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Highlights 13 

1. Eclogite from the Tso Morari UHP terrane is used as a representative metabasite to test the14 

efficacy of various thermodynamic modeling protocols.15 

2. User’s choice of modeling program, version, and thermodynamic database, have little16 

effect on the model’s outcome in terms of predicted stable mineral assemblage and P-T17 

path.  However, the choice of garnet solution model can have a significant effect on18 

pressure predictions.19 

3. Bulk compositions measured by XRF do not represent the reactant or effective bulk20 

composition at the time of garnet nucleation and throughout garnet prograde growth.21 

Taking into account calculations of the effective bulk composition of the system22 
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 2 

throughout prograde metamorphism leads to more realistic P-T path predictions than 23 

modeling using only an initial bulk composition.  24 

4. More careful consideration of the key mineral solid solution models in calculations, 25 

comparing results of calculations to petrological observations, and consideration of 26 

uncertainties are key to interpreting geological processes.  27 
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ABSTRACT 28 

Thermodynamic modeling is an important technique to simulate the evolution of metamorphic 29 

rocks, particularly the poorly preserved prograde metamorphic reactions. The development of new 30 

thermodynamic modeling techniques and availability of updated thermodynamic databases and 31 

activity-composition (a-X) relations, call for an evaluation of best practices for modeling pressure-32 

temperature (P-T) paths of metabasites. In this paper, eclogite from the Tso Morari UHP terrane, 33 

NW India, is used as a representative metabasite to directly compare the outputs (pseudosections 34 

and P-T paths) generated from recent versions of the widely used THERMOCALC and Theriak-35 

Domino programs. We also evaluate the impact of using the most updated thermodynamic 36 

database (ds 62, Holland and Powell 2011) relative to an older version (ds 55, Holland and Powell 37 

1998), and the effect of the user’s choice of mineral a-X relations while considering the effect 38 

garnet fractionation on the rock’s effective bulk composition. The following modeling protocols 39 

were assessed: (1) TC33; THERMOCALC version 3.33 with database ds 55 and garnet a-X 40 

relations of White et al. (2007); (2) TC47; THERMOCALC version 3.47 with database ds 62 and 41 

garnet a-X relations of White et al. (2014a); (3) TDG; Theriak-Domino with database ds 62 and 42 

garnet a-X relations of White et al. (2014a), and (4) TDW; Theriak-Domino with database ds 62 43 

and garnet a-X relations of White et al. (2007).  44 

TC47 and TDG modeling yield a similar peak metamorphic P-T of 34 ± 1.5 kbar at 544 ± 45 

15 °C and 551 ± 12 °C, respectively. The results are 5–8 kbar higher in pressure than that 46 

determined from TC33 modeling (26 ± 1 kbar at 565 ± 8 °C), and TDW modeling (28.5 ± 1.5 kbar 47 

at 563 ± 13 °C). Results indicate that all four modeling protocols generally provide consistent 48 

metamorphic phase relations and thermodynamic simulations regarding fractionation of the bulk 49 

composition and prograde metamorphism within uncertainty. In all model calculations, the initial 50 
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 4 

bulk composition measured by XRF does not represent the effective bulk composition at the time 51 

of garnet nucleation. The choice of garnet a-X relations can affect predictions of peak pressure, 52 

regardless of program choice. This study illustrates the importance of careful consideration of 53 

which a-X relations one chooses, as well as the need for comparison between modeling predictions 54 

and evidence from the geochemistry and petrography of the rock(s) themselves. 55 

 56 

Key words: Metabasites, Thermodynamic modeling, Tso Morari, UHP eclogite, P-T paths, 57 

Garnet fractionation  58 
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 5 

1. Introduction 59 

Recent developments in high pressure-temperature (P-T) experiments, theoretical 60 

petrochemistry, high-precision geochemical analysis, and computational science have led to 61 

improved models of the formation and evolution of metamorphic rocks. Thermodynamic modeling 62 

programs (e.g., THERMOCALC, Theriak-Domino) can calculate rock and mineral properties for 63 

a specific set of conditions (e.g., pressure, temperature, and composition) and predict equilibrium 64 

mineral assemblages (de Capitani 1994; Powell et al. 1998). These programs utilize internally 65 

consistent thermodynamic databases and activity-composition (a-X) relations to calculate mineral 66 

stabilities and phase relations at different P-T conditions. The user must carefully choose which 67 

program (and program version), database, and set of a-X relations when executing a modeling 68 

protocol. These choices are nontrivial and can affect the outcome of the calculations in various 69 

ways – sometimes leading to significantly different predictions for the stability of phase 70 

assemblages, thus having important implications in the calculated P-T path. The effects of user’s 71 

choices for metabasic compositions have not yet been formally evaluated.  72 

Many previous studies have applied thermodynamic modeling programs to metabasites using 73 

the internally consistent thermodynamic database (e.g., Helgeson et al. 1978; Berman 1988; 74 

Holland and Powell 1998) and various a-X relations (e.g., Berman 1990; Holland and Powell 1996; 75 

Meyre et al. 1997; Dale et al. 2000, 2005; Diener et al. 2007; Green et al. 2007; White et al. 2007) 76 

to model phase equilibrium and estimate P-T conditions during prograde metamorphism (Konrad-77 

Schmolke et al. 2008; St-Onge et al. 2013; Hernández-Uribe et al. 2018, 2019). In some cases, 78 

studies modeling metabasites (Konrad-Schmolke et al. 2008; St-Onge et al. 2013; Imayama 2014; 79 

Hernández-Uribe et al. 2019) used a-X relations that were developed originally for modeling felsic 80 

rocks (White et al. 2007), omitted minor components (e.g., Mn, and Ti), or were not calibrated for 81 
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 6 

ultra-high pressure (UHP) conditions. Updated versions of these modeling programs, internally 82 

consistent thermodynamic databases (e.g., ds 62; Holland and Powell 2011), and a-X relations 83 

(Diener and Powell 2012; White et al. 2014a, 2014b; Green et al. 2016), offer improvements that 84 

may yield better results in terms of interpreting phase relations for minerals with a large group of 85 

endmembers (e.g., amphibole and clinopyroxene) and calculating phase stabilities using an 86 

expanded library of bulk components (e.g., Mn, Ti, and Fe3+).  87 

New a-X relations for metabasic rocks have resolved the stability fields of coexisting sodic-88 

calcic pyroxenes, and clinoamphiboles (Green et al. 2007; Green et al. 2016). Also, improved a-X 89 

relations for clino- and orthoamphiboles (Diener et al. 2007) and revised a-X relations for 90 

clinopyroxene and amphibole (Diener and Powell 2012) allow the prediction of mineral 91 

assemblages in ferric-bearing systems (NCFMASHO) and are more consistent with observed 92 

phase relations in natural rocks. In addition, the model formulation of a-X relations for mafic melts 93 

in the CaO-MgO-Al2O3-SiO2 (CMAS) system, representing the core components for modeling 94 

metabasites, was recalibrated (Green et al. 2012, 2016) to calculate melting equilibria for a high 95 

pressure range (up to 50 kbar at 1800 °C).  96 

The ability to include minor components (e.g., MnO2, Fe2O3) in thermodynamic modeling 97 

(Diener et al. 2007; Diener and Powell 2012; White et al. 2014a, 2014b; Green et al. 2016) makes 98 

it possible to evaluate their effect on phase stabilities and phase reactions for key metamorphic 99 

minerals (e.g., spessartine garnet at low P-T conditions). Care must be taken when using the bulk 100 

rock composition to model metamorphic histories as it may lead to unrealistic results without 101 

consideration of chemical heterogeneity (e.g., outcrop scale, mineral zoning, and relics) and 102 

definition of reactive equilibrium volume (e.g., Warren and Waters 2006; Lanari and Engi 2017).  103 
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Effective bulk composition (EBC, also called reactive bulk-rock composition) is the 104 

composition of the equilibration volume at a specific stage of metamorphism. A rock’s EBC 105 

evolves along a P-T trajectory because of compositional fractionation commonly due to 106 

porphyroblastic growth of minerals like garnet (Tracy 1982; Spear 1988; Spear et al. 1990; Lanari 107 

and Engi 2017), which will continuously consume constituents from the bulk rock composition, 108 

and may trap other minerals as inclusions inside. Components and inclusions locked in the garnet 109 

core are then excluded from participating in any subsequent chemical reactions in the matrix and 110 

hence should not be included when modeling later stages of the metamorphic history (Spear et al. 111 

1990; Lanari and Engi 2017). For this reason, the EBC can differ from the bulk or whole-rock 112 

composition commonly measured by X-ray fluorescence spectrometry (XRF) (Evans 2004; 113 

Gaidies et al. 2008a; Moynihan and Pattison 2013; Lanari and Engi 2017; Spear and Wolfe 2018). 114 

Including EBC calculations in thermodynamic modeling makes it possible to more accurately 115 

model the P-T conditions and phase relations in metamorphic terranes with mafic rocks, and more 116 

effectively compare the results with previous studies and conventional thermobarometers (Palin et 117 

al. 2016; Hernández-Uribe et al. 2018; Yu et al. 2019).  118 

This study evaluates the effects of the user’s choice of modeling program, Theriak-Domino 119 

(TD; de Capitani 1994) and THERMOCALC (TC; Powell et al. 1998), database (ds 55 vs. ds 62), 120 

and garnet a-X relations (White et al. 2007 vs. White et al. 2014a) on predictions of stable mineral 121 

assemblages and P-T path estimates for metabasites, by providing direct comparisons and 122 

evaluation of the results achieved from various combinations of these choices, focusing on pitfalls, 123 

strengths, and limitations of the modeling protocols when applied to high pressure-ultra high 124 

pressure (HP-UHP) mafic rocks. We make recommendations for best practices in modeling 125 

metabasites and compare our results with those from previous studies.  126 
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In all calculations, we use data collected from the well-characterized coesite-bearing eclogite 127 

of the Tso Morari UHP terrane, in NW Himalaya, as input for our models (Steck et al. 1998; de 128 

Sigoyer et al. 2000; Konrad-Schmolke et al. 2008; Mukherjee and Sachan 2009; Singh et al. 2013a, 129 

2013b; Donaldson et al. 2013; St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2014, 130 

2017; Jonnalagadda et al. 2017a, 2017b). The Tso Morari UHP eclogites were formed as a result 131 

of the continental collision and continuous subduction of the Indian subcontinent beneath the 132 

Eurasian continent (Pognante et al. 1990; Guillot et al. 1997; de Sigoyer et al. 2000; Lombardo 133 

and Rolfo 2000; Kohn and Parkinson 2002; O’Brien 2018, 2019). Previous studies have estimated 134 

the P-T conditions and predicted metamorphic phase assemblages of Tso Morari UHP eclogites 135 

through thermodynamic modeling (Konrad-Schmolke et al. 2008; St-Onge et al. 2013), stable 136 

mineral assemblages and conventional thermobarometry (Guillot et al. 1997; de Sigoyer et al. 1997; 137 

Lombardo et al. 2000; Mukherjee et al. 2003; Lanari et al. 2013; Singh et al. 2013a, 2013b; 138 

Chatterjee and Jagoutz 2015; Wilke et al. 2015), thermomechanical modeling (Palin et al. 2017), 139 

and by the presence of coesite, suggesting peak conditions at UHP conditions were reached in the 140 

terrane (Mukherjee and Sachan 2001; Sachan et al. 2004). Multiple approaches have been applied 141 

to calculate prograde and peak P-T conditions in the Tso Morari eclogite (e.g., pseudosection 142 

construction, stable mineral assemblages, and conventional thermobarometry) making it an ideal 143 

UHP metabasite case study for evaluating the performance of different modeling programs, 144 

thermodynamic databases, and a-X relations.  145 

Thermodynamic modeling studies on HP-UHP metabasites (e.g., eclogite facies) are not as 146 

well represented in the literature as those on metapelites and metagranites. Modeling HP-UHP 147 

metabasites can be difficult because they have a lower degree of variability in mineral phases or 148 

their endmembers (lower variance in thermodynamic modeling) making it harder to track changes 149 
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 9 

in P-T-t space. The problem is exacerbated at eclogite-facies conditions, because the mineral 150 

compositions and proportions do not change significantly with changing P and T. Additionally, 151 

the effects of dehydration during prograde metamorphism and compositional fractionation due to 152 

garnet growth make modeling metabasites even more challenging.  153 

This study examines the effects of user choices in thermodynamic modeling protocols used 154 

with metabasites and uses information from the rocks themselves (mineral assemblages, 155 

compositions, and textures) as ground truth by which to evaluate the efficacy of the various 156 

protocols tested. Specifically, we use bulk compositions, in situ mineral compositions, and mineral 157 

modal proportions and textures from a Tso Morari eclogite block to test four different modeling 158 

protocols. The protocols were designed to evaluate the effect of choice of database (ds 55 vs. ds 159 

