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Abstract: Because of its fundamental importance to molecular biology, great interest has

continued to persist in developing novel techniques to efficiently characterize the thermo-

dynamic and structural features of liquid water. A particularly fruitful approach, first applied

to liquid water by Lazaridis and Karplus, is to use molecular dynamics or Monte Carlo

simulations to collect the required statistics to integrate the inhomogeneous solvation theory

equations for the solvation enthalpy and entropy. We here suggest several technical

improvements to this approach, which may facilitate faster convergence and greater accuracy.

In particular, we devise a nonparametric kth nearest-neighbors (NN)-based approach to

estimate the water-water correlation entropy, and we suggest an alternative factorization

of the water-water correlation function that appears to more robustly describe the correlation

entropy of the neat fluid. It appears that the NN method offers several advantages over the

more common histogram-based approaches, including much faster convergence for a given

amount of simulation data; an intuitive error bound that may be readily formulated without

resorting to block averaging or bootstrapping; and the absence of empirically tuned

parameters, which may bias the results in an uncontrolled fashion.

1. Introduction

Water is unique among liquids for its biological significance.
It plays an active role in the formation of the structures of
proteins, lipid bilayers, and nucleic acids in vivo, both
through direct hydrogen-bonding interactions with these
biomolecules, and also through indirect interactions, where
the unique hydrogen-bonded structure of liquid water is
known to drive hydrophobic assembly.1 It has been suggested
that a robust characterization of the thermodynamic properties
and structure of water solvating the active site of a protein
is essential to rationalize the various binding affinities of
small molecules that will displace that solvent to bind to the
protein active site.2,3

As such, great interest has continued to persist in develop-
ing novel techniques to efficiently characterize the thermo-
dynamic and structural features of liquid water in different
environments. A particularly fruitful approach, first applied
to liquid water by Lazaridis and Karplus,4-6 used molecular

dynamics or Monte Carlo simulations to collect the required
statistics to integrate the inhomogeneous solvation theory
(IST) equations for the solvation enthalpy and entropy. In
this theory, the solvation enthalpy is determined from an
analysis of the change in the solute-solvent and solvent-
solvent interaction energy terms, and the solvation entropy
is computed from an expansion of the entropy in terms of
increasingly higher order solute-solvent correlation func-
tions.4 This approach has been used to characterize the
thermodynamics and structure of neat water,6 hydration of
small hydrophobes,4 and the hydration of the active sites of
proteins.7,8 Recently, it has also been extended to allow for
the rapid computation of the relative binding affinities of a
set of congeneric ligands with a given protein, via a
semiempirical displaced-solvent functional.2

Because of the increasing interest in applying this
technique to water9-12 in various environments, we have
chosen to reexamine the factorization and correlation
function integration scheme originally suggested by Laz-
aridis and Karplus6 for bulk water and later adopted by* Corresponding author e-mail: bb8@columbia.edu.
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others.13 We have found that several technical improve-
ments in this scheme are possible, which may facilitate
faster convergence and greater accuracy than the more
typical expressions. In this Article, we (1) devise a
nonparametric kth nearest-neighbors (NN)14-based ap-
proach to estimate the water-water correlation entropy,
in lieu of the more common histogram-based approaches,
and (2) suggest an alternative factorization for the
water-water correlation function that appears to more
robustly describe the water-water correlation entropy of
the neat fluid. To our knowledge, this is the first
application of the NN method to compute the entropy of
a neat fluid. It appears that the NN method offers several
advantages over the more common histogram-based ap-
proaches, including (1) much faster convergence for a
given amount of simulation data, especially when the
correlation function is highly structured; (2) an intuitive
error bound may be readily formulated without resorting
to block averaging or bootstrapping techniques, which may
be problematic to apply to estimators of the entropy; and
(3) the absence of empirically tuned parameters, such as
the histogram bin width, which may bias the results in an
unpredictable fashion. Our alternative factorization of the
water-water correlation function explicitly includes cor-
relations between the water-dipole-vector-intermolecular-
axis angle with the angle of rotation of the water molecule
about its dipole vector. This contribution, although
neglected by others,6 has been found in our work to
increase the agreement of results obtained by the entropy
expansion with those obtained by less approximate
methods, such as free energy perturbation theory. We also
extensively compare the solvation entropies obtained from
the truncated entropy expansion to those obtained from a
finite difference analysis of free energy perturbation theory
results. This comparison allows us to characterize the
errors in both precision and accuracy associated with the
NN method of integrating the entropy expansion presented
here.

Our primary interest in developing this technique was to
later adapt the method to study the solvation of solutes; thus,
we were interested in determining realistic estimates of the
convergence of the technique when the isotropic symmetry
of the fluid was not present. As such, when extracting the
solvent configurations to compute the pair correlation func-
tion (PCF), we chose to use only the configurations of a
distinguished solvent molecule with the rest of the system,
instead of collecting statistics from all pairs of solvent
molecules. Such a protocol allows for an interrogation of
the relative convergence properties of the various methods
that might be obscured by the additional statistics offered
by taking advantage of the symmetry of the system.

2. Methods

2.1. The Entropy Expression of a Neat Fluid. First
derived by Green,15 and later by Raveché16 and Wallace,17

the entropy of a fluid can be expressed as a sum of integrals
over multiparticle correlation functions. For a molecular
fluid,5 the expression is

where, sid is the entropy of an ideal gas with the same density
and temperature as the fluid, se is the excess entropy of the
fluid over that of the ideal gas, k is Boltzmann’s constant, F
is the number density, ω denotes the orientational variables
of one molecule, Ω is the total volume of the orientational
space (for a nonlinear molecule like water, Ω is 8π2), g(2) is
the pair correlation function, g(3) is the triplet correlation
function, and g(3) is the deviation of g(3) from the superposi-
tion approximation. In practice, it is very difficult or even
impossible to converge the three-particle and higher order
correlation terms. However, it has been established that, for
most fluids, the largest contribution to the excess entropy
comes from the two-particle correlation term,6 and the error
induced by neglecting the higher order terms of the expansion
may often be safely ignored.

