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Abstract

Considering a large class of muscle contraction models accounting for actin–myosin

interaction, we present a mathematical setting in which solution properties can be

established, including fundamental thermodynamic balances. Moreover, we propose a

complete discretization strategy for which we are also able to obtain discrete versions

of the thermodynamic balances and other properties. Our major objective is to show

how the thermodynamics of such models can be tracked after discretization, including

when they are coupled to a macroscopic muscle formulation in the realm of

continuummechanics. Our approach allows to carefully identify the sources of energy

and entropy in the system, and to follow them up to the numerical applications.
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Introduction

The modeling of the active mechanical behavior of muscles has been the object of intense

research since the seminal work of Huxley [12] modeling the attachment-detachment

process in the actin–myosin interaction responsible for sarcomere contraction. Then,

numerous extensions—mostly based on refinements of the chemical process introduced

by Huxley—of the previous model have been proposed in order to take into account

different time scales of the actin–myosin interaction. In particular several models have

been developed to account for the power stroke phenomenon [4,5,13,20]. In parallel,

the question of the thermodynamic balances associated with the chemical machinery

was intensively studied, notably with the fundamental contributions of Hill [10,11]. Note

that these models are specific cases of molecular motors models without the natural

diffusion introducedby theFokker–Plank equation [2,3,14,18]. In this paper, our objective

is to develop a formalism allowing to derive these thermodynamic balances for Huxley’s

model and its extensions with an additional tracking of these balances at the discrete level

after time-discretizing themodel dynamics. Moreover, we present how thesemicroscopic

models can be incorporated into a macroscopic model of muscle fibers in the spirit of

[2] with the aim of following these thermodynamic balances at the macroscopic level for
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the continuous-time dynamics but also after adequate time discretization. This last part

is general with respect to the chemical microscopic model of interest and could also be

extended to similar types of models [3,19], or those mixing mechanical and chemical

modeling elements, for instance [1,17,22].

The outline of the paper is as follows. The first section presents themodeling ingredients

of the microscopic models of actin–myosin interaction and we derive in a second section

the fundamental properties of these models with the associated thermodynamic balances,

up to the coupling with the macroscopic mechanical formulation. The third section then

describes the discretization scheme and justifies its thermodynamic compatibility. Finally,

the last section illustrates our results with numerical investigations.

Modeling of muscle contraction

Physiology of muscle contraction

Muscles are multi-scale structures in which motion is initiated at the cellular level by the

relative sliding between two types of filaments: actin filaments and myosin filaments. At

the surface of the myosin filament, myosin heads can bind to the actin filament. The actin

filament has a periodic structure with regularly spaced attachment sites. The interaction

between myosin heads and actin sites occurs in a cyclic manner [16], see Fig. 1. The

cycle includes attachment and detachment of the myosin head to and from an actin site

and a conformation change of the attached myosin head called the power stroke. The

detachment stage requires an energy input obtained from ATP molecules buffered inside

the cell.

Different levels of description of the actin–myosin interaction can be considered ben-

efiting from the fact that the power stroke occurs much faster than the attachment and

detachment processes.

Huxley’57 model

In his seminal work [12], Huxley describes the myosin head with two chemical states

representing the attached and detached configurations. Each myosin can interact with

its closest actin site only. The transition rates—for attachment and detachment—depend

only on the distance from the myosin head rest position to its nearest attachment site

denoted by s. We denote by da the distance between two consecutive attachment sites.

The distance s thus lies in an interval ofwidthda, not necessarily symmetric but containing

0, that we denote by [s−, s+]—see Fig. 2.

Considering, in a population of myosin heads, the subset of heads with rest position

located at distance s from their nearest attachment site, we define by a(t, s) the ratio of

power stroke

conformation

recovery

attachmentdetachment

Fig. 1 Lymn–Taylor cycle representation. Each stage of the cycle can be seen as a change of chemical state
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Fig. 2 Huxley’57 model representation. Top: definition of the transitions between the attached state (A) and

the detached state (D). Bottom left: model parametrization, representation in the detached state. Bottom

right: model parametrization, representation in the attached state. The position of the actin site

corresponding to s = 0 is represented by a thick dashed line

actually attached heads at time t. Equivalently, the ratio of detached heads is denoted by

d(s, t) = 1 − a(s, t), due to the assumption that both types of filaments are rigid. The

sliding velocity vc between the filaments is a macroscopic variable, hence independent of s

and often quasi-static with respect to the microscopic time scales. We refer to “Coupling

with a macroscopic model of muscle fiber” section for an illustrating example of coupling

between a macroscopic formulation and such a microscopic model.

The detached state is associated with a constant energy level w0 and the attached state

with an energy w1 that depends on the distance s—the myosin head bound to actin is

modeled as an elastic spring. This is where mechanics enters the model, and we point

out that we extend here the original Huxley’57 model by allowing the spring to have a

non-linear behavior. The myosin head is brought back to the initial detached energy level

by the ATP energy input μT .

Transition rates between the states satisfy the detailed balance, i.e. for a transition i

(i = 1, 2, see Fig. 2) from a state of energy wj(s) to a state of energy wk (s), the forward and

reverse rates—respectively denoted by ki and k−i—must satisfy the relation

ki(s)

k−i(s)
= exp

(wk (s) − wj(s)

kBT

)

, (1)

where kB is the Boltzmann constant and T is the absolute temperature. A schematic of

the model is presented in Fig. 2.

The conservation of matter, assuming that there is no coupling between the myosin

heads, leads to the following dynamical system, for all t > 0 and all s ∈ [s−, s+]
⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂a(s, t)

∂t
=

(

k1(s) + k−2(s)
)

d(s, t) −

(

k2(s) + k−1(s)
)

a(s, t) − vc
∂a(s, t)

∂s

∂d(s, t)

∂t
=

(

k2(s) + k−1(s)
)

a(s, t) −

(

k1(s) + k−2(s)
)

d(s, t) − vc
∂d(s, t)

∂s

(2)



Kimmig et al. Adv. Model. and Simul. in Eng. Sci.            (2019) 6:6 Page 4 of 36

from adequate initial conditions a(s, 0) = a0(s) and d(s, 0) = d 0(s), to be specified later.

The assumption that the myosin head can only interact with its nearest actin site imposes

that the probability of being attached on the boundaries of the interval [s−, s+] must be

zero. Physically, the property a(s−, t) = a(s+, t) = 0 appears when the attachment rates

k1(s) and k−2(s) vanish, while the detachment rates k−1(s) and k2(s) go to infinity on the

boundaries of the interval [s−, s+]. Note that the energy levels and the transition rates are

linked by the detailed balance (1), which implies that the energy of the attached level goes

to infinity on the boundaries of the interval [s−, s+]. In a nutshell, the parameter functions

must satisfy

lim
s→s−

k1(s) = lim
s→s+

k1(s) = lim
s→s−

k−2(s) = lim
s→s+

k−2(s) = 0,

lim
s→s−

0∫

s

(

k−1 + k2
)

ds = lim
s→s+

s∫

0

(

k−1 + k2
)

ds = +∞,
(3)

the second line enforcing that all heads are detached at the boundaries, see “Model prop-

erties based on thermodynamics principles” section [Eqs. (9) and (10)]. This implies ener-

getically that

lim
s→s−

w1(s) = lim
s→s+

w1(s) = +∞.

Actin sites and myosin heads are located at discrete locations separated by regular

intervals along their respective filaments. The spatial periodicities are, however, different

on each filament. Therefore, for a large population of heads, the distribution of their

distance to the nearest actin site can be assumed to be uniform in the interval [s−, s+],

and the average tension developed per myosin head is given by

τc(t) =
1

da

s+∫

s−

a(s, t)
∂w1

∂s
(s)ds. (4)

This force can then typically lead to a macroscopic active stress tensor and link to macro-

scalemodels ofmuscle tissue as presented in [2] or in “Couplingwith amacroscopicmodel

of muscle fiber” section.

Extension of Huxley’57 model

To obtain a behavior closer to physiology, and in particular to capture the power stroke,

various extensions of Huxley’57 model have been proposed [4,5,13,20]. These extensions

can use more than two states to describe the myosin head and allow interactions with

an arbitrary number of attachment sites. In this section, our objective is to present these

models in a general form, albeit close to the initial 2-state Huxley’s model, in particular

concerning their general mathematical and mechanical properties.

Multi-statemodels

A general formulation of these models considers Ns chemical states {Xp}1≤p≤Ns , that

we can separate into two categories: attached states and detached states. The states are
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involved in Nr reactions between the states in the form

Xpi

ki
⇀↽
k−i

Xqi . (5)

The collection of reactions between the states can be represented by a complete directed

graphG. A complete directed graph is a set of vertices connected by edges, in which: edges

have a direction; for each edge of the graph, the edge connecting the same vertices in the

inverse direction also belongs to the graph; no vertex is connected to itself.We respectively

denote by V and E the sets of vertices and edges of the complete directed graph, and we

writeG = (V, E). This graph is made ofNs vertices and 2Nr edges. A transition Xpi → Xqi

is associated with the edge Epiqi , whereas the reverse transition Xqi → Xpi is associated

with the edge Eqipi . The reaction presented in (5), which is bidirectional, is associated with

the edges Epiqi and Eqipi . The subsets of vertices corresponding to attached and detached

states are respectively denoted by Va and Vd.

The ratio of heads in state Xq located at s at time t is denoted by xq(s, t). We define the

chemical flux between states Xpi and Xqi through transition i by

Jpiqi (s, t) = ki(s)xpi (s, t) − k−i(s)xqi (s, t).

Note that we have

Jqipi (s, t) = −Jpiqi (s, t) = k−i(s)xqi (s, t) − ki(s)xpi (s, t).