62), program (TC vs. TD) and garnet solution model (White et al. 2007 vs. White et al. 2014a). 160 

The four protocols are as follows: (1) TC33 – THERMOCALC version 3.33 with database ds 55 161 

and a-X relations of White et al. (2007) for garnet; (2) TC47 – THERMOCALC version 3.47 with 162 

database ds 62 and a-X relations of White et al. (2014a) for garnet; (3) TDG – Theriak-Domino 163 

with database ds 62 and a-X relations of White et al. (2014a)  for garnet; and (4) TDW – Theriak-164 

Domino with database ds 62 and modified a-X relations using White et al. (2007) for garnet. Table 165 

1 presents this information, as well as other details (e.g., a-X relations of non-garnet minerals) of 166 

the different protocols. For each protocol, mineral phase diagrams (pseudosections) were 167 

constructed and EBC calculations were done to address element fractionation during prograde 168 

garnet growth. The ultimate goals of this study are to evaluate P-T conditions during burial and 169 

exhumation of the Tso Morari UHP eclogite by thoroughly and thoughtfully comparing results of 170 

commonly used thermodynamic modeling software and databases, to determine which give the 171 

best results, and to make recommendations for best practices in modeling HP-UHP metabasites. 172 
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 173 

2. Geologic Setting: Tso Morari UHP Terrane 174 

UHP rocks occur in the Himalaya in two locations south of the Indus-Yarlung-Tsangpo (IYT) 175 

suture zone, which separates Indian and Asian rocks: (1) in the Kaghan Valley of northern Pakistan 176 

(Pognante and Spencer 1991; Spencer 1993; Spencer et al 1995; O’Brien et al. 1999, 2001, 2018; 177 

Lombardo et al. 2000; Lombardo and Rolfo 2000; Rehman et al. 2007, 2008; Wilke et al. 2010a, 178 

2010b; Donaldson et al. 2013), and (2) north of Tso (Lake) Morari in northwestern India (Guillot 179 

et al. 1997, 2000; de Sigoyer et al. 1997, 1999, 2004; Sachan et al. 1999; Mukherjee and Sachan 180 

2001, 2004; Mukherjee et al. 2003; Konrad-Schmolke et al. 2005, 2008; Leech et al. 2005, 2007; 181 

O’Brien 2019) (Fig. 1 inset). UHP metamorphism in Tso Morari rocks is confirmed by preserved 182 

coesite in eclogite blocks (Mukherjee and Sachan 2001; Sachan et al. 2004). UHP rocks crop out 183 

within dominantly felsic Indian supracrustal rocks (e.g., de Sigoyer et al. 2004), as seen in Figs. 1 184 

and 2a. Table 2 presents mineral abbreviation used throughout this paper. 185 

The Tso Morari is considered a relatively small UHP terrane (Kylander-Clark et al. 2012), 186 

primarily composed of the quartzo-feldspathic Puga Gneiss with rare, small eclogite blocks (Fig. 187 

2a). Since the discovery of eclogite in the Tso Morari UHP terrane by Berthelsen (1953), it has 188 

been extensively studied. The terrane is chemically linked to subducted Tethyan Himalayan crust 189 

(Steck et al. 1998). The eclogite-facies boudins only occur within the Tso Morari nappe.  190 

Some of the larger eclogite blocks in the UHP Tso Morari terrane preserve eclogite facies 191 

mineral assemblages with some amphibolite retrograde overprint especially near the block edges. 192 

The peak eclogite facies assemblage is garnet + omphacite ± phengite + rutile + quartz/coesite (see 193 

O’Brien, 2019 for review). This study uses samples from the most extensively studied eclogite 194 

outcrop (e.g., Sachan et al. 1999; O’Brien and Sachan 2000; Mukherjee and Sachan 2001; 195 
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Mukherjee et al. 2003; Sachan et al. 2004; Konrad-Schmolke et al. 2008; Donaldson et al. 2013; 196 

Singh et al. 2013a, 2013b; St. Onge et al. 2013; Palin et al. 2014; Chatterjee and Jagoutz 2015; 197 

Wilke et al. 2015; Jonnalagadda et al. 2017a, 2017b); the samples were also used in the Donaldson 198 

et al. (2013) geochronologic study. The eclogite has abundant garnet (1-1.5 mm in diameter), often 199 

found in clusters in a matrix of finer-grained omphacite (Fig. 2a & b). The two iconic eclogite 200 

minerals occur with large porphyoblasts of carbonate and phengite and smaller crystals of rutile 201 

and quartz (Fig. 2a, b & c). The high-pressure phases are partially overgrown with amphibole 202 

(barroisite-winchite), clinozoisite, and paragonite (Fig. 2c & d). Garnets have significant zoning 203 

contain abundant inclusions (Fig. 3). 204 

Previous P-T studies have proposed that the Tso Morari UHP terrane either experienced a 205 

relatively cool, concave prograde P-T path (St-Onge et al. 2013; Chatterjee and Jagoutz 2015; 206 

Palin et al. 2017) or a hotter, convex prograde path (Konrad-Schmolke et al. 2008; Warren et al. 207 

2008; Beaumont et al. 2009). Hotter prograde P-T paths are predicted by thermal-mechanically 208 

modeling the subduction-collision dynamics of the continental Tso Morari UHP rocks (Warren et 209 

al. 2008; Beaumont et al. 2009) as opposed to the cold slab path by Syracuse et al. (2010). The 210 

position of the prograde path has implications for the prograde assemblage with the cooler path 211 

predicting significant lawsonite and hotter amphibole (see O’Brien et al. 2019 for review). The 212 

proposed peak pressure varies significantly from ~28 to ~48 kbar with the higher estimates (33-48 213 

kbar) based on carbonate assemblages (Mukherjee et al. 2003; Wilke et al. 2015). Peak pressure 214 

calculations using the non-carbonate assemblage range from 22-28 kbar (Konrad-Schmolke et al. 215 

2008; Lanari et al. 2013; St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2017).  The 216 

duration of exhumation of the Tso Morari UHP terrane is proposed by multiple studies to be ~6 217 
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My (Leech et al. 2007; Guillot et al. 2008; St-Onge et al. 2013), putting it into the fast exhumation 218 

category of Kylander-Clark et al. (2012). 219 

 220 

3. Samples and Analytical Methods 221 

 222 

3.1. Sample Description 223 

At Tso Morari, eclogite lenses are hosted as small boudins (<20 m) within the gneiss body (Fig. 224 

2a). The eclogite boudins show strong ductile deformation and have lensoid shapes parallel to 225 

strongly developed shear fabric in the gneiss. Data from one sample was used in this study, TM-226 

15 (Fig. 2a). It was collected from the center of a single, well-studied eclogite boudin (see 227 

references above), where the largest proportion of eclogite-facies phases are preserved. The modal 228 

abundance of amphibolite facies minerals increases from core to rim of the block.  229 

Sample TM-15 is medium-grained with granoblastic texture. Modal mineralogy was 230 

determined by using ImageJ (Schneider et al. 2012) to calculate percent area of different minerals 231 

based on grayscale levels in a backscattered electron image mosaic (17×40 mm) of a thin section 232 

of TM-15 (part of which is shown in Fig. 2c). TM-15 is 28.6% garnet, 20.2% omphacite, 18.8% 233 

amphibole, 12.7% quartz, 9.3% epidote, and 9.2% phengite. The remaining 1.2% includes the 234 

minor minerals rutile, ilmenite, magnetite, dolomite, paragonite and zircon (Fig. 2b & c). The 235 

abundance of high-pressure minerals (high-Mg garnet rims, omphacite, and high-Si phengite), and 236 

the discovery of coesite in this eclogite block (Mukherjee and Sachan 2001; Sachan et al. 2004) 237 

confirm that this sample experienced UHP conditions. TM-15 has a weak foliation defined by 238 

matric omphacite and phengite (Fig. 2b), fabric development is variable within the block and host 239 

gneiss (Fig. 2a). 240 
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 Garnet has abundant inclusions in darker red cores while the lighter rims have significantly 241 

less to no inclusions (Figs. 2b & c, 3). There is a change in the inclusion population from core to 242 

rim domain. The inclusion phases in garnet cores include aegirine-rich omphacite, sodic-calcic 243 

amphibole (winchite), epidote, muscovite, jadeite, chlorite, quartz, magnetite, and rutile (Fig. 3). 244 

The garnet rim has fewer mineral inclusions, including jadeite-rich omphacite, clinoamphibole, 245 

phengite, quartz and carbonates. We did not observe any lawsonite or its pseudomorph (as epidote 246 

or paragonite) or any glaucophane in this study.  247 

The UHP phases are overgrown by sodic-calcic amphibole, clinozoisite, and paragonite (Fig. 248 

2c & d). Matrix omphacite is partially replaced by symplectites of sodium-rich plagioclase and 249 

jadeite-poor clinopyroxene (Fig. 2d). Rutile grains are rimmed by titanite and magnesite is locally 250 

present with dolomite grains.   251 

 252 

3.2. Analytical Methods 253 

Bulk rock composition of TM-15 was measured by XRF (Thermo ARL-ARL Advant XP and 254 

XP+X-Ray Fluorescence Spectrometer) (Table 3). Part of the sample was crushed using a mortar 255 

and pestle to <1 mm, then powdered in a tungsten-carbide shatter box. Scanning electron 256 

microscope (SEM) and energy dispersive x-ray spectroscopy (EDS) analyses were performed 257 

using the Zeiss EVO-10 SEM with Bruker XFlash6, 60 mm2 EDS detector at Indiana University-258 

Purdue University Indianapolis. Backscattered electron (BSE) images were obtained at 15 kV with 259 

an analytical Resolution 3.0 nm, and qualitative compositional data (EDS analyses) were also 260 

collected at these conditions. XMapTools (De Andrade et al. 2006; Lanari et al. 2019) was used 261 

on SEM/EDS X-ray maps to identify mineral phases and quantify mineral proportions for small 262 

areas. 263 
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Electron probe micro-analyzer (EPMA) measurements were performed using the CAMECA 264 

SX-50 Electron Microprobe in EM laboratory at Indiana University, Bloomington to obtain 265 

quantitative compositional data from minerals. Analytical conditions were 15 keV accelerating 266 

voltage, 20 nA beam current, 1 μm beam size and peak counting time of 20 s for major element 267 

analysis of all minerals. Analytical uncertainty for major elements is less than 2 wt. %. Elements 268 

were calibrated by the following standards: Si (clinopyroxene), Al (anorthite), Mg (San Carlos 269 

olivine), Fe (fayalite), Mn (grueninite), Na (albite), K (orthoclase), Ca (clinopyroxene), Ti 270 

(ilmenite). The measured mineral phases include pyroxene (mainly omphacite), garnet, amphibole, 271 

micas (muscovite, biotite, paragonite), K-feldspar, albite, epidote, titanite, dolomite, calcite. Point 272 

analyses (EPMA) were also conducted on mineral inclusions trapped in garnet to evaluate its 273 

equilibrium status at the early stages of metamorphism.  274 

  275 

4. Mineral Chemistry and Petrography 276 

Garnet 277 

In sample TM-15, garnet occurs as individual euhedral crystals with sizes ranging from 500 to 278 

2000 m, or as coalesced clumps of several grains (Fig. 2b-c). An EPMA traverse across TM-279 

15G#3 (rim-core-rim) was collected to investigate compositional variation (Figs. 3b & c, 4a & b, 280 

5; Table 4) in the garnet. A large (~1200×800 m), single garnet crystal with well-preserved 281 

zoning, referred to hereafter as TM-15G#3, was chosen for detailed analysis (Fig. 3a-c). TM-282 

15G#3 preserves sharp growth zones, recognized in thin section and BSE images, and the 283 

commonly observed change in inclusion population from core to rim (Fig. 3a-c).  284 

The garnet TM-15G#3 has three zones from core to rim labeled on Fig. 5 as Core, Rim 1, and 285 

Rim 2. The large core domain displays variability with each element (Alm54-65Grs24-34Sps1.0-286 
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2.3Prp1.5-6.5) but roughly uniform composition across the core region starting at 328 to 920 µm in 287 

Fig. 5. For 100 µm on either side of the core, in Rim 1 pyrope increases and grossular decreases 288 

while almandine stays the same. In the outermost rim, Rim 2, almandine drops sharply as pyrope 289 

increases (Alm44-52Grs15-23Sps0.5-1.7Prp20-32) (Fig. 5). The pyrope-rich outermost rim has a very 290 

sharp compositional boundary changing ~15 mol. % over 20 µm (Figs. 3a-c, 5).  291 

 292 

Omphacite 293 

In sample TM-15, omphacite accounts for ~20.2% of the modal abundance. The matrix 294 

omphacite ranges in size from 100–500 m with subhedral crystallization and no marked zonation 295 

