Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures--Preliminary models for the origin of coffinite deposits

bу

Bruce S. Hemingway

Open-File Report 82-619

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

1982

Contents

		Page
Abs	tract	1
Ι.	Evaluation of experimental and estimated thermodynamic data, and properties at 298.15 K and 1 bar (10 ⁵ Pascals)	2
	Preliminary models for the origin of coffinite deposits	2
	Introduction	2
	U ₃ 0 ₈	2
	γ-U0 ₃	15
	UF ₆	17
	U0 ₂	18
	UC14	18
	U0 ₂ C1 ₂	18
	Phases referenced to U_30_8 , γ -U0 ₃ , and U0 ₂ C1 ₂	19
	The NaUO ₃ problem	20
	Revised enthalpy of solution of U0 ₂ Cl ₂	21
	U0 ²⁺	21
	Schoepite, paraschoepite, and their hydration products	22
	Estimated thermodynamic properties of rutherfordine, sharpite, schoepite, and dehydrated schoepite	25
	Heat capacities of rutherfordine and dehydrated schoepite by differential scanning calorimetry	34
	Estimated thermodynamic properties of coffinite	38
	A model for the deposition of coffinite and some uraninites	39
	Estimated values for the free energy of formation of selected uranyl silicates	45
	Uranyl carbonate complex ions	51
	U^{4+} hydrolysis products and $U0_2^{\cdot} 2H_2^{0}$	53

Page

II.	Properties at higher temperatures	54
	Introduction	54
	Methods of calculation	54
	Problem data sets	54
III.	References cited	75

Illustrations

Page

Figure l.	A comparison of a linear approximation relating the gram formula weights and entropies (at 298.15 K) of several families of phases	29
2.	The molar concentration of aqueous aluminum or uranyl solution species (M) as a function of pH	32
3.	The linear relationship between scaled formation properties and scaled ionic properties as an example of the procedure followed by Eugster and Chou (1973) to estimate enthalpies of formation of several phylosilicates	49

Tables

Table	1.	Thermodynamic properties of selected uranium-bearing phases at 298.15 K and 1 bar	3
	2.	Thermodynamic properties of selected aqueous uranium species	12
	3.	Reaction scheme and enthalpy values used to calculate the enthalpy of formation of $U0^{2+}_{2}$ at 298.15 K 23	
	4.	Reaction scheme and enthalpy values used to calculate the enthalpy of formation of $UO_2(NO_3)_2$ $^{\circ} GH_2O$ at 298.15 K	24
	5.	X-ray powder diffraction data for several ruthefordine samples	27
	6.	Experimental and calculated heat capacities of rutherfordine and dehydrated schoepite	36
	7.	Molar thermodynamic properties of (alpha) UO_3 $O.85H_2O$	37
	8.	estimating the free energies of formation for silicate	46
	9.	The thermodynamic properties of 28 selected uranium- bearing phases at 298.15 K and at higher temperatures, and at 1 bar	58

Abstract

Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and 1 bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979).

The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed.

A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters. I: Evaluation of experimental and estimated thermodynamic data, and properties at 298.15 K and 1 bar (10⁵ Pascals). Preliminary models for the origin of coffinite deposits.

Introduction

Several reviews of the thermodynamic properties of uranium bearing phases and aqueous species have been published recently (e.g., Wagman, et al., 1981; Lemire and Tremaine, 1980; Langmuir, 1978; and Cordfunke and O'Hare, 1978). These reviews draw upon the same experimental data and, in general, the same interpretation of the experimental data for those phases evaluated in two or more of these studies. Although there has been moderate experimental activity on phases bearing uranium in the last twenty years, many of the naturally occurring phases have not been studied. Where data are lacking it has been necessary to estimate thermodynamic properties and where the experimental data is sparse or poorly defined, it has been necessary to make simplifying assumptions in order to calculate thermodynamic values.

This report contains a review of some of the experimental data and interpretations for uranium phases and aqueous species that may be of importance in evaluating the origin of uranium ore bodies or the evolution of such ore bodies, in developing programs for the solution mining of low grade uranium deposits or mine dumps, in the study of radioactive waste and in the containment of such waste, and finally, that may be of importance in reactions within breeder reactors.

The thermodynamic data listed in Tables 1 and 2 represent, to the extent possible, an internally consistent data set that has been evaluated and developed by the stepwise or sequential method. The majority of data are tied to the enthalpy of formation of U_3O_8 as given by Huber and Holley (1969) or to secondary standards such as $-UO_3$, UO_2Cl_2 , UCl_4 , and UO_2 . Consequently, few cross links are available within the system that would allow the use of the simultaneous regression approach of Haas and Fisher (1976) to identify erroneous data. Where a reaction involving a reference phase is found to be in error, all thermodynamic data based upon that reaction must be corrected. In order to facilitate that process, a brief description of the reaction scheme for each phase is provided in this study along with a reference to the experimental study that contains a detailed description of the thermochemical cycle.

Ancillary thermodynamic values required in the thermochemical cycles cited in this study are from Robie et al. (1979) unless otherwise stated. The atomic weights and physical constants are also taken from Robie et al.

U308

Triuranium octaoxide is the primary reference compound in this network. Selection of this material was predicated by its use as the reference phase for γ -UO₃ and UO₂Cl₂, the two phases to which most other

Uncertainties are listed below values							
Name formula and (references) [*]	Entropy	Molar volume	Enthalpy of formation	Gibbs free energy of formation			
	J/(mol·K)	cm ³	kJ/mol	kJ/mol			
Oxides, hy	droxides a	ind multip	le oxides				
Uraninite: ^{UO} 2 (133;133;133)	77.03 0.24	24.618 0.014	-1084.910 1.000	-1031.710 1.000			
Triuranium heptaoxide (alpha): ^U 3 ⁰ 7 (158;74;)		71.93 0.10					
Triuranium heptaoxide (beta): U3 ⁰ 7 (158;74;49)	250.53 0.75	71.63 0.10	-3425.400 11.700	-3191.200 11.700			
Tetrauranium ennanoxide: ^U 4 ⁰ 9 (120;116;49)	335.91 0.67	96.57 0.10	-4512.000 15.100	-4276.900 15.200			
Triuranium octaoxide: U3 ⁰ 8 (157;45;23)	28 2. 59 0.50	100.32 0.03	-3574.800 1.000	-3369.400 1.200			
Hydrated uranium dioxide: UO ₂ ·2H ₂ O (crystals) (;;166)	1			(-1494.600) (4.000)			
$U0_2 \cdot 2H_2 0$ (amorphous) (;;166))			(-1483.000) (8.000)			
Uranium peroxide dihydrate: UO ₄ ^{• 2H} 2 ⁰ (;152;30)	1	72.46 0.05	-1782.400 4.200				
Studite: UO ₄ • ⁴ H ₂ O (;152;30))	102.60 0.05	-2384.500 2.100				
Uranyl trioxide (gamma): ^{UO} 3 (156;133;23)	96.11 0.20	35.56 0.04	-1223.800 1.220	-1145.700 1.250			
Uranyl trioxide (beta): ^{UO} 3 (156;45;34)	96.32 0.21	34.46 0.05	-1220.054 2.100	-1142.000 2.100			
Uranyl trioxide (alpha): ^{UO} 3 (156;45;25)	99.41 0.21	34.05 0.02	-1216.700 2.100	-1141.700 2.100			
Uranyl trioxide (delta): ^{UO} 3 (;;25))		-1209.200 2.100				

Table 1. Thermodynamic properties of selected uranium bearing phases at 298.15 K and 1 bar. Estimated values are enclosed in parentheses. Uncertainties are listed below values

Name formula and (references)		Molar volume 3		energy of formation
	J/(mol·K)	c m ³	kJ/mol	kJ/mol
Uranyl trioxide (epsilon)		32.76	-1216.500	
^{UO} 3 (;4)	5;25)	0.10	2.100	
Uranyl trioxide (amorphou	;):		-1207.500	
uo ₃ (;;25)		2.100	
Uranyl trioxide (cubic):		42.92	-1217.500	
^{UO} 2.9 (;15	;25)	0.03	2.100	
Uranyl trioxide hemihydra	** :e :	42.57	-1379.900	
U0 ₃ ·0.5H ₂ 0 (;11)	5;30)	0.06	1.300	
Dehydrated schoepite **:	(150.)	45.5		(-1370.500)
$100_3 \cdot 0.85H_2 $ (166;4)	(10.)	0.1	1.300	(4.000)
Dehydrated paraschoepite*	: (134.)	52.29	-1533.400	(-1397.100)
$\beta - 00_3 \cdot H_2^0$ (166;11)	5;25) (8.)	0.10	1.200	(4.000)
** Dehydrated schoepite :	(156.)	46.40	(-1534.500)(-1404.900)
$a - UO_3 \cdot H_2 O$ (166;116)	(8.)	0.10	(4.000) (4.000)
** : Paraschoepite	(174.)	68.07)(-1632.000)
$a - UO_3 \cdot 2H_2^{O}$ (166;17)	(8.)	0.20	(4.000) (4.000)
Schoepite ^{**} :	(190.)	66.70	-1827.200	(-1638.200)
$\beta - 00_3 \cdot 2H_2^0$ (166;1)	(5.)	0.20	2.100	(3.000)
Uranyl trioxide dihydrate	:	54.68	-1530.900	
ϵ-υο ₃ ·2H ₂ ο (;2)	7;25)	0.06	1.200	
Non-stoichiometric UO, hy	lrates:			
^{UO} 2.86 ^{•0.5H} 2 ⁰ (;30)		-1366.900 4.200	
^{U0} 2.86 ^{·1.5H} 2 ⁰ (;;30)		-1666.100	
2.80 2	· • •		1.700	

Name formula and (references) [*]	Entropy	Molar volume	Enthalpy of formation	Gibbs free energy of formation
	J/(mol·K)	cm ³	kJ/mol	kJ/mol
Sulfides, selenid	es, selenat	es, selen	ites, and t	ellurides
Uranium monosulfide:	77.99	24.84	-306.300	-305.080
US (160;116;160) 0.21	0.03	14.600	14.600
Uranium disulfide (beta):	110.54	37.47	-527.000	-526.000
us ₂ (70;116;173) 0.21	0.03	10.000	10.000
Uranium trisulfide:	138.45	57.55	-549.400	-547.240
us ₃ (70;116;173) 0.21	0.03	2.000	2.000
Uranium selenide:	96.52	28.47		
USe (156;116;) 0.22	0.03		
Uranium diselenide:	133.8	45.69		
USe ₂ (156;116;) 0.2	0.05		
Uranium triselenide:	(177.0)	65.40		
USe ₃ (99;116;) (8.0)	0.04		
Uranyl selenate (alpha):			-1539.300	
UO <mark>2</mark> SeO <mark>4</mark> (;;32			3.600	
Uranyl selenite:			-1522.200	
^{U0} 2 ^{Se0} 3 (;;32			0.900	
Uranium telluride:	(111.7)		(-182.400)	
UTe (99;116;99) (12.0)	0.04	(20.000)	
Uranium ditelluride:	(150.6)	48.50	(-318.000)	
UTe ₂ (99;116;99) (12.0)	0.06	(60.000)	
	Halid	es		
Uranium tetrabromide:	238.50	100.5	-802.500	-767.790
UBr ₄ (173;45;173) 0.80	0.1	0.500	0.600
Uranium trichloride:	158.95	62.04	-866.500	-799.130
UC1 ₃ (65;45;173) 0.40	0.06	4.000	2.000
Uranium tetrachloride:	196.60	77.60	-1018.390	-928.990
UC1 ₄ (65;45;35,48) 0.50	0.03	4.200	4.200