The system dynamics is then governed by

∂xq

∂t
(s, t) =

∑

p|Epq∈G

Jpq(s, t) − vc
∂xq

∂s
(s, t), ∀q ∈ [[1, Ns]].

The Huxley’57 model presented in “Huxley’57 model” section can naturally be seen as a

particular case of multi-state models with only one attached state and one detached state.

The graph G associated with the Huxley’57 model is given by

V = {A,D},

Va = {A},

Vd = {D},

E = {E1
AD, E

2
AD, E

1
DA, E

2
DA}.

Here, we use superscripts in the edges definition to denote that there are two reactions

between the same vertices.

Multi-sitemodels

In this further generalization, it is assumed that a myosin head can interact not only with

its nearest actin site—located by definition at distance s—but also with all other actin sites

located at distance {s + jda}j∈Z∗ . A myosin head can thus be detached in state q—with a

probability xq(s)—or attached in state q at a distance s + jda of its rest position—with a

probability xq(s + jda). We extend the definition of the ratio of heads in detached states



Kimmig et al. Adv. Model. and Simul. in Eng. Sci.            (2019) 6:6 Page 6 of 36

V1

V2V3

V4 V5

2

3

4

1

5

6
A1

A2A3

D1 D2

cycle a

cycle b vc

(s = 0)

s

s+s−

s − da s + jda

Fig. 3 Left: graph associated with the model Piazzesi–Lombardi’95. The vertex indices are given in red. The

transition indices are given in blue. Right: Piazzesi–Lombardi’95 model parametrization. The position of the

actin site corresponding to s = 0 is represented by a thick dashed line

by periodicity, i.e. if state q is a detached state xq(s + jda) = xq(s), ∀j. We also refine

the description of the graph defined for multi-site models, by splitting the set of edges E

between the edges linking two detached states Ê and the remaining edges E.We define the

associated complete directed graphs Gd = (V, Ê) and Ga = (V, E). The system dynamics

is governed by

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

∂xq

∂t
(s + jda, t) =

∑

p|Epq∈G

Jpq(s + jda, t) − vc
∂xq

∂s
(s + jda, t),∀Vq ∈Va, j∈Z

∂xq

∂t
(s, t) =

∑

p|Epq∈Ga

∑

j∈Z

Jpq(s + jda, t) +
∑

p|Epq∈Gd

Jpq(s, t) − vc
∂xq

∂s
(s, t),∀Vq ∈Vd

(6)

The ratios of attached head xq for Vq ∈ Va are defined on R and must vanish at infinity.

By contrast, the ratios of detached head xq for Vq ∈ Vd are defined on [s−, s+] with

periodic boundary conditions.

Example of amulti-state, multi-site model:Piazzesi–Lombardi’95

A specific representative—denoted PL95—of this family of models has been derived in

[20] with the aim of accounting for the energetics of muscle contraction. It describes the

myosin head with five states arranged in two cycles of chemical reactions, see Fig. 3. The

five states are composed of three attached statesA1,A2 andA3 and two detached statesD1

and D2. A first long cycle (cycle a) is meant to represent a complete power stroke, while a

short cycle (cycle b) allows the myosin head to cycle at small or zero sliding velocity with

incomplete power stroke.

An energy μT is brought to the myosin head by ATP in the transitions 2 → 5 and

3 → 4.

The graph G associated with this model is given by

V = {V1, V2, V3, V4 , V5},

Va = {V1, V2, V3},

Vd = {V4, V5},

E = E = {E12, E21, E23, E32, E34 , E43, E41, E14 , E25, E52, E51, E15}.

Moreover, it is assumed in this model that the myosin can attach to an arbitrary number

of actin sites, hence it is also multi-site.

We denote by wq the energy associated with the state of vertex q.
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Model properties based on thermodynamics principles

From conservation of matter to boundary conditions andmonotonicity properties

Let us consider the Huxley’57 model and derive its fundamental properties. System (2)

was derived from the conservation of matter, hence we directly verify that for all (s, t),

a(s, t) + d(s, t) = 1 as soon as we choose our initial condition ∀s ∈ [s−, s+], a0(s) ∈ [0, 1]

and d0(s) = 1 − a0(s), since

∀s ∈ [s−, s+],
d

dt

(

a(s, t) + d(s, t)
)

= 0,

where we defined the total derivative by d/dt(•) = ∂/∂t(•) + vc∂/∂s(•). Therefore, we

can rewrite the system (2) in the form of a single equation

∂a

∂t
(s, t) = k+(s)

(

1 − a(s, t)
)

− k−(s)a(s, t) − vc
∂a

∂s
(s, t), (7)

where we denote the aggregated transition rates k+(s) = k1(s) + k−2(s) and k−(s) =

k2(s) + k−1(s).

Boundary values

As explained in our model presentation, we expect the myosin head to only interact with

the nearest actin site, which imposes that the probability of being attachedmust vanish on

the boundaries of the interval [s−, s+]. However, the dynamics (2) is a first-order transport

equation associated with only one boundary condition. Therefore, we can either consider

one single Dirichlet boundary condition at one end of the interval—i.e., in s− if vc > 0 and

s+ if vc < 0—and then rely on the conditions (3) to obtain the proper value of the solution

at the other end—as a property—or alternatively consider periodic boundary conditions.

As the first option yields a periodic solution, it is clear that the two options are equivalent.

However, they differ at the discrete level, in which case we will have to make a choice, see

“A numerical scheme for Huxley’57 model” section.

In fact, closed-form expressions can be obtained for the solution. To fix the ideas in this

derivation, we consider the case vc ≥ 0, although the same result can be obtained similarly

for vc < 0. As vc is assumed to be constant, themethod of characteristic lines gives regular

C1 solutions from regular enough initial condition a0. Considering a(s, t) solution of (7),

we define the function ã by

ã(s, t) = a(s, t) exp

⎛

⎝
1

vc

s∫

0

(k+(ξ ) + k−(ξ )) dξ

⎞

⎠ ,

which satisfies the equation

∂ ã

∂t
(s, t) + vc

∂ ã

∂s
(s, t) = k+(s)e

1/vch(s), (8)
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where we define h(s) =
∫ s
0 (k+(ξ ) + k−(ξ )) dξ . Solving (8) along a characteristic line and

pulling back the result to a(s, t) we obtain, defining t0 = max(0, t − s−s−

vc
),

a(s, t) = a0(s − vct) exp
(−1

vc

s∫

s−vct

(

k+(ξ ) + k−(ξ )
)

dξ
)

+

t∫

t0

k+(s − vct + vcτ ) exp

⎛

⎝
−1

vc

s∫

s−vct+vcτ

(k+(ξ ) + k−(ξ )) dξ

⎞

⎠ dτ .

(9)

We know that the aggregated attachment rate k+ is a continuous function on [s−, s+]

and goes to zero on the boundaries of [s−, s+]. Therefore, under the condition on the

aggregated detachment rate
∫ s+

0 k−(ξ ) dξ = ∞, we deduce that

lim
s→s+

a(s, t) = 0 (10)

using the dominated convergence theorem for the second term of (9). Likewise, the prop-

erty lims→s− a(s, t) = 0 is obtained for vc < 0, and a similar result can be obtained in a

similar manner with periodic boundary conditions.

Positivity and boundedness properties

We want to check that the solution has values consistent with ratio quantities. More

specifically,wewant that,with an initial conditiona0(s) ∈ [0, 1], thepropertya(s, t) ∈ [0, 1]

holds. Again, we rely on the solution obtained by the method of characteristic lines (9).

As the transition rates and the initial condition are positive, we find that a(s, t) ≥ 0. Then,

noting that 1 − a(s, t) is governed by an equation of the same form as (7) with the initial

condition 1 − a0(s) ≥ 0, we similarly deduce that a(s, t) ≤ 1.

First principle

We now want to establish a first thermodynamic property of the Huxley’57 system (2),

namely, a first principle, and in this respect we follow the approach proposed by [10]. We

consider a system made of a population of myosin heads and define the average energy

per myosin head, namely

U (t) =
1

da

s+∫

s−

[

w1(s)a(s, t) + w0d(s, t)
]

ds. (11)

We then define the chemical fluxes

J1(s, t) = k1(s)d(s, t) − k−1(s)a(s, t),

J2(s, t) = k2(s)a(s, t) − k−2(s)d(s, t).

We will henceforth make the natural assumption that the reaction rates are chosen in

order for w1a, k2a and k−1a to tend to zero when s tends to s− and s+, with the physical

interpretation that no finite energy (w1a) is stored and no detachment flux (k2a and k−1a)

occurs at the ends of the interval.Wewill see in “Numerical results and discussion” section
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that this assumption is easily satisfied in practice when (3) holds. Then, computing the

time derivative, we obtain

d

dt
U (t) =

1

da

s+∫

s−

[

w1(s)
∂a(s, t)

∂t
+ w0

∂d(s, t)

∂t

]

ds

=
1

da

s+∫

s−

[

(J1(s, t) − J2(s, t))w1(s) − w1(s) vc
∂a(s, t)

∂s

+ (J2(s, t) − J1(s, t))w0 − w0vc
∂d(s, t)

∂s

]

ds.

Using integrations by parts for the transport terms, the boundary properties of the

solution—w1(s)a(t, s
−) = w1(s)a(t, s

+) = 0 and d(t, s−) = d(t, s+)—and considering that

detachment is associated with the consumption of one ATP, we obtain

d

dt
U (t) =

1

da

s+∫

s−

[

(w1(s) − w0) J1(s, t) + (w0 − (w1(s) + μT )) J2(s, t)

+vc a(s, t)
∂w1(s)

∂s

]

ds + μT J2(t),

where we denoted by

J2(t) =
1

da

s+∫

s−

J2(s, t) ds

the mean net influx of ATP. Finally, we derive the following formulation of the first

principle

U̇ (t) = Ẇ(t) + Ė(t) + Q̇(t),

where

Ẇ(t) = vcτc(t), (12a)

Ė(t) = μT J2(t), (12b)

Q̇(t) =
1

da

s+∫

s−

[

(w1(s) − w0) J1(s, t) + (w0 − (w1(s) + μT )) J2(s, t)
]

ds, (12c)

with the active force τc defined in (4).ThequantityẆ is the rate ofwork given to the system

and Ė(t) = μT J2(t) corresponds to the input flux in energy brought by ATP hydrolysis.