Following the work of Lazaridis and Karplus,6 we evaluate
the two-particle excess entropy of liquid water by separating
the two-particle term into translational and orientational
components by factorization:

where r is the oxygen-oxygen distance of two water
molecules, ω2 are the angles that define the relative orienta-
tion of the two water molecules, J(ω2) is the Jacobian of the
angular variables, g(r,ω2) is the pair correlation function, and
g(ω2|r) is the conditional-angular pair correlation function
in the typical Bayesian notion. (Note that g(r,ω2) is identical
to g(2) as it appears in eq 1.) We denote the relative orientation
of the two water molecules by the five angles6 [θ1,θ2,φ,�1,�2],
where θ1,θ2 are the angles between the intermolecular axis
and the dipole vector of each molecule, φ describes the
relative dihedral rotation of the dipole vector around the
intermolecular axis, and �1,�2 describe the rotation of each
molecule around its dipole vector. In the following discus-
sion, we denote the entropy defined by formula 6 the
orientational Shannon entropy,18 and denote the entropy
defined by formula 5 the orientational excess entropy.

In line with prior work,6 we calculated the orientational
Shannon entropy as defined by formula 6 for three different
ranges of r: (0 < r e 2.7), (2.7 < r e 3.3), and (3.3 < r e

5.6), which correspond to the various peaks and troughs in

s ) s
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+ se ) s
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+
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the radial distribution function. In this way, the orientational
excess entropy is related to Shannon entropy by:

where Ni is the average number of water molecules in the
ith shell.

2.2. Factorization of the Orientational Pair Correlation

Function Using Generalized Kirkwood Superposition Ap-

proximation. The orientational pair correlation function
(PCF) of water is a function of five angles, which is very
difficult to converge from currently accessible molecular
dynamics simulation time scales. The idea of factorization
is to approximate the higher dimensional probability density
function by the product of its lower dimensional marginal
probability density functions. The generalized Kirkwood
superposition approximation (GKSA)19-21 allows an m-
dimensional distribution to be estimated using corresponding
m - 1-dimensional distributions:

where Fm-k represents a specific probability density function
of m - k dimensionality, and cm-k

m indicates all possible
combinations of m - k groupings from the set of m total
variables. Reiss20 and Singer21 have demonstrated that the
GKSA is the optimal approximation of an n-particle distribu-
tion for n g 3 from a variational point of view, and it has
been applied in numerous settings.22,23

From the results of our simulations, and as indicated by
Lazaridis and Karplus,6 the distribution has no structure along
angle φ; that is, g(φ) is close to 1 over the range of φ and
has no correlation with other angles. Thus, we approximated
the five-dimensional PCF by:

Note that for any properly defined orientational PCF
g(x1,x2,...xN),

where

That is, Ω
[x1,x2,...xn] is the integral of the Jacobian J(x1,x2,...xn)

over angular variables x1,x2,...xn. Therefore, g(x1,x2,...xn) is
proportional to F(x1,x2,...xn) with proportional coefficient
Ω

[x1,x2,...xn]. Via application of the GKSA (formula 8), it
follows:

Note that this factorization differs from that introduced by
Karplus and Lazaridis6 by the explicit inclusion of g(θ1,�1)
and g(θ2,�2) terms. Taking this approximation of g(x1,x2,...xn)
into the argument of the logarithm of formula 6, we find

where x1,x2 is any combination of two variables from the
[θ1,θ2,�1,�2] set, x is any variable from the [θ1,θ2,�1,�2] set,
J(x1,x2) is the Jacobian of the corresponding two variables,
J(x) is the Jacobian corresponding to variable x, Ω

[x1,x2] is
the total accessible angular volume of variables x1,x2, Ω

[x] is
the total accessible angular volume of variable x, S[x1,x2]

is the Shannon entropy of angular variables x1 and x2, and
S[x] is the Shannon entropy of angular variable x.

We note that an ambiguity seems to exist in the literature as
to how to properly apply an approximation of the type suggested
in eq 12 to eq 6. We have adopted here to apply the
approximation only to the logarithm of eq 6 (as was done in
the original derivation of eq 1), which allows result 15 to be
interpreted through the language of information theory.24 An
alternate approach, which has been adopted by others, has been
to apply approximation 12 to both occurrences of the PCF in
eq 6, taking care to renormalize the factorization of the PCF
introduced in eq 12 so that meaningful results will still be
obtained. Interestingly, the results of these two approaches do
not numerically agree, which may not be obvious from cursory
inspection. We leave this proof as an exercise for the reader,
which can be readily shown for instance from a correlated
multidimensional Gaussian distribution.

2.3. The k’th Nearest-Neighbor Method. The NN
method14 gives an asymptotically unbiased estimate of an
integral of the form:

where F(x1,x2,...xs) is the probability density function. Given
a reasonable estimation of probability density function f(xi),
the value of integral can be approximated as

which follows from xi being sampled from the true distribu-
tion F(xi). The NN method of nonparametrically estimating
f(xi) at a point xi ) (x1

i ,x2
i ,...xs

i) is25

sorient )
1
2

NikS
orient

i ) 1, 2, 3 (7)

F(x1, x2, ..., xm) ) {
∏
cm-1

m

Fm-1... ∏
c2

m

F2

∏
cm-2

m

Fm-2... ∏
c1

m

F1

m is odd

∏
cm-1

m

Fm-1... ∏
c1

m

F1

∏
cm-2

m

Fm-2... ∏
c2

m

F2

m is even

(8)

g(θ1, θ2, φ, �1, �2) ) g(θ1, θ2, �1, �2)g(φ) (9)

