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Hard-sphere molecular dynamics �MD� simulation results, with six-figure accuracy in the
thermodynamic equilibrium pressure, are reported and used to test a closed-virial equation-of-state.
This latest equation, with no adjustable parameters except known virial coefficients, is comparable
in accuracy both to Padé approximants, and to numerical parameterizations of MD data. There is no
evidence of nonconvergence at stable fluid densities. The virial pressure begins to deviate
significantly from the thermodynamic fluid pressure at or near the freezing density, suggesting that
the passage from stable fluid to metastable fluid is associated with a higher-order phase transition;
an observation consistent with some previous experimental results. Revised parameters for the
crystal equation-of-state �R. J. Speedy, J. Phys.: Condens. Matter 10, 4387 �1998�� are also
reported. © 2010 American Institute of Physics. �doi:10.1063/1.3328823�

I. INTRODUCTION

Since van der Waals first modified the ideal gas equation
to obtain his “second-virial” equation-of-state for the dilute
gas of hard spheres, there have been many predictions of the
hard-sphere equation-of-state. Theoretical equations, while
yielding some physical insight into the behavior of hard-
sphere systems, have all proven to be inaccurate when tested
against computer experimental data. An essential starting
point for an ultimate equation-of-state of the hard-sphere
fluid is the known virial series. The expansion of pressure p
in powers of density � for the fluid equation-of-state of hard
spheres is

Z = 1 + b2� + b2�3 + ¯ + bn�n−1 + ¯ , �1�

where Z= p / ��kBT� is the compressibility factor, kB is the
Boltzmann constant, T is absolute temperature, bn is the nth
virial coefficient, and � is the sphere number density �N /V�.
Exact analytical expressions for the third and fourth virial
coefficients were derived by Boltzmann,1 and higher coeffi-
cients have now been computed numerically up to the
tenth.2–14 The numerical virial coefficients b5 to b9 were re-
calculated more accurately by Kolafa and co-workers12,13

and also re-evaluated by Clisby and McCoy.2,14 All their val-
ues, which we utilize here �Table I� are within the uncertain-
ties quoted in Table V of Labik et al.13

Despite these efforts, the virial expansion truncated at
the tenth virial coefficient is still not sufficient to accurately
estimate the pressure when approaching the freezing transi-
tion. Many techniques have been used to attempt to estimate
the contribution of the higher virial coefficients. Padé ap-
proximants, first used by Ree and Hoover,3 are the most
commonly used. These approximants utilize a rational func-

tion to exactly reproduce the known virial coefficients and
provide a closed estimate for the remaining terms. The most
recent attempt by Clisby and McCoy2,14 to determine the
pressure equation of the extended virial series utilizes all ten
known coefficients. The predictions of these approximate
methods cannot be tested without comparing to molecular
dynamics �MD� simulation results for the thermodynamic
pressures of very large systems. Recently, Kolafa et al.12

performed a comparison using simulations of 13 500
spheres. They carefully studied the errors introduced by the
use of periodic boundary conditions and simulation en-
sembles and duly corrected for finite size effects. The deter-
mination of some known virial coefficients to higher accu-
racy, and the calculation of the tenth virial by Clisby and
McCoy2,14 have prompted further developments on the
equation-of-state.15–17

A new closed virial equation-of-state has been recently
proposed for spheres and disks15,16 based on the empirical
observation that the higher known virial coefficients appear
to be decreasing linearly. This implies that the difference
Bn−Bn+1 approaches a constant as n approaches infinity; in
this case all higher virial coefficients are predictable from the
known coefficients and the infinite series can be closed
analytically.16 Preliminary comparisons of this latest
equation-of-state for hard spheres show it be extremely ac-
curate, i.e., to within the uncertainty of prevailing thermody-
namic pressure data from MD simulations. All previous the-
oretical and empirical hard-sphere fluid equations-of-state
are reviewed recently by Mulero et al. in Ref. 18. In more
than 100 years since van der Waals, more than a hundred
different hard-sphere fluid equations have been proposed.
Many analytic equations have poles at the physically unreal-
istic 100% packing fraction. Such theoretical equations,18 as
suggested by scaled-particle theory, Percus–Yevick theory,
the hypernetted chain equations, and many empirical equa-
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tions such as the ubiquitous Carnahan–Starling. A discussion
and summary of these equations can be found elsewhere.18,19

None, however, can be potentially exact because they can
never represent all the known virial coefficients precisely.
One only has to look at the complexity of the highest ana-
lytic coefficient �b4� to see that the ultimate virial equation-
of-state must incorporate the known virial coefficients ex-
plicitly.

