of orthogonal unit vectors {ei, 1 ≤ i ≤ 2N} and {e′i, 1 ≤ i ≤ 2N}, which
are chosen randomly. When Eq. (4.12) is satisfied, we assume that the true i-th
unstable direction is determined by

e∗i(Γ (t)) � F(t, Γ (0))ei, (4.13)

within an accuracy we require.
When we numerically obtain e∗i(Γ (0)) at an arbitrary point Γ (0), we consider

a trajectory segment {Γ (t), −tb ≤ t ≤ 0} and check the condition

d(F(tb, Γ (−tb))ei,F(tb, Γ (−tb))e′i) ≤ ε, (4.14)

for sufficiently large tb. When Eq. (4.14) is satisfied, we assume

e∗i(Γ (0)) � F(tb, Γ (−tb))ei, (4.15)

within an accuracy we require.
We do not know a mathematical condition under which Eq. (4.12) is satisfied. In

the argument below, we assume that Eq. (4.12) is satisfied and that a set of vectors
{e∗i(Γ )} is determined for an arbitrary point Γ . Once e∗i(Γ (0)) is determined,
e∗i(Γ (t)) is calculated by

e∗i(Γ (t)) = F(t, Γ (0))e∗i(Γ (0)). (4.16)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022
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4.3. Lyapunov vectors

To this point, we have stated that e∗i(Γ (t)) indicates the i-th unstable direc-
tion at Γ (t). More precisely, e∗i(Γ (t)) indicates the most unstable direction in the
orthogonal co-space of the subspace spanned by {e∗j(Γ (t)), 1 ≤ j ≤ i − 1} in the
tangent space at Γ (t). However, e∗i(Γ (t)) does not satisfy

T (t, Γ (0))e∗i(Γ (0)) ∝ e∗i(Γ (t)) (4.17)

except for the case i = 1. This seems somewhat strange, because the unstable nature
should be defined as something consistent along the trajectory. Thus, we define a set
of vectors {ξi(Γ (t)), 1 ≤ i ≤ 2N} which satisfies two conditions. The first condition
is the transitivity,

T (t, Γ (0))ξi(Γ (0)) ∝ ξi(Γ (t)), (4.18)

and the second condition is that the vector space generated by {e∗j , 1 ≤ j ≤ i} is
spanned by {ξj, 1 ≤ j ≤ i}. The second condition is expressed by∑

j

Aijξj(Γ (t)) = e∗i(Γ (t)), (4.19)

where Aij = 0 for i < j, and Aij is regarded as the (ij)-element of a lower triangle
matrix A.

Now, we define the i-th expansion factor Λi(t, Γ (0)) in the i-th unstable direc-
tion,

T (t, Γ (0))ξi(Γ (0)) = Λi(t, Γ (0))ξi(Γ (t)). (4.20)

We call ξi the “i-th Lyapunov vector”. 24) In order to determine uniquely the value
of Λi, we assume the normalization condition that the volume of the i-dimensional
parallelepiped formed by {ξj , 1 ≤ j ≤ i} is unity. This condition is expressed by

| ∧ij=1 ξj| = 1 (4.21)

for 1 ≤ i ≤ 2N (see the Appendix). We also assume that Aii is positive. Under these
conditions, we can prove that the i-th expansion factor Λi(t, Γ (0)) is calculated by
the Gram-Schmidt decomposition Eq. (4.8) with e∗i(Γ (0)).
Proof From Eq. (4.8), we have

T (t, Γ (0))e∗i(Γ (0)) =
∑
k

Lik(t, Γ (0))F(t, Γ (0))e∗k(Γ (0)). (4.22)

Using Eqs. (4.19) and (4.20), we rewrite the left-hand side of Eq. (4.22) as∑
j

Aij(Γ (0))T (t, Γ (0))ξj(Γ (0))

=
∑
j

Aij(Γ (0))Λj(t, Γ (0))ξj(Γ (t)) (4.23)

=
∑
jk

Aij(Γ (0))Λj(t, Γ (0))(A(Γ (t))−1)jke∗k(Γ (t)) (4.24)

=
∑
jk

Aij(Γ (0))Λj(t, Γ (0))(A(Γ (t))−1)jkF(t, Γ (0))e∗k(Γ (0)). (4.25)
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22 S. Sasa and T. S. Komatsu

Comparing the right-hand side of Eq. (4.22) with Eq. (4.25), we find

Lik(t, Γ (0)) =
∑
j

Aij(Γ (0))Λj(t, Γ (0))(A(Γ (t))−1)jk. (4.26)

Further, from Eqs. (4.19) and (4.21), we can easily see

|Aii| = 1 (4.27)

for 1 ≤ i ≤ 2N (see the Appendix). Since Aii is assumed to be positive, Aii = 1.
Then, Eq. (4.26) yields

Λi(t, Γ (0)) = Lii(t, Γ (0)). (4.28)

In this way, the i-th expansion factor can be calculated numerically.
✷

4.4. Lyapunov exponent

The i-th expansion ratio λi(Γ (t)) at Γ (t) is defined as

dΛi(t, Γ (0))
dt

= λi(Γ (t))Λi(t, Γ (0)). (4.29)

The long-time average of the i-th expansion ratio λi(Γ (t)) is called the i-th Lyapunov
exponent, which is given by

λ̄i = lim
τ→∞

1
τ

∫ τ
0
dtλi(Γ (t)) (4.30)

= lim
τ→∞

1
τ
logΛi(τ, Γ (0)). (4.31)

The quantity λ̄i is sometimes called the ‘local’ Lyapunov exponent, because it de-
pends on Γ (0). However, from the ergodic theorem, λ̄i has the same value for almost
all Γ (0) with respect to the microcanonical measure. Since we assume the ergodicity
of the microcanonical measure, we are not concerned with the local nature of the
Lyapunov exponent.

As clearly seen from the method of construction of Lyapunov vectors, we find

λ̄1 ≥ λ̄2 · · · ≥ λ̄2N . (4.32)

In Hamiltonian systems, there are at least two zero Lyapunov exponents whose Lya-
punov vectors indicate the normal direction of the energy surface and the tangential
direction of the trajectory. In the argument below, we assume that there are Np
positive Lyapunov exponents. Unless the system has an additional conservation law
such as momentum conservation, Np = N − 1.

The information loss rate at Γ (t), h(Γ (t)), is defined as the sum of the expansion
ratios with positive Lyapunov exponents:

h(Γ (t)) =
∑
λ̄i>0

λi(Γ (t)) (4.33)

=
Np∑
i=1

λi(Γ (t)). (4.34)
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Note that h(Γ (t)) represents the volume expansion ratio of the Np-dimensional un-
stable space. That is, h(Γ (t)) can be rewritten as

h(Γ (t)) =
d

dt
log | ∧N−1

i=1 T (t, Γ (0))ξi(Γ (0))|. (4.35)

The long-time average of the information loss rate, h̄, has the same value for almost
all initial conditions with respect to the microcanonical measure. It is known that h̄
is identical to the Kolmogorov-Sinai entropy when the system is hyperbolic. 31)

4.5. Contraction ratio

Let us recall that the expansion factor Λi is calculated by the Gram-Schmidt
decomposition under the normalization condition Eq. (4.21). However, this normal-
ization lacks balance between the unstable and stable directions. Since Hamiltonian
systems possess time reversal symmetry, such unbalance will cause theoretical com-
plications. In order to recover the symmetry, we introduce a new set of vectors,
{ξ(s)i , 1 ≤ i ≤ 2N}, given by

ξ
(s)
i = ciξ2N−i+1, (4.36)

where ci is a positive number determined so as to satisfy

| ∧ij=1 ξ
(s)
j | = 1 (4.37)

for 1 ≤ i ≤ 2N .
We now define the contraction factor Λ(s)

i and contraction ratio λ(s)
i as

T (t, Γ (0))ξ(s)i (Γ (0)) =
1

Λ
(s)
i (t, Γ (0))

ξ
(s)
i (Γ (t)), (4.38)

λ
(s)
i (Γ (t)) =

d

dt
logΛ(s)

i (t, Γ (0)). (4.39)

As seen in the next section, the contraction ratio is related to the expansion ratio of
the time-reversed trajectory, and this relation plays a role in simplifying arguments.
In particular, the following relation is utilized.

Np∑
i=1

λ2N+1−i = −
Np∑
i=1

λ
(s)
i +

d

dt
o(N). (4.40)

Here, the last term represents the time derivative of a function whose value is much
smaller than N as N → ∞. Note that the left-hand side and the first term on the
right-hand side are of order N .
Proof Substituting Eq. (4.36) into Eq. (4.38), we have

ci(Γ (0))Λ2N+1−i(t, Γ (0)) =
1

Λ
(s)
i (t, Γ (0))

ci(Γ (t)). (4.41)

Taking the time derivative of the logarithm of both sides of this equation yields

λ2N+1−i(Γ (t)) = −λ(s)
i (Γ (t)) +

d

dt
log

(
ci(Γ (t))
ci(Γ (0))

)
. (4.42)
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We thus obtain
Np∑
i=1

λ2N+1−i(Γ (t)) = −
Np∑
i=1

λ
(s)
i (Γ (t)) +

d

dt

Np∑
i=1

log
(
ci(Γ (t))
ci(Γ (0))

)
. (4.43)

Let us evaluate the second term on the right-hand side of Eq. (4.43). We first
define the ‘angle’ φi as

| ∧2N
j=1 ξj| = | ∧2N−i

j=1 ξj|| ∧2N
j=2N+1−i ξj | sinφi, (4.44)

where 0 ≤ φi ≤ π/2 (see the Appendix). By using the normalization condition of
{ξi}, we rewrite Eq. (4.44) as

| ∧2N
j=2N+1−i ξj | sinφi = 1. (4.45)

Using Eqs. (4.36) and (4.37), we obtain

c1 · · · ci = sinφi. (4.46)

This leads to
Np∑
i=1

log
(
ci(Γ (t))
ci(Γ (0))

)
= log

(
sinφNp(Γ (t))
sinφNp(Γ (0))

)
= o(N), (4.47)

where we have assumed

sin(φNp(Γ ))� O(exp(−N)), (4.48)

which may be ensured by the condition that the unstable and stable manifolds in-
tersect transversally.