1

Ω
[x1,x2...xn] ∫ J(x1, x2...xn)g(x1, x2...xn) dx1 dx2...dxn ) 1

(10)

Ω
[x1,x2...xn]

) ∫ J(x1, x2...xn) dx1 dx2...dxn (11)

g(θ1, θ2, �1, �2) )

g(θ1, θ2)g(θ1, �1)g(θ1, �2)g(θ2, �1)g(θ2, �2)g(�1, �2)

g
2(θ1)g

2(θ2)g
2(�1)g

2(�2)
(12)

S
orient

) -
1

Ω
2 ∫ J(ω2)g(ω2|r) ln g(ω2|r) dω2 (13)

) -∑
C2

4

1

Ω
[x1,x2] ∫ J(x1, x2)g(x1, x2) ln g(x1, x2) dx1 dx2

+ 2 ∑
C1

4

1

Ω
[x] ∫ J(x)g(x) ln g(x) dx (14)

) ∑
C2

4

S
[x1,x2]

- 2 ∑
C1

4

S
[x] (15)

I ) -∫ F(x1, x2, ..., xs) ln F(x1, x2, ..., xs) dx1 dx2...dxs

(16)

I ≈ -
1
n
∑
i)1

n

ln f(xi) (17)
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where n is the number of data points in the sample, Vs(Ri,k)
is the volume of an s-dimensional sphere with radius Ri,k,
and Ri,k is the Euclidean distance between the point xi and
its kth nearest neighbor in the sample. This approximation
amounts to assuming that the distance between neighboring
sampled points in configuration space will be small where
the probability density function is large, and vice versa. So
this integration may be estimated as

However, the estimate in eq 20 is systematically biased14

and will deviate from the correct result in the limit of large
n by Lk-1 - ln k - γ, where Lj ) Σi)1

j 1/i and γ ) 0.5772...
is Euler’s constant. By subtracting the bias Lk-1 - ln k - γ,
the modified unbiased estimate is formulated as

Now our goal is to modify our expressions for the Shannon
entropies into a form that is amenable to a kth NN evaluation
of the integral. The expression of the two-dimensional
orientational Shannon entropy has the form of

where J(x1,x2) is the Jacobian associated with x1 and x2. Here,
for �1 and �2 the Jacobian is 1, but for θ1 and θ2 the Jacobian
is sin θ1 and sin θ2. However, by a change of variables from
θ to t ) π/2(cos θ + 1), the Jacobian for t becomes 1, and
the total angular volume is π for one-dimensional distribution
and π2 for two-dimensional distributions. Next, g(x1,x2) is
proportional to F(x1,x2) in eq 16, with proportional coefficient
π2. Following the NN method, the statistically unbiased
estimation of the one- and two-dimensional orientational
Shannon entropies may now be approximated as

where Hk
[x](n) is the kth NN estimate of the Shannon entropy

of random variable x from a sampling of n data points, and

Hk
[x1,x2](n) is the kth NN estimate of the joint Shannon entropy

of random variables x1,x2 from a sampling of n data points.
Thus, we are now equipped to apply the NN method of
estimating the entropy to liquid state problems. We also note
that to compute the NN distances, we made use of the ANN
code,26 which utilizes the k-d tree algorithm27 for obtaining
the kth NN distances Ri,k between sample points as necessary.

2.4. Error Analysis of the kth Nearest-Neighbor

Method. It has been shown through an analysis of the
limiting distribution14 that the variance of the kth NN
estimate of the entropy Hk(n) is

where f(x) is the probability density function and Qk )

∑j)k
∞ 1/j2. Formally, this result follows from using the Poisson

approximation of the binomial distribution to characterize
the fluctuations of Hk(n) in the large n limit (please see ref
14 for details). Because Hk(n) is asymptotically unbiased,14

the asymptotic mean square error of the estimate is of the
order given by eq 25. Typically, the true value H(n) will be
estimated by computing Hk(n) for several values of k,
typically 1-5. Because the analytical form of the variance
is known, we may combine these estimates by a weighted
averaging procedure, that is, H(n) ) ∑wkHk(n). For inde-
pendent variables with the same average, the weight that
minimizes the variance of the estimate of the average is a
weight proportional to the inverse of the variance of the
variable (see Appendix A for details), that is,

where wk is the ideal weight of Hk(n) when averaging H(n).
Such calculations may also be readily extended to compute
the standard deviation of such an estimate (Appendix A).
Interestingly, two well-defined limits exist here: (1) if var[ln
f(x)] is small, then the proper weighting will be

and, (2) if var[ln f(x)] is large, then the proper weighting
will be a flat function, which will lead to a simple arithmetic
average. Therefore, the best possible estimate of H(n) from
m estimates of Hk(n) will always be bound by these two
limiting averages. Further, if these two limiting averages
converge in the given sampling, it is highly probable the
estimate of H(n) is also converged. We also note here that
an intuitive sense of which regime best fits the given data
can be discerned by inspecting the relative noise in plots of
the m Hk(n) estimates as a function of n (where n is the
amount of simulation time in this application). If the H1(n)
estimate noticeably suffers greater fluctuations than the other
estimates, then the var[ln f(x)] term must be small, because
the Q1 component is dominating relative variances of the
estimates. However, if the m Hk(n) estimates all appear

f(xi) )
k

n

1
Vs(Ri,k)

(18)

Vs(Ri,k) )
πs/2

Ri,k
s

Γ(1
2

s + 1)
(19)

I ≈ -
1
n
∑
i)1

n

ln f(xi) )
1
n
∑
i)1

n

ln
nπs/2

Ri,k
s

kΓ(1
2

s + 1)
(20)

I ≈
s

n
∑
i)1

n

ln Ri,k + ln
nπs/2

Γ(1
2

s + 1)
- Lk-1 + γ (21)

