
‘`)°11
(1.3) OCR Outputs[J]:==}nr17-lnW[-7E-EJ)

lc H

nian H, one can prove that the limit
R.uelle’s idea can be illustrated simply: under mild restrictions on the Hamilto

Ruelle [R1) in 1965.
the existence of the limit in (1.2) poses obvious difhculties. These were resolved by
subset of phase—space on which the Hamiltonian HV takes the value uV; however,
where s(u) is the entropy per unit volume and W[ £"VY— = u. ) is the measure of the

V°\/
(1.2)s(u)=hgn—§lnW[; :11],§

infinite; in this limit, we might expect a formula
meaning, we should pass to the limit in which the volume of the system becomes
as a measure on pl1ase—space. To have any hope of giving the formula a precise
variables such as u., the internal energy per unit volume, while W must be interpreted
problems for theoretical physicists: the entropy is a function of a small number of
number W of microscopic states which correspond to the macroscopic state, caused
relating the thermodynamic entropy S of a macroscopic equilibrium state to the

S = kln W, (1.1)

Boltzmann’s remarkable formula
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Y,,:= X1+...+X,, }, (1.11} OCR Output

of Theorem 1.1 that IK,,, the distribution of
attains its supremum at m, the mean of the distribution IK; it is a simple consequence

Under the hypotheses of Theorem 1.1, the function s is strictly concave and
Deuschel and Stroock [DS], systematized these developments.
bounded and the space E is possibly infinite·dimensional. Azencott [A] and, later,
a powerful generalization of Cramer’s Theorem in which the Xj are possibly un
This idea was taken up by Bahadur and Zabell [BZ]; they developed it to prove

:€J
s[J] = sup (1.10)

Lanford then proves that

I·: ` s(m). 1Ig.£5[J], 1.9 ( >
Defining s(a:) by

""*"”· Tl ·n. TZ

. . J

from this follows the existence of the limit:

¢(r¤+m;J) ?.¢(¤;J)+tf¤(m;J); (1-7)
is subadditive:

n n
ib(n;J):: —lnIP[—{X1+...+X,.}E J] (1.6)

1 1

Lanford first proves that mb, defined by

:5JnF"'°°° Tl 71
. lim —-lnIP [-{X1 + + X.,} E J] = sup (1.5]
1 1

convex open set J with J F) I` gt Q),
non-empty. There exists a continuous concave function s on I` such that, for every
we denote their common distribution by IK and assume that the support I" 0fIK is
distributed random variables taking values in a fZnite·dimensional vector space E;
Theorem 1.1 Consider a sequence XMX2, of bounded, independent, identically

Cramer’s Theorem:

large numbers. In a digression, Lanford [L] gives a proof of the following version of
the theory we shall describe starts with Cramér’s refinement [C'] of the weak law of
refine the central limit theorem for sums of Bernoulli random variables; however,

The theory of large devations began as an attempt by Khinchin [Kh] in 1928 to
important development in the theory of large deviations.
it to give a completely new proof of Cra.mér’s Theorem; this was the first step in an
idea turned out to have a surprising ramification in probability theory: Lanford used
thermodynamics, described in detail in Lan.ford’s 1971 Battelle lectures Ruelle’s
was developed by Ruelle and Lanford to provide a rigorous treatment of statistical
that u -+ s(u) is concave. This simple idea, extended to vector—valued Hamiltonians,
The subadditivity argument used to establish the existence of the limit proves also

SW) ¤= ggfjifl (14)

such J, we obtain the entropy function s(u):
exists for each open interval J containing the point u; taking the infimum over all



Contraction Principle. To a physicist, hypotheses (LDP 3) and (LDP 4) may seem OCR Output
obeys an LDP. The theorem which relates the two rate-functions is known as the
{lK,,},,21 obeys an LDP, then the sequence {lK,, o q5"l},,2, of image measures also
Principle is a covariant notion: if gb : E -> E' is continuous and the sequence
of (1.].7); however, we shall see that its presence ensures that a Large Devation

As Ellis has pointed out [E], hypothesis (LDP 2) is not required for the proof

2EE
lim lnexp(·n.g(z:))lK,,[da:] = sup (g(x) + s(a:)).if "’“°°° Tl E

Principle, we have
function g : E —> IR so that, if the sequence {lK,,},,2l obeys a Large Deviation
the rate—function.) Varadhan’s Theorem (see Corollary 6.1) gives conditions on a
the function s is called the rate-function. (Many authors call the negative of s

:€G71**X TL
(1.16)lim inf ;lnlK,,[G] 2 sup $(:1:);

• (LDP 4) for each open set G,

Ig}?n-•c¤ TZ
(1.15)lim sup :—ln lK,,[F] § sup $(2;);

• (LDP 3) for each closed set F,

• (LDP 2) the level sets of s are compact;

• (LDP 1) the function s is upper semicontinuous;

such that

{lK,,},,21 obeys a Large Deviation Principle if there exists a function s : E —> lR
This idea was given precise form in the definitive work of Varadhan [V]: the sequence

¢><P(¤a(¤¤))TK-·ld¢l ~ sxplnsigg (sale) + —=(<¤))— (M4)

where “da:” is some reference measure, then we might expect that

lK,,[d:1:] ~ exp n.s(z:)“dm”, (1.13)

behaves asymptotically for large n as
let {IK,,},._21 be a sequence of probability measures on a space E; if this sequence
spaces; this was exploited in the thesis of his student Schilder Here is the idea:
Law of Large Numbers to give a generalization of Laplacian asymptotics to function
tion: in the early ’sixties, Donsker proposed using such a refinement of the Weak
problems in mathematical physics. This development came from a different direc

By now, large deviation techniques are used widely for the rigorous treatment of
Cramer’s Theorem refines the Weak Law of Large Numbers.
gives the exponential rate at which this limit is approached. It is in this sense that
as n ——> oo for every continuous function f 1 l" —-» lR. ln addition, Theorem 1.1

f(¤)lK-·ld¤¤l ·· flml (U2)

converges to the Dirac measure 5,,, in the sense that



measures which are studied in the theory of large deviations are the distributions of OCR Output
Now we turn to a description of the contents of this paper. The probability

¢5E•
—=(¤) = — Sup <<¢. ¤¤>— z><¢))·

if s is concave, then (1.21) can be inverted to give

:¤(¢) =S;1g(<#»¤=> +$(¤)); (1-21)

pressure p and the right·hand side with the conjugate of -s, so that
functional :1: —» (t, 1:); then the left-hand side of (1.17) can be identiied with the
Varadhan’s formula (1.17) in the case in which E is a vector space and g is a l.inear
pressure. To see the relevance of the pressure in a more general context, consider
proof of Cramer’s Theorem; another proof, due to Chernoff [Ch], makes use of the
canonical pressure also has a part to play. We saw that entropy enters in La.nford’s

Entropy is not the only thermodynamic function to arise in the theory; the grand

of the material and Theorem 7.2.

deviations. Little of what we present is original except, perhaps, the organization
more modest: to explore the role of thermodynamic functions in the theory of large
example. It is not our intention to review these developments; our aim is much
Union by Borovkov, Freidlin and Wentzell; see Freidlin and Wentzell [FW], for
of this, large deviation techniques in function spaces were developed in the Soviet
success was their solution of the long-standing Polaron Problem [DV]. Independently
asymptotic behaviour of a Feynman-Kac integral; perhaps their most spectacular
be a powerful tool for solving problems which could be formulated in terms of the

ln the hands of Donsker and Varadhan, these theorems of Varadhan proved to

vague ) on the space of increasing set-functions on E to `G.
• the sequence {k,,]»,,2, converges in the vague topology (Bourbaki: topolcgie

together, conditions (LDP 3') and (LDP 4) can be restated as;

1-EKn.—•oo Tl
(1.20)lim sup -i—lnlK,,]K] f sup $(2);

• (LDP 3') for each compact set K,

The condition (LDP 3) is sometimes weakened to

étroite ) on the space of increasing set·functions on E to E.
• the sequence #::,,},,21 converges in the narrow topology (Bourbaki: topolcgie

together, conditions (LDP 3) and (LDP 4) can be re—stated as

:€B
(1.19)B —-·>Vs]B] 2: sup $(1;);

is an increasing set-function as is the set—function

(1.18)B —> k,,]B] := %lnlK,,]B]

a statement about the convergence of a sequence of set—functions: the set-function
(1.5). As O’Brien and Vervaat pointed out, even as they stand, they constitute
strange at first sight; of course, for special sets, together they imply a statement like



general reference, we found the book by Deuschel and Stroock [DS] invaluable. OCR Output
by Azencott’s exposition [A] and by the paper of O’Brien and Vervaat [OV]; as a

Apart from Lanford’s seminal work, referred to above, we have been iniuenced
the arena, joining entropy. This is studied in Section 7.
the theory of large deviations becomes substantially more powerful: pressure enters
the space X have been used; when, in addition, the space X has a convex structure,

Up to this point in the paper only the topological and the Borel structures of
Section 6.2 we give proofs of Varadhan’s Theorem and the Contraction Principle.
(LDP 2), (LDP 3) and (LDP 4) are satisfied; LDPs are studied in Section 6.1; in

A Large Deviation Principle is said to hold when all four conditions (LDP 1),
hypothesis of exponential tightness.
tion 5.3 we return to the subject of concentration of measures, this time under the
of measures called exponential tightness; this is discussed in Section 5.2. In Sec
ness of the space X in the theory of large deviations is a condition on the sequence
(LDP 4) are satisfied; NLDPs are studied in Section 5.1. A substitute for compact