The remaining term Q̇ can be identifiedwith a heat flux. In steady-state shortening (τc > 0

and vc < 0), the work is negative and in physiological conditions, we expect the energy

input term to be positive, and the heat transfer to be negative (see numerical illustrations

in “Numerical results and discussion” section). The energy balance can be interpreted as

follows: the energy brought by ATP is for one part converted into work, the other part

being dissipated as heat production.
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Second principle

Let us now derive a second principle thermodynamic balance. We introduce the system

entropy as

S(t) = −
kB

da

s+∫

s−

[

a(s, t) ln(a(s, t)) + d(s, t) ln(d(s, t))
]

ds,

where kB is the Bolztmann constant. The system remains at a constant temperature, the

outside environment playing the role of a thermostat. We introduce the Helmholtz free

energy

F (t) = U (t) − TS(t),

which therefore corresponds to

F (t) =
1

da

s+∫

s−

[

μ1(s, t)a(s, t) + μ0(s, t)d(s, t)
]

ds. (13)

where

μ1(s, t) = w1(s) + kBT ln(a(s, t)),

μ0(s, t) = w0 + kBT ln(d(s, t)),

are the chemical potentials. Computing the time derivative, we get

d

dt
F (t) =

1

da

s+∫

s−

[(

J1(s, t) − J2(s, t) − vc
∂

∂s
a(s, t)

)

·
[

w1(s) + kBT ln(a(s, t)) + kBT
]

+

(

J2(s, t) − J1(s, t) − vc
∂

∂s
d(s, t)

)

·
[

w0 + kBT ln(d(s, t)) + kBT
]
]

ds. (14)

Using again integrations by part for the transport terms and the boundary properties of

the solution, we obtain

d

dt
F (t) = τc(t)vc + μT J2(t) +

1

da

s+∫

s−

[

J2(s, t)
(

μ0(s, t) −
(

μ1(s, t) + μT

)
)

+ J1(s, t)
(

μ1(s, t) − μ0(s, t)
)]

ds. (15)

Independently, we also have

d

dt
F (t) =

d

dt
U (t) − T

d

dt
S(t). (16)

Combining Eqs. (14) and (16) and the first principle, we can write

d

dt
S(t) =

Q̇(t)

T
−

1

T

1

da

s+∫

s−

J2(s, t)
(

μ0(s, t) −
(

μ1(s, t) + μT

)
)

+ J1(s, t)
(

μ1(s, t) − μ0(s, t)
)

ds. (17)
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The second principle then reads

d

dt
S(t) =

Q̇(t)

T
+ Ṡprod(t), (18)

wherewe naturally associate the second termof (17) with the entropy production Ṡprod(t).

The model will be compatible with the second principle if this entropy production is

always positive. Using the relation (1) deduced from the detailed balance, we recall that

k1(s, t)

k−1(s, t)
= exp

(w0 − w1(s, t)

kBT

) k2(s, t)

k−2(s, t)
= exp

(w1(s, t) + μT − w0

kBT

)

. (19)

Thus, when introducing the ratio of the one-way fluxes for transition 1, J1+ and J1−,

defined by J1+(s, t) = k1(s, t)d(s, t) and J1−(s, t) = k−1(s, t)a(s, t), we find

J1+

J1−
=

k1(s)d(s, t)

k−1(s)a(s, t)

= exp
(w0 − w1(s, t)

kBT

)

· exp
(

kBT
[ ln(d(s, t)) − ln(a(s, t))

kBT

])

= exp
(μ0(s, t) − μ1(s, t)

kBT

)

. (20)

As a consequence, we have two cases. If μ1(s, t) ≥ μ0(s, t), we find that

J1+

J1−
(s, t) ≤ 1 ⇒ J1(s, t) = J1+(s, t) − J1−(s, t) ≤ 0.

Conversely, μ1(s, t) ≤ μ0(s, t) implies that J1(s, t) ≥ 0. Proceeding in the same way for the

second reaction, we finally have

J1(s, t)
(

μ1(s, t) − μ0(s, t)
)

≤ 0,

J2(s, t)
(

μ0(s, t) − μ1(s, t) − μT

)

≤ 0.
(21)

We thus obtain the conclusion that the entropy production term

Ṡprod(t) = −
1

Tda

s+∫

s−

J2(s, t)
(

μ0(s, t) −
(

μ1(s, t) + μT

)
)

+J1(s, t)
(

μ1(s, t) − μ0(s, t)
)

ds ≥ 0, (22)

hence that the model is compatible with the second principle. We can summarize this

property using (15) by the free energy balance

d

dt
F (t) = τc(t)vc + μT J2(t) − T Ṡprod(t) ≤ τc(t)vc + μT J2(t). (23)

Extension to multi-state, multi-site models

Let us now consider the Piazzesi–Lombardi’95 model. We want to establish the thermo-

dynamic balances associated with this model.

Fundamental properties of the solution—in particular the monotonicity properties of

the results established for the Huxley’57 model, see “From conservation of matter to
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boundary conditions and monotonicity properties” section—can be extended to this

model. In particular, conservation of matter here reads

∀s ∈ [s−, s+]
d

dt

[

∑

Vq∈Va

∑

j∈Z

xq(s + jda, t) +
∑

Vq∈Vd

xq(s, t)

]

= 0. (24)

First principle

We define the energy as

U (t) =
1

da

s+∫

s−

[

∑

Vq∈Va

∑

j∈Z

xq(s + jda, t)wq(s + jda) +
∑

Vq∈Vd

xq(s, t)wq

]

ds.

The time derivative reads, after integrating by parts the transport term

d

dt
U (t) =

1

da

s+∫

s−

∑

Epq∈G

∑

j∈Z

Jpq(s + jda, t)Wpq(s + jda) ds + vcτc(t),

withWpq = wq − wp and the active force defined as

τc(t) =
1

da

s+∫

s−

∑

Vq∈Va

∑

j∈Z

xq(s + jda, t)
∂wq

∂s
(s + jda) ds.

We then obtain

d

dt
U (t) = μT

(

J25(t) + J34(t)
)

+ vcτc(t)

+
1

da

s+∫

s−

∑

Epq∈G

∑

j∈Z

Jpq(s + jda, t)W̃pq(s + jda) ds,

where the mean fluxes are given by

Jpq(t) =
1

da

s+∫

s−

∑

j∈Z

Jpq(s + jda, t) ds,

and W̃pq = Wpq − μT δpq={25,34} as an energy μT is brought to the myosin head by ATP

during the transitions 2 → 5 and 3 → 4. Note that the introduction of the modified

energy increments W̃ brings out the input energy fluxes μT

(

J25(t) + J34(t)
)

. The first

principle then naturally reads

U̇ (t) = Ẇ(t) + Ė(t) + Q̇(t), (25)

with

Ẇ(t) = vcτc(t),

Ė(t) = μT

(

J25(t) + J34(t)
)

,

Q̇(t) =
1

da

s+∫

s−

∑

Epq∈G

∑

j∈Z

Jpq(s + jda, t)W̃pq(s + jda) ds.
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Second principle

Following the work done for the Huxley’57 model, we here define the entropy of the

system as

S(t) = −
kB

da

s+∫

s−

∑

Vq∈Va

∑

j∈Z

xq(s + jda, t) ln(xq(s + jda, t))

+
∑

Vq∈Vd

xq(s, t) ln(xq(s, t)) ds.

Then, we define the Helmholtz free energy as F (t) = U (t)−TS(t), which can be written

as

F (t) =
1

da

s+∫

s−

∑

Vq∈Va

∑

j∈Z

μq(s + jda, t)xq(s + jda, t) +
∑

Vq∈Vd

μq(s, t)xq(s, t) ds,

with the definitions

μq(s + jda, t) = wq(s + jda) + kBT ln(xq(s + jda, t)), ∀Vq ∈ Va, j ∈ Z,

μq(s, t) = wq(s) + kBT ln(xq(s, t)), ∀Vq ∈ Vd.

We here define the entropy production as

Ṡprod(t) = −
1

Tda

s+∫

s−

∑

Epq∈G

∑

j∈Z

Jpq(s + jda, t)M̃pq(s + jda, t) ds,

where M̃pq = μq − μp − μT δpq={34,25}. Then, combining the first principle (25) with the

identity Ḟ = U̇ − TṠ, we finally obtain the second principle

d

dt
S(t) =

Q̇(t)

T
+ Ṡprod(t).