Other authors19,20 suggest the first pole is in the vicinity
of the close packed density, �0. Wang and Khoshkbarchi19

parameterized closures of the form �1−� /�0�−n, for values of
n=1, 2, and 3, but all three of their parameterized Eqs.
�14–16 of Ref. 19� all begin to fail at the eighth virial
coefficient by errors of the order 10%. Mulero and
co-workers18,20 also proposed an equation with the pole
should be at �0 maximum packing fraction y0=��0�3 /6
=0.7405 which they approximate to 3/4 and modify the
Carnahan–Starling equation accordingly. The equation pro-
posed by Yelash et al.,20 however, is no more accurate than
the Carnahan–Starling itself at equilibrium densities �see be-
low�, as their fifth, sixth, and seventh virial coefficients are
all too high by around 10%.

There is now a need for more precise MD data to test
more rigorously these approximate equations-of-state includ-
ing the one proposed here. Recently, a new event-driven MD
package has been developed,21,22 namely DYNAMO, which
allows the simulation of previously unattainable system sizes
with up to six-figure accuracy. Using results from DYNAMO

we are now able to apply a more rigorous test of the latest
equations-of-state than was hitherto possible.

II. VIRIAL EQUATION-OF-STATE

Computed numerical values of the nth virial coefficients
are often presented as a dimensionless ratio of bn /b2

n−1,
where b2 is the second virial coefficient, first determined by
van der Waals to be b2=2��3 /3. These values for all the
known virial coefficients from Clisby and McCoy2,14 are
given in Table I. Also shown in Table I are the coefficients in
powers of density relative to close packing which are more
amenable to an analytic closure if the virial series is conver-
gent for all densities up to the first pole at maximum packing
�0.15

Where there are no physical insights to go on, one way
to mathematically extrapolate beyond the truncated virial se-

ries is to use a Padé approximant. Clisby and McCoy2,14 have
fitted approximants to the first ten virial coefficients. These
take the forms

ZCM Padé�5,4� =
1 + C1a� + C2a�2 + C3a�3 + C4a�4 + C5a�5

1 + C6a� + C7a�2 + C8a�3 + C9a�4

�2�

and

ZCM Padé�4,5� =
1 + C1a� + C2a�2 + C3a�3 + C4a�4 + C5a�5

1 + C6a� + C7a�2 + C8a�3 + C9a�4 .

�3�

Numerical values of all the constants are given in the origi-
nal paper by Clisby and McCoy.2,14 Also given here in Table
I are the values of the known virial coefficients, when the
virial expansion is expressed in powers of the density rela-
tive to the maximum density of the closest packed crystalline
state �0=21/2�−3.

Z = 1 + B2��/�0� + B3��/�0�2 + ¯ + Bn��/�0�n−1 + ¯ .

�4�

The Bn and bn are related by

Bn = bn�0
n−1. �5�

In the third column of Table I, we give the differences be-
tween consecutive virial coefficients. It has been observed15

that, in this expansion, the difference Bn−Bn−1 becomes con-
stant. This has enabled the derivation of a closed analytic
equation-of-state based only upon the known virial
coefficients.15,16 This closure of Eq. �2� assumes that Bn

−Bn−1 for n�9 is approaching a constant, and utilizes the
extrapolated higher virials B11 and B12 as recommended.12,13

The virial equation-of-state has been designated WC1
�Ref. 22� and can be written as

ZWC1 = 1 + �
n=2

m

Bn��/�0�n−1 + ��/�0�m

�� Bm

1 − �/�0
−

A1

�1 − �/�0�2� , �6�

where m=10 and the constant A1 was found to be 0.682 19.
This closed-virial equation requires only the value of A1 and
the first few known virial coefficients. Equation �6� for hard
spheres was found to be as accurate as the most accurate
available MD data for the dense fluid.15 Its derivation can be
seen elsewhere, in Ref. 16, where an analogous equation-of-
state for two-dimensional disks is also obtained, and found to
be of similar accuracy to the three-dimensional case.