✷

4.6. Weight on trajectory segments

We consider a weight on the trajectory segment {Γ (t), 0 ≤ t ≤ τ}. This weight,
W ({Γ (t), 0 ≤ t ≤ τ}), is a conditional probability of finding trajectory segments
remaining in a small tube around {Γ (t), 0 ≤ t ≤ τ} when the initial condition is
chosen in a small region around Γ (0). More explicitly, the weight W is defined in
the following way.

Suppose that the phase space is decomposed into small cells {∆j} with a suffi-
ciently small size ε and that Γ (0) is included in the i-th cell ∆i. Then, let N(τ, ε) be
the number of cells which intersect Uτ (∆i). We can choose the value of ε so that the
region Uτ (∆i) remains in the linear regime around Uτ (Γ (0)). This condition may be
given by

ε� εc(τ), (4.49)

where the value of εc(τ) is determined by nonlinear properties of dynamical systems.
Under this condition, N(τ, ε) measures the number of distinguishable trajectory
segments starting from the neighborhood of Γ (0). Therefore, we define the weight
as

W ({Γ (t), 0 ≤ t ≤ τ}) = 1
N(τ, ε)

. (4.50)
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Thermodynamic Irreversibility from Hamiltonian Chaos 25

Then, we can show

W ({Γ (t), 0 ≤ t ≤ τ}) = | ∧Np

i=1 T (−τ, Γ (τ))ξi(Γ (τ))| (4.51)

in an appropriate limit of large τ and small ε. (Since εc(τ)→ 0 in the limit τ →∞,
we need to deal with the delicate problem of double limits. However, we assume
simply that we can choose an appropriate asymptotic limit.) We further find that,
by Eq. (4.35), Eq. (4.51) takes the simpler form

W ({Γ (t), 0 ≤ t ≤ τ}) = exp
(
−
∫ τ
0
dth(Γ (t))

)
. (4.52)

Proof Consider the time evolution of a small region ∆i. This region expands
and contracts in the unstable and stable directions, respectively. After a sufficiently
long time, the region almost collapses into the Np-dimensional unstable manifold and
intersects cells in the unstable directions. Since the Np-dimensional volume element
in the unstable manifold at Γ (τ) can be written as ∧Np

i=1ξi(Γ (τ)), we expect

N(τ, ε) =
| ∧Np

i=1 ξi(Γ (τ))|
| ∧Np

i=1 T (−τ, Γ (τ))ξi(Γ (τ))|
(4.53)

= | ∧Np

i=1 T (−τ, Γ (τ))ξi(Γ (τ))|−1 (4.54)

in an appropriate limit of large τ and small ε. Substituting this into Eq. (4.50) leads
to Eq. (4.51).

✷

4.7. Time-dependent case

To this point in this section, we have assumed that the value of α is not changed
in time. In this subsection, we briefly discuss Lyapunov analysis for systems with a
time-dependent parameter. When the value of α depends on t, the evolution map
from t = t0 to t = t1 depends on the absolute time t0 and t1. Therefore, it takes the
form Ut1,t0 , and the linearized evolution map is written as T (t1, t0;Γ (t0)).

The Lyapunov analysis in such a case may be reconsidered carefully. However,
we do not need general arguments. In the systems in question, the value of α is
changed during a finite time interval [τi, τf ], where 0� τi ≤ τf � τ . Therefore, for
example, the i-th Lyapunov vectors at Γ (0) and Γ (τ) can be defined as ξi(Γ (0)) and
ξi(Γ (τ)), respectively.

Although the expansion factors, Lyapunov exponents, and information loss rate
do not make sense in general, the argument regarding the weight W is still valid.
We can write

W ({Γ (t), 0 ≤ t ≤ τ}) = | ∧Np

i=1 T (0, τ ;Γ (τ))ξi(Γ (τ))| (4.55)

for sufficiently large τ and small ε. We also define the actual information loss rate
as the generalization of Eq. (4.35):

ha(t, Γ (0)) =
d

dt
log | ∧Np

i=1 T (t, 0;Γ (0))ξi(Γ (0))|. (4.56)
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4.8. Liouville’s theorem

In this subsection, we review a proof of Liouville’s theorem, which states that
the 2N -dimensional volume element maintains its volume along the trajectory. It is
important to understand that Liouville’s theorem holds even when the value of α is
changed in time.
Proof We have the Hamiltonian equation

dΓ (t)
dt

= −J ∂H(Γ, α(t))
∂Γ

∣∣∣∣
Γ=Γ (t)

. (4.57)

(See Eq. (2.8) in §2.) Since the linearized evolution equation is written as

dδΓ (t)
dt

= −J ∂2H(Γ, α(t))
∂Γ∂Γ

∣∣∣∣∣
Γ=Γ (t)

δΓ (t), (4.58)

the linearized evolution map T (t, 0;Γ (0)) satisfies the equation

dT
dt

= −JBT , (4.59)

where B is a symmetric matrix. We then obtain

d(T †J T )
dt

=
dT †

dt
J T + T †J dT

dt
(4.60)

= −(T †BJ †J T + T †JJBT ) (4.61)
= 0, (4.62)

where we have used the equality

J †J = −JJ = 1. (4.63)

Since T (0, 0;Γ (0)) = 1, Eq. (4.62) leads to

T †J T = J . (4.64)

Taking the determinant of both the sides gives

det[T †T ] = 1. (4.65)

Let {ei, 1 ≤ i ≤ 2N} be an orthogonal set of unit vectors defined in the tangent
space at Γ (0). The time evolution of the 2N -dimensional volume element ∧2N

i=1ei is
given by ∧2N

i=1T ei, and its volume is calculated as

| ∧2N
i=1 T ei| =

√
detT T † (4.66)

= 1 (4.67)

(see the Appendix). Therefore, the 2N -dimensional volume element maintains its
volume along the trajectory.

✷
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Further, using Liouville’s theorem, we can prove that the equality

2N∑
i=1

λi(Γ (t)) = 0 (4.68)

holds when the value of α is not changed in time.
Proof Since the the value of α is not changed in time, we obtain

2N∑
i=1

λi(Γ (t)) =
d

dt

2N∑
i=1

logΛi(t, Γ (0)) (4.69)

=
d

dt
log | ∧2N

i=1 T (t, Γ (0))ξi(Γ (0))| (4.70)

= 0 (4.71)

where Liouville’s theorem is used to obtain the last line.
✷

§5. Reversibility

5.1. Reversibility in time evolution

We define the matrix R as

(RΓ )i = qi, (5.1)
(RΓ )i+N = −pi, (5.2)

where 1 ≤ i ≤ N . This matrix corresponds to the time-reversed operator acting on
a phase space point. We assume that the Hamiltonian under consideration possesses
time reversal symmetry:

H(RΓ, α) = H(Γ, α). (5.3)

Let Ut,0 and Ũt,0 be the evolution maps for Hamiltonian equations with α( ) and
α̃( ), respectively, where we have defined the time-reversed protocol of the parameter
change α̃( ) as

α̃(t) = α(−t). (5.4)

Then, owing to the symmetry property Eq. (5.3), the identity

Ut,0 = RŨ−t,0R (5.5)

holds.
Proof Let {Γ (t)} and {Γ̃ (t)} be trajectories given by

Γ (t) = Ut,0(Γ (0)), (5.6)
Γ̃ (t) = Ũt,0(Γ̃ (0)), (5.7)

where Γ (0) and Γ̃ (0) are the initial conditions which satisfy the relation

Γ̃ (0) = RΓ (0). (5.8)
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From Eq. (5.7), we obtain

−dΓ̃ (−t)
dt

= −J ∂H(Γ, α̃(−t))
∂Γ

∣∣∣∣
Γ=Γ̃ (−t)

(5.9)

= −J ∂H(Γ, α(t))
∂Γ

∣∣∣∣
Γ=Γ̃ (−t)

, (5.10)

where we have used the equation of motion in the form Eq. (2.8) with the matrix J
satisfying Eq. (2.9). On the other hand, Eq. (5.6) leads to

RdΓ (t)
dt

= −RJ ∂H(Γ, α(t))
∂Γ

∣∣∣∣
Γ=Γ (t)

(5.11)

= JR ∂H(Γ, α(t))
∂Γ

∣∣∣∣
Γ=Γ (t)

(5.12)

= J ∂H(Γ, α(t))
∂(RΓ )

∣∣∣∣
Γ=Γ (t)

(5.13)

= J ∂H(RΓ, α(t))
∂(RΓ )

∣∣∣∣
Γ=Γ (t)

(5.14)

= J ∂H(Γ, α(t))
∂Γ

∣∣∣∣
Γ=RΓ (t)

. (5.15)

Here, the second line is obtained by the relation

RJ + JR = 0, (5.16)

the third line is derived from the relation RR = 1, and the equality of the fourth
line comes from the symmetry property Eq. (5.3).