Name formula and (references)	Entropy J/(mol·K)	Molar volume cm ³	of formation	Gibbs free energy of formation kJ/mol
Uranium trifluoride: ^{UF} 3 (173;45;33)	123.4	32.95 0.08	-1508.500 5.500	-1439.600 6.000
Uranium tetrafluoride: UF ₄ (15;45;33)	151.67 0.17	46.88 0.08	-1920.000 3.700	
Uranium hexafluoride: UF ₆ (12;45;79)	227.6 1.2	69.55 0.02	-2197.700 1.800	
Uranyl bromide: ^{UO} 2 ^{Br} 2 (166;;127)	(170.) (6.)			(-1038.500) (2.500)
Uranyl bromide hydrate: UO ₂ Br ₂ ·H ₂ O (166;;127)	(212.5) (6.0)			(-1300.100) (2.500)
Uranyl bromide dihydrate: $U_{2}^{Br} \cdot {}^{2H} \cdot {}^{2H} $ (166;;127)				(-1746.100) (2.500)
Uranyl bromide trihydrate: $UO_2Br_2 \cdot 3H_2O$ (166;;127)				(-1788.400) (2.500)
Uranyl chloride: U02 ^{C1} 2 (68;116;35,23)	150.54 0.42	63.20 0.03	-1243.070 2.100	
Uranyl fluoride: U0 ₂ F ₂ (29;162;31,29)	135.55 0.50	47.98 0.04	-1653.900 1.200	-1557.700 1.200
Uranyl iodide: ^{UO} 2 ^I 2 (166;;127)	(182.) (10.)			(-943.500) (6.000)
Cart	oonates and	d nitrat	8 8	
Rutherfordine: U02 ^{C0} 3 (166;18;166)	(142.7) (2.0)		-1704.100 2.000	(-1577.000) (2.100)
Sharpite: U0 ₂ C0 ₃ ·H ₂ O (166;;166)	(192.) = (10.)		(-1982.300) (12.000)	
Liebigite: $Ca_2UO_2(CO_3)_3 \cdot 10H_2O$ (;;170)				-6226.000 12.000
Swartzite: $CaMgUO_2(CO_3)_3 \cdot 12H_2O$ (;;170)				-6607.000 10.000

Name formula and (references)*	Entropy	Molar volume	Enthalpy of formation	Gibbs free energy of formation
	J/(mol·K)	cm ³	kJ/mol	kJ/mol
Bayleyite: Mg ₂ UO ₂ (CO ₃) ₃ ·18H ₂ O (;;170))			-7924.000 10.000
Andersonite: Na ₂ CaUO ₂ (CO ₃) ₃ ·6H ₂ O (;;170)			-5651.000 24.000
Rabbittite: Ca ₃ Mg ₃ (UO ₂) ₂ (CO ₃) ₆ (OH) ₄ ·18H ₂ O (;;166)			(-13525.000) (30.000)
Schroeckingerite: NaCa ₃ (UO ₂)(CO ₃) ₃ (SO ₄) $F \cdot 10H_2O$ (;;166)	÷		(-8094.000) (30.000)
Voglite: $Ca_2Cu(UO_2)(CO_3)_4 \cdot 6H_2O$ (;;166))			(-5791.400) (35.000)
Uranyl nitrate: $UO_2(NO_3)_2$ (30;;30)	(240.)) (5.)		-1368.000 17.000	(-1122.800) (20.000)
Uranyl nitrate hydrate: $UO_2(NO_3)_2 \cdot H_2O$ (166;;166	(297.)) (5.)		(-1674.000 (17.000	-
Uranyl nitrate dihydrate: $UO_2(NO_3)_2 \cdot 2H_2 0$ (30;;30)	334.70 7.10		-1978.600 2.500	-1622.500 2.500
Uranyl nitrate trihydrate: $UO_2(NO_3)_2 \cdot 3H_2O$ (30;;30)	361.50) 3.80		-2281.500 1.300	-1863.900 1.300
Uranyl nitrate hexahydrate: $UO_2(NO_3)_2 \cdot 6H_2O$ (30;45;30)		182.08 0.05	-3168.100 2.100	
Su	lfates and	phosphat	es	
Uranium sulfate: U(SO ₄) ₂ (30;;30)	(180.)) (21.)		-2309.600 12.600	(-2084.600) (15.000)
Uranium sulfate tetrahydrate: $U(SO_4)_2 \cdot {}^{4H_2O}$ (166;45;30)		139.39 0.06	-3483.200 6.300	(-3027.200) (6.800)

Name *	Entropy	Molar	Enthalpy of	-
formula and (references)	Енстору	volume	formation	
	J/(mol·K)	cm ³	kJ/mol	kJ/mol
Uranium sulfate octahydrate:	、		-4662.600	
$U(SO_4)_2 \cdot 8H_2O$ (;;30))		6.300	
Uranyl sulfate (beta): U02 ^{S0} 4 (30;;32,30	(163.)) (8.)		-1845.100 1.200	(-1685.700) (2.000)
Uranyl sulfate 2.5-hydrate: $UO_2SO_4 \cdot 2.5H_2O$ (30;;30)	245.60) 7.5		-2607.500 1.200	
Uranyl sulfate trihydrate: $UO_2SO_4 \cdot 3H_2O$ (166;45;30)	(266.8)) (10.0)	108.34 0.06	-2748.900 4.200	(-2411.800) (5.000)
Uranyl sulfate 3.5 -hydrate: U0 $_2$ SO $_4$ · 3.5 H $_2$ O (30;;30)	287.9 0) 7.5 0		-2901.600 1.200	
Artificial zippeite: (UO ₂) ₃ (OH) ₂ (SO ₄) ₂ ·8H ₂ O	(760.) (10.)	331.73 0.10)(-6703.000)) (12.000)
(166;45;166)			
Zippeite: $K_4(UO_2)_6(SO_4)_3(OH)_{10}^{\cdot 4H_2O}_{(;;169)}$)			-12603.000 20.000
Sodium zippeite:				-12523.000
$Na_4(UO_2)_6(SO_4)_3(OH)_{10} \cdot {}^{4H_2O}_{(;;169)}$)			20.000
Cobalt zippeite: $Co_2(UO_2)_6(SO_4)_3(OH)_{10} \cdot \frac{8H_2O}{2}$				-12695.000 20.000
(;;169)			
Nickel zippeite: Ni ₂ (UO ₂) ₆ (SO ₄) ₃ (OH) ₁₀ ^{.8H} ₂ O _{(;;169})			-12983.000 20.000
Magnesium zipperite: $Mg_{2}(UO_{2})_{6}(SO_{4})_{3}(OH)_{10} \overset{8H_{2}O_{2}}{(;;169)}$)			-13506.000 20.000
Zinc zippeite: Zn ₂ (UO ₂) ₆ (SO ₄) ₃ (OH) ₁₀ ·8H ₂ O				-12870.000 20.000
(;;169)			201000
Hydrogen-autunite: $HUO_2PO_4 \cdot 4H_2O$ (89;134;89			(-4621.900 (6.000	

Та	b1	e 1	•	со	nt	i	nu	ed	•

Name formula and (references)	Entropy	Molar volume 3	of formation	Gibbs free energy of formation
	$J/(mol \cdot K)$	cm ³	kJ/mol	kJ/mol
	Uran	ates		
Barium monouranate:	153.97	58.08	-1997.100	-1887.070
BaU0 ₄ (108;116;108,107) 0.31	0.02	2.100	2.100
Calcium monouranate:	(144.3)	45.91	-2001.700	(-1895.000)
CaU0 ₄ (107;116;107) (8.0)	0.04	2.100	(3.000)
Cesium monouranate:	219.66	85.44	-1929.800	-1807.140
Cs ₂ U0 ₄ (117;45;110,108,30) 0.45	0.09	1.500	1.500
Cesium diuranate (beta):	(331.8)		-3219.400	(-3023.400)
^{Cs} 2 ^U 2 ^O 7 (30;;113,108				(10.000)
Lithium uranium trioxide:		38.24	-1522.100	
LiU0 ₃ (;116;167)	0.04	1.700	
Lithium monouranate:	(133.)	43.95	-1970.100	(-1855.000)
Li ₂ UO ₄ (111;116;111,108		0.10	4.000	
Magnesium monouranate:	131.90	44.70	-1857.000	-1749.300
MgU0 ₄ (30;116;106		0.04	1.300	1.300
Potassium uranium trioxide:		47.55	-1522.900	
KUO ₃ (;116;167)	0.03	1.600	
Potassium monouranate:	(180.3)	74.12	-1920.300	(-1798.100)
K ₂ U0 ₄ (111;45;111,108) (6.3)	0.08	4.000	(5.000)
Sodium uranium trioxide:	132.84	42.36	-1494.600	-1412.200
NaUO ₃ (93;116;166) 0.13	0.03	1.600	1.600
Sodium monouranate (alpha):	166.00	58.55	-1890.200	-1771.800
Na2 ^{UO} 4 (119;45;109,28) 0.30	0.07	4.500	4.500
Sodium monouranate (beta):	(166.8)	60.84		(-1761.800)
Na2 ^{U0} 4 (166;45;109,28) (2.0)	0.07	4.500	(4.700)
Sodium diuranate:		95 .3 4	-3195.300	
^{Na} 2 ^U 2 ^O 7 (;45;28)	0.05	2.500	
Trisodium uranium tetraoxide:	198.20		-2021.700	-1897.600
Na 3 ^{U0} 4 (118;;115) 0.40		6.000	6.000

Table 1. continued.

Name formula and (references) [*]	Entropy J/(mol·K)	Molar volume cm ³	Enthalpy of formation kJ/mol	Gibbs free energy of formation kJ/mol
Tetrasodium uranium pentaoxid	e:	80.21	-2454.800	
Na4 ^{U0} 5 (;28;28))	0.10	2.500	
6-sodium 7-uranium 24-oxide:			-11348.000	
Na ₆ ^U 7 ⁰ 24 (;;28))		8.000	
Rubidium uranium trioxide:		48.65	-1520.900	
кьио ₃ (;116;167))	0.05	1.700	
Rubidium monouranate:	(202.9)	78.62	-1923.000	(-1823.300)
Rb2U04 (111;116;111,108)		0.07	4.000	(5.000)
Strontium monouranate (alpha):		53.60 .1	-1985.300	
Sr ₂ U0 ₄ (;116;30)		0.02	2.100	
Strontium monouranate (beta):			-1986.600	
Sr ₂ U0 ₄ (;;30))		2.100	
Distrontium uranium pentaoxide	e :	77.85	-2625.900	
Sr ₂ U0 ₅ (;116;30)		0.04	2.500	
Distrontium triuranium 11-oxid	de:		-5234.200	
^{Sr} 2 ^U 3 ⁰ 11 (;;30))		3.300	
Tristrontium uranium hexaoxide	e :	94.83	-3248.000	
Sr ₃ U0 ₆ (;116;30))	0.03	2.500	
	Silic	ates		
Coffinite:		46.12		(-1886.000)
US10 ₄ (;45;166))	0.06		(20.000)
Soddyite:				(-3685.000)
$(U0_2)_2(Si0_4) \cdot 2H_20$ (;45;166))			(20.000)
Uranophane:***		224.9		(-6213.000)
$Ca(H_{3}O)_{2}(UO_{2})_{2}(SiO_{4})_{2} \cdot 3H_{2}O_{2}(141;166)$)	0.1		(25.000)

Table 1. continued.