Rather than rely on higher virial coefficients, however,
which have themselves been fitted numerically to MD data,
to obtain the limiting constant, we can determine a value of
the constant A1 in Eq. �6� from explicitly computed known
virial coefficients �i.e., up to B10�. Table I shows the differ-
ence approaches a limiting constant �A0� exponentially with
n; the convergence appears to be almost complete at B10.
Using values only of B7 to B10, a plot of the difference be-
tween consecutive virial coefficients �see Fig. 1� reveals that

TABLE I. Known virial coefficients of the hard-sphere fluid.

n bn /b2
n−1 Bn Bn−Bn−1

2 1.000 000 00 2.961 921 ¯

3 0.625 000 00 5.483 111 2.521 190
4 0.286 949 50 7.456 345 1.973 234
5 0.110 252 10 8.485 568 1.029 223
6 0.038 881 98 8.863 719 0.378 154
7 0.013 023 54 8.793 670 �0.070 049
8 0.004 183 20 8.366 104 �0.427 566
9 0.001 309 40 7.756 405 �0.609 699

10 0.000 403 50 7.079 543 �0.676 822
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the last three data points conform to an exponential decay,
with a correlation coefficient of 0.999 99. If this expression
were to accurately represent all higher coefficients, the hard-
sphere fluid closed-virial equation, designated WC2,22 is now

ZWC2 = 1 + �
n=2

m

Bn��/�0�n−1 + ��/�0�m

�� Bm

�1 − �/�0�
−

A2���
�1 − �/�0�2� , �7�

whereupon the constant A1 in WC1 Eq. �6� becomes A2��� in
Eq. �7� and can be obtained from the three highest known
virial coefficients

A2��� =
e�Bm+1 − Bm� − ��/�0��Bm − Bm−1�

�/�0 − e
, �8�

where Bm+1 is the highest required known coefficient for a
specific accuracy; i.e., B10 at present. A2��� is a very weak
function of density: It varies from the value of A1 in WC1
�see Eq. �6�� when � /�0=0, to the limiting constant A0 when
� /�0=1. As m becomes very large, A1→A2→A0. It is inter-
esting to note that the constant A0 is close to the minimum
volume per sphere at close packing: i.e., V0 / �N�3�
=1 / ��0�3�=2−1/2=0.7071. The value obtained here for
A0�0.7158� could be V0 / �N�3� to within the latitude of un-
certainty arising from the computed higher coefficients
B8–B10 �see Fig. 1�.

These forms of the equation-of-state predict that the
higher-order virial coefficients will eventually go negative
giving an unphysical negative pressure at very high density
and a negative pole at maximum packing �0. Interestingly,
there are no terms oscillating in sign which are significant in
higher dimensions. Following the extrapolation of Eq. �6� or
Eq. �7�, the virial coefficients beyond B19 are all negative.
The higher virial coefficients predicted by WC1 or WC2 are
very close to the predictions of the Padé �5,4� approximant of
Clisby and McCoy.2,14

The new equations-of-state, either WC2 or the simpler
version WC1 with the single closure constant A, can be com-
pared with previous empirical analytical closures, such as the
Carnahan–Starling23 and the numerically parameterized
equations-of-state determined by Kolafa et al.12 from their
MD simulation data. Carnahan and Starling’s equation-of-
state is based on a simple recursion formula for the variation
in the virial coefficients when the expansion is expressed in
powers of the packing fraction y. It is usually written

ZCS =
1 + y + y2 − y3

�1 − y�3 , �9�

where y=���3 /6 and is the packing fraction of the spheres.
It is know only to be an approximation for the analytic fourth
virial and all higher coefficients. While serving as a useful
first approximation, Eq. �9� could never be a true represen-
tation of the virial equation-of-state of the equilibrium hard-
sphere fluid.