Comparing Eqs. (5.10) and (5.15), we find that Γ̃ (−t) and RΓ (t) obey the same
evolution equation. Recalling the relation for the initial conditions Eq. (5.8), we
conclude

Γ̃ (−t) = RΓ (t). (5.17)

By using Eqs. (5.6) and (5.7), Eq. (5.17) can be rewritten as

Ũ−t,0(RΓ (0)) = RUt,0(Γ (0)). (5.18)

Since Γ (0) is arbitrary, Eq. (5.5) holds.
✷

In the argument below, Γ̃ (t) will be assumed to be given by Eq. (5.17).

5.2. Reversibility in Lyapunov analysis

First, from Eq. (5.5), we have

T (t, 0;Γ (0)) = RT̃ (−t, 0; Γ̃ (0))R, (5.19)

where T (t, 0;Γ (0)) and T̃ (t, 0; Γ̃ (0)) are the linearized evolution maps around the
trajectories Γ ( ) and Γ̃ ( ). In particular, when the value of α is not changed, the
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equality T̃ = T holds. We then prove the identities

ξi(Γ ) = Rξ(s)i (RΓ ), (5.20)

λi(Γ ) = λ
(s)
i (RΓ ), (5.21)

h(Γ (t))− h(Γ̃ (−t)) = d

dt
o(N). (5.22)

Proof Using the matrices defined as

Xij(Γ ) = (ξj(Γ ))i, (5.23)

X (s)
ij (Γ ) = (ξ(s)j (Γ ))i, (5.24)

we can write T (t, Γ (0)) in two forms,

T (t, Γ (0)) = X (Γ (t))M(t, Γ (0))X (Γ (0))−1, (5.25)
T (t, Γ (0)) = X (s)(Γ (t))M(s)(t, Γ (0))X (s)(Γ (0))−1, (5.26)

whereM(t, Γ (0)) andM(s)(t, Γ (0)) are diagonal matrices whose (i, i)-elements are
given by Λi(t, Γ (0)) and Λ

(s)
i (t, Γ (0))−1, respectively. Using Eq. (5.26), we rewrite

the right-hand side of Eq. (5.19) as

RX (s)(Γ̃ (−t))M(s)(−t, Γ̃ (0))X (s)(Γ̃ (0))−1R
= RX (s)(RΓ (t))M(s)(−t, Γ̃ (0))X (s)(RΓ (0))−1R, (5.27)

where we have used T̃ = T . Comparing Eq. (5.27) with the right-hand side of
Eq. (5.25), we obtain

X (Γ ) = RX (s)(RΓ ), (5.28)
M(t, Γ (0)) =M(s)(−t,RΓ (0)), (5.29)

where we have used the normalization conditions of ξi and ξ
(s)
i given by Eqs. (4.21)

and (4.37).
Equation (5.28) is equivalent to Eq. (5.20), and Eq. (5.29) leads to Eq. (5.21),

because of the equality

d

dt
logΛ(s)

i (−t,RΓ (0))−1 = λ(s)
i (Γ̃ (−t)) (5.30)

= λ(s)
i (RΓ (t)). (5.31)

Furthermore, h(Γ (t)) can be expressed in terms of {λ(s)
i } in the following way:

h(Γ (t)) =
Np∑
i=1

λi(Γ (t)) (5.32)

= −
Np∑
i=1

λ2N+i−1(Γ (t)) (5.33)

=
Np∑
i=1

λ
(s)
i (Γ (t)) +

d

dt
o(N), (5.34)
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where the second and third lines come from Eq. (4.68) and Eq. (4.40), respectively.
On the other hand, from the symmetry property Eq. (5.21), h(Γ̃ (−t)) can be written
as

h(Γ̃ (−t)) =
Np∑
i=1

λi(Γ̃ (−t)) (5.35)

=
Np∑
i=1

λi(RΓ (t)) (5.36)

=
Np∑
i=1

λ
(s)
i (Γ (t)). (5.37)

Comparing Eqs. (5.34) and (5.37), we obtain Eq. (5.22).
✷

Using these identities, we can express the weight on the trajectory segment by
the actual information loss of the time-reversed trajectory:

W ({Γ (t), 0 ≤ t ≤ τ}) = exp
[∫ τ

0
dth̃a(−t, Γ̃ (−τ)) + o(N)

]
, (5.38)

where the actual information loss rate along the time-reversed trajectory h̃a is defined
as

h̃a(t, Γ̃ (−τ)) =
d

dt
log | ∧N−1

i=1 T̃ (t,−τ ;Γ (−τ))ξi(Γ̃ (−τ))|. (5.39)

Proof Let us recall the expression of the weight Eq. (4.55):

W ({Γ (t), 0 ≤ t ≤ τ}) = | ∧Np

i=1 T (0, τ ;Γ (τ))ξi(Γ (τ))|. (5.40)

The right-hand side can be rewritten as

| ∧Np

i=1 RT̃ (0,−τ ; Γ̃ (−τ))RRξ
(s)
i (RΓ (τ))|

= | ∧Np

i=1 T̃ (0,−τ ; Γ̃ (−τ))ξ
(s)
i (Γ̃ (−τ))| (5.41)

= | ∧Np

i=1 T̃ (0,−τ ; Γ̃ (−τ))ξ2N+1−i(Γ̃ (−τ))| exp(o(N)) (5.42)

= | ∧Np

i=1 T̃ (0,−τ ; Γ̃ (−τ))ξi(Γ̃ (−τ))| exp(o(N)) (5.43)

= exp
[∫ τ

0
dth̃a(−t, Γ̃ (−τ)) + o(N)

]
, (5.44)

where the third line is obtained by using an argument in §4.5, and the fourth line
comes from Liouville’s theorem.

✷

Similarly, the weight on the time-reversed trajectory segment W ({Γ̃ (t), −τ ≤
t ≤ 0}) can be written as

W ({Γ̃ (t), −τ ≤ t ≤ 0}) = exp
[∫ τ

0
dtha(t, Γ (0)) + o(N)

]
. (5.45)

(See Eq. (4.56) for the definition of ha(t, Γ (0)).)
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Thermodynamic Irreversibility from Hamiltonian Chaos 31

5.3. Reversibility paradox

Suppose that there is a trajectory segment {Γ (t), 0 ≤ t ≤ τ} from an energy
surface Σ0 to Σ1. Then, the time-reversed segment {Γ̃ (t), −τ ≤ t ≤ 0} goes from
Σ1 to Σ0. One may wonder how this fact is compatible with thermodynamic irre-
versibility. Essentially the same question was asked by Roschmidt. This is known as
the reversibility paradox. 25) A standard answer may appeal to the operational im-
possibility of the time-reversed operation Γ →RΓ . If we were allowed to operate on
the system by using the result of the observation of the trajectory, we could perform
the time-reversed operation. This consideration is related to the Maxwell’s demon
problem. 32) However, the time dependence of α is given without any references to
trajectories. Thus, in our problem, the time-reversed operation cannot be realized
by α( ), and the Maxwell’s demon problem does not appear.

However, still the paradox is not resolved completely. In order to be compatible
with thermodynamic irreversibility, there should be asymmetry between the trajec-
tory segment {Γ (t), 0 ≤ t ≤ τ} and the time-reversed segment {Γ̃ (t), −τ ≤ t ≤ 0}.
This asymmetry cannot come from purely mechanical considerations. We must con-
sider the measure for the ensemble of the initial conditions of the time-reversed
trajectory segment {Γ̃ (t), −τ ≤ t ≤ 0}. This ensemble, Υτ , is defined as a (2N −1)-
dimensional set which satisfies

Ũ0,−τ (Υτ ) = Σ0. (5.46)

From the reversibility relation Eq. (5.5), we obtain

Υτ = RUτ,0(Σ0). (5.47)

Owing to the chaotic nature, Υτ becomes a quite complicated set as τ becomes large.
Here, we describe the set Υτ informally. We focus on the thermodynamic limit so
that the structure of Υτ is clearly seen.