(Figs. 3b-d, 4c), and has a composition of Quad52Jd42Ae6 based on Morimoto (1988) nomenclature, 296 

and x(Fe) = 0.16–0.29 (0.24 avg.), where x(Fe) = Fe2+/(Fe2++Mg). Minor aegirine-rich omphacite 297 

occurs in the garnet cores of TM-15 as mineral inclusions; these can be strongly zoned (Fig. 3a) 298 

and have composition of Quad61Jd51Ae21 and x(Fe) = 0.38–0.53 (0.52 avg.) (Fig. 4c; Table 4). The 299 

pyroxene formulas in Table 4 (including Fe3+) have been recalculated based on stoichiometry and 300 

charge balance (Droop, 1987).  301 

 302 

Amphibole 303 

Amphibole occurs in TM-15 as sodic-calcic amphibole (camp). The amphibole in TM-15 304 

makes up ~18.8% of the rock, and ranges in size from 200-1000 m (Fig. 2c & d). Amphibole in 305 

the matrix of TM-15 shows mostly idiomorphic texture, with only minor amphibole showing 306 

poikilitic texture (Fig. 2c & d). It belongs to the winchite sub-group based on the amphibole 307 

reclassification of IMA 2012 standard (Horák and Gibbons 1986; Locock 2014), with Si = 7.41–308 

7.77 p.f.u. (7.49 avg.), Mg/(Mg+Fe2+) = 0.85–0.90 and Na (M4) = 0.66 (Table 4). Amphibole in 309 
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the garnet core of TM-15 shows no discernible texture and belongs to the winchite sub-group with 310 

Si = 7.12–7.52 p.f.u. (7.30 avg.), Mg/(Mg+Fe2+) = 0.56–0.62 and Na (M4) = 0.82 (Table 4).  311 

 312 

White Mica 313 

White micas are the major potassium-bearing mineral phases in TM-15 (Table 4). White mica 314 

(phengite and paragonite), occurs mostly in the matrix TM-15, ranging in size from 100–1000 m 315 

(Fig. 2c). When found in the core of garnet, white micas are <50 m in size (Fig. 3d). White mica 316 

with >3.12 Si p.f.u. are referred to hereafter as phengite (Menold et al. 2009). Phengite in TM-15 317 

have a large compositional range (Si p.f.u. = 3.24–3.54) (Fig. 4d), suggesting growth over a range 318 

of P-T conditions. The highest silica phengite has 3.51–3.54 Si p.f.u. Paragonite (muscovite) in 319 

the matrix of TM-15 has a Si p.f.u. = 2.91–2.98, AlIV = 1.02–1.09 and Na/(Na+K) = 0.03–0.07 320 

(Table 4) and mostly occurs as a thin ring around phengite in the rock matrix (Fig. 2d). No 321 

paragonite has been found in garnet cores in this study.  322 

 323 

Carbonates 324 

Carbonate phases, primarily dolomite make up <1 % of sample TM-15 occurring as small 325 

porphyroblasts in the matrix (Fig. 2d). Dolomite and calcite also occur as inclusions in the cores 326 

of garnets (Fig. 3b & c). 327 

 328 

Accessory Phases 329 

Epidote accounts for ~9–11% of the minerals TM-15, occurs as apparently idiomorphic 330 

crystals in the rock matrix (~150×750 µm) (Fig. 2c & d), and as tiny inclusions in garnet (~10 µm) 331 

with no proximity to paragonite. The average epidote in the matrix of TM-15 has an 332 
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Fe3+/(Al3++Fe3+) ratio of 0.08–0.12 (0.11 avg.) (Table 4). Accessory minerals in TM-15 include 333 

chlorite (Fig. 3d), albite (Fig. 3b), K-feldspar, rutile (Fig. 3b), ilmenite (Fig. 3b) and magnetite 334 

(Fig. 3b).  335 

 336 

5. Conventional Thermobarometry 337 

5.1. Thermobarometry Methods 338 

Multiple conventional thermobarometers were utilized to constrain metamorphic P-T 339 

conditions to compare with predictions from modeling trials, including garnet-clinopyroxene 340 

thermometry (Powell 1985; Ravna 2000), garnet-phengite thermometry (Green and Hellman 341 

1982), garnet-omphacite-phengite geobarometry (Waters and Martin 1996), phengite 342 

geobarometry (Kamzolkin et al. 2016), and muscovite-paragonite thermobarometry (Guidotti et al. 343 

1994; Roux and Hovis 1996) (presented in Section 5.2).  344 

To provide some estimate of the uncertainty associated with the P-T predictions from 345 

conventional thermobarometry, workers commonly use a function in THERMOCALC version 346 

3.33 (TC3.33) called AVE_PT mode (e.g., Powell and Holland 1994; Worey and Powell 2000; 347 

Walker and Searle 2001; Proyer et al. 2004; Endo et al. 2012; St-Onge et al. 2013). This function 348 

calculates an average P-T for a given mineral assemblage and bulk composition, as well as an 349 

associated model error estimate. The error ellipses in Fig. 6a were determined with AVE_PT mode 350 

as described here.   351 

To minimize the effect of disequilibrium of selected mineral pairs on the accuracy of the 352 

thermobarometers, EPMA data from the highest-Si phengite, garnet rim domain, and matrix 353 

omphacite with x(Fe) < 0.25 in TM-15 have been used to calculate peak pressure conditions. Due 354 
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to limited EPMA data on inclusions from the garnet core (Table 4), we did not use data from those 355 

phases to conduct thermobarometry calculations.  356 

Eclogite facies mineral assemblages facilitate the use of Fe2+-Mg partitioning between both 357 

garnet-clinopyroxene (GC) and garnet-phengite (GP) pairs for geothermometry, as the partitioning 358 

of these two elements is strongly temperature dependent in these mineral pairs (GC: Powell 1985; 359 

Ravna 2000; GP: Green and Hellman 1982; see thermobarometry methods Section 1.1-1.3 in 360 

supplementary materials).  However, cation exchange between Fe2+ and Mg has two major issues 361 

regarding its accuracy in application to eclogites: (1) diffusional re-equilibration during retrograde 362 

metamorphism and (2) the high uncertainties associated with calculations of Fe3+/Fe2+. The first is 363 

highly temperature dependent and therefore will be a bigger problem for high temperature 364 

(>800 °C) eclogite and granulite facies rocks (Florence and Spear 1995; Pattinson et al. 2003). 365 

Previous work on the Tso Morari suggests peak temperatures <700 °C (e.g., St. Onge et al. 2013). 366 

Regarding the second issue, mineral Fe3+/Fe2+ can be determined indirectly by charge balance 367 

methods (e.g., Droop 1987) or directly measured by Mössbauer spectroscopy. Omphacite from 368 

UHP terranes have been analyzed previously by Mössbauer spectroscopy, revealing that Fe3+ can 369 

be up to 50% of FeTotal, and values measured often exceed those calculated by charge balance on 370 

the same samples (Ravna and Paquin 2003; Proyer et al. 2004). The charge-balance calculation 371 

(Droop 1987) has been used here to estimate Fe3+/Fe2+ in garnet and omphacite. Concentrations of 372 

Fe3+ in garnet are estimated to be ~0.2% of FeTotal; in omphacite estimates range from 11% to 60%.  373 

The result of underestimation of Fe3+/Fe2+ will be an overestimation of temperatures.   374 

Geologic barometers utilize net-transfer reactions instead of exchange reactions (e.g., Spear 375 

1995). Net-transfer reactions avoid the issues mentioned above by requiring longer diffusive 376 

length-scales (Hacker et al. 2006). A commonly used barometer for phengite-bearing eclogites is 377 
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the garnet-omphacite-phengite geobarometer (GOP) of Waters and Martin (1996), which can be 378 

calculated through the KMASH mode reaction equilibrium (See Section 1.4 Garnet-Omphacite-379 

Phengite Geobarometer (GOP) in supplementary materials). Use of the GOP barometer (Waters 380 

and Martin 1996) is predicated on the fact that the silica concentration in phengite has been found 381 

to be strongly pressure dependent, linearly increasing from >3.00 to values <4.00 in a 12 (O, OH) 382 

formula unit in response to MgVISiIVAlVI
-1AlIV

-1 substitution, since AlIV is not favored at high 383 

pressures (Massonne and Schreyer 1987; Carswell and Harley 1990). Activity models for garnet 384 

and clinopyroxene are a major source of uncertainty in applying this barometer. Following Waters 385 

and Martin (1996), the simple Mg-Ca mixing model of Newton and Haselton (1981) for garnet, 386 

the non-ideal activity model of Holland (1990) for omphacite, and ideal mixing model of Holland 387 

and Powell (1990) for phengite were used for this study. An empirical correction of -0.000543 is 388 

added to the original T*lnK coefficient (0.002995) to account for the discrepancy with 389 

the experiments of Schmidt (1993) (see Section 1.4 Garnet-Omphacite-Phengite Geobarometer 390 

(GOP) in supplementary materials).  Another empirical phengite geobarometer (Kamzolkin et al. 391 

2016) for conditions of Si >3.25 p.f.u. and T <750 °C was used in this study to compare with the 392 

GOP barometer (see Section 1.5 phengite geobarometer in supplementary materials). 393 

Muscovite-paragonite thermobarometry was used to estimate retrograde P-T conditions based 394 

on K-Na exchange equilibria (Guidotti et al. 1994; Roux and Hovis 1996) (Fig. 6b). 395 

 396 

5.2. Thermobarometry Results  397 

To estimate the metamorphic conditions in sample TM-15 from conventional thermobarometry, 398 

the following eclogite facies assemblage was used: garnet (TM-15G#3) rim average composition 399 

between 367 m and 490 m (low-calcium), omphacite from the matrix (EPMA data show that 400 
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the matrix omphacite has low compositional variation; average value in Table 4), and high silica 401 

phengite (3.51–3.54 Si p.f.u.) from the matrix (Figs. 2c and 4d). The intersections of lines 402 

generated using GC and GP thermometers, and GOP and empirical phengite barometers, provide 403 

a poorly constrained P-T estimate of ~520–700 °C and ~20–26 kbar (Fig. 6a) at peak pressure.  404 

As discussed in Section 5.1, we used the AVE_PT function in TC3.33 to provide an estimate 405 

of the uncertainty for the thermobarometry calculations. The average P-T conditions calculated 406 

using TC3.33 AVE_PT for the assemblage (omp, grt, ms, tlc, lws, rt, coe, H2O) from the garnet 407 

rim was 572 ± 15 °C and 23.3 ± 1.2 kbar.  The average P-T condition calculated using TC3.33 408 

AVE_PT for the assemblage (omp, grt, hbl, ep, ms, rt, qtz, H2O) from the garnet core is 523 ± 409 

37 °C and 21.0 ± 1.6 kbar. Low silica phengite and paragonite in the matrix of sample TM-15 (pg-410 

ms) were used to estimate late retrograde metamorphic conditions (Guidotti et al. 1994; Roux and 411 

Hovis 1996), yielding a P-T range of ~450–500 °C and 7–14 kbar (Fig. 6b). 412 

 413 

6. Thermodynamic Modeling of the Tso Morari Eclogite 414 

 415 

6.1. Modeling Methods 416 

TC and TD programs operate in different ways. TC calculates equilibria by solving a set of 417 

nonlinear equations for model systems in equilibrium (Powell et al. 1998). TD calculates and 418 

plots equilibrium phase diagrams by means of Gibbs free energy minimization (de Capitani 1994). 419 

Both programs can use the same thermodynamic databases (e.g., ds 55 and ds 62) and a-X relations 420 

for modeling metamorphic rocks. A thermodynamic database describes the internally consistent 421 

thermodynamic properties for mineral endmembers, while a set of a-X relations dictates 422 

calculations of the thermodynamics of mixing of multiple endmember phases (e.g., Holland and 423 
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Powell 2011; Green et al. 2016). To generate a pseudosection, which is a diagram showing the 424 

fields of stability of different equilibrium mineral assemblages at a fixed bulk composition or along 425 

a chosen vector of variation within bulk composition space, and model the P-T history for 426 

metamorphic phases of interest, a thermodynamic database has to be combined with a set of a-X 427 

relations when executing a modeling program.  428 

The thermodynamic database and a-X relations used in the two modeling programs (TC and 429 

TD) differ in format but are identical in terms thermodynamic properties and mixing properties of 430 

end-member phases, if they are from the same versions. The conversion of the latest metabasite a-431 

X relations (Green et al. 2016), originally built for TC, to one being compatible with the TD 432 

working environment (http://dtinkham.net/peq.html) made the modeling of metabasites easier and 433 

more automatic. Pseudosection construction is the key function of thermodynamic modeling 434 

programs (TC and TD), as it predicts the stability fields of equilibrium phases (i.e., minerals, melts, 435 

and fluids) in P-T space, as well as their compositions and proportions. A prograde metamorphic 436 

P-T path can be modeled for HP-UHP rocks by projecting garnet compositional data onto the 437 

theoretically predicted mineral compositional isopleths in pseudosections (e.g., St-Onge et al. 2013; 438 