By fitting to both the known virials and their accurate
MD data, Kolafa, Laboratoryík, and Malijevsky12 �KLM� pa-
rameterized the equation-of-state data according to

ZKLMlow = 1 + 4x + 6x2 + C1lx
3 + C2lx

4 + C3lx
5 + C4lx

6

+ C5lx
7 + C6lx

8 + C7lx
12 �10�

ZKLMhigh = 1 + 4x + 6x2 + C1hx3 + C2hx4 + C3hx5 + C4hx6

+ C5hx7 + C6hx8 + C7hx14 + C8hx22, �11�

where x=y / �1−y�; numerical values for the constants can be
found in the paper by Kolafa et al.12 We note that the number
of unknown constants in the KLM equations, Eqs. �10� and
�11�, respectively, are as many as the number of numerically
determined virial coefficients used in the WC virial equation-
of-state, Eq. �6� or Eq. �7�.

Below we report extensive MD simulations so that the
closed-virial equations-of-state WC1 and WC2, Eqs. �6� and
�7� respectively, can be tested more rigorously, i.e., by com-
paring the accuracy with that of the numerical equations of
Kolafa et al.12 Eqs. �10� and �11� and the Padé approximants
of Clisby and McCoy, Eqs. �2� and �3�, in the whole stable
fluid region. We also compare with the Carnahan–Starling
equation-of-state, Eq. �9�.

III. MD SIMULATION

To test the various equations-of-state and to explore the
whereabouts of the first phase transition in the hard-sphere
fluid, i.e., where the virial equation and the thermodynamic
equation-of-state diverge, we have performed new MD simu-
lations. Pressure of hard-sphere systems have been determine
to a high degree of precision. The simulation package
DYNAMO was used to execute the simulations. Further details
of the program and the basic algorithm can be found in
Ref. 22.

The simulation data are summarized in Table II. Data
with a superscript F1 are from simulations with 1 098 500
spheres started in a fcc lattice, equilibrated for 2.197�108

collisions, and run for 8.788�108 collisions; data with a
superscript F2 are for 108 000 spheres started in a fcc lattice,
equilibrated for 2.249 728�108 collisions and run for
8.998 912�108 collisions. The data with a superscript S1
and S2 correspond to systems with 1 124 864 and 125 000
spheres, respectively, started in a simple cubic lattice, equili-
brated for 108 collisions, and run for 109 collisions. Two
simulation runs were performed for each system, and esti-
mates of the uncertainty of the data are provided by the stan-
dard deviation of the reported values between each simula-
tion run. The pressure was calculated using the collision rate
formula24

FIG. 1. The differences between the reduced virial coefficients for a hard-
sphere fluid. The solid line is the linear fit to the eighth, ninth, and tenth
virial coefficients; the intercept A0 is the limiting value of the constant A2 in
WC2, Eq. �7�.
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ZMD = 1 +
��N��m�2��

3N

Ncoll

	t
, �12�

where Ncoll is the number of collisions between spheres, and
	t is the duration of the simulation. The quantity ��N� is a
correction factor to convert the pressure calculated in the
constant-NVEM ensemble �where M is the total momentum
vector of the system�, to the value for the NVT ensemble and
is given by

��N� =

��3�N − 1� + 1�/2�


�3�N − 1�/2��3N/2�1/2 , �13�

where 
 is the gamma function. There are two further
sources of error which will cause the MD results to differ
from the theoretical equations-of-state. There is the ensemble
error caused by the microcanonical ensemble suppressing
fluctuations possible in the grand canonical ensemble. Sec-
ond, there is the error arising from the periodic boundary
conditions necessary for simulation of a bulk fluid element.
Following the analysis Kolafa et al.,12 these errors are found
to be overshadowed by the uncertainty in the simulation re-
sults and are essentially negligible for the largest system ex-
amined here.