Suppose that the most probable processes Σ0→∗Σ1 and Σ̃1→∗Σ0 are realized
by the protocols of the parameter change α( ) and α̃( ), respectively. Then, from
Eq. (5.46), Υτ ∩ Σ̃1 becomes dominant in Σ̃1 with respect to the microcanonical
measure for Σ̃1. On the other hand, from Eq. (5.47), Υτ ∩Σ1 becomes dominant in
Υτ with respect to the microcanonical measure for Σ0. One may think that these two
statements are apparently contradictory. However, we should note that the measures
are different when we observe the set Υτ . Here, it is worthwhile noting that Υτ ∩Σ1

is not dominant in Σ1 with respect to the microcanonical measure for Σ1, when
Σ1 �= Σ̃1. Therefore, we can imagine that the set Υτ has a fine structure on energy
surfaces apart from Σ̃1. In order to represent this heterogeneity quantitatively, we
define a measure µ̃ for the set Υτ as

µ̃(∆ε(Γ̃ (−τ));Υτ ) = lim
δE→0

µL(∆ε(Γ̃ (−τ)) ∩RUτ,0(Σ0 ◦ δE))
µL(RUτ,0(Σ0 ◦ δE))

, (5.48)

where µL denotes the 2N -dimensional Lebesgue measure, ∆ε(Γ̃ (−τ)) is a small re-
gion with a size ε including Γ̃ (−τ), and Σ0 ◦ δE represents a set of energy surfaces
with width δE (see §2.4). We then expect that µ̃(∆ε(Γ̃ (−τ));Υτ ) for Γ̃ (−τ) ∈ Σ̃1 is
much larger than µ̃(∆ε(Γ̃ (−τ));Υτ ) for Γ̃ (−τ) ∈ Σ1.
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32 S. Sasa and T. S. Komatsu

5.4. Reversibility in probability

In spite of the asymmetry between the two sets Σ0 and Υτ , from the reversibility
of the time evolution there is a one-to-one correspondence between the set of tra-
jectory segments from Σ0 to RΥτ and the set of time-reversed trajectory segments
from Υτ to Σ0.

We now derive the reversibility relation coming from this correspondence. In
§4.7, we discussed the weight on trajectory segments. The weight W ({Γ (t), 0 ≤ t ≤
τ}) is a conditional probability of finding trajectory segments remaining in a small
tube around {Γ (t), 0 ≤ t ≤ τ} when the initial condition is chosen in a small region
∆ε(Γ (0)) around Γ (0). Then,

µmc(∆ε(Γ (0));Σ0)W ({Γ (t), 0 ≤ t ≤ τ}) (5.49)

is the probability of finding a trajectory segment in a small tube around {Γ (t), 0 ≤
t ≤ τ} of all trajectory segments from Σ0 to RΥτ . This probability, from the one-to-
one correspondence mentioned above, should be equal to the probability of finding
a trajectory segment in a small tube around {Γ̃ (t), −τ ≤ t ≤ 0} of all trajectory
segments from Υτ to Σ0. The latter probability is written as

µ̃(∆ε(Γ̃ (−τ));Υτ )W ({Γ̃ (t), −τ ≤ t ≤ 0}). (5.50)

Therefore, we obtain the relation

µmc(∆ε(Γ (0));Σ0)W ({Γ (t), 0 ≤ t ≤ τ})
= µ̃(∆ε(Γ̃ (−τ));Υτ )W ({Γ̃ (t), −τ ≤ t ≤ 0}). (5.51)

This relation will lead to an important equality related to thermodynamic irre-
versibility.

§6. Irreversible information loss

6.1. Definition

Let us define the irreversible information loss I as

I(τ, Γ (0)) = log
W ({Γ̃ (t), −τ ≤ t ≤ 0})
W ({Γ (t), 0 ≤ t ≤ τ}) , (6.1)

where the right-hand side depends on (τ, Γ (0)), because the trajectory is given by
a solution to the deterministic evolution equation. Using Eqs. (5.38) and (5.45), we
can write I as

I(τ, Γ (0)) =
∫ τ
0
dt[ha(t, Γ (0))− h̃a(−t, Γ̃ (−τ))] + o(N). (6.2)

This expression may represent the meaning of the term ‘irreversible information loss’.
Then, from the relation Eq. (5.51), we obtain∫

Υτ

µ̃(∆ε(Γ (−τ));Υτ ) =
∫
Σ0

µmc(∆ε(Γ (0))) exp(−I). (6.3)
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Thermodynamic Irreversibility from Hamiltonian Chaos 33

By the normalization condition of the probability, we have the equality

〈exp(−I)〉0 = 1, (6.4)

where 〈 〉0 denotes the average with respect to µmc(dΓ ;Σ0). Using the Jensen in-
equality

〈exp(−I)〉0 ≤ exp(−〈I〉0), (6.5)

we obtain
〈I〉0 ≥ 0. (6.6)

This inequality suggests that the irreversible information loss I has a certain relation
with thermodynamic irreversibility. One may find that this argument has some
similarity with that of Jarzynski. 8)

In order to discuss the convergence of I(τ, Γ (0)) for τ → ∞, we evaluate the
value of

lim
τ→∞

∂I

∂τ
= lim
τ→∞[ha(τ, Γ (0))− h̃a(−τ, Γ̃ (−τ))]. (6.7)

Since the value of α is changed in a finite time interval, ∧Np

i=1T (t, 0;Γ (0))ξi(Γ (0))
approaches the unstable manifold around Γ (t) when t� τf . We thus obtain

lim
τ→∞[ha(τ, Γ (0))− h̃a(−τ, Γ̃ (−τ))] = lim

τ→∞[h(Γ (τ))− h(Γ̃ (−τ))] (6.8)

=
d

dt
o(N), (6.9)

where we have used Eq. (5.22). We further assume that this convergence is so fast
that the time integration yields a finite value. Then, there exists a function Ī such
that

lim
τ→∞ lim

N→∞
1
N
I(τ, Γ (0)) = Ī(Γ (0)). (6.10)

6.2. Most probable value

We define the most probable value of Ī(Γ (0)) based on the assumption of the
large deviation property: Let ΠI(ψ;Σ0, α( ))dψ be the probability that I(τ, Γ (0))/N
takes a value in [ψ, ψ + dψ] when the initial equilibrium state Σ0 and the protocol
of the parameter change α( ) are given. Then, ΠI can be written in the form

ΠI(ψ;Σ0, α( )) ∼ exp(−NφI(ψ;Σ0, α( ))) (6.11)

in the thermodynamic limit.
The probability density ΠI is induced from the microcanonical measure for the

initial conditions on Σ0. The rate function φI is a convex and non-negative function,
and the most probable value Ī∗ satisfies

φI(Ī∗;Σ0, α( )) = 0. (6.12)

Here, Eq. (6.6) leads to the inequality

Ī∗ ≥ 0 (6.13)
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34 S. Sasa and T. S. Komatsu

for an arbitrary most probable process.
We then attempt to find a relation between Ī∗ and ∆SB. First, let us note that

〈I〉0 can be rewritten as

〈I〉0 = −
∫
Σ0

µmc(∆ε(Γ (0));Σ0) log
µ̃(∆ε(Γ̃ (−τ));Υτ )
µmc(∆ε(Γ (0));Σ0)

, (6.14)

where we have used Eq. (5.51). We consider the thermodynamic limit in the expres-
sion Eq. (6.14), although the argument is not completely formalized yet.

When the most probable process Σ0→∗Σ1 is realized, Υτ ∩Σ1 is dominant in Υτ
with respect to the microcanonical measure on Σ0. Also, from the mixing property,
Υτ ∩ Σ1 may be identified with Σ1 in a coarse-graining description of the phase
space. Thus, we can expect that µ̃(∆ε(Γ̃ (−τ));Υτ ) in Eq. (6.14) may be replaced by
µmc(∆ε(Γ̃ (−τ));Σ1) exp(o(N)), in an appropriate limit of small ε, large τ , and large
N . When this is true, we can rewrite Eq. (6.14) as

〈I〉0 = −
∫
Σ0

µmc(∆ε(Γ (0));Σ0) log
µmc(∆ε(Γ̃ (−τ));Σ1)
µmc(∆ε(Γ (0));Σ0)

+ o(N) (6.15)

= −
∫
Σ0

µmc(∆ε(Γ (0));Σ0) log
|Σ0|
|Σ1|

+ o(N). (6.16)

Thus, we obtain

Ī∗ = lim
N→∞

1
N

log
|Σ1|
|Σ0|

. (6.17)

This equality shows that the value of Ī∗ is determined by the initial and final states,
irrespective of the details of the process Σ0→∗Σ1. Furthermore, from Eq. (3.28) in
§3.2, we can express Ī∗ in the form

Ī∗ = lim
N→∞

1
N

log
Ω1

Ω0
(6.18)

= lim
N→∞

1
N
[SB(Σ1)− SB(Σ0)]. (6.19)

That is, the most probable value of the irreversible information loss is equal to the
change of the Boltzmann entropy per unit degree. Also, the inequality Eq. (6.13)
can be read as

SB(Σ1) ≥ SB(Σ0) + o(N) (6.20)

for an arbitrary most probable process Σ0→∗Σ1. This implies that the Boltzmann
entropy satisfies the entropy principle in thermodynamics.