Hernández-Uribe et al. 2018; Laurent et al. 2018; Yu et al. 2019). 439 

As introduced in Section 1, the four protocols that we test here are: (1) TC33 , which uses 440 

THERMOCALC version 3.33 with database ds 55 and a-X relations of White et al. (2007) for 441 

garnet; (2) TC47, using THERMOCALC version 3.47 with database ds 62 and a-X relations of 442 

White et al. (2014a) for garnet; (3) TDG, using Theriak-Domino with database ds 62 and a-X 443 

relations of White et al. (2014a)  for garnet; and (4) TDW, using Theriak-Domino with database 444 

ds 62 and modified a-X relations using White et al. (2007) for garnet. The a-X relations of non-445 

garnet minerals used the different protocols are shown in Table 1. 446 
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 447 

6.2. Model Input and Components 448 

Garnet, being a key mineral in HP and UHP metamorphic rocks, is capable of recording 449 

evidence of the metamorphic history of the rock in its structure by responding to the changes in 450 

composition, P, T, and fO2, over time as the crystals grow (Spear and Selverstone 1983; Spear et 451 

al. 1990; Spear 1995; Vance and Mahar 1998; Stowell and Tinkham 2003; Ague and Axler 2016). 452 

This is due to the robust chemical and mechanical properties of garnet and its resistance to post-453 

growth dissolution (Caddick et al. 2010; Baxter et al. 2017). Pseudosections and garnet 454 

compositional isopleths (alm, prp and grs) are commonly used in thermodynamic modeling to 455 

constrain prograde metamorphism and corresponding P-T conditions (Spear 1995; Tinkham and 456 

Ghent 2005; Gaidies et al. 2008a, 2008b; Massonne 2012; St-Onge et al. 2013).  457 

Eclogite TM-15, and garnet crystal TM-15G#3 (Fig. 3a-c) were selected as the representative 458 

eclogite bulk composition and garnet composition, respectively, to perform the modeling presented 459 

here – to create pseudosections and model P-T paths using the various protocols we test. The large 460 

grain size, evident growth zonation, x(Ca)grt minimum and x(Mg)grt maximum occurring along the 461 

garnet profile (Fig. 5), and the ~200 µm rim seen in photomicrographs and BSE images (Fig. 2b 462 

and 3b), indicate that prograde metamorphism conditions, including peak pressure, have been 463 

recorded in garnet crystal TM-15G#3. Also, among three measured garnet profiles this grain had 464 

the lowest grossular and highest pyrope content. 465 

Table 3 presents the bulk composition of TM-15, measured by XRF, which was used as starting 466 

input to construct pseudosections. MnO is omitted from the bulk composition when constructing 467 

pseudosections and calculating EBCs during the early stages of garnet growth. This is because 468 

while MnO is a significant component in the garnet core composition (Fig. 3c), it becomes less 469 
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significant at later stages of prograde metamorphism/garnet growth (Symmes and Ferry 1992; 470 

Mahar et al. 1997; White et al. 2014b). Carbonate and phosphorus minerals were omitted from the 471 

bulk composition due to low concentrations in this sample (Table 3). A compositional profile 472 

(1200 m traverse) across garnet TM-15G#3 (Fig. 5; Table S1), measured by EPMA, is utilized 473 

to model prograde garnet growth attending metamorphism. 474 

Thermodynamic modeling and calculations in this paper are performed in the 10-component 475 

system, Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 (NCKFMASHTO). See Table 476 

1 for lists of minerals included in each of the modeling protocols and which a-X relations were 477 

used for those minerals with solid-solution. The presence of hydrous mineral inclusions (e.g., 478 

phengite, epidote, chlorite) in the core of garnet TM-15#G3 suggests that eclogite TM-15 was 479 

water-saturated in the early stages of metamorphism. Here we assume water is to be saturated 480 

along the prograde path in all calculations.  481 

The bulk Fe3+/Fe (~10.9%) of eclogite TM-15 was estimated using stoichiometric criteria in 482 

the mineral compositions and recalculating the mineral ferric contents using the AX program of 483 

Holland and Powell (2000). The effect of garnet intra-crystal diffusion was not considered due to 484 

the high heating rate (~10 °C My-1) (Gaidies et al. 2008a) and short duration (<10 Ma) of prograde 485 

metamorphism (St-Onge et al. 2013; Wilke et al. 2015). Effects from mineral inclusions on 486 

modeling results are very limited due to the low abundance of inclusions in TM-15. Mineral 487 

inclusions occur mostly in the garnet core as omphacite, rutile, phengite, omphacite, albite, and 488 

quartz, and account for less than ~1% of the bulk composition of the whole rock. 489 

 490 
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6.3. Effective Bulk Composition Calculations and Mineral Fractionation Methods 491 

EBC estimates are among the most important factors affecting the accuracy of predictions of 492 

metamorphic P-T conditions attending prograde metamorphism, and this task is non-trivial as the 493 

EBC continuously changes with progressive metamorphism and porphyroblastic mineral (e.g., 494 

garnet) crystallization (Marmo et al. 2002; Evans 2004; Tinkham and Ghent 2005; Warren and 495 

Waters 2006; Zeh 2006; Gaidies et al. 2008b; Lanari and Engi 2017). Reaction kinetics (e.g., 496 

reaction rate, driving force, and crystallization mechanism) can also hinder obtaining the realistic 497 

reactive equilibrium volume (e.g., Carlson et al. 2015; Lanari and Engi 2017). In this paper, only 498 

garnet is considered as affecting the EBC evolution with changes of P and T, and hence only garnet 499 

removal is included in the EBC calculations. 500 

The growth of garnet will consume larger proportions of Fe and Al relative to other elements 501 

from the initial bulk composition, and this can cause changes in the EBC and hence affect the 502 

modeling results. Assuming that garnet growth is occurring at an equilibrium state, the main 503 

principal driving EBC calculations is the quantitative removal of the newly formed portion of the 504 

garnet core domain from the bulk composition at each P and T step in the calculation. There are 505 

myriad approaches available to calculate the EBC (only considering garnet removal) at a given P-506 

T condition (e.g., Gaidies et al. 2008a; White 2010; Marmo et al. 2012; Moynihan and Pattison 507 

2013; St-Onge et al. 2013). For this study, we used techniques specific to the modeling programs, 508 

TD and TC. These are described in detail in Supplementary Materials Section 2.  509 

Fourteen fractionation steps were performed for garnet (TM-15G#3) prograde growth, which 510 

specifically includes 7 steps in the core domain (0–367 μm) and 7 steps in the rim (367–490 μm) 511 

(Fig. 7; Table S2). The stepping of garnet fractionation in the modeling is based on changes in 512 

composition (i.e., alm, prp, and grs) along the EMPA profile. 513 
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 514 

6.4. Uncertainties 515 

Identifying the source and magnitude of uncertainties in the P-T predictions from 516 

thermodynamic modeling are essential when considering how realistically a calculated 517 

metamorphic P-T path represents an actual geological process. Past studies have focused on 518 

identifying the nature of uncertainties, quantifying the magnitude, and evaluating their effects on 519 

geological interpretations (e.g., Kohn and Spear 1991; Powell and Holland 2008; Palin et al. 2016; 520 

Lanari and Engi 2017). In this paper, we consider two sources of uncertainty and their potential 521 

effects when modeling metabasites: (1) uncertainty associated with compositional variability in 522 

mineral domains, and (2) uncertainty associated with internally-consistent databases and a-X 523 

relations used in modeling programs. 524 

The uncertainty associated with compositional variability in mineral domains refers to the 525 

degree to which in situ mineral compositions (measured by EPMA) vary within a user defined 526 

mineral domain (e.g., rim, core). This will depend on how homogenous each domain is in a given 527 

crystal, how the domains are defined by the user, and the quality of the measurements. Therefore, 528 

both the degree to which the measured compositional profile accurately represents garnet growth 529 

during prograde metamorphism, and the errors of EPMA analyses (relative and systematic) can 530 

have an effect on modeling results (Lanari et al. 2017, 2019). This type of uncertainty will vary 531 

from sample to sample and depend heavily on user choices in defining mineral domains.  532 

The second type of uncertainty, those associated with internally-consistent databases and a-X 533 

relations used in modeling programs, have been heavily debated (Engi 1992), and are commonly 534 

neglected in presentations of modeling results. Attempts to quantify these modeling uncertainties 535 

in past studies yielded a generally accepted overall uncertainty of ±50 °C and ±1 kbar (2σ) for 536 
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mineral isopleth thermobarometry in pseudosections (Powell and Holland 2008). These values of 537 

overall modeling uncertainty are especially useful for directly comparing results of models that 538 

use the same compositions as input, as we do in this study. Here we will present both types of 539 

uncertainty. Calculations of uncertainty associated with compositional variability in garnet 540 

domains for TM-15G#3 will be given when reporting P-T predictions from our modeling protocols 541 

to highlight the degree to which sample zonation can affect model results. Because the input for 542 

all of the modeling protocols is the same, we will use the overall modeling uncertainty (±50 °C 543 

and ±1 kbar, 2σ) of Powell and Holland (2008) when comparing results of the different modeling 544 

protocols. 545 

The sources of uncertainty discussed above are not exhaustive by any means. In addition, 546 

consideration of the scale and constituents of selected equilibration volume, techniques to calculate 547 

EBC, factors affecting the phase reactions in equilibrium, and petrological observations, could 548 

potentially affect the results and associated uncertainties of models. Other factors that may affect 549 

the modeling of metabasites include uncertainties in the estimation of ferrous/ferric iron and H2O 550 

contents, and chemical diffusion during garnet growth (Kelsey and Hand 2015; Lanari and Engi 551 

2017; Lanari and Duesterhoeft 2019). Evaluation of all potential sources of uncertainty is beyond 552 

the scope of this paper.  Past studies have already done this work, and we adopt the overall 553 

modeling uncertainty of Powell and Holland (2008) for comparing modeling protocols in this study. 554 

 555 

7. Thermodynamic Modeling Results 556 

The results of each modeling protocol are presented individually below and summarized in  557 

Table 5. As discussed in Section 6.4, calculations of uncertainty associated with compositional 558 

variability in garnet domains are presented below (1).  559 
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560 

7.1. Modeling Trial 1 (TC33): TC3.33 with ds 55 and Garnet W07 561 

Results of protocol TC33 are shown in Figs. 8a & b, 9 and S1a, and in Table 5. The TC33 562 

generated pseudosection (Fig. 9a) shows that garnet started to grow at 540 ± 15 °C and 21.5 ± 1.5 563 

kbar in a mineral assemblage of gln + act + grt + omp + ms + chl + lws + rt + H2O. Prograde 564 

metamorphism reached a peak pressure of 26 ± 1 kbar at 565 ± 8 °C, and then achieved peak 565 

metamorphism (peak temperature) of 603 ± 3 °C at 24 ± 0.5 kbar, when considering the effect of 566 

garnet crystallization on the EBC. This P-T path provides a constant geothermal gradient dT/dP of 567 

~5 °C/kbar during its burial stage and ~15°C/kbar during the exhumation stage. If garnet 568 

fractionation is not considered (i.e., no EBC calculations), the predicted peak pressure estimated 569 

with this protocol would be 32.5 ± 3 kbar at 571 ± 11 °C (Fig. 13), and the peak metamorphism 570 

would be beyond the constructed P-T range. 571 

As garnet grows, mineral compositions and the EBC continuously change (Fig. 8a & b). This 572 

modeling protocol (TC33) predicts that as metamorphism progresses from the beginning of garnet 573 

growth (540 ± 15 °C and 21.5 ± 1.5 kbar) to peak metamorphism (603 ± 3 °C and 24 ± 0.5 kbar), 574 

FeO drops from 11.8 to 3.0 mol. %; MgO increases from 11.9 to 16.0 mol. %; and Al2O3 and CaO 575 

slightly decrease from 9.7 and 11.6 to 6.9 and 10.9 mol. %, respectively (Fig. 8a). In terms of the 576 

changes in mineral assemblage during prograde metamorphism, garnet, omphacite and talc 577 

generally increase from 22.6, 23.2 and 0.0 to 35.9, 39.3, and 12.2 mol. %, respectively. 578 

Glaucophane and actinolite drop to almost zero at peak-pressure metamorphism, and lawsonite 579 

drops from 13.8 to 8.6 mol. % during prograde metamorphism (Fig. 8b). 580 

581 
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7.2. Modeling Trial 2 (TC47): TC3.45 with ds 62 and Garnet W14 582 

The results of protocol TC47 are shown in Figs. 8c & d, 10, and S1b, and in Table 5. Garnet 583 

begins to nucleate at 25  2.5 kbar and 515  21 °C in the phase stability field of gln + di + omp + 584 

grt + bt + chl + lws + rt + H2O; reaches a peak pressure of 34  1.5 kbar at 544  15 °C; and 585 

achieves peak metamorphism at 29  0.5 kbar and 595  3 °C (Figs. 10a & S1b). This P-T path 586 

provides a constant geothermal gradient dT/dP of ~6 °C/kbar during burial and ~11°C/kbar during 587 

exhumation. If mineral fractionation is not considered, the predicted peak pressure would be 39 ± 588 