IV. RESULTS AND COMPARISONS

The complete MD data are summarized in Table II, in-
cluding estimates for the uncertainty, and pressures plotted in
Fig. 2. All systems in the metastable fluid branch between

the fluid-solid transition densities, i.e., 0.943���3�1.04,
were stable and showed no indications of freezing over the
duration of the simulation. This is remarkable given the sys-
tem size studied and the proximity of the state-point ��3

=0.995 to the solidus density.
Figure 2 shows that the predictions of the truncated

virial series and the Carnahan–Starling equations are poor at
higher densities when directly compared against the MD data
up to five-figure accuracy. The deviations become even more
apparent for the truncated virial equation �known terms only�
in the metastable branch. To allow accurate comparisons of
the equations-of-state for the fluid and metastable branch the
results are re-plotted in Fig. 3. The parameter plotted is the
relative deviation of the compressibility from the MD results
given by 	Z= �ZMD−Z� /ZMD. The truncated virial series be-
gins to noticeably deviate from the MD results at a density of
��3=0.5 where it consistently underestimates the compress-
ibility factor. The Carnahan–Starling equation-of-state is
only accurate to within 0.3% and underestimates the com-
pressibility factor for all densities examined. The deviation
of the Carnahan–Starling equation-of-state23 also displays a
minimum around the freezing density of the fluid.

From Fig. 3, first, we see that the equation-of-state of
Kolafa et al.,12 gives perfectly accurate predictions with our
simulation data within the estimated uncertainties, as it must
for self-consistency. The KLM equation-of-state is a semi-
empirical expression fitted to their MD data. It further serves
as a comparison of the present MD simulation results against

TABLE II. Simulation values for the hard-sphere equation-of-state: Super-
scripts indicate the initial condition �F=face-centered cubic or S=simple
cubic� and system �1 or 2, see text�. Values in parenthesis are the standard
deviations of the last two digits: state points between ��3=0.95 and 0.995
are on the metastable fluid branch. The state point at ��3=1 is on the
metastable solid branch.

��3 ZMD ��3 ZMD

0.100F1 1.239 724 3�69� 0.850S2 9.118 56�14�
0.150F1 1.385 949 9�44� 0.875S2 9.898 90�38�
0.200F1 1.553 610 9�77� 0.900F1 10.762 95�36�
0.250F1 1.746 288�31� 0.900S2 10.762 50�29�
0.300F1 1.968 242�26� 0.910S1 11.134 01�21�
0.350F1 2.224 609�29� 0.920S1 11.521 73�17�
0.400F1 2.521 648�39� 0.925S2 11.721 837�60�
0.450F1 2.866 821�48� 0.930S1 11.925 85�24�
0.500F1 3.269 361�52� 0.940S1 12.348 79�59�
0.550F1 3.740 700�47� 0.950S2 12.790 55�27�
0.600F1 4.294 94�10� 0.950S1 12.791 33�40�
0.650F1 4.949 678�25� 0.960S1 13.253 95�94�
0.675S2 5.321 49�16� 0.970S1 13.739 66�88�
0.700F1 5.726 86�15� 0.975S2 13.991 2�16�
0.700S2 5.727 007�39� 0.980S1 14.248 32�74�
0.725S2 6.170 06�17� 0.990S1 14.784 3�12�
0.750F1 6.655 21�25� 0.995S1 15.062 66�92�
0.750S2 6.655 057�70� 1.000F2 10.249 03�56�
0.775S2 7.186 56�33� 1.100F2 13.267 11�23�
0.800F1 7.769 97�27� 1.200F2 19.468 35�24�
0.800S2 7.769 75�24� 1.300F2 36.751 66�44�
0.825S2 8.411 88�18� 1.400F2 298.057 6�80�
0.850F1 9.118 67�26� 1.410F2 1006.450 3�96�

FIG. 2. Equation-of-state for the hard-sphere system in the fluid, solid, and
two-phase coexistence regions. The dashed vertical lines are at the approxi-
mate freezing and melting points. The solid lines are the predictions of the
Carnahan–Starling equation-of-state �see Eq. �9��, the dashed line is the
truncated ten-term virial series, and the dotted line is Speedy’s equation-of-
state for the fcc crystal �see Eq. �14��; the present MD thermodynamic
pressures are represented by crosses.