Similarly as in the Huxley’57 model, the detailed balance ensures that the entropy pro-

duction is always positive and themodel is thus thermodynamically compatible.We have,

as in (23), the free energy balance

d

dt
F (t) = τc(t)vc + μT

(

J25(t) + J34(t)
)

− T Ṡprod(t)

≤ τc(t)vc + μT

(

J25(t) + J34(t)
)

. (26)

Coupling with a macroscopic model of muscle fiber

The thermodynamic properties of these classes of models are very useful when coupling

them with a macroscopic model, typically to represent a muscle fiber, as it will ensure

a global consistent thermodynamic balance between macroscopic and microscopic con-

tributions. Let us consider, indeed, a macroscopic model of muscle fiber modeled in the

realm of non-linear continuum mechanics, as large deformations frequently occur in

muscle fibers. The material points coordinates are denoted by x ∈ Ω0 in the reference

configuration. The displacement field associated with the deformation map is denoted by

y. We denote by e the Green-Lagrange strain tensor, i.e.

e =
1

2

(

∇ y + (∇ y)T + (∇ y)T · ∇ y
)

,
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Fig. 4 Muscle fiber configuration

and the second Piola-Kirchhoff stress tensor is denoted by Σ . The fiber as shown in Fig. 4

is subjected to a boundary force tN on a boundaryΓ 0
N . The principle of virtual work (PVW)

then reads: for any admissible virtual displacement field w ∈ Vad,

∫

Ω0
ρ0ÿ · w dΩ +

∫

Ω0
Σ : dye · w dΩ =

∫

Γ 0
N

tN · w dΓ ,

where thedifferential of theGreen-Lagrange strain tensorwith respect to thedisplacement

field is given by

dye · w =
1

2

(

∇ w + (∇ w)T + (∇ y)T · ∇ w + (∇ w)T · ∇ y
)

.

In this formulation, we want to associate with eachmaterial point an active microscopic

model based on the Huxley’57 model or its extensions. Typically, we want to incorporate

the microscopic model into a 3D visco-hyperelastic constitutive behavior of hyperelastic

potential Ψ and viscous pseudo-potential Ψ v—taken here as Ψ v(ė) =
η
2 tr(ė

2) —where η

denotes a viscosity modulus—to simplify the presentation. Following [2], which extends

the classical Hill-Maxwell scheme [9] to nonlinear behavior, we gather all the constitutive

ingredients by defining an adequate rheological scheme—presented in Fig. 5—valid for

large deformations. The upper branch represents the sarcomere—including the above

active behavior visualized by the collection of myosin heads in the figure—namely, con-

stituents acting in the muscle fibre direction τ . The lower branch represents a 3D passive

matrix, associated with the cellular envelope and the extracellular matrix. Each branch

contains elastic and viscous constituents, respectively visualized by springs and dashpots,

with specific constitutive equations given below.

We consider the following natural rheological rule for the parallel branch

3D parallel law : e = e
p

= e
a
, Σ = Σ

p
+ Σ

a
, (27)

where e, e
a
, e

p
denote Green-Lagrange tensors (global, active and passive) andΣ ,Σ

a
,Σ

p

second Piola-Kirchhoff stress tensors (global, active and passive). However, we will depart

from [2] for the series branch.

In fact, the natural view of muscle fibers made of a succession of active and passive

segments points to a one-dimensional homogenization type of rheological interpretation.

Let us denote by efib the total (local) extension of a fiber, i.e the ratio of length change over

initial length
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a

Fig. 5 Fiber rheology combining a 1D active element (upper branch) and a 3D visco-hyperelastic element

(lower branch)

efib =
δℓfib

ℓfib
,

where we will take for ℓfib the length of a half-sarcomere at rest and δℓfib the variation

thereof. Then, the length change of the half-sarcomere can be decomposed into

δℓfib = δℓc + δℓs,

where δℓc and δℓs respectively denote the contributions of the active (rigid filaments) and

passive parts in this length change. Note that δℓc then represents the relative displace-

ment of the actin and myosin filaments considered above, indeed. We also introduce the

corresponding dimensionless extension quantities ec = δℓc/ℓfib and es = δℓc/ℓfib, so that

efib = ec + es. Of course, the two components carry the same tension, which we denote

by Tfib and define as the force—in the fiber direction—per unit area of transverse cross-

section of tissue considered in the reference configuration. Therefore, we can summarize

as

1D series law : efib = ec + es, Tfib = Tc = Ts. (28)

Note that the reason why such a simple additive rule holds for efib in this nonlinear

framework is that we are considering extension quantities—scaled in an ad hocmanner—

and not Green-Lagrange strains. Moreover, (28) must be complemented by relationships

between 3D and 1D quantities. Considering the component of the Green-Lagrange strain

tensor in the fiber direction, we directly have

1 + efib =
(

1 + 2τ · e · τ
) 1
2 . (29)

Then, the tension Tfib corresponds to a contribution in the first Piola-Kirchhoff stress

tensor given by

T
a

= Tfib

F · τ

‖F · τ‖
⊗ τ , (30)
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where F = 1 + ∇ y is the classical deformation gradient tensor, as can be easily verified

by computing the resulting traction in the fiber direction T
a

· τ . Hence, the associated

contribution in the second Piola-Kirchhoff stress tensor reads

Σ
a

= F−1 · T
a

=
Tfib

1 + efib
τ ⊗ τ , (31)

since ‖F · τ‖ = 1 + efib.

Finally, the constitutive equations considered are

Σ
p

=
∂Ψ

∂e
+

∂Ψ v

∂ ė
, Ts = Eses, Tc = νėc + Ťc , (32)

where Ťc represents the aggregation of forces contributed by actin-myosin cross-bridges

as described above, i.e. Ťc = ρsurfτc with ρsurf the number of myosin heads in a layer of

thickness ℓfib per unit of cross-section area. The series elastic element is here assumed to

have a linear constitutive equation of elasticity modulus Es. Note that a nonlinear hypere-

lastic behavior could be considered, at the price of having to deal with the dimensionless

extension es as an additional internal variable. Nevertheless, in physiological conditions

the extension es remains small and a linear behavior is adequate [1]. As regards viscosity,

we here incorporate a simple component of viscous modulus ν in parallel with the active

part in the sarcomere branch, and we recall that viscosity is also present in the parallel

branch as provided by the term ∂Ψ v

∂ ė = ηė.

We can now summarize the 3D equations as

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∫

Ω0
ρ0ÿ · w dΩ +

∫

Ω0
Σ : dye · w dΩ =

∫

Γ 0
N

tN · w dΓ , ∀w ∈ Vad (33a)

with Σ =
∂Ψ

∂e
+ ηė +

Tfib

(1 + 2τ · e · τ )
1
2

τ ⊗ τ

Tfib = νėc + Ťc = Eses (33b)

with Ťc(x, t) =
ρsurf

da

s+∫

s−

a(x, s, t)
∂w1

∂s
(s, t)ds

∂a

∂t
(x, s, t) = k+(s)

(

1 − a(x, s, t)
)

− k−(s)a(x, s, t) − ℓfibėc(x, t)
∂a

∂s
(x, s, t) (33c)

where (33c) is based on the Huxley’57 model with sliding velocity vc = ℓfibėc. This veloc-

ity is independent of the microscopic variable s, which justifies our above study. Note,

however, the dependency of a(x, s, t) on x, which means that the microscopic model must

be solved everywhere in the domain, i.e. at all numerical quadrature points in numerical

simulations.

In order to establish a macroscopic energy balance for the system (33), we take the

velocity field ẏ as an admissible virtual displacement field in (33a). We thus get

dK

dt
+

∫

Ω0
Σ : ė dΩ = Pext,

where K = 1
2

∫

Ω0 ρ0|ẏ|
2 dΩ stands for the kinetic energy and Pext =

∫

Γ 0
N
tN · ẏ dΓ is the

power of external forces. Then, we decompose
∫

Ω0
Σ : ė dΩ =

d

dt

[
∫

Ω0
Ψ dΩ

]

+

∫

Ω0
η|ė|2 dΩ +

∫

Ω0
Tfib

τ · ė · τ

(1 + 2τ · e · τ )
1
2

dΩ ,
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where the first term is associated with the stored hyperelastic energy, the second term

is a macroscopic viscous dissipation, and the last term—denoted Pfib—is the power of

internal forces in the sarcomere. Then, using the rheological rules we find

Pfib =

∫

Ω0
Tfib

τ · ė · τ

(1 + 2τ · e · τ )
1
2

dΩ

=

∫

Ω0
Tfibėfib dΩ =

∫

Ω0

[

Tsės + Tc ėc
]

dΩ =

∫

Ω0

[

Esesės + νė2c + Ťc ėc
]

dΩ

=
d

dt

[
∫

Ω0

Es

2
e2s dΩ

]

︸ ︷︷ ︸

(1)

+

∫

Ω0
νė2c dΩ

︸ ︷︷ ︸

(2)

+

∫

Ω0
Ťc ėc dΩ

︸ ︷︷ ︸

(3)

,

where we recognize (1) an elastic energy stored in the series element of the sarcomere,

(2) a viscous dissipation term in the sarcomere, and (3) the mechanical work of the actin-

myosin bridges. Therefore, combining this energy balance with the free energy balance

(23) computed from theHuxley’57model—or identically from (26) for the extensions—we

finally obtain a form of macroscopic Clausius-Duhem relation

d

dt

[

K +

∫

Ω0
Ψ +

Es

2
e2s + ρvF dΩ

]

= Pext −

∫

Ω0

[

η|ė|2 + νė2c

]

dΩ −

∫

Ω0
ρvT Ṡprod dΩ +

∫

Ω0
ρvĖ dΩ , (34)

where ρv = ρsurf/ℓfib is the density of myosin head per unit volume in the reference con-

figuration, and where we recall thatF is the internal free energy of the bridges introduced

in (13), Ṡprod is the entropy production termdefined in (22) corresponding to energy dissi-

pation associatedwith chemical transitions, and Ė = μT J̄2 as defined in (12b) corresponds

to the input flux in energy provided by ATP hydrolysis.

Discretization and thermodynamic principles at discrete level

We now present the proposed discretization scheme for the muscle contraction models.

Classical schemes are sufficient for our purposes, and the main originality of this work

is to show their compatibility with discrete versions of the thermodynamical principles.

Nevertheless, for the sake of completeness, some basic properties of the schemes are

quickly re-established before focusing on thermodynamics.