4 kbar at 539 ± 15 °C, and the peak metamorphism would be beyond the constructed P-T range 589 

(Fig. 13). 590 

The evolution of the EBC and mineral assemblage during garnet growth predicted by modeling 591 

protocol TC47 are shown in Figs. 8c & d.  Starting from garnet nucleation (25 ± 2.5 kbar and 515 592 

± 21 °C) to end of the prograde metamorphism (29 ± 0.5 kbar and 595 ± 3 °C), FeO and Al2O3 593 

abundances drop from 11.8 and 9.7, to 2.8 and 7.1 mol. %, respectively. During this metamorphic 594 

stage, MgO keeps increasing from 11.9 to 16.1 mol. %, and CaO remains mostly unchanged (Fig. 595 

8c).  Along the prograde metamorphism path, garnet, omphacite, and talc increase from 22.2, 0.15, 596 

and 0, to 35.5, 34.7, and 8.7 mol. %. Glaucophane and lawsonite drop from 30.6 and 21.5, to 5.1 597 

and 8.2 mol. %, respectively. Diopside drops to zero at ~596 °C and peak pressure (Fig. 8d). 598 

599 

7.3. Modeling Trial 3 (TDG): TD with ds 62 and Garnet W14 600 

Results of protocol TDG are shown in Figs. 8e & f, 11, and S1c, and in Table 5. As Figs. 11 601 

and S1c show, garnet begins to nucleate at 530 ± 25 °C and 26 ± 2 kbar in the phase stability field 602 

of gln + omp + di + grt + bt + chl + lws + rt + H2O. Peak pressure is 34 ± 1.5 kbar at 551 ± 12 °C, 603 

which is followed by exhumation to 29 ± 1 kbar and 602 ± 8 °C, where it reaches peak temperature 604 
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(Fig. 11). The P-T path shows a general thermal gradient (dT/dP) of ~5 °C/kbar from garnet 605 

nucleation to peak pressure, and ~11°C/kbar during exhumation period recorded by garnet (Fig. 606 

11). If mineral fractionation is not considered, the predicted peak pressure would be 39 ± 3 kbar 607 

at 553 ± 35 °C (Fig. 13), and peak metamorphism would be beyond the constructed P-T range. 608 

Figures 8e & f show the evolution of the EBC and mineral assemblages predicted by TDG 609 

from garnet nucleation (530 ± 25 °C and 26 ± 2 kbar) to the end of prograde metamorphism (602 610 

± 8 °C and 29 ± 1 kbar). As garnet crystallizes over a temperature range of 508–604 °C, FeO and 611 

Al2O3 decrease from 11.7 and 9.7, to 2.9 and 7.0 mol. %, respectively, while MgO increases from 612 

11.8 to 15.9 mol. % (Fig. 8e). Garnet and omphacite increase from 23.8 and 2.4, to 30.7 and 44.6 613 

mol. %, respectively, and diopside drops from 25.9 mol. % to zero during prograde metamorphism. 614 

Glaucophane and lawsonite drop from 13.4 and 19.1, to 1.2 and 5.5 mol. %, respectively (Fig. 8f). 615 

616 

7.4. Modeling Trial 4 (TDW): TD with ds 62 and Garnet W07 617 

Results of protocol TDW are shown in Figs. 8g & h, 12, and S1d, and in Table 5.  The TDW 618 

protocol calculations predict garnet nucleation at 537 ± 25 °C and 22 ± 2 kbar at the stable phase 619 

field of gln + omp + di + grt + chl + ms + lws + rt + H2O, peak pressure of 28.5 ± 1.5 kbar at 563 620 

± 13 °C, and peak T of metamorphism of 613 ± 7 °C at 24.5 ± 0.5 kbar (Fig. 12).  The same effect 621 

from compositional fractionation is seen here as was seen with the other three modeling protocols: 622 

if mineral fractionation is not considered, the predicted peak pressure would be 30 ± 3 kbar at 564 623 

± 25 °C (Fig. 13), and the peak metamorphism would be beyond the constructed P-T range. 624 

Figures 8g & h show how the EBCs and mineral modal abundances change with prograde 625 

metamorphism according to TDW modeling. As garnet crystallizes during prograde 626 

metamorphism, FeO and Al2O3 decrease from 11.7 and 9.7, to 3.6 and 6.9 mol. %, respectively, 627 
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while MgO increases from 11.8 to 15.8 mol. % (Fig. 8g). In Fig. 8h, garnet and omphacite 628 

abundances increase from 18.6 and 12.4, to 28.2 and 45.9 mol. %, respectively, and diopside drops 629 

to zero at ~541 °C. Glaucophane and lawsonite drops from 10.1 and 14.6, to 2.2 and 4.7 mol. %, 630 

respectively. 631 

632 

8. Discussion633 

634 

8.1. Comparing the results of modeling protocols 635 

When comparing the results of the four modeling protocols tested here (TC33, TC47, TDG, 636 

and TDW), we find many similarities and some significant differences. The shapes of the 637 

fractionated P-T paths (calculated considering removal of garnet from the EBC) in Figs. 9-12 are 638 

generally similar – all showing steep pressure increases during garnet core formation, weakly 639 

concave curves approaching peak P, followed by the classic “fishhook” turn as pressure drops 640 

steeply at first, then levels out as peak T is achieved. Figures 9-12 show that the pseudosections 641 

constructed by the four trials are similar with regard to the stability fields of equilibrium mineral 642 

assemblages (gln, act, omp, di, grt, lws, tlc, ms, bt, ep, chl, rt, spn, H2O). The pseudosection 643 

constructed with TC33 is slightly different from the other three with respect to the stability fields 644 

of clinoamphibole (gln and act) and clinopyroxene (omp and di), and it has no predicted diopside 645 

(amphibole and clinopyroxene a-X relations from Diener and Powell 2012) whereas the TC47, 646 

TDG, and TDW protocols (clinoamphibole and clinopyroxene a-X relations from Green et al. 2016) 647 

do.  648 

Predicted temperatures agree within error (±50 °C, 2; Powell and Holland 2008) among all 649 

of the models for all stages of metamorphism investigated (Fig. 13). This means that choice of 650 
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program, database, and set of a-X relations used in a modeling protocol will not significantly affect 651 

the resulting temperature predictions for metabasites. Pressure estimates, however, differ 652 

significantly. Considering the results of our modeling protocols that accounted for garnet 653 

fractionation and its effect on the EBC (solid curves in Fig. 13), and the generally accepted 654 

modeling uncertainty (±1 kbar, 2; Powell and Holland 2008), pressure predictions at all stages of 655 

metamorphism are higher in TC47 and TDG results than in TC33 and TDW, with TDG giving the 656 

highest P predictions and TC the lowest. The differences in pressure predictions stem not from the 657 

user’s choice of program or database, but from the choice of garnet solution model (a-X relations 658 

of White et al. 2007 vs. White et al. 2014a). The garnet grossular isopleths in TC33 and TDW 659 

(Figs. 9b and 12b, respectively), the pseudosections constructed with the White et al. (2007) garnet 660 

a-X relations, predict lower pressures, in the graphite stability field. While TC47 and TDW, which661 

use White et al. (2014a), indicate pressures in the diamond stability field (Figs. 10b and 11b, 662 

respectively). The difference in pressure exceeds overall modeling error, indicating that user’s 663 

choice of garnet solution model in the modeling protocol has a significant impact on the pressure 664 

results for metabasites (Fig. 13).  665 

The main difference between the two sets of a-X relations is that the modified ASF 666 

(asymmetric formalism) interaction energy between pyrope and grossular (Wprp-grs) in White et al. 667 

(2014a) is 30.1 kJ, whereas it is 45 kJ in White et al. (2007). Also, the asymmetry parameters used 668 

in garnet a-X relations of White et al. (2014a) are aprp = aalm = akho = 1, agrs = 2.7, whereas, the agrs 669 

adopted in the previous iteration of this parameter (from White et al. 2007) is 3.0 (Table 1). The 670 

modification of the ASF interaction energies and asymmetry parameters among garnet 671 

endmembers (from White et al. (2007) to White et al. (2014a)) apparently has a significant effect 672 

on the grossular proportion in equilibrium garnet calculations (especially at high pressures), and 673 
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thus TC47 and TDG lead to much higher pressure estimates than that predicted using the Wprp-grs 674 

and agrs in the garnet a-X relations formulation of White et al. (2007). 675 

Comparing the P-T paths generated by assuming no garnet fractionation (i.e., no EBC 676 

calculations; dashed curves in Fig. 13) with the paths generated using garnet fractionation (i.e., 677 

incorporating EBC calculations; solid curves in Fig. 13), we see that not accounting for changes 678 

to the bulk composition as garnet grows causes significant overestimations of peak pressure for 679 

TM-15; yielding pressure predictions of >38 kbar for TC47 and TDG, ~5 kbar higher than the peak 680 

pressures calculated assuming garnet fractionation. These differences exceed the overall modelling 681 

error, telling us that EBC calculations have a significant effect on P predictions. User’s should be 682 

cautioned that neglecting to use EBC calculations when constructing P-T paths for metabasites, 683 

will result in nontrivial overestimations of peak pressure. 684 

Figures 8a, c, e & g show that the four trials, TC33, TC47, TDG, and TDW, predict similar 685 

patterns of EBC evolution during mineral fractionation and prograde metamorphism. During this 686 

stage in all protocols, SiO2 and MgO increase slightly, while FeO and Al2O3 drop significantly, 687 

and CaO generally remains unchanged. Mineral evolution with prograde metamorphism is shown 688 

in Figs. 8b, d, f & h. Similar patterns are observed when using the same program (TC or TD). 689 

TC33 and TC47 trials (Figs. 8b & d) result in similar trends of mineral evolution and mineral 690 

proportions with increasing T, with the exception of diopside in TC33 (as noted above). TDW and 691 

TDG (Figs. 8f & h) also exhibit similar mineral evolution patterns during prograde metamorphism, 692 

but these patterns are different to those from TC protocols. When comparing the modal proportions 693 

predicted by the two programs (TC vs. TD), we observe that TC protocols predict a higher modal 694 

abundance of garnet (35.5 and 35.9 vs. 28.2 and 30.7%, respectively) and lower modal abundance 695 

of omphacite (39.3 and 34.7 vs. 44.6 and 45.9%, respectively) than TD protocols (Fig. 8). The 696 
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TDG and TDW results of 30.7 and 28.2% garnet and 44.6 and 45.9% omphacite are much closer 697 

to the actual mineral modal abundance observed in sample TM-15 for garnet (~28.6%). The modal 698 

abundance of omphacite (~20.2%) in TM-15 is much lower than the model results (~45%) likely 699 

due to retrograde metamorphism.  700 

For all protocols, the calculated EBC prograde path produces almost identical compositional 701 

evolution with T (Fig. 8a, c, e & g). By comparing model predictions with actual petrographic and 702 

geochemical data from the well characterized eclogite sample used in the models, we conclude 703 

that the differences between fractionation methods of the modeling programs (TC and TD) cause 704 

minor differences in EBC and mineral evolution predictions. 705 

706 

8.2. Modeling Predictions vs. Petrological Observations 707 

Thermodynamic modeling programs provide an important and useful method for numerically 708 

simulating metamorphic histories. The accuracy, functionality, and ease of use of these techniques 709 

have improved immensely over the past few decades making them applicable to a wide variety of 710 

P-T ranges and bulk compositions. However, care should be taken when making interpretations711 

based on model outputs considering the significant overall modeling uncertainties. Model results 712 

should be evaluated by ground-truthing with geochemical and textural data from the actual sample 713 

as much as possible. 714 

The prograde P-T paths predicted by TC47 and TDG modeling predict an assemblage of 715 

garnet, lawsonite, sodic amphibole (glaucophane), diopside, omphacite, and biotite (only major 716 

phases listed) in the Tso Morari eclogite (Figs. 9-12); TDW predicts muscovite instead of biotite 717 

(other minerals are the same as in TC47 and TDG); TC33 predicts garnet, lawsonite, glaucophane, 718 

calcic amphibole (actinolite), omphacite and muscovite (Table 5). None of the models predict 719 
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phengite. The protocols also predict the modal abundance of each phase. The TC47, TDG, and 720 

TDW protocols predict that garnet starts to grow along the prograde path in the presence of 721 

significant amounts of lawsonite (15–20 mol. %), clinopyroxene (15–25 mol. %) and glaucophane 722 