FIG. 3. The difference between the simulation results for the compressibil-
ity factor Z and the predictions of the various equations-of-state for the
hard-sphere fluid. The dashed vertical line indicates the approximate freez-
ing density for the hard-sphere fluid. Zvirial is the truncated ten-term virial
equation. The inset is a closeup of the high density region for 	ZKLM,
showing the accuracy and agreement of our MD results.
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the accurate simulations of Kolafa et al.12 from which the
ZKLM equations were parameterized, and highlights the small
system size dependency at these state points. Both Padé ap-
proximants perform accurately, but the Z�5,4� predictions
are everywhere better than Z�4,5�. In view of the accuracy
of ZWC1 or ZWC2, however, it appears we need no longer
resort to numerical parameterization.

The WC2 equation-of-state is a marginal improvement
on its predecessor WC1.15 Interestingly, the more accurate of
the Padé approximants, Z�5,4� and the WC closure
equations-of-state can be seen to have the same limiting form
at higher densities. This agreement is indicative that the com-
plete virial series is indeed convergent everywhere up to the
pole of negative divergence at �0 in the WC equations.

The results for the solid branch �see Fig. 4� were com-
pared against the equation-of-state of Speedy25,26 for hard-
sphere fcc solids, given by

Zfcc =
3

1 − �/�0
− A

�/�0 − B

�/�0 − C
, �14�

where A=0.5921, B=0.7072, and C=0.601 are empirical
values of the constants originally obtained by fitting to MD
data. Speedy’s equation-of-state performs remarkably well at
high densities near to �0 due to the inclusion of the exact
limiting free volume equation of state form 3 / �1−� /�0�.

At lower densities, the equation is accurate but shows
signs of difficulties when approaching the solid metastable
branch. A straightforward regression of the parameters in
Eq. �14� from the original coefficients to the current data
given in Table II yields revised values of A=0.620 735,
B=0.708 194, and C=0.591 663. The resulting equation-of-
state using these revised values yields predictions that are
indistinguishable from the MD simulation data for the den-
sities studied, even into the metastable region.

There are various suggestions in the literature25,27–29 that
the virial equation-of-state should extrapolate beyond the
first-order freezing transition to describe the metastable fluid,
and eventually have its first pole at random close packing
�RCP�. This was originally suggested by Le Fevre27 and has
resulted in a number of such equations-of-state being
proposed.25,27–29 Continuous virial equations with the first
pole at RCP are based upon the premise that the low density
gas and the high density metastable amorphous branch ex-
trapolation belong to one and the same phase, with the pres-
sure as a function of density being continuous in all its de-
rivatives over this whole range.

All the evidence we have, however, suggests that the
virial equation reflects neither the meta-stable branch nor any
RCP density.15,30 Moreover, it appears from our comparisons
that the virial series “sees” neither the first-order freezing
transition nor the metastable fluid branch. The first phase
transition in the hard-sphere fluid is the bifurcation of the
thermodynamic fluid or its metastable extrapolation from the
virial equation-of-state. The present results suggest this
higher-order phase transition could be at the fluid-crystal
freezing transition.

V. CONCLUSIONS

MD simulations were performed to generate accurate
compressibility data for the testing of various equations-of-
state. The accurate results of Kolafa et al.12 are in perfect
agreement with, and hence validate the accuracy of MD re-
sults reported here, and vice versa, through comparison
against their parameterized empirical equations of state. The
Padé approximants of Clisby and McCoy2,14 are also excel-
lent representations of the MD pressures to six-figure accu-
racy; the �5,4� variant is slightly more accurate than the �4,5�
form. Our new equation-of-state closures WC1 and WC2,
however, which use an analytic form to close the series, both
perform just as well, remarkably so given the simple nature
of the closure. WC1 is simpler but WC2 is slightly more
accurate and uses only known virial coefficients to effect the
closure. If the limiting Bn−Bn+1 parameter, =A0 as n→�,
turns out to be a constant, perhaps equal to V0 / �N�3�, WC1
and WC2 become the same, and essentially exact if the func-
tional form is confirmed as higher values of the hard-sphere
virial coefficients become available. This new virial
equation-of-state is found to be as accurate as the best high
precision machine data up to the uncertainties in both the
MD data and the current uncertainties in B9 and B10 from
which A1 or A2 are derived. If a theory could be found to
validate the closure form, and also determine the constant
analytically, then we have here a truly correct equation-of-
state for the hard-sphere fluid, with no empirical parameters,
other than known virial coefficients.