S
[x1,x2]

) -
1

Ω
[x1,x2] ∫ J(x1, x2)g(x1, x2) ln g(x1, x2) dx1 dx2

(22)

Hk
[x](n) )

1
n
∑
i)1

n

ln Ri,k + ln
nπ1/2

Γ(1
2
+ 1)Ω[x]

- Lk-1 + γ

(23)

Hk
[x1,x2](n) )

2
n
∑
i)1

n

ln Ri,k + ln
nπ1

Γ(1
2

× 2 + 1)Ω[x1,x2]
-

Lk-1 + γ (24)

var[Hk(n)] )
Qk + var[ln f(x)]

n
(25)

wk )
1/(Qk + var[ln f(x)])

∑
i)1

m

1/(Qk + var[ln f(x)])

for k ) 1, 2...m (26)

wk )
1/Qk

∑
k)1

m

1/Qk

for k ) 1, 2...m (27)
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graphically to have fluctuations of a similar magnitude, then
the var[ln f(x)] term must be large, and the simple arithmetic
average is more appropriate. Such inspection of our data
revealed var[ln f(x)] to be small. As such, the weighted
average determined by application of eq 27 was taken in
this work as our best possible estimate of H(n).

2.5. Calculation of the Excess Energy, Enthalpy,

and Free Energy. The excess molar energy of a fluid is
simply

where u(r,ω2) is the interaction energy between two mol-
ecules with distance r and orientation determined by ω2. This
quantity is straightforward to extract from the simulation,
as it is merely one-half of the interaction energy between
the water molecule of interest with the rest of the system.
The molar excess enthalpy can be obtained by approximating
the ∆(PV) term. For the liquid phase, the PV term may be
safely neglected, and for the gas phase, we may use the ideal
gas equation of state PV ) NkT to derive an excellent
approximation to the PV term analytically. Combined with
the excess entropy, we find the excess free energy of the
fluid may be expressed as

as is typical.
2.6. The Finite-Difference Method of Entropy

Calculation. To generate reference data to examine the
accuracy of the kth NN method of evaluating the entropy
expansion, we pursued a finite difference analysis of the
solvation free energy, as computed from free energy per-
turbation theory (FEP). The finite-difference (FD) method
of computing an entropy from FEP data proceeds by first
noting that the entropy is the temperature derivative of the
free energy, and then attempting to accurately estimate this
slope,28 that is

This method relies on the assumption that the heat capacity
of the system is independent of temperature in the range [T
- ∆T, T + ∆T].29 This assumption appears to be valid near
room temperature with ∆T even as large as 50 K.28 Here,
we use the Bennett acceptance ratio30 method to calculate
the excess free energy of liquid water at T ) 298 ( 20 K,
and then use FD to calculate the excess entropy at T ) 298
K. The datails of this method are included in the appendices.
These data allow for independent validation of the NN
approach and the approximations therein.

2.7. Details of the Simulation. Dynamics trajectories
were generated using the Desmond molecular dynamics
program.31 A 25 Å cubic box of the TIP4P32 water model
wasfirstequilibratedto298Kand1atmwithNose-Hoover33,34

temperature and Martyna-Tobias-Klein35 pressure controls,
followed by 30 ns NVT dynamics simulation with a
Nose-Hoover33,34 temperature control. To integrate the

equations of motion of the system, the RESPA36 integrator
was used, where the integration step was 2 fs for the bonded
and the nonbonded-near interactions and 6 fs for the
nonbonded-far interactions. Configurations were collected
every 1.002 ps. The cutoff distance was 9 Å for the van der
Waals interaction, and the particle-mesh Ewald37 method was
used to model the electrostatic interactions. Similar simula-
tions were performed for the SPC,38 SPC/E,39 TIP3P,32 and
TIP4P-Ew40 water models.

When extracting the solvent configurations to compute the
PCF, we chose to only use the configurations of a distin-
guished solvent molecule with the rest of the system, instead
of collecting statistics from all pairs of solvent molecules.
Our primary interest in developing this technique was to later
adapt the method to study the solvation of solutes; thus, we
were interested in determining realistic estimates of the
convergence of the technique when the isotropic symmetry
of the fluid was not present. Such a protocol allows for an
interrogation of the relative convergence properties of the
various methods that might be obscured by the additional
statistics offered by taking advantage of the symmetry of
the system.

3. Results and Discussion

3.1. The Shannon Entropies. The NN estimates of the
two-dimensional orientational Shannon entropies S[t1,t2] of the
TIP3P water model for the three shells are given in Figures
1, 2, and 3. The results reported in these figures were
generally representative of those results obtained for the other
models. We see from the figures that the weighted average
estimate of all of the Shannon entropies is converged over
the course of the simulations. The results of all of the one-
and two-dimensional orientational Shannon entropies for each
of the three shells for all of the water models studied are
given in Table 1. By application of formulas 4 and 7, we
computed the translational excess entropies and orientational
excess entropies for all of the water models studied. All of
the final results are shown in Table 2. From the table, we

∆E )
1
2
F

Ω
2 ∫ g(r, ω2)u(r, ω2) dr dω2 (28)

∆G ) ∆E + ∆(PV) - Tse (29)

-∆S(T) ) 〈∂∆G

∂T 〉P
)

∆G(T + ∆T) - ∆G(T - ∆T)
2∆T

(30)

Figure 1. The first shell orientational Shannon entropy S[t1,t2]

for the TIP3P model as a function of the number of data points

(labeled on the horizontal axis in front of “/” in units of 1000)

and the corresponding simulation time (labeled on the hori-

zontal axis in parentheses) using the NN method. The

weighted average estimate and the associated error bar were

also depicted.
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see that for the TIP4P model the excess entropy result from
the NN method, -13.67 eu, is very close to the experimental
value, -14.1 eu. We also note excellent agreement between
the excess entropies computed here and those derived from
cell theory.41 The agreement for the TIP3P and SPC models
was slightly diminished as compared to the other models,
for reasons that will be explained later.