A Narrow Large Deviation Principle is said to hold when (LDP1), (LDP3) and
deviations is provided by Sections 2, 3 and part of Section 7.
systems, for example), the space X is compact; in which case, a full theory of large
remark in passing that in some applications (in statistical mechanics of lattice spin
concepts introduced in Sections 2 and 3 are given in the examples in Section 4. We
in which the RL-function is the optimal rate-function. Some illustrations of the
locally compact, the rate-function may not be unique; nevertheless, there is a sense
consequence of the existence of the RL-function; however, if the space X is not
for those R.L—functions which are concave. It turns out that a VLDP is an automatic
motivated by the Ruelle-Lanford definition of entropy; we reserve the name ‘entropy’
values the Ruelle-Lanford function. This definition, introduced in Section 3.2, is
lower deviation functions coincide, we call the function which takes their common
(LDP 4) are satisfied; VLDPS are studied in Section 3.1. When the upper and

A Vague Large Deviation Principle is said to hold when (LDP 1), (LDP 3') and
have used these results in our work on the equivalence of ensembles [LPS].
a set on which a sequence of probability measures is eventually concentrated. We
a sequence of measures. It turns out that the upper deviation function determines
Orey’s terminology. In Section 2.4, we introduce the concept of the concentration of
lower deviation functions are defined and studied in Section 2.3; we have adopted
pendently defined these functions in the context of ergodic theory. The upper and
turns out that others have had the same idea: Takahashi [T] and Orey [O] inde
the Ruelle—Lanford definition of entropy, introducing upper and lower functions; it
ory its special character. Our starting point in this work was to generalize slightly
Term; this principle is used repeatedly in what follows and is what gives the the
occurs in them both. We identify this in Section 2.2 as the Principle of the Largest
been two-way; it is not surprising then that there is a priinitive principle which
that the trafhc between statistical mechanics and the theory of large deviations has

We begin in Section 2.1 with a description of the general setting. We have seen
about the topological structure only when we need them.
theory as well its Borel structure. It has been our policy to introduce hypotheses
on a topological space; moreover, the topological structure of the space X enters the
random variables taking values in a topological space X, so that they are measures



c = Vf for some usc function f : X —-> IR. OCR Output
Ac 2 X ——> HZ is usc; in general, we have c[G] 2 V"c[G] with equality if and only if
Lemma 2.2 Let c : Q(X) ——>§ be an increasing set-function; then the function

{usc
in general, we have f f "Vf with f = "Vf if and only is upper semicontinuous

g° V : V · g; flGl flAl, 2. ( 8)

if in addition, f is usc, then

VflA1 U Azl 2 Vflflil V Vflflzli (2-7)

Lemma 2.1 The sup-integral Vf : ?(X) -> LIT of a function f : X ——> LP: satisfies

We will need the following results:

/\ ___ ' cfs:) .- c[G']. (2.6)

function Ac : X ——> IR defined by
subsets containing Q’(X) and satisfying cw] : —oo; the inf~de·rtvative of c is the
inverse construction: let c be an increasing set—function defined on a collection of
The sup-integral Vf is an increasing set-function and Vf[Q)] = ——oo. There is an

:€A

(2-5)VHA] == Sup f(¤¤)
Vf : 77(X) ·—+ lfi. defined by

Let f : X —> IR be an arbitrary function; the sup-integral of f is the set—function
results without proof; for further details, see Vervaat [Ve].
integrals and their relations with upper semicontinuous functions. We state these
We shall require some elementary facts about some special set-functions called sup

a A b z: min{a, b}. (2.4}

a V 6 := max{a, b}, (2.3)
For a,b in lR, we define

xE®
sup 1: —oo. (2.2)

by convention, we put

(21)Sig f(<¤) ¤= S¤i>{f(¤=) = ¤> G A};

and use the following notation: if f 1 X —-> IR is an arbitrary function, we write
F a closed, K a compact and B a Borel subset. We write E := IRLJ {-00, -{-oo}
adopt the following convention: A always denotes an arbitrary subset, G an open,
of Borel subsets of X, the smallest cr-field containing Q(X). We find it useful to
the open, }`(X) the closed and }C(X) the compact. Let B(X) denote the collection
compact sets are closed.) Let 'P(X) denote the collection of all subsets of X, Q(X)
Let X be a Hausdorff topological space. (We require X to be Hausdorff so that the

2.1 The General Setting

2 The Principle of the Largest Term



and (c) follows from (2.17) and (2.18). OCR Output

lim sup (a,, V 6,,) = (limsup 41,,) V (lim sup 6,,), (2.18)

But for each pair {a,,},,21,{b,,},,21 of sequences in R, we have

Ft[B1 U B2] = Sup (TT7.,,[B]_) V
it follows that

Il\/I,,[B1] V 1M,,[B2] § lM,,[B1 U B2] § 2I1\/I,,[B1]V 1M,,(B2); (2.16)
so that

HVLJBA S IM··[Bi U B2] S M»lBil + lM¤lB2l (U5)

Proof: Because of its importance, we give a proof of Forj = 1, 2, we have

(C} WBi U B21 = WBil V WBA

(6) if B1 C B2, then _rr_;[B1] § _@[B2] and m[B1) § m[B2];

(al -<>¤ s mw] s WB] s +¤¤ .·

Lemma 2.3 On B(X), we have

since it is an abstract version of that principle in statistical mechanics.
is the key to the development, we refer to it as the Principle of the Largest Term
The following properties of the set-functions E, H are easily proved. Property (c)

____

@[5} 1i£iiiii£ m,,[B]. (2.14)

m[B] lim sup m,,[B], (2.13)

MIB} (2.12)5- i¤11vi,,[B],

Definition 2.1 For B in B(X), put

definitions:

in the asymptotics of ll\/L, on the scale VQ; we make this precise, beginning with some
+00 as n ——> oo. We denote {ll\/[,,},,21 by ll\/I0 and {Y/,,},,21 by VQ,. We are interested
let {{4,},,21 be a scale, an increasing sequence of positive real numbers diverging to
(that is, for each z in X, there exists G, E Q(X) such that G: 5 2 and IM[Gz] < 00);
Let {ID/[,,},,21 be a sequence of positive measures on B(X) which are locally finite

2.2 The Principle of the Largest Term

fo s f s f (2-11)
In general, we have

(N0)fo ¤= -·(·f)

Isc-regularization of f is the lsc function fo deined by
A function g 1 X -> R is lower semicontzinuous (isc) if and only if —g is usc. The

(2.9)
AVP ;: ;.

function fo defined by
Let f : X ·—> R be an arbitrary function; the usc·v·egularizu.t1Q0n of f is the usc



m[G] = m[Geil V v m(Gs.l < a. (2.24) OCR Output

z E K} ofK. Put G=G,,, LJ...LJG,d ; then
Since K is compact, there exists a finite subcover {G':,,..., GQ} of the cover {G: :

m{G,,] < a. (2.23)

for each 2: E K there exists an open set G, such that

[itz:) := gf m[Gl, (2.22)

Proof: Fix a > then a >°;I(m) for all :2: in K. Since

(2-21)v_ WK} S MK] ¤= SEE F(¤)·
(6}

there exists G open such that G D K and m[G] < a.
[aj if K is nonempty and if there is a real number a such that a > V/,T[K], then

Lemma 2.5 Let K be a compact subset of X; then

of the Principle of the Largest Term:
the upper bound for m on compact sets, (b) of Lemma 2.5, which is a consequence
The lower bound (d) for m on open sets is rarely used; of greater importance is

of set-functions, see Lemma 2.2.
Q and W. Properties (b), (c) and (d) are consequences of properties of inf—derivatives
Proof: Property (a) follows from (0.) of Lemma 2.4, the corresponding property of

td} WG] 2 Supseo F(f¤)·

(C) mlGl 2 SHI-bec e<¤¤>;

{Z2} ,u. and E are usc functions;

(G} Mx) S Fw);

satisfy:
Lemma 2.4 The upper and lower deviation functions E and y. of the pair (MO, W,)

family may be replaced by any base of Borel neighbourhoods of :n.
of 1:; because, by (b) of Lemma 2.3, the set-functions m and g are increasing, this
Remark: The definitions of E(;z:) and Mz:) use the family of open neighbourhoods

:

(2.20)EQ:) :=”\@(2:) := g;f@[G].

(2.19)Eta:) 2:/"rnfzs) := m[G],
u, are defined on X by
Definition 2.2 The upper deviation function E and the lower deviation function

Lemma 2.5. Our terminology agrees with that of Orey
establish the two basic inequalities of the theory, (c) of Lemma 2.4 and fb) of
We introduce two functions on X, the upper and lower deviation functions; we

2.3 Upper and Lower Deviation Functions



#’(=¤) = u(¤¤) + 9(¤)· (237) OCR Output

F"(<==) = 7»`(¤) + 9(¤), (2-36)

functions for the pair (lb/lg, VQ) are related to those for the pair (IMO, W,) by
Corollary 2.]. Let g : X -> lR. be continuous; then the upper and lower deviation

GIEZ y€G
Fg(¤=) 2 F(¤¤) + Sup i¤f,a(y) = Fw) + a<>(¤) (235)

Taking the infimum over G B 2: and then the supremum over G, 3 1:, we get

y€G
W[G] 2 m[G] + inf g(y). ’ (2.34)

for all G' D G 3 ac, so that

y€G y€G
milGl 2 m»lGl + i¤f y(y) 2 m»lGl + i¤f y(y) ' (233)

bourhood G of z; then
Proof: We give the proof of the first inequality in (2.31): fix :1: and an open neigh

(232)g_(¢) + a<>(<¤) S g“(¤=) S g(¤) + a°(¤¤)

(231)xY(¤) +y<>(¤¤) S F’(¤) S F(¤=) +g°(2)

and lower deviation functions for the pair (ll)/lg, VQ,) are related to those for (ll)/IO, VQ)
Lemma 2.6 Let g : X -+ IR be a locally bounded measurable function; the upper

(230)e"(¤¤) ¤=“mg(==) == ggf m’lGl

;:
(2.29)Eg(;z:) :="W(:1:) := g1;fr‘°r`ig[G],

Define also the upper and lower deviation functions Zig and ug on X by

1’

(2.28)r£’[B] z: lir11i£lfmi[B].