6.3. Fluctuation theorem

Let us consider the probability ΠI(ψ;Υτ , α̃( ))dψ that the irreversible infor-
mation loss Ĩ takes a value within [Nψ,N(ψ + dψ)] when the measure of the ini-
tial conditions is assumed to be µ̃ and the time-reversed protocol α̃( ) is given.
ΠI(ψ;Υτ , α̃( ))dψ can be written as

Π̃(ψ;Υτ , α̃( ))dψ =
∫
Υτ

µ̃(∆ε(Γ̃ (−τ));Υτ )E(ψ ≤ Ĩ(τ, Γ̃ (−τ))/N ≤ ψ + dψ),

(6.21)
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Thermodynamic Irreversibility from Hamiltonian Chaos 35

where E(∗) takes the value 1 when the statement ∗ is true. The right-hand side of
this expression can be rewritten as∫

Υτ

µ̃(∆ε(Γ̃ (−τ));Υτ )E(−ψ − dψ ≤ I(τ, Γ (0))/N ≤ −ψ)

= exp(Nψ)
∫
Σ0

µmc(∆ε(Γ (0)))E(−ψ − dψ ≤ I(τ, Γ (0))/N ≤ −ψ) (6.22)

= exp(Nψ)ΠI(−ψ;Σ0, α( ))dψ, (6.23)

where we have used Eq. (5.51) in order to obtain the second line. Therefore, we
obtain

ΠI(ψ;Σ0, α( ))
Π̃I(−ψ;Υτ , α̃( ))

= exp(Nψ). (6.24)

This may be called the “fluctuation theorem in Hamiltonian systems with a time-
dependent parameter”.

We could not derive a useful expression of Eq. (6.24) in the thermodynamic
limit. We now explain the reason. Suppose that the most probable process Σ̃1→∗Σ0

is realized by the time-reversed protocol α̃( ). Then, the dominant region of Υτ
with respect to the measure µ̃, which contributes ΠI(ψ;Υτ , α̃( )), is around the
energy surface Σ̃1. However, if Υτ were replaced by Σ̃1, ψ in Eq. (6.24) could not be
substituted by, for example, the most probable value Ī∗ for Σ0→∗Σ1. This precludes
the significance of Eq. (6.24).

When we are concerned with an infinitely small step process, we can derive the
fluctuation-response relation from Eq. (6.24). In such a process, Υτ may be replaced
by Σ0 at the lowest order approximation. Then, since ΠI may be approximated by
a Gaussian distribution for large N , we can write

log Π̃I(−ψ;Σ0, α̃( )) = −N
(ψ + Ī ′∗)2

2σ′2
+ o(N), (6.25)

logΠI(ψ;Σ0, α( )) = −N
(ψ − Ī∗)2

2σ2
+ o(N). (6.26)

The fluctuation theorem Eq. (6.24) leads to

−N (ψ − Ī∗)2
2σ2

+N
(ψ + Ī ′∗)2

2σ′2
= Nψ + o(N). (6.27)

Since Ī∗ and Ī ′∗ are infinitely small, Eq. (6.27) may be valid for arbitrary ψ in a finite
range including ψ = 0. Thus, we have

Ī ′∗ = Ī∗, (6.28)
σ′2 = σ2. (6.29)

Substituting these equalities into Eq. (6.27), we obtain

NĪ∗ =
N

2
σ2 (6.30)

=
N2

2

〈
(δψ)2

〉
(6.31)

=
1
2

〈
(I −NĪ∗)2

〉
. (6.32)
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36 S. Sasa and T. S. Komatsu

Comparing Eq. (6.32) with Eq. (3.44) in §3.3, we find that this result is consistent
with Eq. (6.19).

§7. Excess information loss

At each point Γ (t) in a trajectory segment, {Γ (t), 0 ≤ t ≤ τ}, we can consider
a Hamiltonian system defined on the energy surface Σ(t) by virtually fixing the
parameter value to α(t). Then, as discussed in §4.4, we can calculate the information
loss rate h(Γ ;Σ(t)) at Γ ∈ Σ(t) in this virtual Hamiltonian system. We define the
excess information loss rate as ∗)

hex(t, Γ (0)) = ha(t, Γ (0))− h(Γ (t);Σ(t)). (7.1)

Further, the excess information loss Hex is defined as the time integration of hex:

Hex(τ, Γ (0)) =
∫ τ
0
dthex(t, Γ (0)). (7.2)

Similarly, the excess information loss rate at Γ̃ (−t) in the time-reversed trajectory
is given by

h̃ex(−t, Γ̃ (−τ)) = h̃a(−t, Γ̃ (−τ))− h(Γ̃ (−t);Σ(t)), (7.3)

where Γ̃ (−t) ∈ Σ(t), and the excess information loss in the time-reversed trajectory
is written as

H̃ex(τ, Γ̃ (−τ)) =
∫ τ
0
dth̃ex(−t, Γ̃ (−τ)). (7.4)

Using these quantities, we rewrite the irreversible information loss I as

I(τ, Γ (0)) =
∫ τ
0
dt[ha(t, Γ (0))− h̃a(−t, Γ̃ (−τ))] + o(N) (7.5)

=
∫ τ
0
dt[hex(t, Γ (0))− h̃ex(−t, Γ̃ (−τ))] + o(N) (7.6)

= Hex(τ, Γ (0))− H̃ex(τ, Γ̃ (−τ)) + o(N), (7.7)

where we have used the equality

h(Γ (t);Σ(t)) = h(Γ̃ (−t);Σ(t)) + d

dt
o(N) (7.8)

(see Eq. (5.22)). Further, through the definition of Hex:rev,

Hex:rev(τ, Γ (0)) =
1
2
[Hex(τ, Γ (0)) + H̃ex(τ, Γ̃ (−τ))], (7.9)

Eq. (7.7) becomes

1
2
I(τ, Γ (0)) = Hex(τ, Γ (0))−Hex:rev(τ, Γ (0)) + o(N). (7.10)

∗) We obtained the idea of the excess information loss from a paper by Oono and Paniconi, 4)

where they defined the excess heat in constructing steady-state thermodynamics.
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Thermodynamic Irreversibility from Hamiltonian Chaos 37

From the viewpoint of numerical calculations, the excess information loss is a
more tractable quantity than the irreversible information loss, because Hex(τ, Γ (0))
converges to a certain value Hex(∞, Γ (0)) when τ → ∞. This convergence is ex-
pected from the fact that hex(t, Γ (0)) converges to 0 when t − τf → ∞. Similarly,
we expect that H̃ex(τ, Γ̃ (−τ)) converges to a certain value H̃ex(∞, Γ̃ (−∞)) when
τi →∞. (Note that τ →∞ when τi →∞.) Also, Hex:rev(∞, Γ (0)) is determined.

Let us consider the average over the initial conditions sampled from the micro-
canonical ensemble on the energy surface Σ0. From Eq. (7.10), we have

1
2
NĪ∗ = 〈Hex〉0 − 〈Hex:rev〉0 + o(N) (7.11)

in the thermodynamic limit, where 〈Hex〉0 is the average of Hex(∞, Γ (0)). Since
Hex(∞, Γ (0)) can be obtained numerically without referring to the time-reversed
trajectory, 〈Hex〉0 is a directly measurable quantity. Although 〈Hex:rev〉0 is not easily
obtained numerically, it may be expected to have a certain relation to the quasi-static
excess information loss Hex:qs, which is defined as

Hex:qs =
∫ ∞

0
dt
dα

dt
Φ(Σ(t)), (7.12)

where the quantity Φ(Σ(t))dα is the excess information loss calculated under the
assumption that the equilibrium state is virtually realized at each time t along the
trajectory Γ ( ). (Recall similar discussion below Eq. (3.31).) Note that Hex:qs

becomes the real excess information loss when the process is quasi-static.
We now discuss the relation between Hex:rev and Hex:qs. We consider a step

process realized by an infinitely small parameter change α → α + ∆α at t = τi.
Then, the quantity Φ(Σ0) is given by

〈Hex〉0 = Φ(Σ0)∆α+O((∆α)2). (7.13)

Also, using Eqs. (3.40) and (6.19), we obtain

Ī∗ = O((∆α)2). (7.14)

Therefore, we find
〈Hex:rev〉0 = Φ(Σ0)∆α+O((∆α)2). (7.15)

Since a quasi-static process can be realized by repeating an infinite number of in-
finitely small step processes, 〈Hex:rev〉0 for a quasi-static process Σ0

qs→ Σ1 can be
written as

〈Hex:rev〉0 =
∫ α1

α0

dαΦ(Σ(α)), (7.16)

where Σ(α) is the equilibrium state such that

Σ0 = Σ(α0)
qs→ Σ(α). (7.17)

Then, Eq. (7.16) implies
〈Hex:rev〉0 = 〈Hex:qs〉0 . (7.18)
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Note, however, that the validity of Eq. (7.18) is ensured only for quasi-static pro-
cesses. Nevertheless, we assume that Eq. (7.18) holds at least near quasi-static pro-
cesses. Based on this assumption, the right-hand side of Eq. (7.11) can be calculated
numerically without referring to time-reversed trajectories, and from Eqs. (6.19),
(7.11) and (7.18), we obtain the expression

1
2
〈∆SB〉0 = 〈Hex〉0 − 〈Hex:qs〉0 + o(N). (7.19)

7.1. Minimum principle

Applying the inequality Eq. (6.13) to the expression Eq. (7.11), we obtain

〈Hex〉0 ≥ 〈Hex:rev〉0 + o(N). (7.20)

This inequality implies that the excess information loss must not be less than its
reversible part. Further Hex:rev may be related to the quasi-static excess informa-
tion loss, as discussed in the previous subsection. Therefore, Eq. (7.20) has certain
analogy with the minimum work principle in thermodynamics with an isothermal
environment, which states that the work done by external agents must not be less
than the quasi-static work. In this sense, Eq. (7.20) may be regarded as the minimum
excess information loss principle. However, we do not yet understand the significance
of the inequality Eq. (7.20). We expect that the analysis of subsystems may provide
us further insight into the meaning of Eq. (7.20). This is a future problem.