Name formula and (reference	es)*	Entropy J/(mol·K)	Molar volume cm ³	Enthalpy of formation kJ/mol	energy of formation
Boltwoodite:*** K(H ₃ 0)UO ₂ (SiO ₄)	(;;166))			(-2695.000) (20.000)
Sodium boltwoodite:*** Na.7 ^K .3 ^{(H} 3 ^{0)U0} 2 ^{(Si0} 4)*	H ₂ 0 (;;166)			(-2919.500) (20.000)
Kasolite:*** Pb(UO ₂)SiO ₄ •H ₂ O	(;;166				(-2480.000) (20.000)
Sklodowskite:*** Mg(H ₃ 0) ₂ (U0 ₂) ₂ (Si0 ₄) ₂ .	^{4H} 2 ⁰ (;;166)			(-6319.000) (25.000)
Cuprosklodowskite:*** Cu(U0 ₂) ₂ (Si0 ₃ OH) ₂ ·6H ₂ O			,		(-5827.000) (25.000)
Weeksite:*** K ₂ (UO ₂) ₂ (Si ₂ O ₅) ₃ ·4H ₂ O	(;;166)	273.5 0.2		(-9043.000) (25.000)
Haiweeite:*** Ca(UO ₂) ₂ (Si ₂ O ₅) ₃ ·5H ₂ O	(;;166)			(-9396.000) (25.000)

- References: Reference numbers are given in the form (A;B;C), where
 A represents references to the entropy, B to the molar volume,
 and C to the enthalpy or Gibbs free energy of formation.
 Multiple references to a property are separated by a comma.
- ** The structures of $(3 UO_3 \cdot 2H_2O, (4 UO_3 \cdot H_2O, and UO_3 \cdot 0.5H_2O)$ are related and should be expressed as $(3 - U_2O_5(OH)_2 \cdot 3H_2O, (4 - U_2O_5(OH)_2 \cdot H_2O)$, and $U_2O_5(OH)_2$ (see text and Porte et al., 1962). The structures of $(4 - UO_3 \cdot 2H_2O)$ and $(3 - UO_3 \cdot H_2O)$ are also related and should be given as $(4 - UO_2(OH)_2 \cdot H_2O)$ and $(5 - UO_2(OH)_2)$ (see text and Porte et al., 1962).
- *** The formulas are based upon the work of Stohl and Smith (1981).