A numerical scheme for Huxley’57 model

To discretize the dynamics (2), we consider a regular grid for the simulation range [s−, s+]

of discretization length δs andwith the convention s0 = s− and sℓ = s+.We then choose an

upwind implicit scheme, that for the sake of simplicitywe only present for a positive sliding

velocity vc, with a natural extension to negative sliding velocities vc by inverting the shift

in space for the transport term to keep an upwind scheme. We initiate the discretization

from an initial condition such that an0 = anℓ = 0 and with the natural condition an0 ∈ [0, 1].

The discretization scheme then reads

⎧

⎪
⎨

⎪
⎩

an+1
i − ani

δt
= k+,id

n+1
i − k−,ia

n+1
i − vc

an+1
i − an+1

i−1

δs
, ∀i ∈ [[1, ℓ]]

dn+1
i = 1 − an+1

i , ∀i ∈ [[1, ℓ]]

(35)
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with the definition

k+,i = k+(s
− + iδs), i ∈ [[1, ℓ]], (36a)

k−,i = k−(s
− + iδs), i ∈ [[1, ℓ − 1]], (36b)

k−,ℓ = 2k−,ℓ−1. (36c)

Note that the exact aggregated detachment rate goes to infinity on the boundary of the

interval [s−, s+]. Numerically, we use a finite value defined as given in (36c), and we prove

in the following section that this choice does not affect the convergence of the scheme.

For the numerical scheme (35), we also need to prescribe adequate boundary conditions.

As the analytical solution of (7) vanishes on the boundaries of the interval [s−, s+], we here

again can choose: either a Dirichlet condition on one side, and check the consistency on

the other side, or choose periodic boundary conditions and again ensure the consistency

on the boundary of the interval [s−, s+]. From a numerical point of view, it is in fact more

convenient for energy estimates to choose periodic boundary conditions for a, i.e. an0 = anℓ .

Note that, with this choice, we do not strictly have an0 = anℓ = 0. This property is only

satisfied approximately, or asymptotically when the spatial discretization length goes to

zero.

Defining α = vcδt/δs and ki = k+,i + k−,i, the scheme can be written in a matrix form

on the state vector an =

[

an1 . . . anℓ

]T

Da
n+1 = a

n + δtk+,

where

D =

⎡

⎢
⎢
⎢
⎢
⎣

1 + δtk1 + α −α

−α 1 + δtk2 + α

. . .
. . .

−α 1 + δtkℓ + α

⎤

⎥
⎥
⎥
⎥
⎦

, k+ =

⎡

⎢
⎢
⎢
⎢
⎣

k+,1

k+,2

...

k+,ℓ

⎤

⎥
⎥
⎥
⎥
⎦

.

Some fundamentals properties

Wefirst present the basic—but essential—properties of the proposed scheme. This is done

using classical strategies for the analysis of transport equations schemes (see for instance

[21]).

Uniform positivity and boundedness

One first important property that must be satisfied by the discretization is that the natural

bounds for ratio quantities be preserved at the discrete level, namely ∀n,∀i ∈ [[1, ℓ]], ani ∈

[0, 1]. To obtain this property, we need D to preserve the positivity—i.e. for a ∈ R
ℓ,Da ≥

0 ⇒ a ≥ 0 (where we use the convention that a vector is positive if all its coefficients ai

are positive). Let us then take a ∈ R
ℓ such that Da ≥ 0. We have ∀i ∈ [[1, ℓ]]

(

1 + δt ki + α
)

ai − αai−1 ≥ 0, (37)
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with the boundary condition a0 = aℓ. Multiplying (37) by αl−1 for i = 1 and by

αℓ−i
∏i−1

j=1

(

1 + kj + α
)

for i ∈ [[2, ℓ]], and summing, we obtain

ℓ
∑

i=2

⎡

⎣αℓ−i
i
∏

j=1

(

1 + kj + α
)

ai − αℓ−i+1
i−1
∏

j=1

(

1 + kj + α
)

ai−1

⎤

⎦

+αl−1 (1 + k1 + α) a1 − αlal ≥ 0

⇔

ℓ
∏

j=1

(

1 + kj + α
)

aℓ +

ℓ
∑

i=3

αℓ−i+1

⎡

⎣

i−1
∏

j=1

(

1 + kj + α
)

ai−1

⎤

⎦

−

ℓ
∑

i=2

αℓ−i+1

⎡

⎣

i−1
∏

j=1

(

1 + kj + α
)

ai−1

⎤

⎦+ αl−1 (1 + k1 + α) a1 − αlal ≥ 0.

Noting that the middle term is a telescoping series, we obtain as expected

⎡

⎣

ℓ
∏

j=1

(

1 + kj + α
)

− αℓ

⎤

⎦

︸ ︷︷ ︸

≥0

aℓ ≥ 0.

Then, recursively from (37), we get ∀i ∈ [[1, ℓ]], ai ≥ 0, which shows that the matrix oper-

ator D preserves the positivity. Knowing that the initial condition and the transition rates

are positive, we obtain ∀n ≥ 0,∀i ∈ [[1, ℓ]], ani ≥ 0. Writing the numerical scheme for the

variable 1 − ani from (35), we similarly obtain that ∀n ≥ 0,∀i ∈ [[1, ℓ]], ani ≤ 1. Therefore,

the proposed numerical scheme preserves the adequate positivity and boundedness.

Consistency

Let us here denote a a sufficiently regular solution of (7). Note that this solution satisfies a

Dirichlet boundary condition on one side of the simulation interval (i.e. a(s−, t) = 0) and

that we showed in (10) that lims→s+ a(s, t) = 0.We denote by a the vector of the values of

a at the spatial discretization points at time n δt, a n =

[

a(δs, n δt) . . . a(ℓ δs, n δt)
]T

. We

define, as usual, the convergence error by

en = a
n − a

n.

We have Den+1 = en − δt ηn, where the consistency error ηn is given by

ηn =
1

δt

[

Da
n+1 −

(

a
n + δtk+

)]

.

Evaluating the continuous equation (7) at s = s− + iδs and t = (n + 1)δt, we obtain

∂ ā

∂t

(

s− + iδs, (n + 1)δt
)

= k+,i − kiā
n+1
i − vc

∂ ā

∂s

(

s− + iδs, (n + 1)δt
)

,

and this also holds for i = ℓ with the finite numerical value chosen for kℓ, due to the fact

that ā(s+) = 0 and k−(s)ā(s) tends to zero in s+. We directly infer, ∀i ∈ [[1, ℓ]],

ηni =
ā
(

s− + iδs, (n + 1)δt
)

− ā
(

s− + iδs, nδt
)

δt
−

∂ ā

∂t

(

s− + iδs, (n + 1)δt
)

+ vc

{ ā
(

s− + iδs, (n + 1)δt
)

− ā
(

s− + (i − 1)δs, (n + 1)δt
)

δs

−
∂ ā

∂s

(

s− + iδs, (n + 1)δt
)
}

= O(δs + δt).
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The numerical scheme is thus consistent at the first order with the continuous Eq. (7),

although different—but compatible—boundary conditions are used. Note that a well-

known result by Godunov states that we cannot have more than first-order convergence

in time with a discrete scheme that satisfies the positivity and boundedness property [6].

L2-Stability

We now analyze the L2-stability by justifying the ℓ2-stability of the operator D
−1. Multi-

plying (35) without the source term by an+1
i , we have

an+1
i − ani

δt
an+1
i + vc

an+1
i − an+1

i−1

δs
an+1
i = −ki(a

n+1
i )2.

Using the identity −ab = 1
2

(

a − b
)2

− 1
2a

2 − 1
2b

2, we obtain

1

2δt

(

(an+1
i )2 − (ani )

2
)

+
1

2δt

(

an+1
i − ani

)2

= −
vc

2δs

(

(an+1
i )2 − (an+1

i−1 )
2
)

−
vc

2δs

(

an+1
i − an+1

i−1

)2
− ki(a

n+1
i )2.

Summing over i, and using the periodic boundary conditions (an+1
ℓ )2 = (an+1

0 )2, we find

∥
∥D

−1
a
n
∥
∥

ℓ2
≤
∥
∥a

n
∥
∥

ℓ2
.

Note that this stability property is just a mathematical property.

Convergence

The stability analysis coupled to the consistency analysis gives directly the convergence

error. Indeed, we find

en =
(

D
−1
)n
e0 − δt

n−1
∑

k=0

(

D
−1
)n−k−1

ηk ,

so that there exist C, T > 0 such that

∥
∥en
∥
∥

ℓ2
≤ Cδt

n−1
∑

k=0

(δs + δt) = CT
(

δs + δt
)

.

First principle

Our objective is more ambitious than numerical convergence, as we want in fine to estab-

lish thermodynamic balances at the discrete level. In this respect, let us first consider the

energy balance. We recall that the average energy of a myosin head is given at the contin-

uous level by (11). Similarly to (36), we assign a finite value to the energy of the attached

state on the boundary of the interval [s−, s+]. With the notation

w1,i = w1(s
− + iδs), ∀i ∈ [[1, l − 1]],

w1,l = 2w1,l−1,

the energy is discretized as

Un =
δs

da

ℓ
∑

i=1

w1,ia
n
i + w0d

n
i .
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Then, defining the fluxes as

Jn1,i = k1,id
n
i − k−1,ia

n
i ,

Jn2,i = k2,ia
n
i − k−2,id

n
i ,

we have

Un+1 − Un

δt
=

δs

da

ℓ
∑

i=1

[

w1,i

(an+1
i − ani

δt

)

+ w0

(dn+1
i − dni

δt

)]

=
δs

da

ℓ
∑

i=1

[

w1,i

(

Jn+1
1,i − Jn+1

2,i − vc
an+1
i − an+1

i−1

δs

)

+ w0

(

Jn+1
2,i − Jn+1

1,i + vc
an+1
i − an+1

i−1

δs

)]

=
δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

w1,i − w0

)

+ Jn+1
2,i

(

w0 − w1,i − μT

)

+ μT J
n+1
2,i

]

−
vcδs

da

ℓ−1
∑

i=1

w1,i − w1,i+1

δs
an+1
i +

δs

da

vc

δs
an+1
0 w1,1

−
δs

da

vc

δs
an+1

ℓ w1,ℓ +
δs

da

vc

δs
w0(a

n+1
ℓ − an+1

0 ). (38)

With the definition of the discrete force

τn+1
c =

δs

da

ℓ
∑

i=1

w1,i+1 − w1,i

δs
an+1
i ,

where we define w1,ℓ+1 = w1,1, and using the periodicity of the solution, (38) becomes

Un+1 − Un

δt
= vcτ

n+1
c

+
δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

w1,i − w0

)

+ Jn+1
2,i

(

w0 − w1,i − μT

)

+ μT J
n+1
2,i

]

.