3.2. Convergence Properties. We extensively compared
the commonly employed histogram method to compute the
orientational Shannon entropy to the NN method weighted
average (Figures 4, 5, and 6). We see clearly that the NN
method weighted average converges much faster than the
histogram method for shells 1 and 2. For shell 3, both
methods give similar results. This is easily understood: for
the first and second shells, the water molecules are highly
correlated, and the histogram results will have a strong
dependency on the bin size used to do the integration;

however, for the third shell, there is little correlation, so the
histogram method has similar convergence properties as
compared to the NN method.

Figures 7, 8, 9, 10, and 11 depict the total orientational
excess entropies as a function of simulation time from the
various histogram estimates and the NN weighted average
estimate. For all of the models studied, the 10° histogram
estimate (which is most commonly used currently6,10) gave
results closest to the NN estimate. However, for a bin size
of 20°, the entropy result is biased away from the correct
result, and for bin sizes of 5° and 2.5°, much longer
simulation time would be needed to converge the results.
Because ideal bin size is problem specific, it cannot be
deduced unless other reference data are already known. Thus,
the absence of such a parametric bias in the NN method is
a notable advantage of the technique.

3.3. Error Analysis. As described in the Methods, we
calculated the variance associated with the weighted average
of the NN estimates for each of the one- and two-dimensional
Shannon entropies. Because the NN estimate is asymptoti-
cally unbiased, the error of the estimate is also given by the
variance. We calculated the error on the basis of the weighted
average, which assumes var ln f(x) is 0. However, even in
the extreme cases where var ln f(x) goes to infinity and the
five NN estimates contribute equally to the average, the
variance of the arithmetic average only differs slightly from
weighted average, and they are within the error bar of each
other, strongly indicating the convergence of these calcula-
tions (Figures 12 and 13).

3.4. The Radial Dependence of Orientational

Shannon Entropy. We calculated the orientational Shannon
entropies in three radial regions, assuming the orientational
distribution would be independent of r in each subregion.
To validate this approximation, we calculated the orienta-
tional Shannon entropies at different intervals of r from 2.5
to 4.0 Å. Typical Shannon entropies S[t1,t2] at different values
of r are shown in Figure 14.

We see from the figure that the Shannon entropy increases
as the distance between the two water molecules r increases,
and goes to zero when r is sufficiently large. Additionally,
the change of the Shannon entropy with respect to r is smooth
in the respective first and second hydration shells. Because
of the slow variation of the orientational Shannon entropy
with respect to r, the sum of the orientational excess entropy
at each interval will differ from the sum of the orientational
excess entropy of the three shells only by at most 0.5 eu,
which is within statistical uncertainty of the calculation. Thus,
this approximation was not a large source of error in these
calculations.

3.5. Inclusion of g(θ1,�1) in the Factorization. The
factorization of the PCF used here differs from the more
common formulation6 by the explicit inclusion of g(θ1,�1)
and g(θ2,�2). The distribution functions g(θ1)*g(�1) and
g(θ1,�1) for the TIP4P model are shown in Figures 15 and
16. Careful inspection of these figures suggests that g(θ1,�1)
differs from g(θ1)g(�1) quantitatively, which is supported by
the two-dimensional Shannon entropy S[θ1,�1] differing sig-
nificantly from the sum of S[θ1] and S[�1]. For example, for
the TIP4P model, the first shell Shannon entropy of S[θ1,�1]

Figure 2. The second shell orientational Shannon entropy

S[t1,t2] for the TIP3P model as a function of the number of data

points (labeled on the horizontal axis in front of “/” in units of

10 000) and the corresponding simulation time (labeled on

the horizontal axis in parentheses) using the NN method. The

weighted average estimate and the associated error bar were

also depicted.

Figure 3. The third shell orientational Shannon entropy S[t1,t2]

for the TIP3P model as a function of the number of data points

(labeled on the horizontal axis in front of “/” in units of 100 000)

and the corresponding simulation time (labeled on the hori-

zontal axis in parentheses) using the NN method. The

weighted average estimate and the associated error bar were

also depicted.
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is -1.21, while S[θ1] is -0.34 and S[�1] is -0.29. This result
indicated a non-negligible correlation between �1 and θ1,
which suggested that the explicit inclusion of g(θ1,�1) and
g(θ2,�2) in our factorization would lead to greater quantitative
precision. This also explains why our excess entropy result
for the TIP4P model (-13.67 eu) is about 1.5 eu more
negative than the previously reported value (-12.2 eu),6

which is in better agreement with both the FD estimate of
the entropy of the model and the experimental estimate of
liquid water.

3.6. Comparison of Free Energy Results. From these
simulations, we computed the excess molar energies and
excess free energies of the various water models. The results
of these calculations for all models studied are listed in Table

3 alongside the relevant literature values. The excess free
energies we have obtained here show excellent agreement
(within 0.5 kcal/mol uniformly) with the high precision FEP
results obtained by Shirts et al.43 Interestingly, the TIP4P
model gives results closest to the experimental quantities.