(2.27)WE] := lim sup m$1[B],

(2.26)mf{[B) := y}- lnIM$1[B],

Define for the pair (Mg, VQ) set-functions m-fi, W, @9 by

(2.25)1M$_[B] z: /_ e"~¤<:) 11v1,,[da].

sequence ll\/lg of positive locally finite measures on B(X) by
Let g : X —-> IR. be a locally bounded measurable function; we define a new

taking the iniimum over {a : a >
the fact that Fri' is an increasing set-function, we have < a and (b) follows on
trivially true. Assume < oo and K 9-* 0 and choose a > `”`;I(Kl; using (a) and
This establishes (a). To prove (b), note that if = +00 or K = (D, then (b) is
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lM,,(B] = l, (2.44) OCR Output
since

lim ll\/[JG] = lg (2.43)

For any open neighbourhood G of N, we have

e(¢)HVL»ld¤=l S (SEE 9(¢))HVL»lB Fl Gl +(i1;g9(¤)lM»[B\Gl· (242)

have

applying the upper bound with -f in place of g. For each n 2 l and any G, we
Proof: We give a proof of the upper bound; the lower bound can be deduced by

z5N
limsupg(2)lM,,[d:r] §_ sup (2.4].)f n-·c¤ B

tfg 1 X —> lff. is upper semicontinuous and bounded above on B, then

inf § liminff(a;)IM,,[d:2:]; (2.40)f ;€N n—·c¤ B

lower semxlconttnuous and bounded below on B, then
Suppose that ll\/L, is eventually concentrated on a subset N of X. [ff : X —+ IR is

o
limlM,,[B] :1. (2.39)

a Borel subset 0fX such that
Theorem 2.1 Let ll\/L, be a sequence of probability measures on B(X) and let B be

ll\/L, obeys a weak law of large numbers.
concentrated on A, then ll\/L, converges narrowly to the Dirac measure 5,,,; that is,
The next theorem implies the following statement: If A = {2:,,} and IM., is eventually

narrow convergence for sequences of increasing set functions.
we avoid it. Our usage here is consistent with that in section 5 where we define
use of the latter term can cause confusion in the context of functional analysis, so
X. In the probability literature, ‘narrow converger1ce’ is called ‘weak convergence’;
measure lM if and only if IM,,(fl ——> for every bounded continuous function f on
Remark: A sequence H\/[0 of probability measures on B(X) converges narrowly to a

lM,,[G] .-:1. (2.38)
we have

ll\/IO is eventually concentrated on a set A if for each open neighbourhood G of A,
Definition 2.3 Let ll\/L, be a sequence ofprobability measures on B(X),· we say that

that X be compact will be removed when we return to the topic in Section 5.3.
how useful this is depends on how well we have chosen the scale l/Q. The requirement
determines a set on which the measures are eventually concentrated (Theorem 2.2);
of the behaviour of the measures IM,. as n ——» oo. The upper deviation function
Our first application of the Principle of the Largest Term is to the investigation

2.4 Concentration of Measures on Compact Spaces
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lM,,(G] = 1. (2.57) OCR Output

and hence

M,,(X\G] = O (2.56)

so that

(2.55)limsup 6,- ln M,,[X\G] § 5 < O

since NFO X\G == W. Using (b) of Lemma 2.5, we have
that “‘,¢'I(X\G] is attained on X\G since E is usc. But `;I(::) §_ O, so that V;,T(X\G] < O,

Let G be an open neighbourhood of N; ; then X \G is compact, since X is, so
non—empty and closed, hence compact. This proves (a).
Since II is usc, by (b) of Lemma 2.4, and X is compact by hypothesis, the set N; is

(2.54)*’·)z(X] : 0.
hence

(2.53)"°;i(X] 2 r"nT(X] : 0;

Since X is compact, we have

(2.52)wx] 5 0.
so that

(2.51)‘;Z(:z) § 7·'n.‘[X] : O
Since X is open, we have

(2.50)m(X] : O.

Proof: Since IM,,(X] = 1 for all n 2 1, we have

fb} the sequence INI., is eventually concentrated on the set N;.

is a non—empty compact subset;

(2.49)N;:={m€X:E(:z:)=O}
(aj the set

then
B(X). Let W, be a scale and E the upper deviation function for the pair (I1\/IO, VQ) ,‘
Theorem 2.2 Let X be compact, let IM., be a sequence of probability measures on

é
(2.48)s1igg(s:) =

(2.8) of Lemma 2.1, we have
for every open neighbourhood G of N. Using the upper semicontinuity of g and

;GG
(2.47)limsupg(:z:)ll\(1,._(d2:] §_ sup g(a:)f ·n.—··:>o B

for all n sufficiently large. Thus We have

(2.46)lM,.(B\G] § e,

and

(2.45)H\/1,.lB O G) 2 1 - e,

it follows that, given e > O, we have
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for all as E X.

(3-9) OCR Output¤°(¤=) S Mw)
for all G E g(X) and

::EG
(3-8)mlGl 2 Sup S°<¤¢>

for all G E Q’(X) ,· then

:EG
(3.7)@(G] 2 sup s(a:)

such that

Lemma 3.1 Let X be a Hausdorf topological space . Suppose that s : X -> IR is

usc function with property (3.1).
Lemma 3.2 shows that, provided the space X is locally compact, E is the least
bounds: Lemma 3.1 shows that p. is the greatest function with property (3.2);
There is a sense in which the upper and lower deviation functions yield optimal

at (2.12), converges in the vague topology to the sup-integral Vs.
s 2 X —+ 1R such that the sequence {m,,},,?1 of increasing set-functions, defined
obeys a VLDP with rate-function s if and only if there exists an usc function
Remark: The definition of a VLDP can be re-stated as follows: the pair (11%,,,%,)

,_
(3.6)lirrri£.fc,,[G] 2 c[G] , G E G(X).

(3.5)limsup c,,lK) f c[K] , K E }C(X),

A sequence {C-n_}·n?-1 converges to c in C[X] in the vague topology if and only if

(3.4){c:c(K]<x},x€R,K€K(X).

(3.3){c:c[G]>a:}, a:ElR, G@Q(X),

the sub-base consisting of the following families:
which satisfy cw] = —oo,· the vague topology on C[X] is the topology generated by
Definition 3.2 LetC[X] denote the space of increasing set-functions c : B(X) —> TE

principle, they call a ‘weak’ large deviation principle.
consider are always probability measures; what we call a ‘vague’ large deviation
differs from that of Deuschel and Stroock [DS] in two respects: the measures they
Remark: We follow O’Brien and Vervaat [OV] in using this terminology. Our usage

The function s is called the ratefunction.

1:EG
(3.2);zlG] 2 sup $(:2), G E Q(X).

:EK
(3-llWK] S Sup 5(¤>), K G UX).

there exists an usc function s : X —> lfii such that
Definition 3.1 A pair (MIO, I4,) obeys a vague large deviation principle (VLDP} if

3.1 Vague Large Deviation Principles

Lanford Functions

3 Vague Large Deviation Principles and Ruelle
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one rate-function for a VLDP. We mention without proof the following result.
in the space of increasing set—functions is not Hausdorff: there may be more than
Remark: When the topological space X is not locally compact, the vague topology

s(a:) § ,q.·(z:) _§ H(m) f (3.20)

using Lemma 3.1 and Lemma 3.2, we have

(3.19)s(:z:) = 5o(IB);

Proof: By definition, the function s is usc so that

for all :1: G X.

¤(¤=) = #(¤=) == g(¢) = `x1(¤¤) (3-13)
and is equal to
the pair (MG, K,) obeys a VLDP with rate-function s, then the 1·ate—function is unique
Corollary 3.1 Let X be a locally compact Hausdorf topological space; suppose that

:::EK :6K
(3.17)m[K] $ sup r(:z:) § sup r°(:z:).

By (2.11), we have

:,I
(3-16)F(¤=) = ,g{WlKl S gg{;ggr(y) = r°(¤¤)

have

remark preceding Lemma 2.4, we can use such a base to compute Hence we
compact neighbourhoods of a point z is a base of neighbourhoods at 1:; by the
Proof: Since X is a locally compact Hausdorff topological space, the family of

for all 2: E K.

(3-15)r°(¤=) 2 F(¤)
for all K E lC(X) and

1:EK
(3.14)m[K] § sup r°(;z:)

for all K E /C(X) ,· then

:1:EK
(3.13)r`n(K] f sup r(z:)

that r : X —> IR is such that
Lemma 3.2 Suppose that X is a locally compact Hausdorf topological space and

by (c) of Lemma 2.4 .