(10–30 mol. %) (Fig. 8d, f & h). Clinopyroxene and glaucophane are consumed earlier but 723 

lawsonite is predicted to be modally significant for most of the prograde path as the abundance of 724 

especially omphacite increases (Fig. 8d, f & h), in all cases lawsonite is predicted to be present 725 

through peak UHP metamorphism. Actinolite is predicted instead of clinopyroxene for only one 726 

protocol: TC33 (Fig. 8b). Prograde garnet growth is interpreted as being recorded in the core 727 

domain in most Tso Morari eclogitic garnets (O’Brien et al. 2019). 728 

The observed inclusion population of the garnet cores in this study and others (see O’Brien et 729 

al. 2019 for a review) are inconsistent with modeling predictions for early stages of metamorphism 730 

in all four modeling trials. The inclusion phases in garnet cores include aegirine-rich omphacite, 731 

sodic-calcic amphibole (winchite), epidote, muscovite, jadeite, chlorite, quartz, magnetite, and 732 

rutile (Fig. 3). We did not observe any lawsonite or its pseudomorphs (as epidote or paragonite), 733 

glaucophane, or biotite in garnet cores in this study. Only minor sodic amphibole and lawsonite 734 

have been reported in garnet cores from this outcrop by one study (St-Onge et al. 2013). Garnet 735 

rims have fewer mineral inclusions, including jadeite-rich omphacite, clinoamphibole, phengite, 736 

quartz, and carbonates; these closely correlate with the matrix assemblage of TM-15 (Figs. 2 & 3) 737 

and agree better with model predictions, with the exception of lawsonite which the models predict 738 

to remain at 10 mol. % post-peak metamorphism (Fig. 8b, d, f & h). 739 

Figure 14 shows pseudosections constructed by the four protocols at the stage of peak pressure 740 

(using EBCs calculated from just before peak pressure), overlain by a grey bar showing the highest 741 

phengite Si p.f.u. (3.51–3.54) observed in eclogite TM-15. The TC33 and TDW protocols (using 742 
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the White et al. 2007 garnet solution model) predict peak P-T conditions close to observed phengite 743 

compositions, with TC33 overlapping the region and TDW approaching closely (Fig. 14a & d). 744 

The highest phengite Si p.f.u. reported in this eclogite boudin is 3.56 by de Sigoyer et al. (1997). 745 

If peak pressure had reached ~35 kbar as predicted in the TC47 and TCG protocols, the silicon 746 

concentrations in phengite should greatly exceed values measured here and elsewhere (Fig. 14b & 747 

c). 748 

There are several possible reasons for the mismatch between the inclusion population of the 749 

garnet cores in TM-15 and the predicted prograde assemblages. The first possibility discussed in 750 

this section relates to garnet equilibration and preservation of phases grown during early 751 

metamorphism. Electron microprobe data from garnet TM-15G#3 (and other garnet crystals in 752 

TM-15) confirms compositions and zoning observed in other studies (e.g., St. Onge et al. 2013) 753 

Garnets in Tso Morari eclogites have large, relatively flat, homogeneous core regions 754 

(Alm62Grs28Sps2-3Prp10 for TM-15G#3) (Fig. 5), which is not consistent with a progressively 755 

growing garnet along a specific P-T path. St-Onge et al. (2013) interprets the homogeneous garnet 756 

cores as garnet overgrowth on matrix minerals coupled with effective cation diffusion (e.g., Spear 757 

1995) and homogenization of the already formed garnet domain at some point during prograde 758 

metamorphism. However, the P-T conditions (~520 °C and ~25 kbar, St-Onge et al. (2013)) 759 

calculated are too cool to cause cation diffusion during the relatively short prograde metamorphism 760 

stage (Donaldson et al. 2013).  761 

The observations of a homogenous garnet core domain in TM-15G#3 and lack of some of the 762 

predicted mineral phases (e.g., sodic amphibole, lawsonite) might be due to fluid release during 763 

prograde metamorphism. Our modeling indicates that dehydration reactions (breakdown of sodic 764 

amphibole and lawsonite) occur at ~515–530 °C and ~23.5 kbar, prior to peak pressure conditions 765 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



36 

(Figs. 9-12). Those released fluids may have reset the system and homogenized or semi-766 

homogenized the already formed garnet core domain (e.g., Wei and Clarke 2011; Hernández-Uribe 767 

et al. 2018). Partial water driven recrystallization and the resulting disequilibrium can also help 768 

explain the disparate results by the conventional thermobarometers using data from garnet core 769 

domains (Chatterjee and Jagoutz 2015). 770 

771 

8.3. P-T Paths for the Tso Morari Eclogite 772 

All modeling protocols examined here predict cold, concave P-T paths, similar to recent 773 

thermodynamic modelling studies on Tso Morari eclogite (e.g., St-Onge et al. 2013; Palin et al. 774 

2017). The predicted peak pressures in all protocols (possibly excepting TC33) are consistent with 775 

the discovery of coesite in the garnet rim domain (Mukherjee and Sachan 2001; Sachan et al. 2004). 776 

TC33 and TDW are represented by the red solid curve on Fig. 15, with peak pressures of ~27 kbar 777 

at ~540–590 °C.  The TC47 and TDG protocols, represented by the solid orange curve, predict a 778 

significantly higher peak pressure of ~34 kbar at ~540–550 °C. These differences, as discussed 779 

earlier, are likely due to the choice of garnet a-X relations used in the protocols, not the choices of 780 

modelling program, version, or database. 781 

Conventional thermobarometry calculations from this and previous studies were used to 782 

evaluate which protocol best fits available data (Fig. 15). For sample TM-15, the intersections of 783 

lines generated using GC and GP thermometers, and GOP and empirical phengite barometers using 784 

the peak assemblage, provide a poorly constrained P-T estimate of ~520–700 °C and ~20–26 kbar 785 

(Fig. 6a). Additional estimates using AVE_PT function in TC3.33 for the assemblage from the 786 

garnet rim was 572 ± 15 °C and 23.3 ± 1.2 kbar, and 523 ± 37 °C and 21.0 ± 1.6 kbar from the 787 

garnet core (Figs. 6a and 15).  Low silica phengite and paragonite in the matrix of sample TM-15 788 
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(ms-pg) were used to estimate late retrograde metamorphic conditions (Guidotti et al. 1994; Roux 789 

and Hovis1996) of ~450–500 °C and 7–14  kbar (Fig. 6b). 790 

The peak pressure conditions determined by the TDW (28.5 ± 1.5 kbar at 563 ± 13 °C) and 791 

TC33 (26 ± 1 kbar at 565 ± 8 °C ) protocols are within error of calculations by conventional 792 

thermobarometry on the same sample (TM-15); TC47 and TDG predict much higher pressures 793 

(>30 kbar) (Figs. 6a and 15).  Thermobarometric studies of the Tso Morari eclogite using GC, GP, 794 

and GOP yield peak conditions of 27–29 kbar and 690–750 °C (O’Brien et al. 2001), consistent 795 

with TDW and TC33 results. Conventional estimates that were pinned by carbonate assemblages 796 

have predicted much higher pressures in the diamond stability field (>39 kbar) (Wilke et al. 2015; 797 

Mukherjee et al. 2003). These estimates are significantly higher than all other results for Tso 798 

Morari from modeling or conventional thermobarometry. None of the P-T estimates from 799 

conventional thermobarometry (high or low), are within the uncertainty of our predictions from 800 

the TC47 and TDG protocols, suggesting that these protocols do not yield realistic results. 801 

Figure 15 presents our preferred P-T path for the Tso Morari eclogite (the bold red line), which 802 

is a result of considering all results from our modeling trials and thermobarometric calculations. 803 

Four P-T constraints (M0–M3) for the metamorphic evolution of Tso Morari eclogite are presented 804 

(Fig. 15). Position M0 represents the P-T conditions during formation of the garnet core (before 805 

onset of bulk composition fractionation). Position M1 represents the P-T conditions at peak 806 

pressure predicted by models (TC33 and TDW), which is more consistent with the pressure 807 

obtained from calculations using highest silica phengite (3.54 Si p.f.u.) in TM-15 (Fig. 14a & d). 808 

Position M2 represents the peak metamorphic conditions preserved by the garnet composition in 809 

the rim of TM-15G#3 (low x(Ca)grt), which is interpreted to have formed during peak 810 
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metamorphism. Position M3 represents a point along the retrograde path, calculated using the 811 

muscovite-paragonite barometer of Roux and Hovis (1996). 812 

Figure 15 also shows paths from previous studies. St-Onge et al. (2013) used the same 813 

approach as protocol TC33 (TC version 3.33, ds 55, and garnet a-X relation in White et al. 2007) 814 

yeilding similar P-T results (path 10 in Fig. 15). Palin et al. (2017) predicted peak P-T conditions 815 

of 26–28 kbar and 600–620 °C (paths 12 and 13 in Fig. 15), and estimated garnet nucleation 816 

occurred at 350–370 °C and 18–20 kbar using combined thermodynamic (TC version 3.40i, ds 55, 817 

and garnet a-X relations in White et al. 2007) and geodynamic numerical modeling (MVEP2).  818 

However, Konrad-Schmolke et al. (2008), using TD and different garnet a-X relations (Berman 819 

1990), predicted a warmer, convex prograde P-T path starting from 17.2 kbar and 545 °C, with 820 

amphibole- instead of lawsonite-rich assemblages. This study produced similar peak conditions of 821 

628 °C at 24.4 kbar (path 8 in Fig. 15). 822 

Metamorphic P-T paths obtained by thermodynamic modeling (regardless of modeling 823 

program, version of thermodynamic database, and mineral a-X relations) for the Tso Morari 824 

eclogite predict a cold subduction path (this study; St-Onge et al. 2013; Chatterjee and Jagoutz 825 

2015; Palin et al. 2014, 2017).  Protocols TC47 and TDG predictions (orange curve in Fig. 15) are 826 

close to the forbidden geothermal gradient (5 °C/km) in the lawsonite-eclogite field (Schreyer 827 

1995; Liou 1998), landing in the very rare ultralow thermal gradient classification (Brown 2014) 828 

of subduction related P-T paths. Petrologic evidence does not support this low gradient or the 829 

elevated peak pressures. In addition, the protolith of Tso Morari UHP terrane is continental crust 830 

with significant sedimentary rock cover; thermomechanical modeling accounting for this produces 831 

warmer prograde paths (Warren et al. 2008; Beaumont et al. 2009). Thermodynamic modeling 832 
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may be underestimating temperature by not accounting for the effect of shear heating, hydration 833 

reactions and fluid and rock advection (Penniston-Dorland et al. 2015). 834 

835 

9. Conclusions836 

Our petrologic, compositional, and thermodynamic evidence from eclogite from the Tso 837 

Morari UHP, NW India yield the following conclusions: 838 

1. After comparing the modeling results of all four protocols with supporting petrologic and839 

thermobarometric data, we conclude that the selection of a-X relations, specifically for840 

garnet, is more important than the choice of modeling program, version, or database. In841 

metabasites, the a-X relations chosen for garnet have the largest impact on estimate of peak842 

pressure. The thermodynamic models using the newer a-X relations for garnet (White et al.843 

2014a) predict a higher metamorphic peak pressure than the modeling results by using the844 

garnet a-X relations of White et al. (2007). Using the White et al. (2014a) data for garnet845 

also produces unreasonable cool prograde paths.846 

2. In metabasites, the changes in mineral assemblage and relative proportions predicted by847 

thermodynamic modeling are very sensitive to whether garnet is assumed to be in848 

equilibrium during its entire growth or whether it is fractionating.  As demonstrated above,849 

independent of the protocol selected, peak pressure will be significantly over-estimated in850 

the non-fractionated case (Fig. 13).851 

3. The cool prograde paths and higher pressures predicted using the newer garnet a-X852 

relations (White et al. 2014a) are not supported by petrologic observations. The peak853 

pressures predicted by TC33 and TDW modeling (26 ± 1 kbar at 565 ± 8 °C and 28.5 ± 1.5854 

kbar at 563 ± 13 °C, respectively), are consistent with the conventional thermobarometry855 
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results in this study and previous work using thermodynamic models from the well-studied 856 

Tso Morari (e.g., St-Onge et al. 2013; Chatterjee and Jagoutz 2015; Palin et al. 2017). 857 

However, TC33 and TDW still produce prograde paths that predict significant lawsonite, 858 

which is not observed in the rocks. Thermodynamic modelling alone may underestimate 859 

temperature during prograde metamorphism. 860 

4. Quantitative results from thermodynamic modeling should be integrated with petrographic861 

observations to obtain a geologically meaningful interpretation. More careful consideration862 

of the key mineral a-X relations, comparison between multiple techniques, and sourcing863 

and controlling of uncertainties can essentially help interpret geological problems.864 
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Figure Captions 1307 

Figure 1. Geological map of the Himalayan orogenic belt showing the rock units, tectonic 1308 

boundaries, and location of the Tso Morari ultra high pressure (UHP) terrane. The inset shows 1309 

the Himalayan-Tibetan orogeny. ST: Stak Valley; ISZ: Indus Suture Zone; KG: Kaghan 1310 