We thus obtain the discretized version of the first principle, namely

Un+1 − Un

δt
=

Wn+1 − Wn

δt
+

Qn+1 − Qn

δt
+

En+1 − En

δt
, (39)

with

Wn+1 − Wn

δt
= vcτ

n+1
c ,

Qn+1 − Qn

δt
=

δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

w1,i − w0

)

+ Jn+1
2,i

(

w0 − w1,i − μT

)]

,

En+1 − En

δt
= μT

δs

da

ℓ
∑

i=1

Jn+1
2,i .
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Second principle

Let us now establish a discrete entropy balance. In this respect, we introduce the discrete

entropy

Sn = −kB
δs

da

ℓ
∑

i=1

(

ani ln a
n
i + dni ln d

n
i

)

,

and the free energy Fn = Un − TSn, which can be rewritten as

Fn =
δs

da

ℓ
∑

i=1

(

μn
1,ia

n
i + μn

0,id
n
i

)

,

by introducing the discrete chemical potentials

μn
1,i = w1,i + kBT ln ani ,

μn
0,i = w0 + kBT ln dni .

We then rewrite the previous calculation in a manner that closely follows the calculation

in the continuous case. We have

Fn+1 − Fn

δt
=

1

δt

δs

da

ℓ
∑

i=1

[

μn+1
1,i an+1

i − μn
1,ia

n
i + μn+1

0,i dn+1
i − μn

0,id
n
i

]

=
δs

da

ℓ
∑

i=1

[

μn+1
1,i

(an+1
i − ani

δt

)

+ ani

(μn+1
1,i − μn

1,i

δt

)

+ μn+1
0,i

(dn+1
i − dni

δt

)

+ dni

(μn+1
0,i − μn

0,i

δt

)
]

.

Hence,

Fn+1 − Fn

δt
=

δs

da

ℓ
∑

i=1

[

μn+1
1,i

(

Jn+1
1,i − Jn+1

2,i − vc
an+1
i − an+1

i−1

δs

)

+ ani

(w1,i + kBT ln(an+1
i ) −

(

w1,i + kBT ln(ani )
)

δt

)

+ μn+1
0,i

(

Jn+1
2,i − Jn+1

1,i + vc
an+1
i − an+1

i−1

δs

)

+ dni

(w0 + kBT ln(dn+1
i ) −

(

w0 + kBT ln(dni )
)

δt

)
]

.
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Developing the expression of the chemical potentials, performing Abel transformations

and using the periodic boundary conditions, we obtain

Fn+1 − Fn

δt
= vcτ

n+1
c

+
δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

μn+1
1,i − μn+1

0,i

)

+ Jn+1
2,i

(

μn+1
0,i − μn+1

1,i − μT

)

+ μT J
n+1
2,i

]

+
vc

da
kBT

ℓ
∑

i=1

[

an+1
i

(

ln(an+1
i+1 ) − ln(an+1

i )
)
]

+
vc

da
kBT

ℓ
∑

i=1

[

dn+1
i

(

ln(dn+1
i+1 ) − ln(dn+1

i )
)
]

+
kBTδs

da

ℓ
∑

i=1

[

ani

( ln(an+1
i ) − ln(ani )

δt

)
]

+
kBTδs

da

ℓ
∑

i=1

[

dni

( ln(dn+1
i ) − ln(dni )

δt

)
]

.

Since x �→ ln x is a concave function, we have ln aj − ln ai ≤ ln′(ai)
(

aj − ai
)

so that

Fn+1 − Fn

δt
≤ vcτ

n+1
c

+
δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

μn+1
1,i − μn+1

0,i

)

+ Jn+1
2,i

(

μn+1
0,i − μn+1

1,i − μT

)

+ μT J
n+1
2,i

]

+
vc

da
kBT

ℓ
∑

i=1

[

an+1
i+1 − an+1

i

]

+
vc

da
kBT

ℓ
∑

i=1

[

dn+1
i+1 − dn+1

i

]

+
kBTδs

da δt

ℓ
∑

i=1

[

an+1
i − ani

]

+
kBTδs

da δt

ℓ
∑

i=1

[

dn+1
i − dni

]

.

Using the fact that the scheme imposes ∀n, ∀i ∈ [[1, ℓ]], ani +dni = 1, the sums vanish two

by two. We finally find

Fn+1 − Fn

δt

≤ vcτ
n+1
c

δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

μn+1
1,i − μn+1

0,i

)

+ Jn+1
2,i

(

μn+1
0,i − μn+1

1,i − μT

)

+ μT J
n+1
2,i

]

.

As a point-wise evaluation of the continuous expression (21), we have ∀i ∈ [[1, ℓ]]

Jn+1
1,i

(

μn+1
1,i − μn+1

0,i

)

≤ 0,

Jn+1
2,i

(

μn+1
0,i − μn+1

1,i − μT

)

≤ 0.

Hence, in our case where vc > 0, we finally obtain

Fn+1 − Fn

δt
− vcτ

n+1
c − μT

δs

da

ℓ
∑

i=1

Jn+1
2,i ≤ 0. (40)
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To relate the decrease of the free energy to the creation of entropy, we first note

Fn+1 − Fn

δt
− vcτ

n+1
c − μT

δs

da

ℓ
∑

i=1

Jn+1
2,i

=
Fn+1 − Fn

δt
−

[Un+1 − Un

δt
−

Qn+1 − Qn

δt

]

= −T
Sn+1 − Sn

δt
+

Qn+1 − Qn

δt
. (41)

Comparing (41) with the formal expression of the second principle (18), we define the

discrete entropy creation by

S
n+1
prod − Sn

prod

δt
=

Sn+1 − Sn

δt
−

1

T

Qn+1 − Qn

δt
≥ 0. (42)

Note that the entropy creation is formally given by

S
n+1
prod − Sn

prod

δt
= −

1

T

(

δs

da

ℓ
∑

i=1

[

Jn+1
1,i

(

μn+1
1,i − μn+1

0,i

)

+ Jn+1
2,i

(

μn+1
0,i − μn+1

1,i − μT

)
]

+
vckBT

da

ℓ
∑

i=1

[
(

ln(dn+1
i ) − ln(an+1

i )
)[

an+1
i − an+1

i−1

]
]

+
kBTδs

da

ℓ
∑

i=1

[

ani

( ln(an+1
i ) − ln(ani )

δt

)
]

+
kBTδs

da

ℓ
∑

i=1

[

dni

( ln(dn+1
i ) − ln(dni )

δt

)
])

.

and finally combining (40), (41) and (42) we have the time-discrete counterpart of the free

energy balance (23)

Fn+1 − Fn

δt
= vcτ

n+1
c + μT

δs

da

ℓ
∑

i=1

Jn+1
2,i − T

S
n+1
prod − Sn

prod

δt

≤ vcτ
n+1
c + μT

δs

da

ℓ
∑

i=1

Jn+1
2,i .

(43)

Extension to multi-state, multi-site models

The case of multiple states and sites derives from the same principles, hence justifying

that we developed precisely the computations for theHuxley’57model. The developments

are, however, not straightforward because the multi-site assumption implies an infinite

number of attachment and detachment fluxes, which has to be properly integrated into

the discrete thermodynamical balances. Indeed, in the case of a positive sliding velocity
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vc, we discretize the system (6) with the following implicit upwind numerical scheme

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

xn+1
q,i+jℓ − xnq,i+jℓ

δt
=
∑

p|Epq∈G

Jn+1
pq,i+jℓ − vc

xn+1
q,i+jℓ − xn+1

q,i+jℓ−1

δs
, ∀Vq ∈ Va,

∀i ∈ [[1, ℓ]], j ∈ Z

xn+1
q,i − xnq,i

δt
=
∑

p|Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓ − vc

xn+1
q,i − xn+1

q,i−1

δs
, ∀Vq ∈ Vd, i ∈ [[1, ℓ]]

(44)

with the notation xnq,i+jℓ = xq(s
− + (i + jℓ)δs, nδt) for Vq ∈ Va, x

n
q,i = xq(s

− + iδs, nδt)

for Vq ∈ Vd and Jnpq,i+jℓ = Jpq(s
− + (i + jℓ)δs, nδt). Note that xq for Vq ∈ Vd has periodic

boundary conditions and thus xq,i+jℓ = xq,i, ∀j ∈ Z, and we keep j ∈ Z, albeit in practice

we will bound the attachment zone, introducing a boundary consistency error.