:1:EG 2:EG
(3.12)sup s°(x) $ sup p.(z:) § @[61],

so that

,
(3-11)S°(¢) ¤=ggQ;;rgS(y) $gggm(G1 =¤#(¤)

forall:1:EX,but

(3.lO)s(2:) f s°(a:)
Proof: By (2.11), we have
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IEX

(3.28) OCR Outputlim -;-lneV"g(°°)Il\/I,,[dz:] : sup(;,i(:c) +1/ n-•c¤ Vu X

has a RL·function u, then
Corollary 3.2 Let X be compact and g : X —> ]R continuous; if the pair (]1\/1,,,%,)

The following result is a special case of Corollary 6.l.

,u.g(:z:) = plz) + gfx), as G X. (3.27)
ug and ug is given by
If the pair (Il\/I0, M,) has a RL-function ,a, then the pair (Mg, IQ) has a RL-function
function, Il\/L, a sequence of locally finite positive measures on B(X) and VQ a scale.
Theorem 3.2 Let X be a Hausdorjf topological space, g : X —> IR. a continuous

m[Gl 2 Sig Mr). G G Q(X) (3-26)

::€K
WK] S Sup Mw) . K G l€(X). (3-25)

/,1., then it satisfies a VLDP with rate—function us
positive measures on B(X) and VQ a scale. If the pair (Il\/IO, ll,) has a RL-function
Theorem 3.1 LetX be a Hausdorf topological space, IM., a sequence of locally finite

function exists.

The next theorems summarize the results of the previous section when the R-L

#(¤¤) ¤= Zf(¢¤) = Mx) (3-24)

for all 1: in X; in which case we put

F(==) = ¤(¤=) (3-23)

Definition 3.3 A pair (IMO, IC,) has a Ruelle-Lanford function {R—L function} u if

definition:

the upper and lower deviation functions coincide. This motivates the following
where it can be verihed directly (by a sub—additivity argument, for example) that
In probability theory as well as in statistical mechanics, there are important cases

3.2 Ruel1e—Lar1ford Functions

is a rate-function; see example (h) in Section 4.

(3-22)“m¤(¤¤) S $(¤) S EW) = x»(¤=)

for all K and for all G with K C G, in which case every usc function s satisfying

WK] S mlGl (3-21)

VLDP for the pair (ll/IO, IZ,) if and only if
F.b[A] 2: supKCA m;,[Kl. Let X be a Hausdorff topological space; there exists a
lC(X), i¤[Kl := infgyg mb[G]; finally, extend the function to every A by setting
Dehne the set-function mh as follows: on Q(X), mi,fG} := supxcc FQK]; then on
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x·'EG
EWG] 2 sup o(:z:’) (3.36) OCR Output

for all K E /C(X'). A similar calculation yields

z€sp‘bK ZIGK {y:¢p(·y)::')»¤’:’EK
= W[<p`1K] $ sup s(a;) = sup sup s(y) = sup o·(a:’) (3.35)

Proof: We have

0 is the RL-function for (IMQ, W,).

{y==¤(y)=='}
o(:1:’) := sup s(y); (3.34)

VLDP with rate-function :7 : X' —-> IR , where
rate—function s : X —> TFT; then the pair (ll\/IQ, K), where ll\/lf, := ll\/In o cp'1, obeys a
X' is a compact subset of X. Suppose that the pair (ll\/L,,l/Q) obeys a VLDP with
ep : X -—> X' be continuous and such that the inverse image of a compact subset of
Theorem 3.3 Let X and X' be locally compact Hausdorjf topological spaces and let

measures ll\/In o <,o‘1. Theorem 3.3 below is an example of a contraction principle.
The final result of this section examines when a VLDP exists for the image

is concave.

obtained by taking the conjugate of both sides, provided we can show that u
right-hand side is then the conjugate of ·,u and an expression for ,u can be
be evaluated explicitly in the case where g is a linear functional on E; the

• suppose E is a vector space and the limit on the left—hand side of (3.28) can

is converted into a variational problem;

(3.33)e‘”»¤<e>11vi,,[.za]

• the investigation of the asymptotic behaviour of the integral

directions:

Remark: Versions of Varadhan’s Theorem, such as Corollary 3.2 , are used in two

::6X 16X
(3.32)_ lneV"g(‘”lll\/lnlclczzl = sup u·"(z) = sup(,u(a:) +flimo 7 fx n

l

It follows that

2EX
(3.3l)Wg(Xl = rgg[X] = sup ug(:z:).

hence we have

xEX
(3.30)@9lX] 2 sup ;ig(z);

since X is open, we have

2:EX
(329)WlXl S Sup ug(¤¤);

pact, we have
Proof: By Theorem 3.2, the pair (1l\xI§,\/Z,) has a RL-function ug. Since X is com·
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Indeed, ,u. attains its maximum at zz = O, hence lM,, converges to 60.
However, knowing that the IM,, are probability measures gives us useful information.
p,,(x) = (n/2vr)?exp(—n:c2/2). The RL-function is again given by M11:) = ~—22/2.
(c) ll\/In the probability measure got by normalizing the measure in (b); now,

p,._(:r:) : exp(—-na:2/2); then ,u(a:) = -::2/2.
(b) ll\/In is absolutely continuous with respect to Lebesgue measure with density

fa) ll\/In is Lebesgue measure for all rr.; then ,u.(:1:) = O.

mentary cases:

topology; choose Vu = n for the scale. We compute the RL—function in some ele
In this section, we consider several concrete situations. Let X = IR with the usual

4 Examples

and hence o·(z’) 2 0°(:z:’) so that o· is usc.

Kéxp

(3.44)m K = <,¤`l{:z:'} Fl F # Q).

the finite intersection property; it follows that
so that if K E Kip, then K is non—empty: ICF is a family of compact subsets having

y€<¢"*K’
(3.43)sup s(y) 2 Joh')

K' E }C,,, then
Since IC., is closed under finite intersections, so is <,a‘1lC°; let }Cp :== <,0‘1/C0 0 F. If

K’E}C¤

(3.42)m <p"1K’= <p`l{a:’}.
so that

K’e/Cs

(3.41)Q K' : {a’}
we have
because s is usc and non·empty because <p‘1K’ is compact. Since X' is Hausdorff,
If a°(z’) = ——oo, then 0·°(z’) = 0(af) by (2.11); let a°(x’) > -oo. F is closed

(3.4U)F s: {J; 5 X : $(:1;) 2 o·o(a:/)};
Put

c gl Kia y€K’gO(g;/> : Kilxéiggggg(yI> : iga;\iE)
We have

(3.38)Kg : {K, E }C(X') 2 KI 3 :1:/}.
Fix :c’ E X' and put

5:: y1EK1
(3.37)f(2/)2g;1fI sup ffyl).

f is usc if and only if
compact neighbourhood of z' E X'; since the space X' is locally compact, a function
for all G E Q’(X'). It remains to show that o is usc. Below, K' always denotes a.
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(49) OCR Output_ , 'irlz) _ l-00 otherwise.
O if 2 = O

then the RL-function is given by

1M,, := 5; + 6%%; (4.8)

and (X,·r) is not locally compact. Let V,, := n. and let
·r—compact, but the set {1- i : n Z 1}LJ{1} is not. The ·r-topology is not metrizable
and contains no strictly increasing infinite sequence. The set {O} U : ·n. 2 1} is
closed; a subset K is ·r-compact if and only if it is compact in the usual topology
structure. In the ·r-topology, the sets (-00,0) , [a,b) and [b,00) are both open and
finer than the usual topology; nevertheless, both topologies generate the same Borel
is formed by all intervals of the form [a,b) with a. < b. The ·r-topology is strictly
(this topology is also known as the half—open topology). A base for this topology
(g) Let X = IR equipped with the Sorgenfrey topology which we denote by T

images in X are not compact.
but, in both examples (e) and (f), there are compact subsets of X' whose inverse
Theorem 3.3 fails to hold. Here the function q$ is a surjective local homeomorphism

4.7 ( )1 1 · = ’ 'ul l -00 otherwiie.
b _f I 1 1 CI} T

then

(4.6)IM; := 1M,, 0 45*;

then ,u(2) = -00 for all 2. Define IM; by

(4.5)1M,, := e°”52+é_;
For n. 2 2, put ll., := n. and

___ (Mx) ` (AIA)2, if 2 E (0,1), {2/4, if 2 E (2,3).
topology; define gb 2 X —-> X' by
(f) Let X = (O, 1)U (2, 3) with the usual topology and let X' : (O, 1) with the usual

is not usc and f(-1) = f(-{-1) = -00.

(43)f(¤¤') ¤= Sup {My) ¤¢<y) = m'}

Theorem 3.3 does not hold here. Notice that the function

(4.2);1'(i¤) =00, if 2 = -1 or 2 :1,-{ O, if -1 < 2 < 1.
00, if—2§2<-lor1<2$2,

IMQ, := 1M,, O qb'1; then the RL·function y.' for the pair (IMQ, K,) is given by
by ¢(2) := tanh 2; then if is an injective local homeomorphism. On X', deiine
(e) ll\/1,, is Lebesgue measure for all n. 2 1. Let X' = [-2, 2] and define q5 2 X -> X'

(4.1), #(1:) _ l -00, otherwise.
czif 2 = 1

(d) Let 5,, be the Dirac measure at 1: and let lM,, = e“”61 + e"”6,,; then
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Lemma 5.1 is the analogue of Lemma 3.2 for closed sets.

verges in the narrow topology to the sup—integral Vs.
such that the sequence {772,,},,21 of increasing set~functions, defined at (2.12), con
obeys an NLDP with a rate-function s if and only if there exists an usc function s
Remark: The definition of an NLDP can be re-stated as follows: the pair (IMG, VQ)

f·
lirr1i_£1fc,,(G] 2 c[G] , G E Q(X). (5.5)

1imS¤p¤¤lFl S ¤lF] . F G HX). (55)

A sequence {c,,},,21 converges to c in C[X] in the narrow topology if and only if

(5.4){c:c[F]<2:},¤:€lR FE.7:(X).