molality. Estimated values are enclosed in						
parentheses. Uncertainties are listed below						
values		······				
		Enthalpy	Gibbs free			
Aqueous species	Entropy	of	energy of			
(references)*	p	formation	formation			
``````````````````````````````````````	J/(mol·K)	kJ/mol	kJ/mol			
·						
u ⁴⁺	414.	-591.200	-530.950			
(56;56)	20.	3.200	2.200			
ион ³⁺	(102)	( 929 000)	7(1,000			
(89;89)	(192.) (10.)	(-828.000) (4.000)	-764.000 4.000			
	(10.)	(4.000)	4.000			
U(OH) 5 (1166)			(-1630.400)			
⁵ (;166)			(6.000)			
uo ²⁺ 2 (23;23)	-97.0	-1018.800	-952.650			
	3.8	2.500	2.500			
UO ₂ (OH) ⁺			-1160.500			
2 (;44)			, 3.000			
···· 2+						
(U0 ₂ ) ₂ (OH) ₂ ²⁺			-2347.500			
(;7)			3.000			
$(n_{0})$ $(n_{1})^{+}$						
(U0 ₂ ) ₃ (OH) ⁺ 5			-3954.500			
(;7)			3.000			
00,003			-1532.700			
(;19,166)			3.000			
(,1),100)			5.000			
(UO,),(OH),CO,			-4113.300			
(;19,166)			8.000			
	2_					
(U0 ₂ ) ₁₁ (OH) ₁₂ (CO	$(3)_{6}^{2-}$		(-16700.000)			
(;19,166)	5 0		(30.000)			
$(u0_2)_3(c0_3)_6^{6-}$			-6312.200			
(;168,166)			15.000			
$u_{2}(c_{3})_{3}^{4-}$			-2658.500			
(;168,89)			5.000			

Table 2. Thermodynamic properties of selected aqueous uranium species. The reference state is the hypothetical ideal solution with unit molality. Estimated values are enclosed in parentheses. Uncertainties are listed below values

.

Aqueous species (references)*		Entropy	Enthalpy of formation	Gibbs free energy of formation
		J/(mol·K)	kJ/mol	kJ/mol
F ³⁺				-861.900
-	(;89)			3.000
$F_{2}^{2+}$				-1177.000
2	(;89)			3.000
F ⁺ 3				-1485.000
3	(;89)			3.500
F [•] 4				-1792.500
-	(;89)		.*	3.500
F ₅				-2083.000
5	(;89)			3.500
0 ₂ F ⁺				-1263.500
2	(;89)			4.000
$0_2 F_2^{\bullet}$				-1567.500
	(;89)			4.000
$0_2 \overline{F_3}$				-1862.500
	(;89)			4.000
$0_{2}F_{4}^{2-}$	(			-2151.500
-	(;89)			4.000
0 ₂ 50°4	(			-1713.000
	(;89)			4.000
0 ₂ (s0 ₄ )	2-			-2466.000
₽ T	~(;89)			4.000

Aqueous species (references)*	Entropy	Enthalpy of formation	Gibbs free energy of formation
	J/(mol·K)	kJ/mol	kJ/mol
$10^{4}$			-2090.000
2 4 (;89)			4.000
U0 ₂ (HP0 ₄ ) ₂ ²⁻			-3235.500
- (;44)			4.000
^{UO} 2 ^H 2 ^{PO} 4 ⁺ (;89)			-2100.500
2 2 4 (;89)		.•	4.000
U0 ₂ (H ₂ P0 ₄ ) [°] ₂			-3244.500
(;89)			4.000
U02(H2P04)3			-4385.000
(;89)			5.000

* Reference numbers are given in the form
 (A;C) as discussed in Table 1.

uranium phases are referenced. Any improvement in the enthalpy of formation of  $U_3O_8$  will change the values throughout the network.

Cordfunke and Aling (1965), Goto (1968), Huber and Holley (1969), Ackermann and Chang (1973), Dharwadkar and Chandrasekharaiah (1973), and Cordfunke et al. (1975) have shown that  $U_3O_8$  is not necessarily stoichiometric. Ackermann and Chang (1973) have shown that  $P_0 > 1$  atm is required 2

to maintain the stoichiometric oxide above 840 K. Consequently, the large scatter in the high temperature heat-capacity and heat-content data of Powers (1949), Khomyakov et al. (1964) and Maglic and Herak (1970) may be attributable to differences in sample stoichiometry resulting from preparation under varied conditions and subsequent loss of oxygen in the heat-content experiments. Ackermann and Chang (1973) state that the composition of  $U_3O_8$  heated above 870 K prior to an experiment must be questioned, suggesting that the composition will depend upon the thermal history of the oxide sample. Stoichiometric  $U_3O_8$  heated to 1300 K in air partially dissociates. These samples are reluctant to return to the stoichiometric composition (Ackermann and Chang, 1973). Also, chemical analyses for uranium based upon determination of  $U_3O_8$  at temperatures above 1000 K would be subject to error (Ackermann and Change, 1973).

Huber and Holley (1969) were careful to determine the composition of their reaction products and to extrapolate (by least squares) the results to stoichiometric  $U_30_8$ . They obtained  $-3574.8 \pm 2.5$  kJ/mol for the heat of formation of  $U_30_8$  at 298.15 K. Combining this value with the entropy of  $U_30_8$ ,  $S_{298}^2 = 282.6$  J/mol·K, determined by Westrum and Gronvold (1959) and Girdhar and Westrum (1968) yields the Gibbs free energy of formation at 298.15 K,  $\Delta G_{f,298}^2 = -3369.4 \pm 2.5$  kJ/mol.

The heat capacity of  $\alpha$ -U₃0₈ has been measured from 5 to 350 K by Westrum and Gronvold (1959). Girdhar and Westrum (1968) measured the heat capacity of U₃0₈ between 300 and 555 K defining the  $\alpha$ - $\beta$  transition at 482.7 K. Powers (1949) and Khomyakov et al. (1964) measured the heat capacity of U₃0₈ between 477 and 1254 K and 623 and 1273 K, respectively. The data of Powers (1949) and of Khomyakov et al. (1964) are of low quality. The heat content of U₃0₈ has been measured by Maglic and Herak (1970) between 482 and 927 K.

γ-U03

The enthalpy of formation of  $\gamma$ -UO₃ at 298.15 K has been determined from U₃O₈ by two thermochemical cycles. Fitzgibbon et al. (1967) determined the heat of solution of mechanical mixtures of UO_{2.028} and  $\gamma$ -UO_{2.993}, extrapolating their results to stoichiometric  $\gamma$ -UO₃. U₃O₈ was dissolved in the same solvent (0.057 M ceric sulfate in 1.5 M sulfuric acid). Based upon the difference in the heats of solution of  $\gamma$ -UO₃ and U₃O₈ (corrected to the value given above), Fitzgibbon et al. (1967) obtained -1223.4  $\pm$  2.5 kJ/mol for the enthalpy of formation of  $\gamma$ -UO₃ at 298.15 K. The second thermochemical cycle involved the measurement of the dissociation pressure of reaction (1) by Cordfunke and Aling (1965) and the extrapolation of the heat of the reaction (Cordfunke et al., 1975) to 298.15 K by the third law method, equation (2).

$$3\gamma - UO_{3}(c) = U_{3}O_{8}(c) + 1/2 O_{2}(g)$$
(1)  
$$\Delta H_{r,298}^{\circ} = 1/2RT \ln P_{O_{2}} - \int_{298.15}^{T} \Delta C_{p}^{\circ} dt + T [\Delta S_{298}^{\circ} + \int_{298.15}^{T} \Delta (C_{p}^{\circ}/T) dt ] (2)$$

Cordfunke et al. (1975) obtain  $-1223.8 \pm 0.8$  kJ/mol for the enthalpy of formation of  $\gamma$ -UO₃ at 298.15 K based upon the enthalpy of formation of U₃O₈ given above.

The weighted average of these results,  $-1223.7 \pm 2.1$  kJ/mol combined with the entropy for  $\gamma$ -UO₃ (S₂₉₈ = 96.11 J/mol·K, Westrum, 1966) yields  $-1145.6 \pm 2.1$  kJ/mol for the Gibbs free energy of formation of  $\gamma$ -UO₃ at 298.15 K.

An additional determination of the heat of formation of  $\gamma$ -UO₃ not dependent upon the heat of formation of  $U_3O_8$  was made by Vidavskii et al. (1965). The thermochemical cycle involved the dissolution of  $\gamma$ -UO₃ in hydrofluoric acid and literature values for the enthalpy of formation of  $UF_6$  and aqueous HF and the enthalpy of hydrolysis of  $UF_6$  in water. Usina the heat of solution for  $\gamma$ -UO₃ given by Vidavskii et al. (1965), the enthalpy of hydrolysis of  $UF_6$  in water (Popov et al., 1957), the enthalpy of formation of HF+44.5 H₂O (Johnson et al., 1973), UF₆ (Settle et al., 1963), and H₂O (Wagman et al., 1968), one obtains the enthalpy of formation of  $\gamma$ -UO₃ at 298.15 K as -1219 ± 7.5 kJ/mol. Johnson et al. (1973) have used the Vidavskii et al. (1965) cycle in reverse in order to calculate the heat of formation of HF•10 H₂O. The value derived from this cycle, assuming the heat of formation of  $\gamma$ -UO₃ to be -1223 ± 6 kJ/mol as was done by Johnson et al., is in good agreement with, but at the more positive end of a narrow range of values derived from twelve other Hess cycles. If the heat of formation of aqueous HF is taken from the JANAF Tables (Stull and Prophet, 1971), the enthalpy of formation of  $\gamma$ -UO₃ as determined by the Vidavskii cycle becomes -1225.5 ± 7.5 kJ/mol or -1224.6 ± 7.5 kJ/mol if the enthalpy of hydrolysis of UF₆ given by Rand and Kubaschewski (1963) is chosen. Consequently, within the limits of the experimental error, the value of the heat of formation of  $\gamma$ -UO₃ obtained from U₃O₈ and from UF₆ are in agreement.

Johnson (1979) has redetermined the enthalpy of formation of UF₆ and using this value, corrected the Hess cycle discussed above. Johnson obtained  $-1224.1 \pm 2.6 \text{ kJ/mol}$  for the enthalpy of formation of  $\gamma$ -UO₃ in excellent agreement with Cordfunke et al. (1975).

Jones, Gordon, and Long (1952) reported low-temperature heat-capacity measurements for a sample of  $UO_3$  prepared by heating uranyl nitrate for eight hours at 300°C. Moore and Kelley (1947) used the same sample for heat-content measurements covering the temperature range from 415 to 886 K. Moore and Kelley noted that the sample obtained from Jones, Gordon, and Long contained 1.17 percent water which could not be removed by heating the sample to 120°C. The sample was purified by heating the material seventy-nine hours at 550° to 600°C in dry oxygen. Moore and Kelley noted that this treatment did not alter the orange-yellow color of the material.

Neither group of investigators appear to have been aware that several polymorphs of  $UO_3$  existed. Hoekstra and Siegel (1961) have described five crystalline polymorphs of  $UO_3$  together with details of how each phase may be prepared and of the relative stability of the  $UO_3$  polymorphs.

Westrum (1966) measured the low-temperature heat capacities of three polymorphs of UO₃. Westrum presented his measured results in the form of a difference plot in which the heat capacities of the  $\alpha$ -UO₃ phase were used as the reference values. Westrum included the results of Jones et al. (1952) for comparison.

A comparison of the shape of the difference plots given by Westrum (1966) for  $\gamma$ -UO₃ and  $\beta$ -UO₃ and for the data of Jones et al. (1952) suggests that the sample used by Jones and coworkers was a mixture of both  $\gamma$ -UO₃ and  $\beta$ -UO₃ (Westrum, 1966). This interpretation is further supported by the work of Hoekstra and Siegel (1961). Hoekstra and Siegel have shown that dehydration of UO₂(NO₃)₂·6H₂O before denitration will result in the formation of an amorphous UO₃ rather than the  $\gamma$ -UO₃ phase produced by decomposition at higher temperatures. Furthermore, Hoekstra and Siegel suggest that amorphous UO₃(A) will follow the reaction series UO₃(A) +  $\alpha$ -UO₃ +  $\beta$ -UO₃ +  $\gamma$ -UO₃ when held at higher temperatures in an oxidizing environment.

The heat capacities of  $UO_3$  reported by Jones et al. (1952) are larger, at all temperatures, than the results reported by Westrum (1966) for the  $\beta$ and  $\gamma$ -UO₃ polymorphs. Giauque and Archibald (1937) have shown that the heat capacity of an amorphous powder (MgO in this case) can be as much a 1% greater than its crystalline equivalent. Consequently, the UO₃ sample used by Jones et al. may have contained a substantial portion of amorphous UO₃.

In view of the uncertainty associated with the sample used by Jones et al. (1952), it is recommended that the data of Westrum (1966) be used for the UO₃ polymorphs. The entropy of  $\gamma$ -UO₃ selected by CODATA (1977) is the value as given by Westrum.

UF₆

The enthalpy of formation of  $UF_6$  has been determined by Johnson (1979). The new value of -2197.7 kJ/mol represents a substantial revision from previously accepted values.

The enthalpy of formation of  $UO_2$  was determined from the enthalpy of combustion of  $UO_{2.055}$  to  $U_3O_8$  by Huber and Holley (1969) combined with earlier studies of the enthalpy of combustion of several  $UO_{2+x}$  compositions and the enthalpy of formation of  $U_3O_8$ . The enthalpy of formation of  $UO_2$  at 298.15 K is -1084.9±0.8 kJ/mol. Combining this value with the entropy of  $UO_2$  at 298.15 K (Parker et al., 1976) yields -1031.8±1.3 kJ/mol for the free energy of formation of  $UO_2$  at 298.15 K.