The SPC/E, TIP4P, and TIP4P-Ew models all give free
energy results somewhat closer to the Shirts43 results than
the other models. This may not be accidental. In our
calculations, the higher order multiparticle correlation en-
tropies were ignored. There is some literature precedence
expecting these higher order contributions to the excess
entropy to vanish at the temperature of solid-liquid phase
transition.44,45 Recently, Saija has shown that for the TIP4P

Table 1. Orientational Shannon Entropies of the Five Water Modelsa

water models S[t1,t2] S[t1,�1] S[t1,�2] S[�1,�2] S[t1] S[�1]

TIP4P -1.33 -1.21 -1.15 -1.02 -0.34 -0.29
SPC -1.67 -1.28 -1.24 -0.89 -0.50 -0.27

shell 1 TIP3P -1.65 -1.16 -1.14 -0.74 -0.47 -0.23
SPC/E -1.70 -1.32 -1.29 -0.94 -0.51 -0.29
TIP4P-Ew -1.44 -1.29 -1.23 -1.05 -0.39 -0.30
TIP4P -0.59 -0.44 -0.46 -0.38 -0.10 -0.10
SPC -0.69 -0.42 -0.46 -0.30 -0.11 -0.09

shell 2 TIP3P -0.60 -0.29 -0.34 -0.18 -0.09 -0.06
SPC/E -0.71 -0.46 -0.50 -0.33 -0.13 -0.10
TIP4P-Ew -0.68 -0.51 -0.53 -0.38 -0.12 -0.12
TIP4P -0.010 -0.007 -0.002 -0.003 -0.001 -0.000
SPC -0.014 -0.007 -0.005 -0.001 -0.002 -0.000

shell 3 TIP3P -0.015 -0.003 -0.003 -0.001 -0.002 -0.000
SPC/E -0.013 -0.007 -0.005 -0.003 -0.001 -0.000
TIP4P-Ew -0.012 -0.007 -0.004 -0.001 -0.001 -0.000

a t ) π/2(cos(θ) + 1); all of these entropies are unitless.

Table 2. Comparison of Entropy Results from the NN Method and Cell Theorya

EXP TIP4P TIP3P SPC SPC/E TIP4P-Ew

strans
(2) -3.15(3.14b) -2.99 -2.99 -3.19 -3.33

sorient
(2) -10.52(9.10b) -8.58 -10.20 -11.53 -11.76

sex
(2) -13.67(-12.2b) -11.57 -13.19 -14.72 -15.09

sex -14.05c -14.32d -13.36d -14.01d -14.79d -14.99d

a Entropies in cal/(mol ·K) (eu). b Data from Lazaridis.6 c Data from Wagner.42 d Data from Henchman by cell theory.41

Figure 4. The first shell orientational Shannon entropy S[t1,t2]

for the TIP3P model as a function of the number of data points

(labeled on the horizontal axis in front of “/” in units of 1000)

and the corresponding simulation time (labeled on the hori-

zontal axis in parentheses) using histogram method. The

weighted average of the NN estimates and the associated

error bar were also depicted.

Figure 5. The second shell orientational Shannon entropy

S[t1,t2] for the TIP3P model as a function of the number of data

points (labeled on the horizontal axis in front of “/” in units of

10 000) and the corresponding simulation time (labeled on

the horizontal axis in parentheses) using histogram method.

The weighted average of the NN estimates and the associated

error bar were also depicted.
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model, the temperature of maximum density (TMD) coin-
cides with the temperature where higher order contributions

to the entropy should vanish.13 Studies of temperature
dependence of the densities of the different water models
studied here46 have shown that the TMD of the TIP4P model
occurred at 258 K, the TMD of the SCP/E model occurred
at 235 K,47 the TMD of the TIP4P-Ew model occurred at

Figure 6. The third shell orientational Shannon entropy S[t1,t2]

for the TIP3P model as a function of the number of data points

(labeled on the horizontal axis in front of “/” in units of 100 000)

and the corresponding simulation time (labeled on the hori-

zontal axis in parentheses) using histogram method. The

weighted average of the NN estimates and the associated

error bar were also depicted.

Figure 7. Total orientational excess entropy as a function of

simulation time from the NN method and histogram method

with different bin width for the TIP3P model.

Figure 8. Total orientational excess entropy as a function of

simulation time from the NN method and histogram method

with different bin width for the SPC model.

Figure 9. Total orientational excess entropy as a function of

simulation time from the NN method and histogram method

with different bin width for the SPC/E model.

Figure 10. Total orientational excess entropy as a function

of simulation time from the NN method and histogram method

with different bin width for the TIP4P model.

Figure 11. Total orientational excess entropy as a function

of simulation time from the NN method and histogram method

with different bin width for the TIP4P-Ew model.
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272 K,40 and the density of the SPC and TIP3P models
increases monotonically as temperature decreases in the range
[220,370].46 This indicates, for the TIP3P and SPC models,
multiparticle correlation entropy may contribute more to the
total entropy than for the other models, which may be why

our quantitative accuracy for them is somewhat diminished.
However, the molecular detail afforded by this technique in
yielding both a value of the entropy and a physical
interpretation of its meaning, in terms of the fluid structure
implied by the shape of the pair correction function (PCF),
gives it a comparative advantage over techniques such as
FEP, which will generally only yield a value of the entropy
without any additional molecular understanding of the
system.

3.7. Entropy Calculation from FD Method. We calcu-
lated the excess free energy of water at temperature 298 (

20 K with the Bennett acceptance ratio30 method and
obtained entropies at 298 K by the FD formula. The results

Figure 12. Comparison between the arithmetic average and

the weighted average of the NN estimates for the first shell

Shannon entropy S[t1,t2] for the TIP3P model. They are within

the error bar of each other.

Figure 13. Comparison between the arithmetic average and

the weighted average of the NN estimates for the second shell

Shannon entropy S[t1,t2] for the TIP3P model. They are within

the error bar of each other.

Figure 14. Orientiational Shannon entropy S[t1,t2] as a function

of r for the various water models.

Figure 15. Products of one-dimensional marginal distribution

function g(θ1)*g(�1) for the TIP4P model in the first shell.

Figure 16. Two-dimensional marginal distribution function

g(θ1, �1) for the TIP4P model in the first shell.