(5.3){c:c[G] >:c}, 2:ElR G'eQ’(X),

the sub—base consisting of the following families:
which satisfy = -—oo; the narrow topology on C[X] is the topology generated by
Definition 5.2 LetC(X] denote the space of increasing set-functions c : B(X) —> LIT

The function s is called the rate—function.

:1:EG
(5.2)@(G'] 2 sup s(:z:), G E g(X).

¤:€F
(5.1)m[F] f sup s(z), F -5 F(X),

if there exists an usc function s 2 X —> lfii such that
Definition 5.1 A pair (11\/1,,,%,) obeys a narrow large deviation principle (NLDP)

5.1 Narrow Large Deviation Principles

Exponential Tightness
5 Narrow Large Deviation Principles and

Thus any usc non-positive function s is a rate-function.

(4.12)"r‘rZh(z:) = —oo.

and (see remark at the end of section 3.1)

(4-U)°L(¤¤) = #(2) = 0.

(h) Same example as (g), but with lM,, the Lebesgue measure for all n. Then

(Lim)__ #(2) _ l —oo otherwise.
O if2:=Oor2:=1,

With the usual topology, the RL—function a is given by
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= mg[F O L(-oc, a)] V FrZ’(F O L(a, 5)] V ?rTg[F O L(b, 00)]; (5.17)

Then

L(a, b) := {2: E X : a § g(2:) §_ 6}. (5.16)

an arbitrary closed set; for any a,b E 1R, a < b, we put
RL-function ug = p. + g. We must prove the upper bound for closed sets. Let F be
Proof: We know from Theorem 3.2 that the pair (]l\/[*},1/Q,) obeys a VLDP with

WP?] = m’lXl = S§{#(¤=) + 9(¢)} (515)

function. ln particular, we have
hold, then the pair (IM§, K) obeys an NLDP with RL—function ag = ii + g as rate

limsup : g(z) < a)»] = -oo (5.14)

limsup : g(z) > a}] : -00 (5.13)

both conditions

an NLDP with RL-function u as rate-function. If g : X -—> 1R is continuous and
Theorem 5.1 Let X be a Hausdorjf topological space and let the pair (IMO, YQ) obey

Proof: Same proof as Corollary 3.1.

for all :2: E X.

$(:1:) : ,u,(:1:) (5.12)

obeys an NLDP with rate—function s, then the pair has a RL-function ,u. and
Corollary 5.1 Let X be a regular topological space; suppose that the pair (1MO, W,)

:5F :5F
(5.11)§ supr(x) § sup r°(z).

By (2.11), we have

l

(5-10)H(¤) = g,g{mlF] S gg ;;1gr(y) = r°(=¤)

a base to compute Hence we have
base of neighbourhoods at 2:; by the remark preceding Lemma 2.4, we can use such
Proof: Since X is regular, the family of closed neighbourhoods of a. point z is a

for all as E X.

(5-9)r°(¤> 2 HCZ)
for all F EE .7·-(X) and

::EF'
(5.8)WU?) $ sup r°(x)

for all F E F(X) ,· then

zEF
(5.7)rTi[F) § supr(z)

that

Lemma 5.1 Let X be a regular topological space. Suppose that r 1 X ——> lR is such
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for all F.

KCF

(5.26)sup = MWF] ,

for all F a.nd G with F C G, and

WF] S @[6] . (5-25)
and only if

Then exists an NLDP with usc rate·function s ="WE =“ Q for the pair (MO, M,) if
supGDF m[F]; then extend the function to every A by setting `r7]'[A] := supFCA
separated. Let W be given; define the set·function rib as follows: on .7: (X ), :=
topological space. The narrow topology in the space of increasing set—functions is
Remark: We mention without proof the following result. Let X be a regular

lary 5.1.
for all G G Q(X’). The stated result now follows from Lernmas 3.l, 5.]. and Corol

=’€G {y=~¤(v)==’]·
#[63] 2 sup sup $(2:) (5.24)

A similar calculation yields

=’€F {v=¤¤(v)===’}
sup sup s(a:).
¤:E<p"’·F
sup s(z)

= (5.22)mprlr]

Proof: For all F E F(X'), we have

oo is the R-L function ofthe pair (ll\/IQ, W,).

{u==¤(y)===’}
S1’JI—> o(a:’) := sup s(y); (5.22)

function

obeys an NLDP with rate-function o°, where o° is the usc regularization of the

ll\/I; := ll\/L., o <,o`t,n 21, (5.21)
the pair (ll\/IQ, VQ}, where
continuous. Suppose the pair (ll\/L,,l{,) obeys an NLDP with rate—function s; then
Theorem 5.2 Let X and X' be regular topological spaces and let cp 2 X —+ X' be

after Theorem 5.2 a necessary and sumcient condition for an NLDP.
We end this subsection by stating a contraction principle and giving in the remark

since e is arbitrary, the theorem follows .

(520)TWglFl S VHF W L(¤» bl] + 6 S V/HF] + 6;

From (0) of Lemma 2.3 we get

S VMQIF fl L(Gg, + E.

S VMF VT L(¤4, 6;)] + be

(5.19)EQU? O L(ai, b{)] §_ H[F O L(ai, bi)} -4- bi

length at most e. On L(a;, bi), Mx) § Mz;) + g(m) — ai and g(z) $ bi; therefore
Given 6, we divide the interval [cn, b] into a finite number of closed intervals [ai, bi] of

?ig[F] = WW FT L(a, (5.18)

(5.14) we can choose a, b E R such that
if ?n`g[F] = -00, them there is nothing to prove; if FMF] > -00, then by (5.13) and
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,ZZ(;1:) § m[X\K,,] < a. (5.36) OCR Output

But X\K,, is open, so for each 1: G X\K,,, we have

n·i‘[X\K,,] < a. (5.35)
such that

each a E lR. Since the pair (ll\/Io, M,) is exponentially tight, there exists Ku E lC(X)
it is enough to prove that there exists a compact set K, containing {z: : E(z:) 2 a} for

{1: : 2 a} C {zz : p.“(z:) 2 a} (5.34)

Proof: Since ZZ and u are usc their level sets are closed; since

of the upper deviation function 717 and the lower deviation function E.- are compact.

{zz: 1 E(a;) 2 a}, {zz: : ;i(:c) 2 a},a Q IR (5.33)

Lemma 5.3 Suppose that the pair (lM,,, VQ) is exponentially tight; then the level sets

'rFz.[F] § Vs[F]. (5.32)
n in (5.31), we have
But F 0 Kn is compact, so that m(F 0 Kn] §_ "s(F]. Taking the superior limit over

5 m[F n K,.] v m(X\K,,].

H[F] : m[F F1 Kn] V ’rE[F\K,,} (5.31)

For each K,, and each F E F(X), we have

lim sup H[X\K,,] = -oo. (5.30)

Proof: By hypothesis, there exists a sequence of compact subsets of X such that

for all F E F(X).

:€F
m[F] f sup $(1:) (5.29)

for all K E }C(X),· then

:1:EK
r'17.(K] f sup $(2:) (5.28)

tion s : X —> TR. is such that
Lemma 5.2 Suppose that the pair (IMO, VQ,) is exponentially tight and that the func

lim sup W(X\K,,] = —oo. (5.27)

{K,,},,21 of compact subsets 0fX such that
Definition 5.3 A pair (lM.,, W,) is exponentially tight if there exists a sequence

We return to this useful property in section 6.
route: the level—sets of the rate—function are automatically compact (Lemma 5.3).
that exponential tightness holds. There is a bonus which comes from following this
case that the only way to establish an NLDP is to start with a `\/LDP and prove
The concept of exponential tightness plays an important role, since it is often the

5.2 Exponential Tightness
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and Lemma 5.4.

Proof: the result follows from Lemma 5.2, Corollary 5.1, Lemma 5.3, Corollary 2.1

then the pair (11\/[§,I/Q) satisfies an NLDP with rate-function u + g.

limsupW[{x E X :g(x) 2 a}] = -00; (5.46)

le·vel—sets. Moreover ifg : X -> IR is continuous and
unique; it is the R-L function y. of the pair (lMQ,l/Q) and hence has compact

{6} If furthermore the topological space X is regular, then the rate-function is

the pair satisjies an NLDP with rate—fu.nction s.
(HVIQ, V,) obeys a VLDP with rate—function s and is exponentially tight; then

Theorem 5.3 [a} Let X be a Hausdorf topological space. Suppose that the pair

results.

The next theorem is one of the main results of the theory. It summarizes the above

for all n 2 no.

W{X\K,.] < b (5.45)
then

a + r"ri[X\K,,]] < b; (5.44)

and then choose no such that, for all n 2 no, we have

mg[G'Q] < b (5.43)

Given b E IR, choose a such that

5 (a + m[X\K,,]) V m*’[GQ].