#### UC14

The enthalpy of formation of UCl₄ at 298.15 K has been determined by solution calorimetry from uranium metal and  $UO_2$  (Fitzgibbon et al., 1971, and Cordfunke et al., 1976). Fitzgibbon et al. (1971) determined the enthalpy of formation of UCl₄ from the dissolution of uranium metal and UCl₄ in both 4M and 6M HCl which had been carefully purged of dissolved oxygen. Previous experiments purporting to measure the heat of solution of uranium metal in HCl (see for example Argue et al., 1961) also measured the additional oxidation of the uranium by the oxygen dissolved in the acid solvent (Fitzgibbon et al., 1971). Argue et al. (1961) note that the heat of solution of uranium is as much as 62.8 kJ/mol larger when the experiment is performed in air.

The enthalpy of formation of UCl₄ has been determined from a reaction scheme involving the heat of solution of UO₂ by Fitzgibbon et al. (1971) and by Cordfunke et al. (1976). The same general thermochemical cycle was used in each investigation. Fitzgibbon et al. (1971) and Cordfunke et al. (1976) give  $-1020.9\pm4.2$  and  $-1017.8\pm2.7$  kJ/mol, respectively, for the enthalpy of formation of UCl₄. Although these results are in fairly good agreement the values given by Fitzgibbon et al. (1971) scatters by a somewhat larger difference than one would like to see. Fitzgibbon et al. (1971) list the heat of solution data for UCl₄ in Table 6 of their paper. One of these values differs from the mean of all the heat of solution values by more than twice the standard deviation of the mean. If this value is discarded, the enthalpy of formation of UCl₄ as determined with the data given by Fitzgibbon et al. (1971) becomes  $-1020.0\pm4.0$  kJ/mol.

A weighted average of the enthalpy of formation data given by Fitzgibbon et al. (1971) and Cordfunke et al. (1976) yields  $-1018.4\pm3.3$  kJ/mol for UCl₄ at 298.15 K. Using the entropy at 298.15 K given by Ginnings and Corruccini (1947), the Gibbs free energy of formation of UCl₄ is calculated to be  $-928.8\pm4.0$  kJ/mol.

### U02C12

Cordfunke et al. (1976) have determined the enthalpy of formation of  $U0_2C1_2$  from two reaction schemes, called the  $\gamma$ -U0₃ and Shchukarev cycles. The enthalpy of formation  $U0_2C1_2$  based upon the  $\gamma$ -U0₃ cycle is -1243.1±2.2 kJ/mol.

### U02

The Shchukarev cycle (Shchukarev et al., 1958) is based upon the heat of solution of UCl₄ in a hydrochloric acid solution containing ferric chloride as an oxidizing agent. The enthalpy of formation of UO₂Cl₂ determined by the Shchukarev cycle by Cordfunke et al. (1976) is -1247.2±4.2 kJ/mol. Since complete oxidation of U⁴⁺ is not guaranteed by this reaction scheme and since Cordfunke et al. did not determine the extent of oxidation of U⁺⁴ to U⁺⁶, the value of the enthalpy of formation obtained from this cycle cannot be considered as accurate as the value based upon the  $\gamma$ -UO₃ thermochemical cycle.

The entropy of U0₂Cl₂ at 298.15 K is given by Kelley and King (1961) as  $150.5\pm0.4$  J/mol·K. Combining this value with the enthalpy of formation of U0₂Cl₂ from the  $\gamma$ -U0₃ cycle yields -1145.2±-2.1 kJ/mol for the free energy of formation of U0₂Cl₂ at 298.15 K.

Phases referenced to  $U_30_8$ ,  $\gamma$ - $U0_3$ , and  $U0_2C1_2$ 

The thermodynamic properties of several of the reference phases have been revised as either better samples became available or as errors or problems with earlier studies were recognized. Further revision of these values will result in changes in the thermodynamic properties of the phases that reference uranium through them.

The thermodynamic properties of the secondary uranium reference materials UO₂ and  $\gamma$ -UO₃ have been determined from reactions involving U₃O₈. The enthalpies of formation of NaUO₃, LiUO₃, KUO₃, and RbUO₃ are based upon thermochemical cycles referenced to U₃O₈.

The reaction schemes used by several laboratories to obtain values for the thermodynamic properties of  $\beta$ -UO₃,  $\delta$ -UO₃,  $\alpha$ -UO₃,  $\epsilon$ -UO₃, UO₃ (amorphous, A), UO₂⁺⁺(ag), UO₃, ^{*}2H₂O,  $\beta$ UO₃^{*}H₂O, UO₂(NO₃)₂^{*}6H₂O, UO₂(NO₃)₂^{*}3H₂O, U₄O₉,  $\beta$ -U₃O₇, and CaUO₄ have been corrected to conform to the selected enthalpy of formation of  $\gamma$ -UO₃.

The thermochemical cycles used by several investigators to determine the thermodynamic properties of Na₃UO₄,  $\alpha$ -Na₂UO₄, NaUO₃,  $\alpha$ -Li₂UO₄, K₂UO₄, Rb₂UO₄, Cs₂UO₄, Cs₂U₂O₇, Na₂U₂O₇, K₂U₂O₇, Rb₂U₂O₇, and BaUO₄, have been corrected to be consistent with the selected enthalpy of formation of UO₂Cl₂. In addition, the data of O'Hare et al. (1972), O'Hare and Hoekstra (1973, 1974a, b, and c; 1975) have been corrected for an error in the impurity correction to the heat of solution of UO₂Cl₂ (O'Hare et al., 1980).

The enthalpy of formation of the alkali and calcium monouranates determined by Ippolitova et al. (1964) are substantially different than the results obtained by Osborne et al. (1974), O'Hare et al. (1976) and O'Hare and Hoekstra (1973; 1974a, b, and c). Time was not spent attempting to identify the source of the discrepancies since the article by Ippolitova et al. (1964) did not give the values of the auxillary data used in their thermochemical cycles.

The NaUO₃ problem

O'Hare and Hoekstra (1974c) have compared the reported data for the enthalpy of formation of  $NaUO_3$  and found it to be in good agreement. The values reported by O'Hare and Hoekstra (1974c) were -1495.8±3.3, -1494, -1492.4±8.0, and -1440±17kJ/mol from O'Hare and Hoekstra (1974c), King et al. (1971), Cordfunke and Loopstra (1971), and Battles et al. (1972, AH_f at 1000 K), respectively. Cordfunke et al. (1976) have published a revised value for the heat of formation of UO₂Cl₂ calculated from two thermochemical cycles. O'Hare and Hoekstra ( $\overline{1}97\overline{4}c$ ) used UO₂Cl₂ as the reference uranium phase in determining the heat of formation of NaUO3, consequently, their value must be corrected for the revised value for UO₂Cl₂. Since the correction is about -23 kJ/mol, the apparently consistent data set is shown to contain erroneous data. The data given by King et al. (1971) and Battles et al. (1972) may be disregarded from the present discussion because of the relatively large uncertainties associated with each set of data (O'Hare and Hoekstra, 1974c). The thermochemical cycle utilized by Cordfunke and Loopstra (1971) is based upon the heat of formation of  $\beta$ -UO₃ which is in turn based upon  $\gamma$ -UO₃ and upon U₃O₈.

Cordfunke and Ouweltjes (1981) have redetermined the enthalpy of formation of  $NaUO_3$  confirming the earlier result of Cordfunke and Loopstra (1971). They were unable to identify the source of the difference between these data and those given by O'Hare and Hoekstra (1974c).

The source of the discordant enthalpy of formation data for NaUO₃ was not determined by Cordfunke and O'Hare (1978). They averaged the results given by O'Hare and Hoekstra (1974c) and Cordfunke and Loopstra (1971) after supplementing the data of Cordfunke and Loopstra with the enthalpy of solution of NaSO₄ in 1.7M  $H_2SO_4$  in order to provide a more complete thermochemical cycle. Following the procedures of Cordfunke and O'Hare we obtain -1496.2 and -1519.6 kJ/mol, respectively, for the data of Cordfunke and Loopstra and for that of O'Hare and Hoekstra (1974c).

The enthalpy of formation of NaUO₃ derived from the data of Cordfunke and Loopstra (1971) is referenced to the enthalpies of solution and formation of U₃O₈ and  $\beta$ -UO₃. One may also derive the enthalpy of formation of NaUO₃ from the enthalpy of solution and formation of UO₂ under nearly identical conditions from the work of Cordfunke et al. (1976) if we assume that the enthalpy of solution of UO₂ in 1.5M H₂SO₄ and 1.7M H₂SO₄ are not appreciably different. This assumption would appear logical because Cordfunke et al. have shown that the enthalpy of solution of  $\beta$ -UO₃ (-87.9±0.1) in 1.5M H₂SO₄ is nearly identical to the enthalpy of solution in 1.7M H₂SO₄ (-88.1 ± 1.0, Cordfunke and Loopstra). Following the thermochemical cycle based upon UO₂ we obtain -1502.9 kJ/mol for the enthalpy of formation of NaUO₃.

The source causing the differences in the enthalpies of formation of NaUO₃ cannot be resolved from the data available at this time. An average of these results would appear an unreasonable solution to this problem.

Instead, the values based upon the work of Cordfunke and Loopstra (1971) have been chosen since the enthalpies of solution of each phase other than NaUO₃ has been confirmed elsewhere and since the thermochemical cycles used can be tied directly to the two secondary reference phase  $UO_2CI_2$  and  $\gamma-UO_3$  and to  $UO_2$  and  $U_3O_8$ . If this value proves to be in error for any reason other than a problem related to the purity of the NaUO₃ sample, the entire net of thermodynamic data for the uranium phases would have to be reevaluated.

Cordfunke and Ouweltjes (1981) have redetermined the enthalpy of formation of NaUO₃. Their result (-1494.6 $\pm$ 1.6 kJ/mol) is in good agreement with the result given by Cordfunke and Loopstra (1971). However this result does not clarify the descrepancy cited above. As the procedures followed by Cordfunke and Ouweltjes are straightforward, their result will be accepted for NaUO₃.

#### Revised enthalpy of solution of U0₂Cl₂

O'Hare, Flotow and Hoekstra (1980) have revised the enthalpy of formation of BaUO₄ based upon a revised value for the enthalpy of solution of UO₂Cl₂. O'Hare et al. accept -101.7±0.8 kJ/mol in place of the corrected value given earlier by O'Hare, Boerio, and Hoekstra (1976) of -92.8±0.6 kJ/mol. It is important to note that the enthalpies of formation of Li₂UO₄, K₂UO₄, Rb₂UO₄, Cs₂U₂O₇, and Cs₂UO₄ are also depend upon the enthalpy of solution of UO₂Cl₂ that has been revised. Because the most likely source of the difference in the enthalpy of solution of UO₂Cl₂ cited above would be the impurities cited by O'Hare et al (1976), a correction to the thermodynamic cycles used for Na₃UO₄, Na₂UO₄, and NaUO₃ would also appear likely. If the corrections are applicable to the thermochemical cycles used for NaUO₃ the magnitude would be small and consequently <u>not</u> alter the discussion presented in the preceeding section.

O'Hare and Hoekstra (1974) reported a value of  $-1897.3\pm3.3$  kJ/mol for the enthalpy of formation of Cs₂UO₄. Cordfunke and O'Hare (1978) report unpublished experimental results from which they obtained  $-1930.7\pm1.2$ kJ/mol (Cordfunke, 1975) for the enthalpy of formation of Cs₂UO₄. If we correct the results of O'Hare and Hoekstra for the enthalpy of solution and formation of UO₂Cl₂ used in their study, the resulting enthalpy of formation for Cs₂UO₄ is  $-1928.8\pm3.5$  kJ/mol. Thus the two results are in excellent argeement lending support to the justification for correcting the enthalpy of solution of UO₂Cl₂ in 1MHCl as proposed by Parker (1980, cited in O'Hare et al., 1980). Consequently, the thermochemical cycles reported by O'Hare and coworkers for Li₂UO₄, K₂UO₄, Rb₂UO₄, Cs₂UO₄ and Cs₂U₂O₇ have been corrected to the enthalpy of solution of UO₂Cl₂ reported by Parker (1980, cited in O'Hare et al., 1980).

### U03+

The enthalpy of formation of  $U0_2^{2+}$  may be calculated from the enthalpy of formation and heat of solution of  $U0_2(N0_3)_2$ °6H₂0 following the reaction scheme listed in Table 3. The enthalpy of formation of  $U0_2(N0_3)_2$ °6H₂0 may be calcualted from the heats of solution of  $\gamma$ -U0₃ and  $U0_2(N0_3)_2$ °6H₂0

(Cordfunke, 1964), the enthlpy of formation of  $\gamma$ -UO₃ (this report), and the enthalpies of formation of H₂O and various concentrations of nitric acid (Wagman et al., 1968) by the reaction scheme outlined in Table 4. The heat of solution of UO₂(NO₃)₂·6H₂O in 0.0004m HNO₃ is 4.73 kcal/mol (Bailey and Larson, 1971). The very dilute acid solution was used to prevent hydrolysis of UO₂⁺.

The enthalpy of formation of  $U0^{2+}_{2+}$  calculated in this report confirms the tentative value given by CODATA (1977). The CODATA (1977) value is accepted in this report.