Figure 17. Thermodynamic cycle depicting the constant

pressure corrections to ∆Gsim at temperatures T ( ∆T when

computing the slope of ∆Gsim with respect to T.
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are presented in Table 4. The excess entropies computed from
the FD method are consistently larger in magnitude than
those computed from the NN method, consistent with us
neglecting the contributions from the higher order terms of
the expansion.

As in the proceeding section, the NN and FD excess
entropies of the SPC/E water are in very close agreement;
however, the agreement of the NN and FD entropies of the
SPC and TIP3P models is much poorer. We again expect
the reason for this discrepancy to be due to the TMD of the
SPC/E model being close to the range of temperatures treated
in this study, while the TMDs of the SPC and TIP3P models
fall well outside this range. Thus, the higher order terms of
the entropy expansion are expected to make larger contribu-
tions to the excess entropies for the SPC and TIP3P models
versus the contribution made to the excess entropy of the
SPC/E water.

4. Conclusion

Our results indicate that the NN method of computing
entropies in the liquid state offers several compelling
advantages over the more common histogram approaches,
including (1) much faster convergence for a given amount
of simulation data; (2) an intuitive error bound for the
uncertainty of the calculation without resorting to block
averaging or bootstrapping techniques, which may be
problematic to apply to estimators of the entropy; and (3)
not relying on empirically tuned parameters, such as the
histogram bin width, which may bias the results in an
unpredictable fashion. We also found that inspection of the
limiting behaviours of var ln f(x) may be used to both analyze
the convergence of the given calculation and develop the
best possible estimate of the entropy given a set of calculated
Hk(n). Although we also found that a judicious choice of
the histogram bin width may mitigate these advantages, such
a choice is difficult to make without prior knowledge of the

properties of the limiting distribution, which may not be
available when new problems are investigated.

Our alternative factorization of the water-water correlation
function, which explicitly included correlations between the
angle formed by the water dipole vector and the intermo-
lecular axis with the angle of rotation of the water molecule
about its dipole vector, was found to increase the agreement
of results obtained by the entropy expansion with those
obtained by less approximate methods, such as FEP and the
FD benchmark calculations. This result suggests that this
contribution should not be ignored in future studies of the
excess entropy of liquid water and other fluids.
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Appendix A: Determination of Most Proper
Weights

Given that x1, x2,...xn are independent variables with the same
average u but different variance V1, V2,...Vn, we may define xj

) ∑i)1
n wixi, with constraint ∑i)1

n wi ) 1. We may find the
weights wi such that the variance of xj is minimized:

Using Lagrange multipliers, we find:

Table 3. Results for the Energy, Enthalpy, and Entropy of Liquid Water from Various Methodsa

water models TIP4P TIP3P SPC SPC/E TIP4P-Ew

excess energy -9.85 -9.49 -9.90 -11.08 -10.91
excess enthalpy -10.43 -10.07 -10.48 -11.66(-10.48d) -11.49(-10.45e)
excess enthalpyb -10.41 -10.09 -10.47 -11.69(-10.51d) -11.61(-10.57e)
excess entropy from NN -13.67 -11.57 -13.19 -14.72 -15.09
excess entropyc -14.43 -13.39 -14.46 -15.57 -15.53
excess free energy from NN -6.36 -6.63 -6.55 -7.27(-6.09d) -7.00(-5.96e)
excess free energyb -6.11 -6.10 -6.16 -7.05(-5.87d) -6.98(-5.94e)
excess free energy from exp -6.33
excess enthalpy from exp -10.52

a Energies in kcal/mol, entropies in cal/(mol ·K) (eu). b Results from Shirts.43 c Results from Shirts43 by subtracting enthalpy from free
energy. d Include polarization correction.39 e Include polarization correction.40

Table 4. Entropy Results from FD Method and Comparison with Other Methodsa

water models TIP4P TIP3P SPC SPC/E TIP4P-Ew

excess free energy at 278 K -6.35b -6.21(-6.24d) -6.36(-6.39d) -7.19(-7.23d)
excess free energy at 298 K -6.03b -5.95 -6.06 -6.89
excess free energy at 318 K -5.73b -5.71(-5.69d) -5.80(-5.78d) -6.66(-6.62d)
excess entropy from FD -15.2b -13.8((0.8e) -15.2((0.8e) -15.3((0.8e)
excess entropy from NN -13.67 -11.57 -13.19 -14.72 -15.09
excess entropy from FEPc -14.43 -13.39 -14.46 -15.57 -15.53

a Energies in kcal/mol, entropies in cal/(mol ·K) (eu). b Results from Saija.13 c Results from Shirts43 by subtracting enthalpy from free
energy. d Results in parentheses include constant pressure correction (Appendix B). e Indicates the error associated with the entropy.

var[xj] ) ∑
i)1

n

(wi)
2
Vi (1)

wi )

1
Vi

∑
i)1

n
1
Vi

(2)
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and

By application of eq 2 and ∑i ) 1
n wi ) 1, we find:

Thus, we can approximate the variance of the weighted
average by the estimator:

Appendix B: Constant Pressure Correction
to ∆Gsim for the FD Entropy

In the FEP simulations, we turned on/off the interaction
between one distinguished water molecule with the rest of
the system at constant temperature T and constant pressure
P0, over the series of several λ windows. The solvation free
energy of the distinguished water molecule corresponds to
the difference in the chemical potential µ between two
phases: (1) the liquid phase and (2) the ideal gas phase with
the same temperature and number density as the liquid.48

For example,

where P* is the pressure of the ideal gas with the same
temperature T and number density as the simulated liquid at
pressure P0, and ∆̃ is the isobaric-isothermal partition
function of the system specified by lambda. (For details,
please see ref 48.)