Wf[X\K,,] = m’[(X\G,,) O (X\K,,)] \/ rTg[GQ O (X\K,,)] (5.42)

so that

mg[(X\GQ) O (X\K,,)] §_ a + m[X\K,,] (5.41)

For each n 2 1, we have

limsupm[X\K,,] = -oo. (5.40)

tight, there exists a sequence {K,,},,>1 of compact subsets of X such that
Proof: Put GQ := {2: E X 2 g(x) > a}; since the pair (lMQ,VQ) is exponentially

then the pair (l1\/I§,l4,) is also exponentially tight.

limsupW[{x E X :g(x) 2 a}] = -00; (5.39)

the pair (ll\/[.,,16,) is exponentially tight and that
Lemma 5.4 Letg 1 X -> IR be a locally bounded measurable function. Suppose that

(5.38){x 2 Ely;) 2 a} C Kn.

so that

X\Kn C {:2: t E(x) < a} (5.37)

Hence we have
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lM,,{G] = l. (5.56)
and hence

IM,,[X\G] = O (5.55)
so that

(5.54)m[X\G] § "E{X\G) < 0

Since X\G' is closed, we have by Lemma 5.2

(5.53)V_;Z{X\G) < O.

because N; is disjoint from X \G. In either case, we have

”F{(X\G)l = FM) < 0 <5-52>

set (X\G) F) La; since [I is usc, there exists In G (X\G) F`! L., such that
(b) (X\G) O L., # Q); then the supremum of p(z) on X\G' is taken on the compact

(5.51)"E[(X\G)] 5 a < 0.

(X\G) F) L; = @3 since E(:1:) < a on X\G',
Let G be an open neighbourhood of N;; there are two cases to be considered: (a)
Fix a E (—-oo, O); the level-set L,, 2: {:1: 5 X : ;T(z:) 2 a} is compact and non-empty.
is proved.
By Lemma 5.3, the level-sets of E are compact, since N; = {2 G X 2 2 O}, (a)

:z:EKd_
';I(2¤) = sup E(:c) = 0. (5.50)

Since E is usc and K., is compact, there exists :2:,, E Ka with

m[X] Z 0.
xex
Sup HW)
¤:€Ka
Sup 7»`(¤=)

m[K.,]

0 :n[-Xl Z m[KG] v m{X\K.,] (549)

m(X] = O. Thus we have, by Lemma 2.4 (d),
since the pair is exponentially tight. Since llVl,,[X) = 1 for all n 2 1, we have

(5.48)m{X\K¤] < a < 0,

Proof: Fix a E (-00, O); then there exists a compact set Ka such that

fb} the sequence M0 is eventually concentrated on the set N;.

is non-empty and compact;

N; := {2: G X,E(2:) = O} (5.47)
(a} the set

the pair (IMG, M,) is exponentially tight; then
Theorem 5.4 Let HVIO be a, sequence ofpmbability measures cm B(X). Suppose that

of the space X so that we are able to improve on the results of Section 2.3.
out that exponential tightness ofthe pair (HVIO, VQ) is a substitute for the cornpactness
We return now to the important subject of the concentration of measures; it turns

5.3 Concentration of Exponentially Tight Measures
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limsup E X : g(x) §_ a}l = -00. (6.3) OCR Output

are compact. We must show that
Proof: We verify the hypothesis of Theorem 5.l, and then prove that the level-sets

then the pair (ll\/Ig, ld,) obeys an LDP with rate-function ug = ,u + g.

lirnsupW[{x E X zglx) 2 a}] = -00, (5.2)

obey an LDP with RL-function a as rate·function,· let g : X —+ IR be continuous; if
Theorem 6.3 Let X be a Hausdorf topological space, and let the pair (ll\/IMM,)

an LDP. There is no assumption of exponential tightness.
ln this section we give the main theorems which hold when the pair (It/1.,,%,) obeys

6.2 Varadhan’s Theorems

then it is exponentially tight.
Theorem 6.2 Let X be a complete metric space; if the pair (Il\/L-,, YQ,) obeys an LDP,

scope of this paper, but is a result of which the reader should be aware [LS].
The next theorem is one whose proof makes use of methods which are outside the

then the rate—function of an LDP is unique.
then the pair (ll\/Ig, VQ) satisjies an LDP with R—L function a + g. lf X is regular,

limsupW[{x E X :g(x) 2 a}] = -00; (6.1)

that g : X —-> IR, is continuous and obeys the condition
exponentially tight and obey a VLDP with R—L function ,u as rate-function. Suppose
Theorem 6.1 Let X be a Hausdorf topological space, and let the pair (llVl°,VQ,) be

The function s is called the rate—function.
(LDP 4) @[G] 2 supxgc s(x) , G E Q(X).
(LDP 3) f supzép $(113) , F E .7`(X);
(LDP 2) the level sets ofs are compact;
(LDP 1) the function s is usc,

exists a function s : X -> IR such that
Definition 6.1 A pair (ll\/[0,%,) obeys a large deviation principle (LDP} if there

justify making the next definition, Varadhan’s original one
erty (Theorem 5.3 which is recalled below as Theorem 6.1). These circumstances
tightness holds, then the rate-function, when it exists, automatically has this prop
function to have; moreover, if the topological space X is regular and if exponential
We have already seen that compactness of its level—sets is a useful property for a rate

6.1 Large Deviation Principles

Varadhan’s Theorems

6 Large Deviation Principles and
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FBI y/EF:
f(a:') : ini] sup f(y'). (6.12) OCR Output

the space X' is regular, a function f is usc if and only if
o°(z’) = -—oo. Below, F' always denotes a closed neighbourhood of x' G X '; since
already usc and, in addition, has compact level sets. By (2.11) o·°(a:') = o(¤:’) if
a rate-function which is the usc regularization of cr; it remains to show that o is
Proof: From Theorem 5.2 we know that the pair (1I\/[@,,1/Q,) satisfies an NLDP with

{y==·¤(v)=='}
(6.].].)o·(:1;’) : sup ,u(y).

o· given by
the pair (ll\/IQ, TQ), where ll\/IL := lM,, 0 <p`l, satisfies an LDP on X' with RL-function
continuous and let the pair (IMQ, VQ) obey an LDP on X with RL—function ,a,· then
Theorem 6.4 Let X and X' be two regular topological spaces. Let cp : X —> X' be

Finally we prove the contraction principle.

Proof: As for Corollary 3.2.

tex¤—°·= W X
(6.10)lim ——— lnf ell\/I,,[d:z:] = sup(p.(:z:) + g(z:)).1 V"g(“l

then

(6.9)lim supWg({a: E X :g(z:) 2 :1}] = —oo,

obey an LDP with RL-function it as rate-function; let g : X —-> lR be continuous; if
Corollary 6.1 Let X be a Hausdorjf topological space, and let the pair (ll\/[0,%)

compact.

which is compact by hypothesis. But Fi, is closed because ug is usc, so that Fl, is

(6.8)Fb : F,, O > a}) C {a; Q X : ,a(a:) 2 b- a}

and

(6-7)Fi F) {9(=¤) > 6} = 6,

therefore
for all zz: G > a}. Given b, we can choose a such that c(a) < b (see (6.2);

(6-6)¢(¤) 2 ”#’({9(=¤) > 6}} 2 u’(¤)

is compact. Put c(a) := > a}]; since > a} is open,

(6.5)Fi, := {x G X : ;.i·°(2:) 2 b}

from which (6.3) follows. It remains to prove that, for each b Q lR, the set

S ¤ + 6,

(6.4)E X 2 g(z) Q a}) §_ a + W[X\G]

{:1: G X : ;i(2:) 2 b}, so that, for each a < a' — e, we have
a', on this set. Choose e > O; the open set G := {z E X : g(r) > a' — e} contains
X : u(z:) 2 b} is a non-empty compact set, and therefore g attains its minimum,
lf ;.i(2) E- —oo, then this is obvious; otherwise there exists b E IR such that {2 E
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and the fact that > O.

(7.2)exp{V,,m;[El} : /_ s"·~<*·=>11v1,,[aa]

follows from H6lder’s inequality applied to

is defined on E' as an lg-valued function. It is convex and > -oo; this

t ——> (7.1)

finite positive measures on the Borel subsets B(E) of (E, T). The function
E' plays a minor role in the development. As before, ll\/L, is a sequence of locally
weak topologies a(E, E') and <7(E‘, It should be noted that the topology ·r* on
candidates for ·r and ·r* so that the pair (E, E*) is in duality, the coarest being the
(E, E') is in duality: the topological dual of (E', ·r’) is E. There are several possible

Let E' be the topological dual of E; choose a topology r' on E‘ so that the pair
we will study large deviations on (E, T).
topological vector space E over IR equipped with a Hausdorif topology ·r; initially,
Eventually, we will assume X to be a closed convex subset of (E, r), a locally convex
vex structure, the theory of large deviations becomes substantially more powerful.
structure of the space X have been used; when, in addition, the space X has a con
Up to this point in our development, only the topological structure and the Borel

7.1 The Scaled Generating Function

7 Convexity

the compact set K and hence is compact.
level set 2 b}, b < 0.. But the level set {c(:r’) 2 0.} is the image under cp of
under cp of {af:/) 2 cz}, a >—oo, has a non-empty intersection K with the compact
this shows that 0* : 0·°. Since 0 is usc, its level sets are closed and the inverse image

{JI}#(y’) S u; x»#(¤) = ¤(¤=’);
1ig;w(y(F'))

(616)#(y(F'))¤<¤') S ¤°(¤¤') =

By (6.13), and because ,u is usc,

(6.15)e<>(y'> = ¤’