#### Schoepite, paraschoepite and their dehydration products

Seven hydrates of UO₃ have been discussed in the literature (e.g., Wheeler et al., 1964). These phases include three dihydrates (Christ and Clark, 1960), three monohydrates (e.g., Cordfunke and Debets, 1964), and a hemihydrate (e.g., Dawson et al., 1956). Some earlier workers reported four monohydrate phases (e.g., Katz and Rabinowitch, 1951), however Cordfunke and Debets suggest that two were structurally identical and varied only in water content.

Several of the UO₃ hydrates are inferred to be structurally related because they are related through a thermal dehydration (in air) sequence. One series is represented by  $\beta$ -UO₃·2H₂O,  $\alpha$ -UO₃·H₂O, UO₃·0.8H₂O, UO₃·0.5H₂O, and finally a UO₃ polymorph that Dawson et al. (1956) suggest is monoclinic. The second series (note that the series does not contain a hemihydrate phase) involves  $\alpha$ -UO₃·2H₂O,  $\beta$ -UO₃·H₂O and a simple cubic UO₃ polymorph that can be oxygen difficient (with the limit about UO_{2.88}, Dawson et al.).

Porte et al. (1962) have studied the proton magnetic resonance spectra for  $\beta$ -UO₃·2H₂O and  $\beta$ -UO₃·H₂O suggesting the compounds are  $\beta$ -U₂O₅(OH)₂·3H₂O and  $\beta$ -UO₂(OH)₂, respectively. They further suggest that the hemihydrate should be designated as U₂O₅(OH)₂.

Based upon these findings, it is logical to assume that  $\alpha$ -UO₃·H₂O should be given as  $\alpha$ -U₂O₅(OH)₂·H₂O and  $\alpha$ -UO₃·2H₂O should be  $\alpha$ -UO₂(OH)₂·H₂O.

Dawson et al. (1956) and Debets and Loopstra (1963) found only one Xray pattern for  $UO_3$   $^{2}H_2O$  and assigned the pattern to  $\beta$ - $UO_3$   $^{2}H_2O$ . The cell volume and constants are identical to those given by Christ and Clark (1960) for schoepite II. However, Christ and Clark concluded that schoepite II was an intermediate phase between schoepite (designated schoepite I) and paraschoepite (designated schoepite III). It is reasonable to assume that the  $\beta$ - $UO_3$   $^{2}H_2O$  phase studied by Dawson et al. and Debets and Loopstra, as well as that sample upon which the enthalpy of formation of  $\beta$ - $UO_3$   $^{2}H_2O$ is based (Cordfunke, 1964) represented a mixture of the phases paraschoepite and schoepite as found by Christ and Clark.

Schoepite and paraschoepite should represent the ideal  $\beta$ - and  $\alpha$ -UO₃°2H₂O phases discussed above. The relationship of masuyite (UO₂(OH)₂°H₂O, Donnay and Ondik, 1973) to these phases is unknown.

Table 3. Reaction scheme and enthalpy values used to calculate the enthalpy of formation* of  $U0_2^{2^+}$  at 298.15 K.

1. 
$$UO_2(NO_3)_2 \cdot 6H_2O_{(c)} + UO_2^2(aq) + 2NO_3(aq) + 6H_2O_{(k)}$$
  $\Delta H_1 = 19.8 \pm 0.1$   
2.  $6H_2O_{(k)} + 6H_2(g) + 3O_2(g)$   $\Delta H_2 = 1715.1 \pm 0.3$   
3.  $2NO_3(aq) + N_2(g) + 3O_2(g)$   $\Delta H_3 = 414.7 \pm 0.2$   
4.  $U_{(c)} + 7O_2(g) + N_2(g) + 6H_2(g) + UO_2(NO_3)_2 \cdot 6H_2O_{(c)}$   $\Delta H_4 = -3170.0 \pm 2.5$   
5.  $U_{(c)} + O_2(g) + UO_2^2(aq)$   $\Delta H_5 = -1020.4 \pm 2.5$ 

*This value differs by -1.6 kJ/mol from the value listed in Table 1. This difference arises from the differences in the enthalpy of formation given in Table 4 and used in reaction 4 in this thermochemical cycle.

Table 4. Reaction scheme and enthalpy values used to calculate the enthalpy of formation* of 
$$UO_2(NO_3)_2^{\circ}$$
 6H₂O at 298.15 K.  
1.  $\gamma - UO_3(c) + [211.7HNO_3^{\circ} 1957.9H_2O] + [UO_2^{2} + 2NO_3 + 209.7HNO_3^{\circ} 1958.9H_2O]$   
2.  $[UO_2^{2} + 2NO_3 + 211.7HNO_3^{\circ} 1953.9H_2O] + UO_2(NO_3)_2^{\circ} 6H_2O(c) + [211.7HNO_3^{\circ} 1957.9H_2O]$   
3.  $[UO_2^{2} + 2NO_3 + 209.7HNO_3^{\circ} 1958.9H_2O] + UO_2(NO_3)_2^{\circ} 6H_2O(c) + [211.7HNO_3^{\circ} 1957.9H_2O]$   
4.  $H_2(g) + N_2(g) + 302(g) + 5H_2O(p) + [2(HNO_3^{\circ} 2.5H_2O_3^{\circ})]$   
4.  $H_2(g) + N_2(g) + 302(g) + 5H_2O(p) + [2(HNO_3^{\circ} 2.5H_2O_3^{\circ})]$   
5.  $U(c) + 3/2^{\circ} 0_2(g) + 5H_2O(p) + [2(HNO_3^{\circ} 2.5H_2O_3^{\circ})]$   
6.  $5H_2(g) + 5/2^{\circ} 0_2(g) + 5H_2O(p) + [2(HNO_3^{\circ} 2.5H_2O_3^{\circ})]$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + N_2(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + 802(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + 702(g) + 702(g) + 002(NO_3^{\circ})_2^{\circ} 6H_2O_3^{\circ}(c)$   
7.  $U(c) + 6H_2(g) + 702(g) + 702(g) + 702(g) + 702(g) + 702(g) + 702(g) + 702(g)$   
7.

### Estimated thermodynamic properties of rutherfordine, sharpite,

#### schoepite, and dehydrated schoepite

Eight enthalpy of solution measurements (in HCl·10.01H₂0) were made on rutherfordine samples obtained from two preparations. No evidence of major deviations of the enthalpy of solution from within or between the samples was apparent. The average of the eight measurements was -11680  $\pm$  118 J/mol, based upon the chemical formula UO₂(CO₃) .86(OH) .28°0.57H₂0 obtained from chemical anlayses yielding UO₃ of 84.5%, CO₂ of 11.2% and H₂0 of 3.8% (analyses by Floyd Brown and John Marinenko, USGS).

The enthalpy of formation of rutherfordine was calculated from the observed enthalpy of solution cited above, the enthalpy of solution of  $\beta$ -UO₃·H₂O in HCl·10.01H₂O calculated from the data of Cordfunke (1964), the enthalpy of solution of  $\gamma$ -UO₃ and H₂O in HCl·10.01H₂O from Cordfunke et al. (1976), the enthalpy of formation of CO₂ and H₂O from Robie et al. (1979), and the enthalpies of formation of  $\gamma$ -UO₃ and  $\beta$ -UO₃·H₂O given by Cordfunke and O'Hare (1978). The enthalpy of solution of CO₂ in HCl·10.01H₂O and corrections for the vaporization of the solvent into the CO₂ gas formed in the reaction were calculated from the data of Robb and Zimmer (1968). The enthalpy of formation of rutherfordine, UO₂(CO₃) 86(OH) 28·0.57H₂O, calculated from the afore mentioned data was -1833.5±2.0 kJ/mol.

The thermochemical cycle used in this study ties the thermodynamic properties of rutherfordine directly to those of  $\gamma$ -UO₃ and to UO₂Cl₂ since the enthalpy of formation of UO₂Cl₂ was determined by Cordfunke et al. (1976) using HCl*10.01H₂O as a solvent and  $\gamma$ -UO₃ as the reference uranium phase.

Rutherfordine is described as an anhydrous UO₂CO₃ (Frondel, 1958; Bullwinkle, 1954; and Clark and Christ, 1956), but most chemical analyses for rutherfordine show small amounts of H₂O to be present (Frondel and Meyrowitz, 1956; Miller, Pray and Munger, 1949; and Chernyaev, Golovnya, and Ellert, 1956). Vaes (1947) proposed the mineral name diderichite for a slightly hydrated uranyl carbonate found as crusts of fibers and laths in Katanga, Zaire. Frondel and Meyrowitz (1956) noted the similarity in the optical properties and X-ray powder diffraction patterns of a specimen of diderichite and those of rutherfordine and suggested that the minerals were identical. Some of the chemical analyses reported by Frondel and Meyrowitz were corrected for impurities of Pb, Ca, Si and Fe by assuming these elements to be present as hydrous phases which may bias their corrected analyses toward anhydrous uranyl carbonate.

Christ and Clark (1960) have discussed the similarity in the structure of  $UO_2CO_3$ ,  $UO_2(OH)_2$ ,  $UO_2F_2$ ,  $CaUO_2O_2$ , and  $UO_2(OH)_2$  H₂O and Frondel and Barnes (1958) disucssed PDUO₂O₂. Water is not essential to the rutherfordine structure, but the similarity in structures allows hydroxyl to substitute for carbonate in the structure.

A comparison of the X-ray powder diffraction data for the calorimetric rutherfordine sample with the rutherfordine samples studied by Frondel and Meyrowitz (1956), Chernyaev et al. (1956) and by Clark and Christ (1956) can be made using the data given in Table 5. The X-ray powder diffraction patterns for these samples are identical within the experimental limitations of each study. No evidence was found to indicate that the sample used in this study was a mechanical mixture of  $UO_2CO_3$  and  $UO_2(OH)_2$ ·H₂O.

Sharpite,  $U0_2C0_3$ ·H₂O, is the only recognized hydrated uranyl carbonate (Frondel, 1958, and Chernyaev et al., 1956). Sharpite is less stable than rutherfordine (Frondel, and Chernyaev et al.) and undergoes thermal decomposition to  $C0_2$  gas, steam, and amorphous  $U0_3$  (orange in color) at 600 K (Frondel, 1958). No X-ray powder diffraction data are available for sharpite, but Chernyaev et al. have synthesized the phase at 413 K from a concentrated aqueous solution of uranyl nitrate at elevated  $C0_2$  gas pressure. The lower thermal stability of sharpite compared to rutherfordine and the color change (from yellow to orange) associated with the thermal decomposition of sharpite preclude its presence as a contaminant in the rutherfordine sample studied here.

The synthesis of rutherfordine has followed two reaction schemes, either  $UO_3(solid) + CO_2(gas) + steam + UO_2CO_3 + steam or <math>UO_2(OH)_2 \cdot nH_2O(solid) + CO_2(gas) + UO_2CO_3 + nH_2O$ . Miller et al. (1949) and Chernyaev et al. (1956) followed the former procedure obtaining  $UO_2(CO_3)_{95}(OH)_1 \cdot 0.15H_2O$ and  $UO_2(CO_3)_{95}(OH)_1 \cdot 0.1H_2O$ , respectively, for the rutherfordine phases at 373 and 298 K, also respectively. Blake et al. (1956) also followed the former procedure and reported 0.97 moles of  $CO_3$  per mole of U in the product formed at about 373 K and 200 bars  $CO_2$  pressure (no analysis for  $H_2O$  given). The latter reaction was utilized by Bullwinkel (1954), Frondel and Meyrowitz (1956), Sergeyeva et al. (1972) and in this study. Frondel and Meyrowitz obtained a phase with the composition  $UO_2(CO_3)_9(OH)_2$  at 573 K. Bullwinkel did not report a full chemical analysis of the rutherfordine sample which he prepared, but did note that the ratio of  $U/CO_2$  was approximately 1. The sample of rutherfordine prepared by Chernyaev et al. was dried at 373 K in air prior to chemical analysis and consequently may have lost some water present at the time of crystallization. Sergeyeva et al. do not provide analyses of their samples prepared at 298 K and at higher temperatures.

The data provided by Sergeyeva et al. (1972) have been assumed to represent anhydrous  $UO_2CO_3$  and have been used to derive the enthalpy and free energy of formation of rutherfordine (e.g., Cordfunke and O'Hare, 1978; and Langmuir, 1978). Cordfunke and O'Hare obtained a value of -1561.9 kJ/mol for the free energy of formation of rutherfordine from the solubility of rutherfordine reported by Sergeyeva et al. Langmuir obtained -1563.1 kJ/mol from the same data. Cordfunke and O'Hare estimated the entropy of  $UO_2CO_3$  (139 J/mol^{*}K) from Latimer's Rules and calculated the enthalpy of formation of rutherfordine as  $-1686.1 \pm 4.2$  kJ/mol. Langmuir estimated the entropy of rutherfordine as 142.7 J/mol^{*}K and calculated -1689.9 kJ/mol for the enthalpy of formation of  $UO_2CO_3$ . Cordfunke and O'Hare also calculated the enthalpy of formation of rutherfordine ( $-1696.2\pm7.5$  kJ/mol) from the phase equilibria data given by Sergeyeva et al.

Calcula		Chernyaev,	Frondel		Clark and	Present	
hk1	d _{hk 1}	et al. (1956)	Meyrowitz	(1956)	Christ (1956)	study	
020	4.603	4.64	4.60		4.61	4.60	
110	4.287	4.33	4.29		4.30	4.29	
011	3.893	3.90	3.90		3.92	3.86	
101	3.214	3.22	3.21		3.23	3.20	
121	2.635	2.65	2.64		2.64	2.63	
200	2.423	2.42	2.41		2.42	2.42	
040	2.301	2.31	2.32		2.309	2.30	
002 220	2.148 2.144	2.14	2.15		2.156	2.14	
211	2.057	2.06	2.05		2.062	2.05	
origina	l ruther	fordine cell par	ameters				
ć		4.84	4.82		4.84	4.84	
t		9.28 4.28	9.20 4.30		9.20 4.29	9.20 4.28	
cell pa	rameters	for rutherfordi	ne fired to	o constan	t weight at 523	к	
ĉ	l					4.82	
t						9.12 4.28	
cell parameters for rutherfordine fired to constant weight at 700 K**							
ĉ	l					4.82	
t c	)					9.06 4.28	
* Data calculated by Clark and Christ (1956)							