7.2. Expression of Φ

In this subsection we derive an expression of Φ in terms of Lyapunov vectors.
Suppose that the value of α is changed instantaneously from α0 to α0 +∆α at time
t = 0. The trajectory Γ ( ) is not differentiable at t = 0. We consider the excess
information loss for Γ ( ),

Hex(∞, Γ (0)) =
∫ ∞

0
dt[ha(t;Γ (0))− h(Γ (t);Σ1)], (7.21)

where Σ1 is an energy surface after the parameter change.
Let {ξ(0)i , 1 ≤ i ≤ 2N} be a set of Lyapunov vectors at Γ (0) on the energy

surface Σ0. We then define a set of vectors {ai(t), 1 ≤ i ≤ 2N} in the tangent space
at Γ (t) as

ai(t) = T (t, 0;Γ (0))ξ(0)i , (7.22)

where T (t, 0;Γ (0)) is the linearized evolution map along the trajectory on the energy
surface Σ1. Note that ai is not the Lyapunov vector at Γ (t), because ξ(0)i is not the
Lyapunov vector on the energy surface Σ1.

The i-th Lyapunov vector along the trajectory {Γ (t), 0 ≤ t ≤ ∞} on the energy
surface Σ1 is denoted by ξ(1)i (Γ (t)). The expansion factor Λi(t, Γ (0)) satisfies

T (t, 0;Γ (0))ξ(1)i (Γ (0)) = Λi(t, Γ (0))ξ
(1)
i (Γ (t)). (7.23)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Thermodynamic Irreversibility from Hamiltonian Chaos 39

Using ai and Λi, we can write Eq. (7.21) as

Hex(∞, Γ (0)) = lim
t→∞


log | ∧Np

i=1 ai(t)| −
Np∑
i=1

logΛi(t, Γ (0))


 . (7.24)

Let us evaluate the right-hand side of Eq. (7.24). We expand ξ(0)i in terms of
the set of Lyapunov vectors {ξ(1)i (Γ (0)), 1 ≤ i ≤ 2N} in such a way that

ξ
(0)
i =

2N∑
j=1

Qijξ
(1)
j (Γ (0)). (7.25)

Here, the matrix Q is defined at Γ (0) and depends on ∆α. Then, from Eqs. (7.22)
and (7.25), ai(t) can be expanded in the form

ai(t) =
2N∑
j=1

QijΛj(t, Γ (0))ξ
(1)
j (Γ (t)). (7.26)

Using this expression, we write | ∧Np

i=1 ai(t)| as∣∣∣∣∣∣∣
∑

(j1,···,jNp )


 Np∏
k=1

Qkjk




 Np∏
k=1

Λjk(t, Γ (0))


 [∧Np

k=1ξ
(1)
jk
(Γ (t))

]∣∣∣∣∣∣∣ , (7.27)

where the index jk varies from 1 to 2N . When t is sufficiently large, the contribution
from the unstable directions becomes dominant. Thus, for sufficiently large t, we
derive

log | ∧Np

i=1 ai(t)| � log

∣∣∣∣∣∣
Np∑
j1=1

· · ·
Np∑
jNp=1

sgn(j1, · · · , jNp)


 Np∏
k=1

Qkjk




·


 Np∏
k=1

Λk(t, Γ (0))


 ∣∣∣∧Np

i=1ξ
(1)
i (Γ (t))

∣∣∣
∣∣∣∣∣∣ (7.28)

� log det+Q+
Np∑
i=1

logΛi(t, Γ (0)), (7.29)

where

det+Q =
Np∑
j1=1

· · ·
Np∑
jNp=1

sgn(j1, · · · , jNp)Q1j1 · · ·QNp,jNp
, (7.30)

and we have used the normalization condition | ∧Np

i=1 ξ
(1)
i (Γ (t))| = 1. Finally, substi-

tuting Eq. (7.29) into Eq. (7.24), we obtain

Hex(∞, Γ (0)) = log det+Q. (7.31)
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Therefore, from the definition of Φ(Σ0), we have

Φ(Σ0) = lim
∆α→0

〈log det+Q〉0
∆α

. (7.32)

This expression shows that Φ takes a non-zero value when the unstable manifold
varies linearly for an infinitely small parameter change.

§8. Numerical experiments

To this point, we have only developed theoretical arguments. However, one
may point out that these lack mathematical rigor. For this reason, we now present
evidence from numerical experiments to support the validity of the theoretical argu-
ments.

As a direct experimental test of our theory, we should check the relation between
the irreversible information loss and the Boltzmann entropy. However, unfortunately,
we have not yet completed this test, because it is difficult to measure numerically
the irreversible information loss. The reasons for this difficulty are as follows.

First, the time-reversed trajectory is needed in calculation of I(τ, Γ (0)). This
fact creates a delicate problem: Suppose that we numerically obtain a trajectory
segment {Γ (t), 0 ≤ t ≤ τ}. Since the system is chaotic, this trajectory is not
an approximation of the true trajectory starting from the initial condition Γ (0).
However, when a pseudo-orbit tracing property is valid in the system, there is a
true trajectory which is close to the trajectory segment obtained numerically. Then,
when we integrate the time-reversed equations of motion with the initial condition
Γ̃ (−τ), the trajectory obtained numerically deviates from {Γ̃ (t), −τ ≤ t ≤ 0} due
to the orbital instability. Therefore, in order to obtain the time-reversed trajectory
{Γ̃ (t), −τ ≤ t ≤ 0}, we must store the data for the original trajectory.

Second, even if we obtain numerically I(τ, Γ (0)), this quantity does not converge
to a fixed value for τ →∞, because only the extensive part of I(τ, Γ (0)) converges.
Therefore, it is not easy to choose the value of τ in numerical calculations. In
principle, we have only to choose a large value of N so that the arbitrariness is
reduced. However, we need much more time to study systems with larger N .

In this paper, instead of the irreversible information loss, we discuss the numer-
ical study of the excess information loss, with particularly focusing on Eq. (7.19).
SinceHex(τ, Γ (0)) converges toHex(∞, Γ (0)) as τ →∞, the numerical calculation of
the excess information loss may be simpler than that of the irreversible information
loss. Also, the time-reversed trajectory is not needed in the calculation of Hex.

8.1. Model

A system consisting of many molecules with short-range repulsive interaction
may be the most realistic model to study thermodynamic irreversibility. However,
since we are concerned with universal aspects of irreversibility, the choice of the
system does not matter. Simpler models may be better for our purpose. This
is the reason we numerically studied the Fermi-Pasta-Ulam (FPU) model. 26) The
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Hamiltonian of the FPU model is given by

H({qi}, {pi}; g) =
N∑
i=1

[
1
2
p2i +

1
2
(qi+1 − qi)2 +

g

4
(qi+1 − qi)4

]
, (8.1)

where the value of g is changed in time. That is, α( ) in previous sections is identified
with g( ) in this section.

The evolution equations for ({qi}, {pi}) are written as

dqi
dt

= pi, (8.2)

dpi
dt

= (qi+1 − qi) + g(qi+1 − qi)3 − (qi − qi−1)− g(qi − qi−1)3. (8.3)

We assume the periodic boundary conditions q0 = qN and qN+1 = q1 in Eq. (8.3).
With these boundary conditions,

∑
i pi is a conserved quantity. We assume that∑

i pi = 0 for simplicity. Then,
∑
i qi also becomes a conserved quantity. We also

assume
∑
i qi = 0. In the remaining part of this section, the energy surface with the

condition
∑
i pi =

∑
i qi = 0 is simply called “the energy surface”. We numerically

solved Eqs. (8.2) and (8.3) using the 4-th order symplectic integrator method 33) with
a time step δt = 0.005. Since we are concerned with the thermodynamic limit, we
check the N dependence of our conclusions.

8.2. Lyapunov analysis

In this subsection, we assume that g takes a constant value, say g0. Let E0 be
the energy. Then, when E0g0 is sufficiently large, a system with large N exhibits
high-dimensional chaos. As an example of such a parameter value set, (E0, g0) =
(1.0, 10.0) is assumed.

We first check the mixing property with respect to the micro-canonical measure
by discussing relaxation behavior. (See the last paragraph of §2.3.) Figure 1 shows

0.02

0.025

0.03

0 100 200

〈 A
 〉

t

(a)
  

0 100 200

| 〈
A

〉 -
 〈A

eq
〉 |

t

(b)
10-2

10-4

10-6

Fig. 1. Relaxation behavior of the ensemble average of A. Here N = 20. The ensemble of initial

conditions is produced arbitrarily by fixing E and A as E = 1 and A(0) = 0.01. (b) log | 〈A〉 −
Aeq| as a function of t. Aeq is the equilibrium value determined by the graph (a). The dotted

line represents | 〈A〉 − Aeq| = exp(−t/50)/100.
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Fig. 2. Lyapunov spectrum. N = 20.
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Fig. 3. Convergence of a set of orthogonal unit

vectors. Here N = 20.

an example of how the average of A relaxes to the equilibrium value when the
initial conditions are sampled from an arbitrary ensemble we assumed. As far as
we checked, we observed similar relaxation behavior to the same equilibrium value
for different sets of initial conditions. We thus conclude based on these numerical
results that the system possesses the mixing property. Therefore, the ensemble of the
initial conditions at t = 0 is regarded as the microcanonical ensemble with energy
E0 when the ensemble is produced by the sufficiently long time evolution of phase
space points sampled from a distribution absolutely continuous with respect to the
Lebesgue measure on the energy surface. Here, we remark that the relaxation curve
includes an oscillatory component, while the envelop curve exhibits exponentially
decreasing behavior. Both the period of oscillation and the relaxation time seem to
be larger for larger N .