Mass conservation

Defining the total quantity of matter

mn
i =

∑

Vq∈Va

∑

j∈Z

xnq,i+jℓ +
∑

Vq∈Vd

xnq,i,

which has the periodicity mn
0 = mn

ℓ—and using the scheme (44), we find the classical

implicit transport equation

mn+1
i − mn

i

δt
= −vc

mn+1
i − mn+1

i−1

δs
,

hence, we retrieve, as in the Huxley’57 model, the conservation of matter

∑

Vq∈Va

∑

j∈Z

xnq,i+jℓ +
∑

Vq∈Vd

xnq,i = 1 ∀n, ∀i ∈ [[1, ℓ]]. (45)

First principle

Concerning the energy balance, the internal energy is now defined as

Un =
δs

da

ℓ
∑

i=1

⎡

⎣

∑

Vq∈Va

∑

j∈Z

wq,i+jℓx
n
q,i+jℓ +

∑

Vq∈Vd

wqx
n
q,i

⎤

⎦ .

and we find this time, with the notation W̃pq,i+jℓ = W̃pq(s
− + (i + jℓ)δs), that

Un+1 − Un

δt
=

δs

da

[
ℓ
∑

i=1

∑

Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓW̃pq,i+jℓ + μT

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)
]

−
vcδs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

wq,i+jℓ

xn+1
q,i+jℓ − xn+1

q,i+jℓ−1

δs

−
vcδs

da

ℓ
∑

i=1

∑

Vq∈Vd

wq

xn+1
q,i − xn+1

q,i−1

δs
.
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The last term vanishes with the periodic boundary conditions. Performing an Abel trans-

formation on the penultimate term and defining the discrete force as

τn+1
c =

δs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

xq,i+jℓ

wn+1
q,i+jℓ+1 − wn+1

q,i+jℓ

δs
,

we obtain the discrete first principle

Un+1 − Un

δt
=

Wn+1 − Wn

δt
+

Qn+1 − Qn

δt
+

En+1 − En

δt
,

with

Wn+1 − Wn

δt
= vcτ

n+1
c ,

Qn+1 − Qn

δt
=

δs

da

ℓ
∑

i=1

∑

Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓW̃pq,i+jℓ,

En+1 − En

δt
= μT

δs

da

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)

.

Second principle

We now define the discrete entropy as

Sn = −kB
δs

da

ℓ
∑

i=1

⎡

⎣

∑

Vq∈Va

∑

j∈Z

xnq,i+jℓ ln x
n
q,i+jℓ +

∑

Vq∈Vd

xnq,i ln x
n
q,i

⎤

⎦ ,

and the free energy Fn = Un − TSn, that we rewrite as

Fn =
δs

da

ℓ
∑

i=1

⎡

⎣

∑

Vq∈Va

∑

j∈Z

μn
q,i+jℓx

n
q,i+jℓ +

∑

Vq∈Vd

μn
q,ix

n
q,i

⎤

⎦ ,

using discrete chemical potentials

μn
q,i+jℓ = wq,i+jℓ + kBT ln xnq,i+jℓ, Vq ∈ Va,

μn
p,i = wq + kBT ln xnq,i, Vq ∈ Vd.

The discrete time derivative of the free energy is

Fn+1 − Fn

δt
=

δs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

μn+1
q,i+jℓ

(

xn+1
q,i+jℓ − xnq,i+jℓ

δt

)

+xnq,i+jℓ

(

μn+1
q,i+jℓ − μn

q,i+jℓ

δt

)]

+

ℓ
∑

i=1

∑

Vq∈Vd

[

μn+1
q,i

xn+1
q,i − xnq,i

δt
+ xnq,i

μn+1
q,i − μn

q,i

δt

]

.
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Using the notation M̃n
pq,i+jℓ = μn

q,i+jℓ − μn
p,i+jℓ − μT δpq={25,34} and the results of the first

principle, we get

Fn+1 − Fn

δt
=

δs

da

[
ℓ
∑

i=1

∑

Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓM̃

n+1
pq,i+jℓ

+ μT

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)
]

− vc
δs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

kBT ln
(

xn+1
q,i+jℓ

)x
n+1
q,i+jℓ − xn+1

q,i+jℓ−1

δs

− vc
δs

da

ℓ
∑

i=1

∑

Vq∈Vd

kBT ln
(

xn+1
q,i

)x
n+1
q,i − xn+1

q,i−1

δs

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

xnq,i+jℓ

( ln(xn+1
q,i+jℓ) − ln(xnq,i+jℓ)

δt

)
]

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Vd

[

xnq,i

( ln(xn+1
q,i ) − ln(xnq,i)

δt

)
]

+ vcτ
n+1
c .

Performing an Abel transformation on the transport terms, we obtain

Fn+1 − Fn

δt
=

δs

da

[
ℓ
∑

i=1

∑

Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓM̃

n+1
pq,i+jℓ

+ μT

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)
]

+
vc

da
kBT

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

xn+1
q,i+jℓ

(

ln(xn+1
q,i+jℓ+1) − ln(xn+1

q,i+jℓ)
)
]

+
vc

da
kBT

ℓ
∑

i=1

∑

Vq∈Vd

[

xn+1
q,i

(

ln(xn+1
q,i+1) − ln(xn+1

q,i )
)
]

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

xnq,i+jℓ

( ln(xn+1
q,i+jℓ) − ln(xnq,i+jℓ)

δt

)
]

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Vd

[

xnq,i

( ln(xn+1
q,i ) − ln(xnq,i)

δt

)
]

+ vcτ
n+1
c .

Using again that ln xj − ln xi ≤ ln′(xi)
(

xj − xi
)

, the detailed balance and the conservation

of matter (45), we finally obtain

Fn+1 − Fn

δt
− vcτ

n+1
c − μT

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)

≤ 0. (46)

As in “Second principle” section this property is equivalent to

S
n+1
prod − Sn

prod

δt
=

Sn+1 − Sn

δt
−

1

T

Qn+1 − Qn

δt
≥ 0. (47)
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Moreover, the entropy production is in fact given by

S
n+1
prod − Sn

prod

δt
= −

1

T

(

δs

da

ℓ
∑

i=1

∑

Epq∈G

∑

j∈Z

Jn+1
pq,i+jℓM̃

n+1
pq,i+jℓ

−
vckBT

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

ln(xn+1
q,i+jℓ)

[

xn+1
q,i+jℓ − xn+1

q,i+jℓ−1

]
]

−
vckBT

da

ℓ
∑

i=1

∑

Vq∈Vd

[

ln(xn+1
q,i )

[

xn+1
q,i − xn+1

q,i−1

]
]

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Va

∑

j∈Z

[

xnq,i+jℓ

( ln(xn+1
q,i+jℓ) − ln(xnq,i+jℓ)

δt

)
]

+
kBTδs

da

ℓ
∑

i=1

∑

Vq∈Vd

[

xnq,i

( ln(xn+1
q,i ) − ln(xnq,i)

δt

)
])

.

and, by recombining (46) and (47), we finally get

Fn+1 − Fn

δt
− vcτ

n+1
c − μT

ℓ
∑

i=1

∑

j∈Z

(

J25,i+jℓ + J34,i+jℓ

)

+ T
S
n+1
prod − Sn

prod

δt
= 0. (48)

Discretization of the macroscopic model coupling

We can derive a full discretized version of the macroscopic model presented in Fig. 4

and modeled by the dynamics (33). Here, we will rely—as in [2]—on mid-point rules

for the discretization of the PVW, with additional corrections in order to guarantee the

energy balance. Therefore, we will typically denote vn+ 1
2 =

vn+1+vn

2 for any variable v

and the notation n + 1
2♯ will allow to indicate when we depart from this classical rule.

First, as recommended in [2,7,8,15], we will consider the following non-standard—albeit

classical—mid-point quantities

en+ 1
2 ♯ = e(yn+ 1

2 ), ėn+ 1
2 ♯ =

en+1 − en

δt
,

dy e
n+ 1

2 ♯ · w =
1

2

(

∇ w + (∇ w)T + (∇ yn+ 1
2 )T · ∇ w + (∇ w)T · ∇ yn+ 1

2

)

,

and a passive hyperelastic stress law discretization that includes an energy correction

term, namely

∂Ψ

∂e

∣
∣
∣

n+ 1
2 ♯

=
∂Ψ

∂e
(en+ 1

2 ♯)

+

(

Ψ (en+1) − Ψ (en)

δt
−

∂Ψ

∂e
(en+ 1

2 ♯) : ėn+ 1
2 ♯

)

ėn+ 1
2 ♯

ėn+ 1
2 ♯ : ėn+ 1

2 ♯
. (49)
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Then, we propose the following discretization of (33)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

yn+1 − yn

δt
= vn+ 1

2 =
vn+1 + vn

2
(50a)

∫

Ω0

ρ0
vn+1 − vn

δt
· w dΩ +

∫

Ω0

Σn+ 1
2 ♯ :dye

n+ 1
2 ♯ · w dΩ = P

n+ 1
2

ext (w), ∀w ∈ Vad

with Σn+ 1
2 ♯ =

∂Ψ

∂e

∣
∣
∣

n+ 1
2 ♯

+ η
en+1 − en

δt
+

T
n+ 1

2 ♯

fib

(1 + 2τ · en · τ )
1
2

τ ⊗ τ (50b)

T
n+ 1

2 ♯

fib = ν
en+1
c − enc

δt
+ Ťn+1

c = Ese
n+ 1

2
s (50c)

with Ťn+1
c = ρsurf

δs

da

ℓ
∑

i=1

w1,i+1 − w1,i

δs
an+1
i

an+1
i − ani

δt
= k+,i(1 − an+1

i ) − k−,ia
n+1
i − ℓfib

en+1
c − enc

δt

an+1
i − an+1

i−1

δs
(50d)

Notehere that (50c) and (50d) are defined at eachquadrature point xm, albeitweomit—for

the sake of brevity—this explicit dependence in the equations. If the 1D elastic element

is chosen nonlinear hyperelastic, the corresponding term in (50c) has to be treated as

proposed for the 3D elastic element in (49).