**Sharpite, $U0_2C0_3$ •H $_20$ reacts to form $C0_2$ gas, steam, and amorphous							
$UO_3$ at 600 K (Frondel, 1958). Therefore, the sample is not							
sharpite (see discussion in text).							

Table 5. X-ray powder diffraction data for several rutherfordine samples

In order to compare these results we must examine the validity of the estimates of the entropy of rutherfordine. As a first approximation we may plot the entropy of several related phases against their gram formula weight and examine the consistency of the entropy estimates for rutherfordine. Three "families" of data are presented in Figure 1 as carbonates, chlorides, and sulfates. In each "family" the phases represented contain Ca, Sr, Ba, Pb, and  $UO_2$ . The values given for the uranyl phases are consistent with the linear trends of the related phases, however, both the uranyl sulfate and carbonate values are estimated as is the value for SrSO₄. The entropy values were taken from Robie et al. (1979), Kelley and King (1961), or Cordfunke and O'Hare (1978). It should also be noted that the carbonate phases selected were the orthorhombic aragonite group. Thus, within the precision of the data for the carbonate group and within the limits of this simple model, the values of the entropy of anhydrous rutherfordine are reasonable.

Lemire and Tremaine (1980) estimated the entropy of rutherfordine as 194 J/mol·K from the solubility data reported by Nikolaeva (1976). This estimate appears to be too large for the anhydrous carbonate, but agrees with the estimated entropy for sharpite listed in Table 1.

The uncertainties of the two values for the enthalpy of formation of rutherfordine calculated by Cordfunke and O'Hare (1978) barely overlap. Cordfunke and O'Hare took a weighted average of these values as the best value for the enthalpy of formation of rutherfordine ( $-1690.3\pm8.4$  kJ/mol), a value which is close to that given by Langmuir (1978), but derived from different values of the entropy and Gibbs free energy of rutherfordine.

If we correct the enthalpy of formation of the rutherfordine sample,  $UO_2(CO_3)_{86}(OH)_{28}$ °0.57H₂O (this study), to anhydrous rutherfordine assuming no enthalpy of mixing terms, we obtain -1691.6 ± 4.0 kJ/mol based upon corrections for 0.43 H₂O and 0.14(UO₃°2H₂O). This value is in good agreement with the values obtained by Langmuir (1978) and Cordfunke and O'Hare (1978).

A more appropriate correction to the anhydrous composition  $U0_2C0_3$  may be made if we estimate the enthalpy of hydration for the 0.57 H₂O. A portion of the sample was heated to constant weight at 523 K to remove the 0.57 H₂O. This temperature was chosen on the basis of differential scanning calorimetry temperature traces combined with weight loss determinations made with a microbalance.

Two measurements of the enthalpy of solution of the  $U0_2(C0_3)_{.86}(OH)_{.28}$  sample yielded -17099 J/mol in HCl*10.01 H₂O. Combining this value with the enthalpy of solution of the rutherfordine sample discussed previously and the enthalpy of solution of H₂O (Cordfunke et al., 1976) in HCl*10.01 H₂O allowed the calculation of the enthalpy of hydration, -5.42 kJ/ 0.57 moles of H₂O.

The enthalpy of formation of  $UO_2CO_3$  may be calculated from the enthalpy of hydration previously calculated and the enthalpies of formation of H₂O and




Figure 1: A comparison of a linear approximation relating the gram formula weights and entropies (at 298.15 K) of several families of phases. The three families shown are chlorides, sulfates, and carbonates, represented by squares, octagons, and triangles, respectively. The associated cations representing the phases plotted along each curve are  $Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ ,  $Pb^{2+}$ , and the uranyl ion U02⁺, respectively, from the lowest to the greatest gram formula weight. Only members of the orthorhombic aragonite group of carbonate minerals were used.

 $U0_3$  H₂O, again assuming no other enthalpy of mixing terms. Following these assumptions, the enthalpy of formation  $U0_2C0_3$  is -1704.1±2 kJ/mol. Using the estimate of the entropy of rutherfordine, 142.7 J/mol, given by Langmuir (1978) and the ancillary thermodynamic data from Robie et al. (1979), the free energy of formation of rutherfordine may be calculated from the derived enthalpy of formation as -1577.0 kJ/mol with an estimated uncertainty of ±2 kJ/mol. These results are significantly different from earlier estimates.

There are several lines of evidence to suggest that the control of dissolved uranium (VI) in solutions saturated with  $CO_2$  gas at 1 bar is main-tained by different phases in the nominally acidic and basic regions.

Ciavatta, Ferri, Grimaldi, Palombari, and Salvatore (1979) have shown that in weakly acid solutions the complexes  $UO_2(OH)_2CO_2^\circ$  and  $(UO_2)_3(OH)_5CO_2^\circ$ are formed. They further conclude that the species  $(UO_2)_3(OH)_3CO_3^\circ$  results from the substitution of  $CO_3^\circ$  for two OH⁻ without a substantial structural change from the uranyl hydrolysis species,  $(UO_2)_3(OH)_5^\circ$ .

Scanlan (1977) has shown the distribution of uranyl species as a function of pCO3⁻ and has shown the variation of pCO3⁻ with pH and concentration of NaHCO3. Similar data are presented by Babko and Kodenskaya (1960). From Scanlan's data we may predict that the solutions studied by Sergeyeva et al. (1972) would be dominated by the monouranyl species discussed by Ciaratta et al. (1979) where the pH was less than 5.3 (at pH 5.3 and  $P_{CO2}$  = 1 bar, concentration of monouranyl species = concentration of uranyl dicarbonate complex).

Scanlan (1977) has presented spectral data for the uranyl dicarbonate complex which differs substantially from that given by Bullwinkel (1954). Scanlan has shown that the solutions used by Bullwinkel (and consequently by Sergeyeva et al.) allowed hydrolysis of the uranyl solution species.

Finally, the shape of the solubility curve for rutherfordine (Sergeyeva et al., 1972) is similar to the solubility curve for aluminum in solutions of variable phosphate concentration given by Goldshmid and Rubin (1978) and shown in Figure 2. A double minimum was found in the curve for aluminum solubility similar to that shown in the curve for uranium solubility. Goldshmid and Rubin examined the precipitates in equilibrium with the acidic and basic solutions finding sodium taranakite precipitating from the acidic solutions and AlPO4 precipitating from the basic region.

The results presented by Cole and Jackson (1950) perhaps have greater relevance to this study, because of the procedures followed in preparing their solutions for study (note the discussions of Hemingway, 1982, in this regard). Cole and Jackson excluded sodium from the phases which precipated from solutions similar to those studied by Goldshmid and Rubin (1978). Cole and Jackson found variscite,  $Al(OH)_2H_2PO_4$ , to be the major phase to precipitate at a pH of 3.8 and wavellite (labelled stenethite) [ $Al(OH)_2$ ]₃HPO₄H₂PO₄, the major phase at a pH of 5.5, both identified by electron diffraction (the precipitates were amorphous to X-rays).

The shape of the solubility curve for rutherfordine (see Figure 2) suggests, by analogy to the aluminum-phosphate system, that two phases controlled the uranium concentration in the studies of Sergeyeva et al. (1972). Also by analogy with the aluminum phosphate system we may suggest that the phase controlling the uranium solubility in the acidic pH region (here pH <5) was sharpite.

The presence of sharpite in the solutions studied by Sergeyeva et al. (1972) cannot be proven because these authors assumed equilibrium with rutherfordine was maintained and therefore did not look for other phases during their experiments. However, this hypothesis is consistent with the very limited natural occurrence of sharpite, the association of sharpite with uranophane (Frondel, 1958), and with the synthesis of sharpite by Chernyaev et al. (1956). Uranophane is thought (Frondel) to form through the interaction of meteoric water and primary or secondary uranium minerals in the zone of oxidation. Chernyaev et al. grew sharpite in an aqueous solution of uranyl nitrate and carbon dioxide at 413 K.

Although relatively good agreement was noted between the thermodynamic parameters for rutherfordine derived from the solubility data and from the relatively meager high temperature phase equilibrium data, substantial questions remain regarding the validity of the several assumptions required in the calculations. The major assumption, of course, is that the same phase is present in each set of experiments.

Cordfunke and O'Hare (1978) calculated the free energy of formation of rutherfordine from the average value of the equilibrium constant  $(8.0\pm4.0 \times 10^3)$  calculated for pH < 4.4 reported by Sergeyeva et al (1972) for reaction (3). Langmuir (1978) calculated the free energy of rutherfordine for a fit of eleven of the twelve solubility results reported

$$U_{2}^{C0}(c) + 2H_{(sol)}^{+} = U_{2}^{2}(sol) + H_{2}^{0}(l) + C_{2}^{0}(g)$$
 (3)

by Sergeyeva et al. assuming the solution species  $U0_2^{2+}$ ,  $U0_2C0^\circ$ ,  $U0_2(C0_3)_2^{-}$ , and  $U0_2(C0_3)_3^{-}$  and selected values for  $\beta_1$ ,  $\beta_2$  and  $\beta_3$ (the overall stability constant, e.g.,  $\beta_2 = [U0_2(C0_3)_2^{-}]7[U0_2^{+}][C0_3^{-}]^2$ ). Langmuir omitted the value given by Sergeyeva et al. for the lowest pH (3.22) experiment whereas Sergeyeva et al. gave the value double weight, assuming it to be more accurately determined. The solution species  $U0_2C0_3^\circ$ was assumed to be the only uranyl species other than  $U0_2^{+}$  present in the experiments having low pH and corrections to zero ionic strength were made in each set of calculations.

Ciavatta et al. (1979) have estimated the value of  $\beta_{121}$  (log  $\beta_{121} = -8.99\pm.05$ ) for reaction (4)

$$UO_2^{2+} + 2H_2O(1) + CO_2(g) = UO_2(OH)_2CO_2^{\circ} + 2H^+$$
 (4)

under conditions similar to those under which Sergeyeva et al. (1972) determined the solubility of rutherfordine. (Sergeyeva et al. estimated that  $\log \beta_1 =$ -9.87 for the uranyl carbonate monomer UO₂CO₃.) Ciavatta et al. have calculated the average number of H⁺ generated through reaction (4), as the pH and uranyl concentration of the solution are varied and with P_{CO} fixed at 0.98 bars. It is apparent from the data presented by Ciavatta et al. that an accurate definition of uranyl carbonate complex is necessary if the solubility

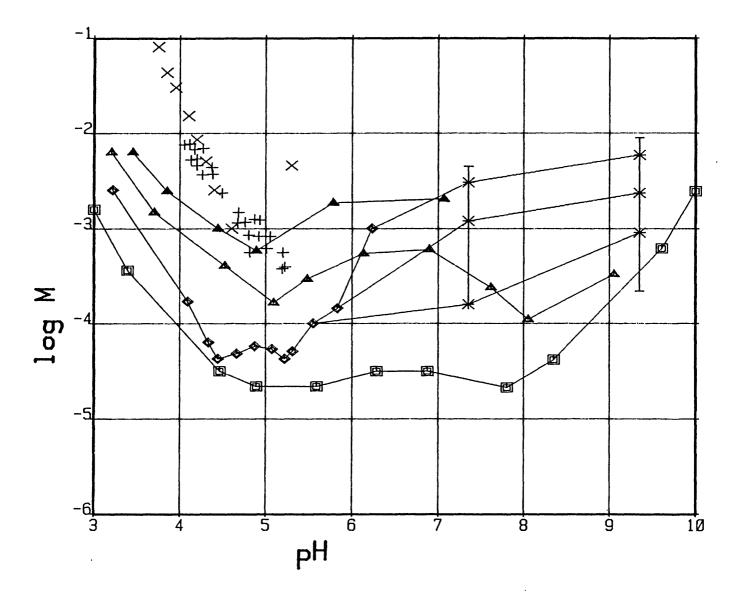



Figure 2: The molar concentration of aqueous aluminum or uranyl solution species (M) as a function of pH. The data of Goldshmid and Rubin (1978) for aluminum are shown as squares, and open and filled triangles, where the solutions contained 0.1, 0.5, and 1.0 M phosphate, respectively. The + and x symbols represent the data of Gayer and Leider (1955) and Babko and Kodenskaya (1960), respectively, for the solubility of UO3°2H20. The diamonds represent the data of Sergeyeva et al. (1972) for the solubility of rutherfordine. The * symbols represent the data of Babko and Kodenskaya (1960) for the solubility of uranyl carbonate at several concentrations of  $C0\frac{1}{2}^{-}(0.005)$ , 0.01 and 0.02 M from lowest to highest concentration of uranyl ions at each pH) and are connected to the data values of Sergeyeva et al. (1972) measured at equivalent values of dissolved  $CO_3^{2-}$ . The range of values obtained by Babko and Kodenskaya (1960) are shown by the vertical bars at pH 7.3 and 9.3.

experiments having solutions with a pH > 3.5 are to be properly interpreted. The problem is minimized however if only the experiment conducted in a solution having a pH of 3.22 is used.