{<p(y(F’)) : F' 9 m'} converges to m' and cp is continuous, we have
y*, say; let {y(F') : F' 9 z:’} now denote a. subnet converging to y*. Since the net
Since (cp‘1F') O 2 b} is compact, the net {y(F') : F' 9 z'} has a cluster point

y€<¤"F' 1/EF'
(6-14)#(y(F’)) = Sup #(2:) = Sup ¤(y’>·

y(F’> G (s¤‘1F’)¤ {Mz) 2 6} with
with the compact set {Mx) 2 b}, provided b < 0°[a:'). Since p is usc, there exists
If (GA3) holds, the closed set ap'1F' is nomcmpty, and has a, noncmpty intersection

F§$UJEF1
(6.13)0*°(x/) = inf sup afy') >—¤o. ’’

Let
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f’<¢) ¤= SgE{<¢.¤=> - f(¢)} (7-12) OCR Output

function on E; the conjugate function f‘ : E' -> IR is defined by
never takes the value -oo and it is not identically +oo. Let f : E —+ IR be any
proof; proofs may be found in Bronsted An Fyalued function is proper if it
We shall require some results about conjugate functions which we state without

tical mechanics; we shall sometimes refer to it as the pressure.
Remark: The scaled generating function is the grand canonical pressure of statis

(T11)PU) ¤= WTE] =mtlEl

for the pair (HVIO, Wl and is given by
for all t E E', then we say that the scaled generating function p : E" ·-> IR exists

(7.10)·r‘rT‘[E] : @*[E]
Definition 7.1 If

(7.9)lim sup Fz.[E\K,,] == -oo.

are compact for all T7. E IN. It follows from Lemma 7.1 and (c) of Lemma 2.4 that

(7.8)K,,:={a:€E:](e,,:z:)|_§n,j=1,...,d}

Proof: Let {ej : y` = 1, ...,d} be a standard basis for E = IRd ; the sets

then the pair (IMO, IC,) is exponentially tight.

f c; (7.7)

for all t E V and all n. G IN, we have
Suppose that there is an open neighbourhood V off) in E and a constant c such that,
Corollary 7.1 Let E be IR"! with the usual topology and E‘ identified with ]Rd

§·—-ono. + c.

(7.6)m*[{:c : (s,z:) > a}] § -oia+ ?n‘”+°"[E]

so that

(7.5)H\/If,[{z ; (ae) > a}) 5 e·"~¤¤ /_ e"·~<¤··=>11vi;*_[az)

Proof: Let s G E" and a > O; for cx > O, we have

(7.4)limsup7Tt‘[{z 2 (sp:) > a}] = ·-oo.
for all n E IN; then

(7.3)m;+°*(E) 5 C
c E IR such that
Lemma 7.1 Let s,t be elements of E"; suppose that for some oi > O there exists
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exists e > o such that the segment {u : u : t + ons, {ozl < e} is contained in dom
A point t of domf is an algebraic interior point of dom f ij, for all s in E’, there

domf := {t E E' : f(t) < oo}. (7.21)
is the set

Definition 7.2 Let f 2 E‘——> F be convex; then dom f, the essential domain of f,

p`(¤=) S (—`¤)"(¤) S -F(¤) (7-20)

taking conjugates, we get

(-F)`(¢) S p(¢)s (7-19)

follow from Corollary 2.1. Taking the supremum over x in (7.15), we get
from the definitions of ut and Et and (P); the remaining parts of (7.14) and (7.15)

(718)F°(¢) S WU?] = p(¢)
and

(717)x%’(¤=) S m.‘lEl = p(#)

Proof: Since E is open, we have

`/·7(¤) S ·(-P`)"(<¤) S -1¤'(¤=) (7-16)

(7-15)F‘°(¤¤) = F(¤=) + (if. =¤) S ;¤(¢).

_

(714)gt(¤=) = y(¤=) + (M) S z¤(¢).

Lemma 7.3 Assume that (P) holds; for all t in E* and all x in E, we have

t ——>

(2) The convexity of p is, in fact, a consequence of the convexity of the function
Remarks: (1) Notice that we do not assume that p is l.s.c.

(ll\/1,,,%,) and is a proper convex function.
Hypothesis (P): the scaled generating function p : E* —> IR` exists for the pair

Henceforth we shall assume that the following hypothesis holds:

function and f" =
Lemma 7.2 [ff is a proper l.s.c. convex function, then f‘ is a proper l.s.c. convex

for some x. We have the following important result:
be proper. It is always the case that f" $ f, but it is possible that f"(x) < f(x)
automatically convex and l.s.c. in the weak topologies; they may, however, fail to
Since both f* and g' are upper envelopes of families of afhne functions, they are

e5E·
(7.13)g`(x) := sup{(t,x) - g(t)}.

Similarly, let g be defined on E', then its conjugate function g‘ 2 E —> R- is defined
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{J: E E : ;t’(r) = 0}. (7.30) OCR Output
concentrated on the set

also the example below in Section 7.2). Notice that the sequence IK; is eventually
In statistical mechanics, this is a statement of the equivalence of ensembles (see

(Sty) — 1¤(S) = -x»(y)· (729)

and this is the case if and only if

:<.’(y) = O, (7.28)

if there exists s in E" such that

#(21) = —z¤’(y) (7-27)

where p. is the R.L—function of the pair (ll\/{,,,1/Q,). For y in E, we have

(7-26)#(2) = ¤(¤¤) + (fi ¤¤) — p(¢) S 0.

Let at denote the R—L function of the pair (IKE, IQ); then if satisies

(7-25)IK; == ¤><P{-I€»m§lEl}HV£$.

IK; of the tilted measure ll\/IQ:
(3) Assume that (P) holds with damp = E" and introduce the normalized version
u is concave.

(2) The existence and iiniteness of p imply that u can be computed as —p" whenever
for which the segment {u : u = (l + oz)t, joel < e} is in damp.
that the pair (IIVIO, I5,) satisfies an NLDP and that for t in damp there is an e > 0

Remarks: (l) In order to conclude that (a) and (b) hold, it is enough to assume

for all 1: in E.

#(¤=) = —1¤`(¢)

l.s.c. in the o·(E*, E); the duality result now implies that
a(E, E")-topology. Finally, if dom p = E‘, then a) holds for all t showing that p is
the topologies ·r and c(E,E*) are the same, ([RR] chap.2), and u is u.s.c. in the
and a(E*, E'), then the pair (E, E") is in duality; thus the closed convex sets in
proves (a), since Corollary 6.1 applies. If we use the weak topologies o·(E,E‘)
Thus Lemrna 7.1 implies that the hypothesis (6.2) of Theorem 6.3 is satisfied; this

p((l+oz)t) § C'<oo, |oi{ <

e/2}, the function p is proper and bounded above:
segment {(1 + or)t 2 {oil < e} is in damp. On the segment {u : u = (1+ cz) t, lo:) §
Proof: Let t be in the algebraic interior of damp and choose e > O such that the

for all 2: in E, and p is l.s.c. in the o(E", E)·top0logy.

(7-23)#(¤¤) = —1¤'(¤=)

(ly} u is u.s.c. in the a(E, E’)—t0pol0gy and if furthermore, damp = E`, then

if in addition, the RL—function ,u is concave, then
(722)P(f) = (—#)'(¢);

its RL-function is ;.i° and
{aj for each t in the algebraic interior of dam. p, the pair (ll\/IQ, I4,) obeys an LDP,

Assume that (P) holds; then
Theorem 7.1 Let the pair (l1\/I0, I4,) obey an LDP and let u be its RL-function.
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of cubes in zd with [A.,] —+ oo when TL —» oo; for every az, we define w§" to
lation — invariant probability measures. Let {A,,},,2, be an increasing sequence
This action lifts to an action on the space of measures. Let X be the space of trans

(9,az)(i) : a.1(i—j). (7.36)

is a natural action of the group rs on fl: for each j in Zd, let 9, denote the map
narrow topology T, the space T) is Polish. Let w be an element of Q; there
C;,(Q). Let A/if`(S`2) be the space of probability measures on Q; equipped with the
bounded continuous functions on The topological dual E" of (E,T) is precisely
for T the narrow topology, the a(E,C'b(S2))- topology (here G;,(Q) is the space of
We choose for E the space of all bounded signed measures on Q; we choose
the discrete topology and Q with the product topology so that S2 is a Polish space.
measure pj and we denote the product measure on Q by p. We equip each YZ, with
finite set S and Q is the product space. On each Q, we have the normalized counting
d—dimensional integer lattice; over each site j in zd we have a copy Q, of some Hxed
Example: Consider a set-up which arises in statistical mechanics: let Z° be the

with respect to the topology which it inherits as a subset of E, then X is Radon.
a locally convex Hausdorff topological space over the reals, and X is a Polish space
example. A typical situation is the following one: X is a closed convex subset of E',
Borel measure is a Radon measure [Sel). A compact metrizable space is Radon, for
space X is a Radon. space {that is, a Hausdorif topological space on which every
Radon measures have the support property; therefore we assume below that our

we say that IK has the support property.