To obtain a complete energy balance, we now proceed as in [2] by considering the mid-

point velocity vn+ 1
2 as an admissible displacement field and recalling that dy e

n+ 1
2 ♯ ·vn+ 1

2 =

en+1−en

δt . Thebalance associatedwith thehyperelastic contribution is handledbyour choice

in (49), and the viscous part directly gives a negative contribution, so that we have

Kn+1 − Kn

δt
+

∫

Ω0

Ψ n+1 − Ψ n

δt
dΩ

+
1

δt

∫

Ω0
T

n+ 1
2 ♯

fib

τ · (en+1 − en) · τ

(1 + 2τ · en · τ )
1
2

dΩ = P
n+ 1

2
ext −

∫

Ω0
η
|en+1 − en|2

δt2
dΩ .

The function x �→ (1 + 2x)
1
2 is concave of derivative (1 + 2x)−

1
2 , hence

τ · en+1 · τ − τ · en · τ

(1 + 2τ · en · τ )
1
2

≥ (1 + 2τ · en+1 · τ )
1
2 − (1 + 2τ · en · τ )

1
2 = en+1

fib − enfib.

Therefore we have, recalling that we have defined es such that efib = es + ec,

Pfib =
1

δt

∫

Ω0
T

n+ 1
2 ♯

fib

τ · (en+1 − en) · τ

(1 + 2τ · en+1 · τ )
1
2

dΩ

≥

∫

Ω0
T

n+ 1
2 ♯

fib

en+1
fib − enfib

δt
dΩ =

∫

Ω0
T

n+ 1
2 ♯

fib

[en+1
s − ens

δt
+

en+1
c − enc

δt

]

dΩ

≥

∫

Ω0
Ese

n+ 1
2

s
en+1
s − ens

δt
dΩ +

∫

Ω0

[

ν
(en+1
c − enc )

2

δt2
+ Ťn+1

c

en+1
c − enc

δt

]

dΩ .
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We now incorporate the Huxley’57 discrete-time free energy balance (43)—and we could

proceed identically with the other models using (48)—to get

Kn+1 − Kn

δt
+

∫

Ω0

[Ψ n+1 − Ψ n

δt
+ Es

|en+1
s |2 − |ens |

2

2δt
+ ρv

Fn+1 − Fn

δt

]

dΩ

≤ P
n+ 1

2
ext −

∫

Ω0

[

η
|en+1 − en|2

δt2
+ ν

(en+1
c − enc )

2

δt2
+ Tρv

S
n+1
prod − Sn

prod

δt

]

dΩ

+

∫

Ω0
ρvμT

δs

da

ℓ
∑

i=1

Jn+1
2,i dΩ , (51)

which is the discrete-time counterpart of the Clausius-Duhem relation (34), with here

an inequality only due to numerical dissipation and consistent in δt. Note finally that in

the case of models capturing the power stroke dynamics such as Piazzesi–Lombardi’95,

time sub-iterations may be required. In this case it can be shown that the energy balance

is preserved provided the active tension Ťn+1
c is redefined by weighing the intermediate

states over all sub-iterations.

Numerical results and discussion

In this section, our goal is to illustrate the analysis of the discrete system presented in the

previous section for the Huxley’57 model and the Piazzesi–Lombardi’95 model, which

we chose as a representative of the multi-site, multi-state models. These illustrations

serve several purposes. We first want to demonstrate that the thermodynamics identities

established at the discrete level are satisfied in the numerical simulations. Then, we want

to show that the ability to compute the thermodynamical balances numerically allows to

gain additional insight into the physiology of muscle contraction. Additionally, for the

Piazzesi–Lombardi’95 model, we compare our simulation results with that obtained in

the original paper as a further validation of our approach.

Huxley’57 model

The choice of model parameters must satisfy the conditions (3) and the assumption that

w1a and k−a tend to zero when s tends to s− and s+. We choose the energy levels and

transition rates as follows

w1(s) = κw(s − s∗)2 +
αw

s+ − s
+

αw

s − s−
,

k1(s) = kmax exp
(

− λ1
[

(s − s̄)8 +
αk1

(s+ − s)2
+

αk1

(s − s−)2

])

,

k2(s) = kmid −
(

kmid − kmin

)

exp
(

− λ2(s − s̄)8
)

+
αk2

(s+ − s)2
+

αk2

(s − s−)2
.

(52)

We choose here to prescribe k1 and k2 in addition to the energies w1 and w0. The

reverse rates k−1 and k−2 are then derived from the detailed balance (1). The energy

levels parametrization is shown in Fig. 6. The transition rates are depicted in Fig. 7. The

models parameters used in the following simulations are presented in Table 1.

The asymptotic properties of the chosen transition rates and of the associated solutions

can be easily obtained using the analytical solution (9) and the theorem of dominated

convergence.
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Fig. 6 Energy levels parametrization for the Huxley’57 model

Fig. 7 Transition rates parametrization for the Huxley’57 model

Table1 Model parameters used in the simulations with the Huxley’57model

Model parameters

μT 100 zJ

s
+ 20 nm

s
− −20 nm

s
∗ 0

s̃ 9 nm

s̄ 5 nm

κw 1.1 pN nm−1

kmax 41.3 × 10−3 ms−1

kmin 10 × 10−3 ms−1

kmid 30 kmax

λ1 6.21 × 10−5 nm−8

λ2 3 λ1

αw
1
2 κw (s̃ − s̄)2

αk1
kmid/λ1

αk2
kmid

We consider two simulation cases. First, we simulate the tension rise in isometric con-

ditions (vc = 0). Then, we compute the muscle response in contraction at constant

shortening velocity (vc < 0) starting from the isometric steady-state solution.
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Validation of the thermodynamical identities at discrete level

We first want to verify that the discrete versions of the first principle (39) and the second

principles (43) are satisfiednumerically. Todo so,we compute respectively the expressions

Un+1 − Un

δt
−

[Wn+1 − Wn

δt
+

Qn+1 − Qn

δt
+

En+1 − En

δt

]

,

and

Fn+1 − Fn

δt
−

Wn+1 − Wn

δt
−

En+1 − En

δt
.

The results for both simulation cases is presented in Fig. 8. We notice that the first

expression is ten orders of magnitude smaller that the individual terms that compose it

(see Figs. 9 and 10), showing that the first principle is satisfied at discrete level. The second

expression is always negative showing the validity of the discrete second principle.

Tension rise

In our first illustration of the results obtained for the Huxley’57 model, we simulate the

tension rise in isometric conditions (vc = 0). We initialize all heads in the detached state

and let the myosin heads evolve. Along the usual tension evolution, our scheme allows

us to compute the thermodynamic fluxes associated with muscle contraction—see Fig. 9.

In the steady-state regime, the energy input remains positive and heat is dissipated. The

force is sustained through the continuous cycling of the myosin heads in interaction with

the actin filament. This process is fueled by the energy brought by ATP. We see here the

Fig. 8 Validation of the discrete thermodynamical balances in two test cases for the Huxley’57 model
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Fig. 9 Average tension and thermodynamic fluxes per myosin head in an isometric tension rise simulation

with the Huxley’57 model. The isometric tension is denoted by τ0

active nature of muscle contraction. Force is produced when the muscle is supplied with

energy. Naturally, as the velocity is zero no work is produced.

Constant velocity contraction

We now show a second illustrative example with a contraction at constant shortening

velocity (vc < 0) starting from the isometric steady-state solution. The simulation results

are presented in Fig. 10. After a transient phase, the system reaches a permanent regime

in which the classical force-velocity curve is measured [9] (note that in the original exper-

imental protocol force and not length is controlled). In this regime, we observe the energy

mechano-transduction performed by the molecular motors: the energy input brought by

ATP is for one part converted into work produced by the system (W < 0), and for the

other part dissipated by entropy production.
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Fig. 10 Average tension and thermodynamic fluxes per myosin head for constant shortening velocity

simulation with the Huxley’57 model. The isometric tension is denoted by τ0

Piazzesi–Lombardi’95 model

The Piazzesi–Lombardi’95 model reproduces the physiology of muscle contraction more

precisely. In particular, it is able to capture the power stroke fast dynamics observed in

length step experiments.

We simulate such an experiment starting from the isometric steady state with a length

step of 8 nm. As in the experimental conditions, the length step is made by a ramp of

duration 100µs. Note that, here, the compliance of the myosin and actin filaments is

neglected as in the original paper. We choose the energy levels as defined in [20]. We use

modified transition rates to ensure that detachment rates diverge at infinity. The energy

brought by ATP is set to 50 zJ following the model assumption that an ATPmolecule can

be used for the detachment of several myosin heads.
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Fig. 11 Tension evolution and thermodynamic fluxes per myosin head in a length step experiment

simulation with Piazzesi–Lombardi’95 model. The isometric tension is denoted by τ0

The results are presented in Fig. 11. They match the results presented in the original

paper [20], which shows the consistency of our approach with the original model, hence

completed with thermodynamic balances.

Concluding remarks

Considering a large class ofmuscle contractionmodels basedonactin-myosin interaction—

i.e. the Huxley’57 model and various extensions thereof, including the Piazzesi–

Lombardi’95 model—we have presented a mathematical setting in which solution prop-

erties can be established, including fundamental thermodynamic balances. Moreover, we

have proposed a complete discretization strategy forwhichwewere also able to obtain dis-

crete versions of the thermodynamic balances and other properties. In addition, we have

also shown how these models can be coupled with a macroscopic continuum mechanics

formulation in such a way that these balances carry over to the macroscopic level, includ-

ing for the discrete versions of the models. As muscle energetics are of major relevance

in physiology, this is an important achievement, both from a fundamental and numer-

ical point of view. This paves the way, indeed, for detailed numerical studies of energy

exchanges in various applications, such as with a complete realistic heart model.
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