Valley; MFT: Main Frontal Thrust. Modified after (Thakur and Virdi 1979; Thakur and Misra 1311 

1984; Steck 2003). 1312 

Figure 2. Images of sample TM-15. (a) Mafic eclogite boudin (dark color) enclosed within the 1313 

felsic gneiss (light color) in the field. (b) Plane polarized light photomicrograph of a thin 1314 

section of eclogite sample TM-15. (c) False color BSE image of TM-15, showing major 1315 

minerals and textures an 8 x 6 mm portion of the thin section. (d) XMapTools processed image 1316 

based on an X-ray compositional map of TM-15, showing phases and textures in a 2 x 1.5 mm 1317 

portion of the thin section. The box in this image shows evidence of poikilitic texture of 1318 

amphibole, although this is texture is rarely observed in the sample. Mineral abbreviations as 1319 

in Table 2. 1320 

Figure 3. Photomicrographs of garnet crystals in eclogite TM-15. (a) Crossed polarized image of 1321 

garnet TM-15G#3. (b) BSE image of garnet TM-15G#3, showing the traverse of EPMA-1322 

measured garnet compositional profile (A-A’). (c) XMapTools processed image of garnet 1323 

TM-15G#3 based on an X-ray map, showing the garnet zonation and inclusion phases. (d) 1324 

BSE images of the mineral inclusions in garnet (TM-15G#2) core. Mineral abbreviations as 1325 

in Table 2. 1326 
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Figure 4. Diagrams of mineral (garnet, clinopyroxene, muscovite/phengite) compositions in 1327 

eclogite sample TM-15. (a) Quadrilateral diagram of garnet compositions in TM-15, showing 1328 

the compositional change from the central core to outermost rim. Data are from three garnet 1329 

crystals in TM-15. (b) Diagram of Fe/Mg ratio vs. X(Ca)grt from rim to central core of three 1330 

garnet crystals in TM-15. Garnet rim can be subdivided to Rim 1 and Rim 2 based on garnet 1331 

compositional variability from core to rim (separation rules of the three garnet zones follows 1332 

that of garnet TM-15G#3). (c) Nomenclature ternary diagram of sodium pyroxenes, showing 1333 

the composition of omphacitic pyroxene in eclogite TM-15. (e) Diagram of white mica Al 1334 

p.f.u. vs. Si p.f.u. in eclogite TM-15.1335 

Figure 5. Compositional profile indicating garnet endmember fractions of almandine (alm), 1336 

pyrope (prp), grossular (grs), and spessartine (sps) across a traverse of garnet TM-15G#3 from 1337 

rim to core to rim (A-A’). The garnet rim has be subdivided to Rim 1 and Rim 2 based on 1338 

garnet compositional variability from core to rim. EPMA spots can be seen in Fig. 3b, and 1339 

data are presented in Table S1. The diameter of the garnet crystal is ~1200 μm. 1340 
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Figure 6. Thermobarometry calculations using selected minerals from eclogite sample TM-15. (a) 1341 

Lines are labeled with the thermobarometer used and sample number. The lines are calculated 1342 

using data from the rim of garnet TM-15G#3 and high-Si phengite in TM-15. The red error 1343 

ellipse and point within are the output from AVE_PT mode on THERMOCALC (version 3.33) 1344 

with the assemblage (omp, grt, ms, tlc, lws, rt, coe, and H2O). Temperature maxima from GC 1345 

thermometry (blue and orange dashed lines) are calculated using garnet (FeO/MgO)minimum 1346 

and omphacite (FeO/MgO)maximum, and temperature maximum from GP thermometry (red 1347 

dashed lines) is calculated using garnet (FeO/MgO)minimum and phengite (FeO/MgO)maximum 1348 

(Carswell et al. 2000). Vice versa for temperature minima in thermometers. Garnet, omphacite, 1349 

and phengite FeO/MgO minima and maxima are calculated based on compositional variability 1350 

at 1 level. Pressure maximum and minimum for Phg Si barometer (purple dashed lines) is 1351 

based on the Si p.f.u. variability at 1 level from phengite with high Si p.f.u. (3.51–3.54). An 1352 

overall uncertainty of ±2.5 kbar for the non-ideal garnet and clinopyroxene of typical eclogites 1353 

is suggested for the GOP barometer (Waters and Martin 1996). The ellipse in AVE_PT depicts 1354 

(1 ) uncertainties calculated by the program. The gray shaded region depicts the P-T range 1355 

suggested when comparing all thermobarometers. (b) Comparison between paragonite and 1356 

low-Si phengite from eclogite TM-15 and the solvi calculated at 5, 10, and 15 kbar (Roux and 1357 

Hovis 1996). pg: paragonite; ms: muscovite. 1358 

Figure 7. Observed and calculated core-rim garnet zonation profile expressed in a-X parameters 1359 

x(g)=alm/(alm+prp) and z(g)=grs/(alm+prp+grs) from TC modeling, and in alm, prp, and grs 1360 

from TD modeling. See text and Fig. 5 for explanation of the three garnet zones (domains), 1361 

Core, Rim 1, and Rim 2. 1362 
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Figure 8. Evolution of the effective bulk composition (EBC) and mineral phases calculated by 1363 

TC33 for (a) and (b), TC47 for (c) and (d), TDG for (e) and (f), and TDW for (g) and (h). 1364 

Figure 9. (a) Pseudosection generated with modeling protocol TC33 (see text for details) for 1365 

eclogite TM-15. The red dashed curve, P-T Path, is calculated considering garnet fractionation 1366 

using the garnet TM-15G#3 compositional profile in Fig. 7. The three boxes labeled “Grt 1367 

Core”, “Peak P”, and “Grt Rim” represent P-T conditions of garnet nucleation, peak pressure, 1368 

and peak metamorphism (i.e., peak temperature), respectively. These three P-T conditions are 1369 

calculated (Table 5 and Table S1) based on the EBCs obtained by modeling garnet TM-15G#3 1370 

prograde growth assuming domains are as assigned in Fig. 7. Boxes span 1 uncertainties 1371 

based on variation of garnet EPMA data within the domains defining each metamorphic stage 1372 

(Fig. 7). (b) Diagram of garnet compositional isopleths expressed by TC parameters, x(g) and 1373 

z(g). The forbidden zone (<5 °C/km) is determined based on Liou (1998) and Schreyer (1995). 1374 

Mineral abbreviations as in Table 2.  1375 

Figure 10. (a) Pseudosection generated with modeling protocol TC47 (see text for details) for 1376 

eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by TC parameters, 1377 

x(g) and z(g). Other details are the same as those provided in the caption of Fig. 9. 1378 

Figure 11. (a) Pseudosection generated with modeling protocol TDG (see text for details) for 1379 

eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by garnet individual 1380 

endmembers, alm, prp, and grs. Other details are the same as those provided in the caption of 1381 

Fig. 9. 1382 
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Figure 12. (a) Pseudosection generated with modeling protocol TDW (see text for details) for 1383 

eclogite TM-15. (b) Diagram of garnet compositional isopleths expressed by garnet individual 1384 

endmembers, alm, prp, and grs. Other details are the same as those provided in the caption of 1385 

Fig. 9. 1386 

Figure 13. Comparison of P-T paths with and without consideration of compositional (garnet) 1387 

fractionation calculated by the four modeling protocols (TC33, TC47, TDG, and TDW).  Error 1388 

bars in lower right corner represent overall modeling uncertainty (2; Powell and Holland 1389 

2008). Fract.: fractionated; Unfract.: unfractionated. 1390 

Figure 14. Pseudosections constructed by modeling protocol (a) TC33, (b) TC47, (c) TDG, and 1391 

(d) TDW, using the EBC calculated at peak pressure. White mica Si p.f.u. isopleths are1392 

included and the grey shaded area represents the highest Si p.f.u. (3.51-3.54) phengite. Boxes 1393 

in the pseudosections represent peak pressure with 1 errors calculated using compositional 1394 

variation with assigned domains (see Section 6.4 for complete discussion of uncertainties). 1395 
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Figure 15. Comparison of P-T paths predicted for the Tso Morari eclogite, including previous 1396 

studies and the results of this study. Thermobarometers and P-T constraints in this study 1397 

include: ①: TM-15 Phengite Si Peak <3.54 (Fig. 14); ② TM-15 pg-ms (Fig. 6b); ③ TM-15 1398 

Garnet Core AVE_PT; ④ TM-15 Matrix AVE_PT (Fig. 6a);  Previous Studies: ⑤ Guillot et 1399 

al. (1997); ⑥ de Sigoyer et al. (2000); ⑦ Mukherjee et al. (2003); ⑧ Konrad-Schmolke et al. 1400 

(2008); ⑨ Warren et al. (2008); ⑩ St Onge et al. (2013); ⑪  Singh et al. (2013a); ⑫  Full 1401 

transformation, Palin et al. (2017); ⑬  Non-transformation, Palin et al. (2017). Metamorphic 1402 

facies background after (Bucher and Grapes 2011) and abbreviations: AM = amphibolite; 1403 

Amp-EC = amphibolite-eclogite; BS = blueschist; EA = epidote amphibolite; EC = eclogite; 1404 

Ep-EC = epidote-eclogite; GR = granulite; GS = greenschist; HGR = high-pressure granulite; 1405 

Law-EC = lawsonite-eclogite. The forbidden zone (<5 °C /km) is determined based on Liou 1406 

(1998) and Schreyer (1995). The P-T conditions of descending slab surfaces in modern-day 1407 

subduction zones is shown in the shaded area (Syracuse et al. 2010). 1408 

Figure S1. Pseudosections and garnet phase boundaries constructed by (a) TC33, (b) TC47, (c) 1409 

TDG, and (d) TDW, using incrementally fractionated bulk composition. 14 steps of garnet 1410 

removal and EBC calculations have been performed.  1411 
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Table 1. Comparison of thermodynamic modeling parameters for TC33, TC47, TDG, and TDW in this study 

Program 
Thermo- 

Grt a-X 
relationsa 

Major Grt a-X relation parameters (W/kJ) Other 
mineral 

a-X
relationsb 

Mineral phases/endmembers 
includedc 

Grt 
fractionation 
procedured dataset W(alm-prp) W(alm-grs) W(prp-grs) aprp aalm agrs 

TC33 ds55 W07 2.5 10 45 1 1 3 A grt, gln, act, omp, ms, bt, chl, 
lws, ep qtz/coe, rt, H2O TC (rbi) 

TC47 ds62 W14 2.5 5 30.1 1 1 2.7 B grt, gln, act, omp, di, ms, bt, chl, 
lws, ep qtz/coe, rt, spn, H2O TC (rbi) 

TDG ds62 W14 2.5 5 30.1 1 1 2.7 B grt, gln, act, gru, omp, di, ms, bt, 
chl, lws, ep qtz/coe, rt, spn, H2O TD (Theriak) 

TDW ds62 W07 2.5 10 45 1 1 3 B grt, gln, act, gru, omp, di, ms, bt, 
chl, lws, ep, qtz/coe, rt, spn, H2O TD (Theriak) 

aW07: White et al. (2007); W14: White et al. (2014a) 
bA: clinoamphibole (glaucophane and actinolite) (Diener and Powell. 2012), clinopyroxene (omphacite and diopside) (Diener and Powell. 
2012), chlorite (Holland and Powell 1998), K-feldspar and plagioclase (Holland and Powell 2003), muscovite (Coggon and Holland 
2002), and biotite (White et al. 2007). B: clinoamphibole (glaucophane (gl_dqf = -3 kJ/mol), actinolite, and grunerite) (Green et al. 2016), 
muscovite (White et al. 2014a), clinopyroxene (omphacite and diopside) (Green et al. 2016), talc (Holland and Powell 1998), epidote 
(Holland and Powell 2011), chlorite (White et al. 2014a), K-feldspar and plagioclase (Holland and Powell 2003), ilmenite (White et al. 
2014a), and biotite (White et al. 2014a).  
cSee Table 2 for explanation of mineral abbreviations. 
dTD (Theriak): Theriak long output; TC (rbi): White (2010); See supplement section 2 for discussion of the different garnet fractionation 
procedures. 
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Table 2. Mineral abbreviations used in this paper 
Abbreviationa Mineral Abbreviation Mineral 
ab albite hbl hornblende 
act actinolite ilm ilmenite 
adr andradite jd jadeite 
alm almandine kho khohorite 
an anorthite ky kyanite 
ann annite lws lawsonite 
bt biotite mag magnetite 
cal calcite ms muscovite 
camp clinoamphibole omp omphacite 
chl chlorite pg paragonite 
coe coesite phg phengite 
di diopside prp pyrope 
dol dolomite qtz quartz 
ep epidote rt rutile 
grt garnet spn sphene 
gln glaucophane sps spessartite 
gru grunerite tlc talc 
grs grossular 
aMineral abbreviations are after (Kretz 1983), except phengite 
and khohorite. 
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 Table 3. Eclogite major element whole-rock geochemistry from Tso Morari sample TM-15, reported in wt. % 
Sample SiO2 TiO2 Al2O3 FeOa MnO MgO CaO Na2O K2O P2O5 LOI % Sum 
TM-15 45.53 2.37 15.06 11.92 0.19 7.27 10.3 2.79 0.57 0.24 2.74 96.22 

aTotal iron expressed as FeO 
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Table 4. Average compositions of garnet, inclusions, and matrix phases in Tso Morari 
eclogite TM-15 