]K[FO] : 1, (7.35)

FO := {OF 2 F G F(X) : : 1}; (7.34)

Definition 7.3 Let lK be a probability measure on B(X) cmd let

However, we need stronger measure—theoretic assumptions; first, we explain these.
p rather than on pg from this weak law of large numbers, the result follows easily.
of large numbers by a another method than that of sections 2.3 and 5.3, based on
showing by a different route that (7.33) holds. To do that, we prove a weak law
by duality. This suggests that it might be possible to prove the existence of pi by

p = (-pi)` and p : —-p’ (7.33)

lf, in addition, ,u is concave, we have

P = (·#)` (732)

at all algebraic interior points of dom p; in particular, if damp = E`, then

(7-31)PU) = (—#)"(#)
holds, we have
ln Theorem 7.1, we assumed the existence of ,a and showed that, provided an LDP

of the Pressure

7.2 Weak Law of Large Numbers and the Differentiability



31

;¤`<y> = (—~)(v> (7-43) OCR Output

exists for the pair (IKO, VQ) and
{lv} If IK; converges to the Dirac mass at y, then the R—L function k(y) at y

grad p(t).
IK; obeys a weak law of large numbers: IK; converges to the Dirac mass at

{aj [fp is weakly differentiable att and if IK; is a relatively compact set, then

X and let hypothesis [P} be satisjied with domp = E*,· then we have:
which it inherits as 0. subset of E. Let IKO be a sequence of probability measures on
topological space over the reals; let X be a Radon space with respect to the topology
Theorem 7.2 Let X be a closed convex subset of E, a locally convex Hausdorf

da
f(t + as) [,,:0: (s,grad f(t)). (7.42)

denoted by grad f(t), such that, for all s in E", we have
at t ift is an algebraic interior point of domf and if there exists an element of E,
Deiinition 7.4 Let f : E‘—> F be convex; we say that f is weakly differentiable

we require the notion of weak differentiability of a convex function;
adopt for sequences of probability measures on X is narrow convergence. Finally,
now denotes the normalized tilted measure. The notion of convergence which we
Let X be a closed convex subset of E and suppose that IK:,[X] = I, where IK;
IKQ, at least for n sufficiently large, by dividing by exp(Vnmf,[E]) and we do so.
(P) holds with dom p = E`. It follows that we may normalize the tilted measures

From now on, we suppose that IK0 is a sequence of probability measures and that

In this case, we recognise ,a(x) as the specific Kolmogorov entropy of the measure

(741)PU) = SEE (Mz) + /_ ¢(w)¤¤ld¤¤l)

: ‘ r - dw elw) (P(¢) #(w)¤¤l I), .4 (7 0}if ,€g;(,,,0

(see (R2]). Indeed, if we write the above statements explicitly, we have
are simply the two expressions of the variational principle of statistical mechanics

PU) = (-#)`(f), (739)
u(x) = -—p`(x), (7.38)

lKn[X] = I for each n 2 I. In this example, the statements
and let lKn := p 0 Z;1 be the distribution of Zn under p. We have, of course,

nl jean
(7.37)Zn(w) := T-iq Z 5@,(,,;_·»)

periodically; let {Zn}n?1 be a sequence of random variables on S2 defined by
be the configuration which coincides with to on An and which is extended to Z
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p,, := 1K; 0 nf; (7.51) OCR Outputl

image measure defined by
Let ir, 2 X ——> IR. be the mapping defined by 2: —·> vr,(z) := (s,2:) and let pn be the

(7-50)¢><p{V¤(z>¤(¢ + S/161) ~ Mill} = ¢<"’llKZld<¤l·fx

kf,[X The measures 1K; are normalized, so, by dehnition, we have
Proof of Theorem 7.2: Let s 6 E' be given; let p,,(t) denote the function t —->

Tl hn _- Tl

6f(O,; _g) S H§l§1f (7.49)

Taking lim sup and lim inf over n and then letting u decrease to zero, we get

fn(<¤ + UB) - f¤(¤¤)

(7,,8)
T1 __ Tl _— TL hn —_ Tl f (Q) f (¤ #6) , f (¤+ 6) f (¤)

Choosing it = hn/u, with zz > O and 7 = 1/5, we have

S. fn(Cx `l` 77) " fn(O’)·

<7-4i>fn + — fi. f..<¤>— r..<¤— n s —i‘?‘-—-’Q¥——@

Proof: For ,u E [0,1), the convexity of fn implies that

for any decreasing sequence {h,._},,21, hn L O.

differentiable at 04; then
dom fn = domf = IR. Suppose that {f,,},,21 converges pointwise to f and that f is
Lemma 7.4 Let f,._,n 2 1, and f be proper convex functions on IR with dom fn =

L-3 e IR.
The function g is differentiable at on if and only if we have equality in (7.45) for all

(7.45)6g(oi; -B) $ 6g(oz;B), B E IR.

The function B -+ 5g(oi; B) is positively homogeneous and

}
(7.44)_ __ . y(¤+h6) -9(<¤) 5g(a,,B) .- 1%;----;---.

is monotone decreasing as h L O; we define 5g(¤, B) by

9<¤ + W) - a<¤)

functions. Let g be a proper convex function on the real line. The quotient
Before starting 0n the proof of Theorem 7.2, we establish a simple lemma on convex
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z>(¢) +1¤`(¤¤) = (M) (7-61)

subset of X and a: E 3p(t) if and only if
continuous and finite at t then 5p(t) is non-empty. The set 3p(t) is a closed convex
An element of 5p(t) is called a subgmdient; the set Bp(t) may be empty, but if p is

(7.60)3p(t) := {z E X : p(t + s) 2 p(t) + (s,2:),Vs E E'}.

the set-valued mapping given by
and that p is l.s.c. For t E damp, the subdifferential 6p(t) of p at t is defined to be
of Theorem 7.2, with IK,, and IK; normalized measures. We assume that (P) holds
usual topology. The set-up is as described in the paragraph preceding the statement

Finally, we consider the particular case when E = IR" = E", equipped with the

0 = F(y) + 2¤’(y) (7-59)
similarly, we have

= &(?/)+P*(U)§

0 = s(y) — 2¤(¤) + (ay) (7-58)

Replacing a: by y and t by s, we get

(7-57)&‘(<¤) = &(¤) — z>(f) + (if. ¤¤) S 0

of Lemma 7.3 now reads:

which implies that »t'(y) = 0;- since the measures are normalised, statement (7.14)

n;°
lin1IKf,[G] = 1, (7.56)

hood of y; then
This proves (a). The proof of (b) is straightforward: let G be any open neighbour—
of the single point gr0.dp(t) hence lK* is a Dirac measure concentrated at gradp(t).
The intersection of all C(s, e) over all s and all e > 0 reduces to the set consisting

lKt[C(s,
lc

lirrlsijp lK;[C'(.s, 6}]

(7-55)Ligigp x>»l{¤¤l ¤ -(—wr¤<i1¤(¢)) IS 6}]

this is a closed subset of X and if lK° is a cluster point of the sequence KQ, then

(7-54)U($»€) ¤= lx 6 X =| (SJ) - <wM<iz>(¢)> IS 6};

weakly to a Dirac measure concentrated at (s, g1·adp(t)}. Define the set C(s, e) by
Using the theory of the Laplace transform [F], we deduce that {p,,},,21 converges

(7-53)¢B°¤>··[d¤} = ¢><P5<w¢¤d2¤(¢)>,}§§_, fn

and Lemma. 7.4 implies that

(7.52)e<¤··=>11<;{dx] : /_ €¤¤=p,,[d¤;

for every B E R, we have
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lim$;lPP·l(l - Ms + ay) S 2¤'(y); (7-70) OCR Output

the convexity of p’ and (7.66) imply
for 2 E ridcrm. p' and for 2 $ dom p' . Let y E do·m,p‘\ridom p' and 2 E ridomp‘;
implies that : -oo; similarly, we have = —oo. Thus »~z(2) : —p`(2) holds

: - p(t) + (t, 2) § O (7.69)

p"(2). lf 2 Q damp', then
is essentially smooth and hence 2 : gradp(t). Theorem 7.2 implies that n(¤:) :
t E damp such that 2 E 5p(t). The point t is in the interior of damp since p
compact. We show that n(2) : —p*(a:). Let 2 E ridom.p"; then there exists
(7.68) holds for any n with Ke instead of K6. This shows that lK° is relatively
since every measure lK,, is tight, we can find another compact subset KE such that

lK,,[K€] 2 1- e ,\7’n 2 Nc; (7.68)

a compact subset Ke and NE so that
the pair (1K,.,,Ié,) is exponentially tight, and therefore, given any e > O there exists
Proof: Since zero is an interior point of dom p, it follows from Corollary 7.1 that

m(2) : —-p'(;z:). (7.67)
given by
p is essentially smooth, then the pair (lK,,,V[,) obeys an LDP with RL-function ns
topology; suppose that hypothesis [P} holds, and that zero belongs to int(dom p). If
Theorem 7.3 Let X be a closed convex subset 0fE : Rd equipped with the usual

a boundary point of C.
(c) limj..,O,, grad f(tj) H: —i-oo whenever {tj}21 is a sequence in C converging to
(b) f is diferentiable throughout C;
(a) C is non-empty,·
satisfies the following three conditions for C : int(dorn,
Recall also that a proper convex function f is said to be essentially smooth if it

(7.66)(l——,u)2+;.iy EriC,O§;a§ 1.

then

Recall that riC # Q) for every non-empty convex set C C lR”; if 2 E riC and y E C,

(7.65)damp` D range Gp J ri(domp‘).

We shall use below the following fact about range Gp:

(7.64)d0mp` Q range Bp D dom 3p'

and therefore

(7.63)2 E 3p(t) if and only if t Q 3p'(t),

the duality relation above implies

(7.62)dom Gp 2: {t E E" 2 3p(t) # 0};

By definition, we have
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