In order to demonstrate the chaotic nature quantitatively, we display the Lya-
punov exponents in Fig. 2. Note that there are two additional zero Lyapunov expo-
nents because of momentum conservation. That is, Np = N − 2. The convergence
of orthonormal frames is confirmed in the manner described in §4.2. Figure 3 shows
the time evolution of the average of the distance d(F(t, Γ (0))ei,F(t, Γ (0))e′i) over
the initial conditions, where i = 1, 2, N − 3 and N − 2. We see that the distance
decreases to a computational noise level after t = 3000.

8.3. Boltzmann entropy

The Boltzmann entropy SB(E, g) is calculated numerically in the following way:
First, according to the adiabatic theorem, which was discussed in §3.1, the phase
space volume enclosed by an energy surface is conserved along quasi-static processes.
Therefore, the equality

Ω(E, g) = Ω(E∗, 0) (8.4)

holds for the quasi-static process (E, g)
qs→ (E∗, 0). Since the FPU model with g = 0

is reduced to the harmonic oscillator model, Ω(E∗, 0) is given by the volume of the
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Fig. 4. (a) Average value of the final energy as a function of τ . (b) Deviation of values of the final

energy as a function of τ . Here N = 20 and ∆g = −1.0.

2N − 2 dimensional sphere, and it is calculated as

Ω(E∗, 0) = cEN−1
∗ , (8.5)

where c does not depend on E∗. Thus, the Boltzmann entropy at (E, g) can be
evaluated as∗)

SB(E, g) = SB(E∗, 0) = (N − 1) logE∗, (8.6)

where an additive constant with respect to E∗ is omitted.

0.5

1

1.5

0 10 20 30

 E

 g

Fig. 5. Equi-entropy curve through (E0, g0)

(solid curve) and other equi-entropy curves

(dotted curves).

In numerical experiments, a quasi-
static process (E0, g0)

qs→ (E1, g0+∆g) is
realized by the large τ limit of the pro-
tocol g(t) = g0+∆gt/τ for 0 ≤ t ≤ τ . In
Fig. 4, the average and deviation of E1

are plotted as functions of τ . We find
that the deviation becomes smaller for
larger τ , and we may assume that quasi-
static processes are realized when τ >
100. The equi-entropy curve through
Σ0 = (E0, g0) in Fig. 5 was obtained
in this way. We express the curve by
E = Eqs(g;Σ0). Similarly, as shown in
Fig. 5, we can draw equi-entropy curves
in the (E, g) space.

Now, we consider a step process re-
alized by the instantaneous change of the value of g from g0 to g1 = g0+∆g at t = 0.
Then, the energy after the switching becomes E1, whose value depends on the choice

∗) In a previous paper, 3) we wrote the factor on the right-hand side as N − 2, not N − 1. This

is a mistake.
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Fig. 6. Entropy difference as a function of ∆g. Different normalizations for the N dependence are

used in (a) and (b).

of the initial condition. The entropy difference ∆SB is calculated by

∆SB = SB(E1, g1)− SB(E0, g0), (8.7)

-0.1 0 0.1 0.2

p
ro

b
ab

ili
ty

∆SB / N

N=100
N=20

N=5

Fig. 7. The probability of the entropy differ-

ence. Here ∆g = 10.

with the formula Eq. (8.6). In Fig. 6, the
average of the entropy difference over
the initial conditions, 〈∆SB〉0, is plotted
as a function of ∆g. This graph shows
that 〈∆SB〉0 is positive. Also, as shown
in Fig. 7, the relative fluctuation of ∆SB

becomes less as N is increased. This im-
plies the existence of the large deviation
property for ∆SB.

8.4. Excess information loss

We now give the results of nu-
merical calculations of the excess in-
formation loss for the step processes

(E0, g0) → (E1, g0 +∆g). In Fig. 8, Hex(t, Γ (0)) for four choices of the initial con-
dition Γ (0) are plotted as functions of t. One can see that Hex(∞, Γ (0)) is clearly
defined. In Fig. 9, we show the average of Hex(t, Γ (0)) over the initial conditions
chosen from the microcanonical ensemble on the energy surface Σ0. The quantity
〈Hex〉0 is given as the value at t =∞ in this graph.

In Fig. 10, 〈Hex〉0 is plotted as a function of ∆g. From this graph, we can
evaluate the value of Φ(Σ0) by the equality

〈Hex〉0 = Φ(Σ0)∆g + o(∆g) (8.8)

for ∆g → 0. In a similar way, in principle, we can calculate the value of Φ(Σ) at
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Fig. 8. Hex(t, Γ (0)) as functions of t for four

different initial conditions. Here N = 20

and ∆g = 20.
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Fig. 9. Average value of Hex(t, Γ (0)) as a

function of t. Here N = 20 and ∆g = 20.
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Fig. 10. 〈Hex〉0 as a function of ∆g. The squares and filled circles represent the data for N = 5

and N = 20, respectively. Different normalizations for the N dependence are used in (a) and

(b).

each energy surface. In particular, Hex:qs for the step process is given by

Hex:qs =
1
2
(Φ(Σ0) + Φ(Σ1))∆g, (8.9)

where Σ1 = (E1, g1) (recall Eq. (7.12) for the definition of Hex:qs).

8.5. Main experiment

In order to check the validity of Eq. (7.19), we need to calculate 〈Hex:qs〉0, the
average of Hex:qs over the initial conditions. This is written as

〈Hex:qs〉0 =
1
2
(Φ(Σ0) + 〈Φ(Σ1)〉0)∆g. (8.10)

However, this average cannot be calculated efficiently, because Σ1 depends on the
choice of the initial condition, and the microcanonical ensemble on Σ1 must be
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produced so as to evaluate Φ(Σ1). For this reason, we find out a way to avoid the
calculation ofHex:qs. We performed the reversed experiments in which the parameter
g is changed from g1 to g0 with the initial state Σ′

0 = (Eqs(g1;Σ0), g1). Suppose that
the process Σ′

0 → Σ′
1 is realized, where Σ′

1 depends on the choice of the initial
condition on the energy surface Σ′

0. Then, we can calculate the Boltzmann entropy
change ∆SB and the excess information loss H ′

ex for the process Σ′
0 → Σ′

1. These
satisfy the relation

1
2
〈∆SB〉′0 =

〈
H ′

ex

〉′
0 −

〈
H ′

ex:qs

〉′
0
+ o(N), (8.11)

where 〈 〉′0 denotes the average over the initial conditions sampled from the micro-
canonical ensemble on the energy surface Σ′

0, and H
′
ex:qs denotes the quasi-static

excess information loss for the step process Σ′
0 → Σ′

1. Here, we can prove the
relation 〈

Hex:qs

〉
0 +

〈
H ′

ex:qs

〉′
0
= o((∆g)2). (8.12)

Proof From the definition of Hex:qs, we have

〈
H ′

ex:qs

〉′
0
= −1

2

(
Φ(Σ′

0) +
〈
Φ(Σ′

1)
〉′
0

)
∆g. (8.13)

Using this equation and Eq. (8.9), we obtain

〈
Hex:qs

〉
0 +

〈
H ′

ex:qs

〉′
0
=

1
2

(
Φ(Σ0) + 〈Φ(Σ1)〉0

)
∆g − 1

2

(
Φ(Σ′

0) +
〈
Φ(Σ′

1)
〉′
0

)
∆g.

(8.14)
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Fig. 11. 〈Hex〉0 + 〈H ′
ex〉′0 as a function of

〈∆SB〉0 + 〈∆SB〉′0. The squares and filled

circles represent the data for N = 5 and

N = 20, respectively. The solid line corre-

sponds to 〈Hex〉0+ 〈H ′
ex〉′0 = 1/2[〈∆SB〉0+

〈∆SB〉′0].

Recalling the energy change for step
processes, we expect

Σ′
0 −Σ1 ∼ O((∆g)2), (8.15)
Σ0 −Σ′

1 ∼ O((∆g)2). (8.16)

Substituting these estimations into
Eq. (8.14) leads to Eq. (8.12).

✷

Finally, from Eqs. (7.19), (8.11) and
(8.12), we obtain the equality

1
2
(〈∆SB〉0 + 〈∆SB〉′0)

= 〈Hex〉0 + 〈Hex〉′0 + o(N, (∆g)2).
(8.17)

This relation can be checked numeri-
cally. As shown in Fig. 11, Eq. (8.17) seems to be valid, and therefore our theoretical
arguments turn out to be consistent with our numerical results.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Thermodynamic Irreversibility from Hamiltonian Chaos 47

§9. Concluding remark

The essence of thermodynamic irreversibility is described by the entropy princi-
ple. Therefore, when one discusses thermodynamic irreversibility in the dynamical
systems, the purpose is to find a state variable satisfying the entropy principle. Our
arguments are made from this natural viewpoint. In this paper, we have found
that irreversible information loss leads to a state variable which satisfies the entropy
principle.