We have also attempted to determine higher coefficients
from the new MD data presented here, but this exercise
proved to be unsuccessful. Numerically fitted values for B11

and higher, however, are unreliable. Using the equation

ZMD − Z10 = B11��/�0�10 + B12��/�0�11

+ ¯ + higher-order terms �15�

we find that determination of B11 from both the present data,
and also using the KLM lower density data, gives too wide a
margin of uncertainty, of the order 10%–15% in B11, increas-
ing to 50% for B12 in the case of spheres. For disks the
accuracy is even worse.

We find no evidence here for a first phase transition at
density well below freezing, for example at a density of the
free volume percolation transition as has been suggested
previously.5–8 We cannot, however, rule out this possibility.
There could be an extremely weak higher-order phase tran-
sition at a lower density that is imperceptible even given the
present high precision MD pressures.

FIG. 4. The difference between the simulation results for the compressibil-
ity and the predictions of the equations-of-state for the hard-sphere solid.
The vertical dashed line denotes the approximate melting point for the hard-
sphere crystal. The circles are from Eq. �14� with the original coefficients of
Speedy �Refs. 25 and 26�; the triangles are from Eq. �14� with the three
constants having been readjusted to best fit the present MD data.
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The evidence for metastability of the MD fluid systems
beyond �0, rather than instability, comes from reproducibility
of Z data from 0.95 to 0.99, where there is agreement within
five-figure accuracy between present MD and KLM from
very long runs for very large systems. Accordingly, this can
be used as evidence to show there is a phase transition ac-
companying the first-order fluid-to-crystal transition, but in
stable fluid to metastable fluid branch. This description as a
“thermodynamic” phase transition also requires the meta-
stable pressure to be a state function of density, and continu-
ous in all its derivatives.

Kolafa31 has expressed a similar viewpoint; he suggests
that the region of discrepancy, between virial equation and
thermodynamic pressure, both prefreezing and the meta-
stable branch, is due to incipient crystal nuclei within the
equilibrium fluid configurations, and hence nonanalytic. For
the thermodynamic pressure equation-of-state Kolafa pro-
poses a closure for the thermodynamic pressure equation of
the form

ZK−Th = 1 + �
n=2

m

Bn	 �

�0

n−1

+ ����� − � f�� , �16�

where � and � are fitted parameters, and  is a nonanalytic
function at the thermodynamic freezing transition density � f:
the form of the function  is derived based on ideas from
homogeneous nucleation theory.

The point at which the infinite virial series departs from
the stable or thermodynamic fluid equation-of-state must be
characterized by a higher-order thermodynamic phase transi-
tion. Consequently, we are drawn to the conclusion that at, or
near, the fluid freezing transition, the thermodynamic hard-
sphere fluid on passing continuously to the metastable fluid
also undergoes a higher-order phase transition. This follows
because the complete virial equation-of-state, which repre-
sents the equilibrium fluid, is itself everywhere convergent
and continuous in all is derivatives.

This observation of a discontinuity from stable to meta-
stable fluid has been reported and discussed previously by
van Megen.32 Our finding that the virial equation and the
thermodynamic metastable branch begin to deviate at the
freezing transition is consistent with a conclusion of van
Megen et al.33 from studies of structural fluctuations in hard-
sphere colloidal dispersions by light scattering around the
freezing transition density. Williams et al.34 have also re-
ported extensive MD computations of spectra obtained from
the long-time tails of the velocity autocorrelation, which also
show a change in dynamical behavior on passage from stable
fluid to metastable fluid.

The various results of van Megen and co-workers,32–34

taken together with the present analysis, suggest that this
new phase transition is weak second order and may physi-
cally be explained by the onset of first crystalline nucle-
ations, i.e., new fluctuations with a different symmetry,
“kicking in” at the start of the two-phase region.
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