The heat capacity of the ideal gas at constant pressure P*
is trivially constant with respect to temperature, and we may
well approximate the heat capacity of liquid water to also

be constant under constant pressure P0 over the temperature
range studied here. It then follows:

which are the typical equations of the finite difference method
of computing the thermodynamic entropy. In these equations,
all of the ∆ quantities correspond to the difference of the
thermodynamic quantities between the liquid phase at P0 and
the ideal gas phase at P*.

In similar simulations run at pressure P0 but temperatures
T ( ∆T, we analogously find

where P1 and P2 correspond to the ideal gas pressure with
the same temperature and number density as the simulated
liquids. Note that the ∆G values obtained from simulation
differ from those occurring in eq 13 because the reference
gas-phase free energies differ, and thus we must explicitly
correct for this difference in the reference state. By adding
a correction term ∆Gcorr(T ( ∆T) to the simulated free
energy, we were able to use eq 13 to calculate the entropy
at temperature T, where:

and

These corrections, although small in magnitude, were
systematically of opposite sign at temperatures T ( ∆T

because the thermal expansion coefficient of liquid water
differs from the thermal expansion coefficient of the ideal
gas. As a result, failure to apply these corrections will lead
to a non-negligible systematical bias in the FD-FEP entropy.

The thermodynamic cycle indicating the whole process,
including correction terms, is depicted in Figure 17. Note
that in the cycle depicted in Figure 17, we must compute
the correction terms at temperatures T ( ∆T to compute the
slope of ∆G with respect to T, that is, the entropy associated

var[xj] )
1

∑
i)1

n
1
Vi

(3)

E[ ∑
i)1

n

wi(xi - xj)2] ) E[ ∑
i)1

n

wi((xi - u) - (xj - u))2] (4)

) E[ ∑
i)1

n

wi((xi - u)2
-

2(x1 - u)(xj - u) + (xj - u)2)] (5)

) E[ ∑
i)1

n

wi(xi - u)2] -

2E[ ∑
i)1

n

wi(xi - u)(xj - u)]

+ E[ ∑
i)1

n

wi(xj - u)2] (6)

E[ ∑
i)1

n

wi(xi - xj)2] )
n - 1

∑
i)1

n
1
Vi

(7)

V )
1

n - 1 ∑
i)1

n

wi(xi - xj)2 (8)

∆Gsim(T) ) -kT ln
∆̃(λ ) 1)

∆̃(λ ) 0)
) µl(N, P0, T) -

µg(N, P
*, T) (9)

∆G(T) ) ∆H(T) - T∆S(T) (10)

∆H(T ( ∆T) ) ∆H(T) ( ∆CP∆T (11)

∆S(T ( ∆T) ) ∆S(T) + ∆CP ln
T ( ∆T

T
(12)

∆S(T) ≈ -
∆G(T + ∆T) - ∆G(T - ∆T)

2∆T
(13)

∆Gsim(T - ∆T) ) µl(N, P0, T - ∆T) - µg(N, P1, T - ∆T)
(14)

∆Gsim(T + ∆T) ) µl(N, P0, T + ∆T) - µg(N, P2, T + ∆T)
(15)

∆Gcorr(T - ∆T) ) µg(N, P1, T - ∆T) - µg(N, P
*, T - ∆T)

) k(T - ∆T) ln
P1

P
*

(16)

∆Gcorr(T + ∆T) ) µg(N, P2, T + ∆T) - µg(N, P
*, T + ∆T)

) k(T + ∆T) ln
P2

P
*

(17)

∆S(T) ) -

∆Gsim(T + ∆T) + ∆Gcorr(T + ∆T) -

∆Gsim(T - ∆T) - ∆Gcorr(T - ∆T)

2∆T
(18)
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with the solvation free energy of transferring the water
molecule from the gas phase to the liquid phase at tempera-
ture T.
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(33) Nosé, S. J. Chem. Phys. 1984, 81, 511–519.

(34) Hoover, W. G. Phys. ReV. A 1985, 31, 1695–1697.

(35) Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys.
1994, 101, 4177–4189.

(36) Tuckerman M.; Berne, B. J.; Martyna, G. J. J. Chem. Phys.
1992, 97, 1990–2001.

(37) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089–10092.

(38) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;
Hermans, J. Interaction Models for Water in Relation to
Protein Hydration. In Intermolecular Forces; Pullman, B.,
Ed.; Reidel: Dordrecht, 1981; pp 331-342.

(39) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys.
Chem. 1987, 91, 6269–6271.

(40) Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.;
Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys.
2004, 120, 9665–9678.

(41) Henchman, R. H. J. Chem. Phys. 2007, 126, 064504.

(42) Wagner, W.; Pru�, A. J. Phys. Chem. Ref. Data 2002, 31,
387–478.

(43) Shirts, M. R.; Pande, V. S. J. Chem. Phys. 2005, 122, 134508.

(44) Wallace, D. C. Int. J. Quantum Chem. 1994, 52, 425–435.

(45) Giaquinta, P. V.; Giunta, G. Physica A 1992, 187, 145–158.

(46) Jorgensen, W. L.; Jenson, C. J. Comput. Chem. 1998, 19,
1179–1186.

(47) Baez, L. A.; Clancy, P. J. Chem. Phys. 1994, 101, 9837–
9840.

(48) Horn, H. W.; Swope, W. C.; Pitera, J. W. J. Chem. Phys.
2005, 123, 194504.

CT900078K

NN Method to Calculating Fluid Entropy J. Chem. Theory Comput., Vol. 5, No. 6, 2009 1473

D
o
w

n
lo

ad
ed

 b
y
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
 J

u
ly

 1
3
, 
2
0
0
9

P
u
b
li

sh
ed

 o
n
 M

ay
 1

8
, 
2
0
0
9
 o

n
 h

tt
p
:/

/p
u
b
s.

ac
s.

o
rg

 | 
d
o
i:

 1
0
.1

0
2
1
/c

t9
0
0
0
7
8
k