We expect that our theory may be extended so as to apply to other dynamical
systems without Hamiltonians. For example, in dissipative systems driven by ex-
ternal forces, a steady state is realized. The fluctuation properties of such systems
have been discussed extensively. However, attempts at the construction of state the-
ory have not yet been developed. Although Oono and Paniconi have proposed an
operational method to construct a state variable in steady-state thermodynamics,
its validity has not been confirmed. 4) We will attempt to construct non-equilibrium
thermodynamic functions from dynamical system models by studying fluctuation
properties.

Great variety of nonlinear dynamics is known in the contexts of fluid systems,
granular systems, chemical reaction systems, and biological systems. In these sys-
tems, the concept of entropy is not self-evident, and it is difficult to connect a concept
of this kind in these systems with that in thermodynamics. Even in such systems,
it may be important to characterize a state in terms of state functions representing
a relation between states. In particular, one of the most important questions in sci-
ence regards the boundary of the living state. One may ask why we cannot restore
the living state when a life is lost. This is not a problem of thermodynamic irre-
versibility, but rather of a sort of irreversibility in the biological world. However, the
question is too general to be discussed scientifically. We should first consider more
restricted phenomena related to this question. The determination of cell types in cell
differentiation processes may be a good candidate. As already studied by Kaneko
et al., 34) from the dynamical system viewpoint, a cell society may be modeled by
chemical networks with a variable number of cells. In these studies, it was found
that a rule for the determination of cell types emerges. We expect that this rule
might be formalized by state space theory, which shares common features with ther-
modynamics. As developed in our theory concerning thermodynamic irreversibility,
we hope to find a quantity representing a type of relation associated with biological
irreversibility.
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Appendix

In this appendix we summarize basic properties of the k-dimensional volume
element and k-fold exterior products of vectors. 35)

Consider a k-dimensional surface in the n-dimensional Euclid space Rn. The
surface can be decomposed into a set of sufficiently small pieces of k-dimensional
parallelepipeds. A k-dimensional parallelepiped including a point x ∈ Rn is identified
to that in a tangent space at x ∈ Rn.

The k-dimensional volume of the projection of the parallelepiped to a space
spanned by {eij , 1 ≤ j ≤ k} is denoted by ωi1i2···ikdxi1 · · · dxik , where dxi1 · · · dxik
is a k-dimensional volume measure in the space spanned by {eij , 1 ≤ j ≤ k}. The
set {ωi1···ik} is called the k-dimensional volume element.

Let us write the k-dimensional volume element in a coordinate-free form. We
consider the parallelepiped B formed by a set of vectors {bi, 1 ≤ i ≤ k}. We
then define the k-fold exterior product b1 ∧ · · · ∧ bk as a map from a k-dimensional
parallelepiped to its k-dimensional volume under the projection to B. Explicitly, for
a k-dimensional parallelepiped formed by a set of vectors {ai, 1 ≤ i ≤ k}, the action
of the map b1 ∧ · · · ∧ bk is defined as

b1 ∧ · · · ∧ bk · (a1, · · · ak) = detG, (A.1)

where Gij = (bi, aj). We write b1 ∧ · · · ∧ bk as ∧ki=1bi.
Then, we can find an exterior product ∧ki=1ωi such that

ωi1···ik = ∧ki=1ωi · (ei1, · · · eik). (A.2)

Since the exterior product is uniquely determined, the k-dimensional volume element
is identified with the k-fold exterior product. (The set of vectors {ωi, 1 ≤ i ≤ k} is
not uniquely determined.)

The k-fold exterior product ∧ki=1bi has two important properties, multi-linearity
and skew-symmetry. The multi-linearity is constituted by the relation

b1∧· · · ∧ (cibi + c′ib′i) ∧ · · · ∧ bk
= cib1 ∧ · · · ∧ bi ∧ · · · ∧ bk + c′ib1 ∧ · · · ∧ b′i ∧ · · · ∧ bk (A.3)

for arbitrary i, where ci and c′i are numbers, and the skew-symmetry is

∧kl=1bil = sgn(i1, · · · , il) ∧ki=1 bi. (A.4)

Here sgn(i1, · · · , ik) takes the value 1 when the permutation (1, · · · , k)→ (i1, · · · , ik)
is generated by an even number of exchanges. Otherwise it takes the value −1.

Using these two properties, we can prove

∧ki=1

k∑
j=1

Gijbj = detG ∧ki=1 bi. (A.5)
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Proof

∧ki=1

k∑
j=1

Gijbj =
∑

(j1,···jk)

G1j1bj1 ∧ · · · ∧Gkjkbjk (A.6)

=
∑

(j1,···jk)

G1j1 · · ·Gkjkbj1 ∧ · · · ∧ bjk (A.7)

=
∑

(j1,···jk)

sgn(j1 · · · jk)G1j1 · · ·Gkjkb1 ∧ · · · ∧ bk (A.8)

= detGb1 ∧ · · · ∧ bk. (A.9)

✷

The k-dimensional volume of the parallelepiped B is calculated as
√
detB, where

Bij = (bi, bj). (We represent it by | ∧ki=1 bi|.)
Proof We can find a set of orthogonal unit vectors {ui, 1 ≤ i ≤ k} which generate
the vector space spanned by {bi, 1 ≤ i ≤ k}. (One may construct {ui, 1 ≤ i ≤ k}
by employing the Gram-Schmidt procedure.) Then, the k-dimensional volume of B
is given by

| ∧ki=1 bi| = | ∧ki=1 bi · (u1, · · · , uk)|. (A.10)

Since bi can be expanded in the form

bi =
k∑
j=1

Gijuj , (A.11)

we obtain
∧ki=1bi = detG ∧ki=1 ui, (A.12)

where we have used Eq. (A.5). Using the identity

∧ki=1ui · (u1, · · · , uk) = 1, (A.13)

we can rewrite Eq. (A.10) as

| ∧ki=1 bi| = |detG|. (A.14)

On the other hand, since

(bi, bj) =
∑
lm

GilGjm(ul, um) (A.15)

=
∑
l

GilGjl (A.16)

=
(
GG†

)
ij
, (A.17)

we have
B = GG†. (A.18)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/1/1925125 by U

.S. D
epartm

ent of Justice user on 16 August 2022



50 S. Sasa and T. S. Komatsu

Therefore, the equality
detB = (detG)2 (A.19)

holds. Substituting this equality into Eq. (A.14), we obtain

| ∧ki=1 bi| =
√
detB. (A.20)

✷

Further, for arbitrary l satisfying that 1 ≤ l ≤ k, the inequality

|b1 ∧ · · · ∧ bk| ≤ |b1 ∧ · · · ∧ bl||bl+1 ∧ · · · ∧ bk| (A.21)

holds. This makes it possible for us to define the ‘angle’ φ between b1 ∧ · · · ∧ bl and
bl+1 ∧ · · · ∧ bk in such a way that

|b1 ∧ · · · ∧ bk| = |b1 ∧ · · · ∧ bl||bl+1 ∧ · · · ∧ bk| sinφ. (A.22)

Proof As seen in the previous proof, there exist two sets of orthogonal unit
vectors {ui, 1 ≤ i ≤ l} and {u′i, l + 1 ≤ i ≤ k} such that

b1 ∧ · · · ∧ bl = |b1 ∧ · · · ∧ bl|u1 ∧ · · · ∧ ul, (A.23)
bl+1 ∧ · · · ∧ bk = |bl+1 ∧ · · · ∧ bk|u′l+1 ∧ · · · ∧ u′k, (A.24)

where we note that ui is not orthogonal to u′j . Then, we have

|b1 ∧ · · · ∧ bk| = |b1 ∧ · · · ∧ bl||bl+1 ∧ · · · ∧ bk||u1 ∧ · · · ∧ ul ∧ u′l+1 ∧ · · · ∧ u′k|. (A.25)

Now, by using the Gram-Schmidt orthogonalization, we define a new set of vectors
{uj , l + 1 ≤ j ≤ k} as

uj =
u′j −

∑j−1
m=1(u

′
j , um)um

sj
(A.26)

with

sj =

∣∣∣∣∣∣u′j −
j−1∑
m=1

(u′j , um)um

∣∣∣∣∣∣ . (A.27)

Here, from the equality
∣∣∣∣∣∣u′j −

j−1∑
m=1

(u′j, um)um

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
j−1∑
m=1

(u′j , um)um

∣∣∣∣∣∣
2

= 1, (A.28)

we find
0 ≤ sj ≤ 1. (A.29)

Then, from

u′j = sjuj +
j−1∑
m=1

(u′j , um)um, (A.30)
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we derive
|u1 ∧ · · · ∧ uk ∧ u′k+1 ∧ · · · ∧ u′k| = sl+1 · · · sk. (A.31)

Substituting Eq. (A.31) into Eq. (A.25), we finally obtain

|b1 ∧ · · · ∧ bk| = |b1 ∧ · · · ∧ bl||bl+1 ∧ · · · ∧ bk|sl+1 · · · sk (A.32)
≤ |b1 ∧ · · · ∧ bl||bl+1 ∧ · · · ∧ bk|. (A.33)

✷
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