Oxide TM-15 Eclogite 
Mineral grt grt pg phg ab dol ep omp camp omp camp 
Positiona core rim matrix matrix grt in matrix matrix matrix matrix grt in grt in 

Na2O 0.01 0.02 6.73 0.42 11.02 0.01 0.01 6.91 3.37 3.76 3.70 
Al2O3 21.57 22.12 40.83 26.08 20.33 0.01 30.48 9.92 8.11 10.81 9.06 
SiO2 37.16 37.75 47.02 51.87 67.4 0.01 38.52 55.81 53.84 42.26 50.45 
MgO 3.17 5.66 0.37 4.72 0.00 20.8 0.11 7.98 16.93 6.12 11.33 
FeO 28.25 27.03 0.42 1.56 0.65 4.40 0.00 4.52 0.00 11.82 13.91 
K2O 0.00 0.00 1.06 10.22 0.02 0.00 0.01 0.01 0.15 0.03 0.08 
MnO 0.73 0.32 0.00 0.01 0.00 0.04 0.01 0.01 0.03 0.40 0.20 
TiO2 0.10 0.05 0.06 0.24 0.00 0.01 0.15 0.04 0.11 0.60 0.12 
CaO 8.58 6.96 0.30 0.02 0.83 32.36 23.19 12.44 8.4 8.14 6.83 

Fe2O3 0.07 0.01 0.00 0.00 0.00 0.00 5.11 2.26 6.72 13.84 1.08 
Total 99.63 99.91 96.79 95.14 100.24 57.65 97.58 99.9 97.65 97.77 96.75 
Na 0.00 0.00 0.82 0.05 0.93 0.01 0.00 0.48 0.91 0.29 1.04 
Al 2.02 2.04 3.03 2.04 1.05 0.01 5.60 0.42 1.33 0.50 1.54 
Si 2.96 2.95 2.96 3.45 2.95 0.00 6.00 2.00 7.49 1.67 7.30 

Mg 0.38 0.66 0.03 0.47 0.00 10.18 0.02 0.43 3.51 0.36 2.44 
Fe2+ 1.88 1.77 0.02 0.09 0.02 1.15 0.00 0.14 0.00 0.39 1.38 
K 0.00 0.00 0.09 0.87 0.00 0.00 0.00 0.00 0.03 0.00 0.02 

Mn 0.05 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.03 
Ti 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.02 0.01 
Ca 0.73 0.58 0.02 0.00 0.04 11.35 3.87 0.48 1.25 0.34 1.06 

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.06 0.78 0.41 0.42 
Sum 8.03 8.03 6.98 6.98 5.00 22.70 16.18 4.00 15.31 4.00 15.23 

Oxygen 12 12 11 11 8 60 25 6 23 6 23 
adr 0.39 0.10 - - - - - - - - - 

grs 23.6 19.07 - - - - - - - - - 

prp 12.37 21.67 - - - - - - - - - 

sps 1.61 0.70 - - - - - - - - - 

alm 62.02 58.46 - - - - - - - - - 
agarnet inclusion: grt in 
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Table 5. Tso Morari P-T conditions at different prograde metamorphic stages and the corresponding garnet composition in TM-15G#3. Errors are 1a. 

Modeling 
Protocol 

Grt Nucleation Peak Pressure Peak Metamorphism 

Grt Comp.b Stable Phases T 
(°C) 

P 
(kbar) Grt Comp. Stable Phases T 

(°C) 
P 

(kbar) Grt Comp. Stable Phases T 
(°C) 

 P 
(kbar) 

TC33 

alm= 
0.62±0.03 

prp= 
0.10±0.03 

grs= 
0.28±0.03 

gln+act+grt+
omp+ms+chl
+lws+rt+H2O

540±15 21.5±1.5 

alm= 
0.63±0.03 

prp= 
0.20±0.02

grs= 
0.17±0.01 

gln+omp+grt
+tlc+ms+bt+l
ws+rt+H2OH
2O

565±8 26±1 

alm= 
0.47±0.01 

prp= 
0.30±0.01

grs= 
0.23±0.01 

omp+grt+tlc
+ms+lws+rt+
H2O 

603±3 24±0.5 

TC47 
gln+di+omp+
grt+bt+chl+l
ws+rt+H2O 

515±21 25±2.5 
gln+omp+grt
+tlc+ms+bt+l
ws+rt+H2O 

544±15 34±1.5 
gln+omp+grt
+bt+ms+tlc+l
ws+rt+H2O 

595±3 29±0.5 

TDG 
gln+omp+di+
grt+bt+chl+l
ws+rt+H2O 

530±25 26±2 
gln+omp+grt
+tlc+ms+bt+l
ws+rt+H2O 

551±12 34±1.5 
gln+omp+grt
+ms+tlc+lws
+rt+H2O

602±8 29±1 

TDW 
gln+omp+di+
grt+chl+ms+l
ws+rt+H2O 

537±25 22±2 
gln+omp+grt
+tlc+ms+bt+l
ws+rt+H2O 

563±13 28.5±1.5 
gln+omp+grt
+tlc+ms+lws
+ rt+H2O

613±7 24.5±0.5 

aGarnet composition uncertainties are calculated from EPMA data from garnet TM-15G#3 (Table S1). Uncertainties of P-T conditions are calculated propagating 
errors from the garnet composition in Grt Comp. columns. 
bGarnet Composition (Grt Comp.) is the same for all protocols, and is presented here as almandine (alm), pyrope (prp), and grossular (grs) endmember ratios from 
TD output. To convert to x(g) and z(g), the garnet composition parameters used in TC modeling, use (x(g)=alm/(alm+prp) and z(g)=gr/(alm+prp+grs)). 
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Table S1. TM-15 Eclogite TM-15G#3 garnet crystal EPMA compositional profile 
Sample No. Distance(μm) Position X(Fe) X(Mg) X(Ca) X(Mn) 
TM15G3L1P1 1173 Rim 0.465 0.303 0.227 0.005 
TM15G3L1P2 1149 Rim 0.458 0.298 0.239 0.005 
TM15G3L1P3 1134 Rim 0.476 0.29 0.229 0.006 
TM15G3L1P4 1119 Rim 0.464 0.299 0.233 0.005 
TM15G3L1P5 1105 Rim 0.461 0.299 0.236 0.005 
TM15G3L1P6 1097 Rim 0.48 0.288 0.226 0.006 
TM15G3L1P7 1090 Rim 0.442 0.317 0.237 0.005 
TM15G3L1P8 1075 Rim 0.445 0.323 0.227 0.005 
TM15G3L1P9 1060 Rim 0.45 0.31 0.235 0.005 
TM15G3L1P10 1045 Rim 0.465 0.303 0.228 0.004 
TM15G3L1P11 1026 Intermediate 0.492 0.27 0.233 0.005 
TM15G3L1P12 1012 Intermediate 0.534 0.248 0.213 0.005 
TM15G3L1P13 998 Rim_Low grs  0.58 0.231 0.182 0.007 
TM15G3L1P14 982 Core 0.611 0.147 0.224 0.017 
TM15G3L1P15 967 Core 0.599 0.117 0.268 0.015 
TM15G3L1P16 954 Core 0.605 0.116 0.263 0.016 
TM15G3L1P17 952 Core 0.597 0.104 0.283 0.016 
TM15G3L1P18 937 Core 0.618 0.099 0.267 0.016 
TM15G3L1P19 922 Core 0.602 0.122 0.26 0.016 
TM15G3L1P20 896 Core 0.625 0.092 0.265 0.019 
TM15G3L1P21 892 Core 0.572 0.097 0.317 0.015 
TM15G3L1P22 889 Core 0.547 0.145 0.295 0.012 
TM15G3L1P24 862 Core 0.598 0.098 0.282 0.021 
TM15G3L1P23 862 Core 0.615 0.097 0.267 0.021 
TM15G3L1P25 812 Core 0.596 0.1 0.281 0.023 
TM15G3L1P27 797 Core 0.593 0.075 0.31 0.023 
TM15G3L1P26 797 Core 0.592 0.075 0.31 0.023 
TM15G3L1P28 795 Core 0.617 0.073 0.287 0.024 
TM15G3L1P29 767 Core 0.597 0.102 0.28 0.022 
TM15G3L1P30 752 Core 0.581 0.098 0.299 0.023 
TM15G3L1P31 746 Core 0.598 0.074 0.303 0.026 
TM15G3L1P32 745 Core 0.572 0.096 0.311 0.021 
TM15G3L1P33 709 Core 0.595 0.081 0.303 0.02 
TM15G3L1P34 707 Core 0.574 0.072 0.336 0.019 
TM15G3L1P35 692 Core 0.565 0.102 0.312 0.021 
TM15G3L1P36 679 Core 0.567 0.126 0.287 0.02 
TM15G3L1P37 671 Core 0.584 0.098 0.298 0.021 
TM15G3L1P38 637 Core 0.58 0.135 0.271 0.015 
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TM15G3L1P39 623 Core 0.577 0.065 0.345 0.014 
TM15G3L1P40 600 Core 0.541 0.21 0.238 0.01 
TM15G3L1P41 572 Core 0.621 0.088 0.273 0.018 
TM15G3L1P42 572 Core 0.621 0.089 0.272 0.018 
TM15G3L1P43 537 Core 0.59 0.138 0.253 0.019 
TM15G3L1P44 537 Core 0.644 0.081 0.257 0.018 
TM15G3L1P45 537 Core 0.646 0.082 0.253 0.019 
TM15G3L1P46 511 Core 0.655 0.082 0.245 0.018 
TM15G3L1P47 507 Core 0.633 0.089 0.26 0.018 
TM15G3L1P48 482 Core 0.636 0.097 0.25 0.017 
TM15G3L1P49 457 Core 0.632 0.06 0.29 0.017 
TM15G3L1P50 457 Core 0.616 0.124 0.244 0.016 
TM15G3L1P51 432 Core 0.629 0.12 0.233 0.018 
TM15G3L1P52 402 Core 0.65 0.092 0.24 0.018 
TM15G3L1P53 392 Core 0.652 0.088 0.24 0.019 
TM15G3L1P54 390 Core 0.655 0.09 0.237 0.018 
TM15G3L1P55 357 Core 0.652 0.093 0.237 0.019 
TM15G3L1P56 357 Core 0.646 0.102 0.233 0.019 
TM15G3L1P57 327 Core 0.647 0.095 0.24 0.018 
TM15G3L1P58 319 Core 0.608 0.132 0.243 0.018 
TM15G3L1P59 297 Core 0.619 0.113 0.25 0.018 
TM15G3L1P60 217 Rim_Low grs 0.64 0.167 0.187 0.007 
TM15G3L1P61 187 Rim_Low grs 0.648 0.188 0.156 0.007 
TM15G3L1P62 187 Rim_Low grs 0.648 0.189 0.157 0.006 
TM15G3L1P63 112 Rim_Low grs 0.626 0.205 0.162 0.007 
TM15G3L1P64 102 Rim_Low grs 0.617 0.2 0.177 0.007 
TM15G3L1P65 100 Rim 0.472 0.295 0.228 0.005 
TM15G3L1P66 92 Rim 0.524 0.274 0.197 0.006 
TM15G3L1P67 92 Rim 0.521 0.273 0.201 0.004 
TM15G3L1P68 82 Rim 0.478 0.308 0.209 0.006 



Table S2.  TM-15 fitted and selected garnet compositional data along the TM-15G#3 profile 
Steps Distance(μm) X(alm)_TD X(prp)_TD X(grs)_TD x(g)_TC z(g)_TC 

F0 0 0.586 0.089 0.325 0.868 0.325 
F1 61 0.591 0.092 0.317 0.865 0.317 
F2 122 0.596 0.096 0.308 0.862 0.308 
F3 183 0.601 0.099 0.300 0.858 0.300 
F4 244 0.605 0.102 0.292 0.855 0.292 
F5 305 0.610 0.106 0.284 0.852 0.284 
F6 366 0.615 0.109 0.276 0.849 0.276 
F7 382 0.622 0.150 0.228 0.806 0.228 
F8 398 0.584 0.233 0.183 0.715 0.183 
F9 412 0.537 0.249 0.214 0.683 0.214 
F10 426 0.495 0.271 0.234 0.646 0.234 
F11 445 0.467 0.304 0.229 0.606 0.229 
F12 460 0.452 0.311 0.237 0.593 0.237 
F13 483 0.445 0.321 0.233 0.581 0.233 
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