Sergeyeva et al. (1972) have calculated the activity of  $U02^+$  in equilibrium with "rutherfordine" at a pH of 3.22 to be 1.66 x  $10^{-3}$ . From this result we may estimate the free energy of reaction (3) as -20.9 kJ and the free energy of "rutherfordine" as -1563.3±4 kJ/mol. This estimate for the free energy of rutherfordine is significantly less negative than that calculated from the calorimetric data. It is assumed here that the phase controlling the solubility at low pH is sharpite. The free energy of formation of sharpite calculated from the data given by Sergeyeva et al. is -1800.4±4 kJ/mol.

Results similar to those of Sergeyeva et al. (1972) have been published by Nikolaeva (1976). Interpretation of these results would follow the arguments applied to the results of Sergeyeva et al. The entropy of rutherfordine (194 J/mol·K) calculated from the data of Nikolaeva by Lemire and Tremain (1980) appears excessively large, probably indicating improper phase identification in the reaction studied.

In order to interpret the results presented by Sergeyeva et al. (1972) for reaction (5)

$$U0_2C0_3 + H_20_{(1)} = U0_2(0H)_2 + C0_2_{(g)}$$
 (5)

several assumptions must be made regarding the crystalline phases involved in the reaction. Sergeyeva et al. did not attempt to reverse reaction (5). Instead, they studied the formation of  $UO_2CO_3$  from the other components of the reaction as  $P_{CO}$  and T were varied. The composition of the rutherfordine phase was assumed to be  $UO_2CO_3$  and the uranyl hydroxide has been assumed to be  $\beta$ - $UO_2(OH)_2$ .

Wheeler et al. (1964) and Cordfunke and Debets (1964) have found evidence for three uranyl monohydrates and two uranyl dihydrates. The brief description of the synthesis procedures followed by Sergeyeva et al. (1972) indicates the phase they produced as a starting material for their experiments was schoepite. Cordfunke and Debets have shown that schoepite will be converted to  $\alpha$ -UO₂(OH)₂ in several days at 373 K. Sergeyeva et al. reported that the conversion of uranyl hydrate to UO₂CO₃ was completed in less than 24 hours. Consequently, the reaction studied by Sergeyeva et al. at 373 K was most likely reaction (6)

$$U0_2C0_3 + 2H_20_{(1)} = U0_3 \cdot 2H_20 + C0_2_{(g)}$$
 (6)

rather than reaction (5).

The data presented by Sergeyeva et al. (1972) for temperatures of 423 and 473 K most likely involved reaction (5) with the uranyl hydroxide of the  $\alpha$ -UO₂(OH)₂ form rather than the  $\beta$ -UO₂(OH)₂ form assumed by Langmuir (1978) and Cordfunke and O'Hare (1978). Wheeler et al. (1964) have shown that  $\alpha$ -UO₂(OH)₂ is converted to  $\beta$ -UO₂(OH)₂ in aqueous solutions at temperatures above 473 K and that schoepite is dehydrated at temperatures

above 413 K forming  $\alpha$ -UO₂(OH)₂. It must be assumed that the dehydration reaction occurred at a faster rate than did the conversion of the uranyl hydrate to rutherfordine.

The enthalpy of formation of rutherfordine may be calculated from the limited data given by Sergeyeva et al. (1972) by assuming that the two points defining reaction (5) give a reasonably valid estimate of the equilibrium change of 'CO₂ with temperature. The equilibrium constant calculated for reaction (5) is  $\log K_{(5)} = 8.43 - 3293/T$  and from this relationship, the enthalpy of reaction (5) is 63.0 kJ and the enthalpy of formation of rutherfordine is  $-1705\pm 6 \text{ kJ/mol}$ , both at 298.15 K. This estimate of the enthalpy of formation of rutherfordine is  $1705\pm 6 \text{ kJ/mol}$ , both at 298.15 K. This estimate of the enthalpy of formation of rutherfordine is in remarkable agreement with the estiamte based solely upon the calorimetric data given earlier ( $\Delta H_{7,298}^2 = -1704.1\pm 2 \text{ kJ/mol}$ ). The enthalpy of formation of  $\alpha$ -UO₂(OH)₂ required in this calculation (-1534.5 kJ/mol) was estimated from the calorimetric value for the enthalpy of formation of the partially dehydrated form, UO₃*0.85H₂O.

The entropy of dehydrated schoepite or  $\alpha$ -UO₂(OH)₂ may be estimated from the experimental data for reaction (5) given by Sergeyeva et al. (1972), the estimated entropy and free energy of formation of rutherfordine derived in this paper, and other ancillary thermodynamic data from Robie et al. (1979). The free energy of reaction (5) at 298.15 K, 14.9 kJ, may be calculated from the equilibrium constant given above. The free energy of formation of dehydrated schoepite or  $\alpha$ -UO₂(OH)₂ is estimated to be -1404.9 kJ/mol and the entropy to be 156.6 J/mol·K.

The entropy estimate for  $\alpha$ -UO₂(OH)₂ is considerably larger than the value estimated from Latimer's rules by Cordfunke and O'Hare (1978) for  $\beta$ -UO₂(OH)₂ of 134±8 J/mol·K or that estimated by Langmuir (1978) for  $\beta$ -U02(OH)2 from the presumed equilibrium between scheopite and  $\beta$ -U02(OH)2 at 333 K. However, this is not unreasonable because Zachariasen (1948) has shown that  $UO_2F_2$ , having a similar structure to  $UO_2(OH)_2$ , commonly exhibits stacking disorder in samples prepared at low temperature (that are removed upon heat treatment of the sample). Also, Porte, Gutowsky, and Boggs (1962) interpreted the broad band proton magnetic resonance spectrum of  $\beta$ -UO₂(OH)₂ and schoepite to represent the structures  $UO_2(OH)_2$  for the monohydrate and  $U_2O_2(OH)_2$   $^{\circ}3H_2O$  for the dihydrate. The estimates of the entropy of  $\beta = UO_2(OH)_2$  given by Langmuir and by Cordfunke and O'Hare are based upon an ordered structure while thermal dehydration of schoepite probably results in some initial disorder between oxygen deficiency and H₂O distribution similar to the oxygen deficiency which exists in some  $U0_{2,9}$ formed by thermal decomposition (e.g., Wheeler et al., 1964). Also, Dawson et al. (1956) have shown that  $\alpha - \dot{U}0_2(\dot{OH})_2$  has a smaller unit cell volume, 307.1 Å³, than  $\beta - UO_2(\dot{OH})_2$  (351 Å³, where Z = 4 for each phase).

# Heat Capacities of Rutherfordine and Dehydrated Schoepite by

#### Differential Scanning Calorimetry

The heat capacities of rutherfordine as  $U0_2(C0_3)_{.86}(OH)_{.28}$  and dehydrated schoepite as  $U0_3$ °0.77H₂O were measured by differential scanning calorimetry

to near the limits of their thermal stability, 700 and 500 K, respectively. The experimental results are listed in table 6 together with estimates of the heat capacities of  $UO_2CO_3$ ,  $UO_3$ *O.85H₂O and  $\alpha$ -UO₂(OH)₂ based upon these results.

The experimental heat capacities of dehydrated schoepite were corrected to the compositions  $UO_3 \cdot 0.85H_2O$  and (see table 7)  $\alpha - UO_2(OH)_2$  through addition of the heat capacity of the appropriate amount of  $H_2O$  as steam at the temperature of the experimental data point. Because the  $H_2O$  behaves like zeolitic water (Porte et al., 1962) this approximation is probably valid within the experimental error of the differential scanning calorimetric values (i.e., ±1.0 percent). Smoothed values of heat capacity estimates for each phase are listed in table 6.

The heat capacities of the rutherfordine sample were corrected for  $0.14\alpha-U0_2(OH)_2$  assuming no excess heat capacity terms in this temperature range. Smoothed heat capacity estimates for temperatures between 298.15 and 700 K are given in Table 6. The calculated heat capacity values for rutherfordine are significantly smaller than the estimated values given by Lemire and Tremaine (1980).

Schoepite and dehydrated schoepite: Uranyl nitrate trihydrate (reagent grade) was decomposed in a circulating air oven at 503 K yielding orange, amorphous  $UO_3$ . The amorphous  $UO_3$  was mixed with distilled water and aged several days at room temperature. A portion of the sample was removed and air dried. An x-ray diffraction pattern of the dried sample matched the data given by Christ and Clark (1960) for schoepite and Dawson et al. (1956) for  $UO_3.2H_2O$ . This sample will be called schoepite.

Analysis of the schoepite sample indicated there were  $2.02 H_20/U0_3$ . Dehydration of this sample at 500 K in a differential scanning calorimeter (sample heated until constant isothermal baseline observed) yielded a sample containing 0.77 H_20/U0_3. The sample was stable in air (i.e., changes in relative humidity did not change the weight of the dehydrated sample).

Rutherfordine: The rutherfordine sample was prepared by the procedures used by Bullwinkel (1954) and by Sergeyera et al. (1972). Briefly, a stream of  $CO_2$  was vigorously bubbled through a ceramic frit (to produce very fine bubbles) into the solution containing aged schoepite. The solution was rapidly stirred during the 24 to 36 hour period and the beaker was covered thus providing a  $CO_2$  pressure of about 1 bar.

An X-ray diffraction pattern of the material is given in table 5. The powder diffraction pattern for the synthetic rutherfordine is in good agreement with that given by Clark and Christ (1956) and by Frondel and Meyrowitz (1956) for natural rutherfordine.

The synthetic rutherfordine was prepared in two batches (one for 24 hours the other for 36 hours). Neither the enthalpy of solution or X-ray powder diffraction data indicated a difference in these samples.

	Rutherford [.]	ine	Deh	ydrated Schoe	pite
Temperature	UO ₂ (CO ₃₎₈₆ (OH) ₂₈	U0 ₂ C0 ₃	U03°0.77H20	U03°0.85H20	αUO ₂ (OH) ₂
К	J∕g∙K	J∕mol∙K	J∕g•K	J/mol•K	J∕mol•K
298.15 360	.363	106.5 117.4	• 3851	107.0 117.7	109.0 120.0
360 380	.370	120.5	.3829 .3946	120.9	123.2
380 400 400	•379 •378	123.3	.3917 .4035 .4024	123.9	126.3
420	.387	125.9	• 4] 46	126.8	129.3
420 440 440	.395 .394	128.4	•4132 •4234 •4211	129.6	132.0
460 460 460	.405	130.6	•4211 •4328 •4346	132.1	134.6
480 480	.411 .408	132.7	.4399 .4409	134.6	137.0
500 500	.417 .414	134.7	• 4430 • 4477	136.8	139.3
520 540	•422 •426	136.5 138.2		138.9 140.8	141.4 143.4
560 580	•429 •435	139.7 141.2		142.6 144.2	145.2 146.8
600 620 620	.438 .441 .445	142.5 143.7		145.7 147.0	148.3 149.7
640 650 700	•443 •448 •450 •455	144.8 145.3 147.6		148.2 148.8 151.0	150.9 151.5 153.9

# Table 6. Experimental and calculated heat capacities of rutherfordine and dehydrated schoepite

298.15 $107.0$ $150.7$ $0.0$ $1$ $320$ $110.9$ $158.4$ $7.4$ $1$ $340$ $114.3$ $165.2$ $13.6$ $1$ $360$ $117.7$ $171.9$ $19.3$ $1$ $380$ $120.9$ $178.3$ $24.6$ $1$ $400$ $123.9$ $184.6$ $29.5$ $1$ $420$ $126.8$ $190.7$ $34.6$ $1$ $440$ $129.6$ $196.7$ $38.3$ $1$ $460$ $132.1$ $202.5$ $42.3$ $1$ $480$ $134.6$ $208.2$ $46.1$ $1$ $500$ $136.8$ $213.7$ $49.7$ $1$ $540$ $140.8$ $224.4$ $56.3$ $1$ $560$ $142.6$ $229.5$ $59.4$ $1$ $580$ $144.2$ $234.6$ $62.3$ $1$ $600$ $145.7$ $239.5$ $65.0$ $1$ $640$ $148.2$ $249.0$ $70.2$ $1$	ſemp.	Heat Capacity	Entropy	Enthalpy Function	Gibbs energy Function
298.15 $107.0$ $150.7$ $0.0$ $1$ $320$ $110.9$ $158.4$ $7.4$ $1$ $340$ $114.3$ $165.2$ $13.6$ $1$ $360$ $117.7$ $171.9$ $19.3$ $1$ $380$ $120.9$ $178.3$ $24.6$ $1$ $400$ $123.9$ $184.6$ $29.5$ $1$ $420$ $126.8$ $190.7$ $34.6$ $1$ $440$ $129.6$ $196.7$ $38.3$ $1$ $460$ $132.1$ $202.5$ $42.3$ $1$ $480$ $134.6$ $208.2$ $46.1$ $1$ $500$ $136.8$ $213.7$ $49.7$ $1$ $540$ $140.8$ $224.4$ $56.3$ $1$ $560$ $142.6$ $229.5$ $59.4$ $1$ $580$ $144.2$ $234.6$ $62.3$ $1$ $600$ $145.7$ $239.5$ $65.0$ $1$ $640$ $148.2$ $249.0$ $70.2$ $1$	T	С <mark>°</mark> Р	s °	(H [°] _T -H [°] ₂₉₈ )/T	-(G [°] -H [°] 298)/7
320 $110.9$ $158.4$ $7.4$ $1.53.4$ $340$ $114.3$ $165.2$ $13.6$ $117.7$ $360$ $117.7$ $171.9$ $19.3$ $117.7$ $380$ $120.9$ $178.3$ $24.6$ $117.7$ $400$ $123.9$ $184.6$ $29.5$ $117.7$ $420$ $126.8$ $190.7$ $34.0$ $117.7$ $440$ $129.6$ $196.7$ $38.3$ $117.7$ $440$ $129.6$ $196.7$ $38.3$ $117.7$ $460$ $132.1$ $202.5$ $42.3$ $117.7$ $480$ $134.6$ $208.2$ $46.1$ $117.7$ $500$ $136.8$ $213.7$ $49.7$ $117.7$ $520$ $138.9$ $219.1$ $53.1$ $117.7$ $580$ $144.2$ $234.6$ $62.3$ $117.7$ $580$ $144.2$ $234.6$ $62.3$ $117.7$ $640$ $148.2$ $249.0$ $70.2$ $117.7$	lvin		J/(mo	1•K)	
340 $114.3$ $165.2$ $13.6$ $1.36$ $360$ $117.7$ $171.9$ $19.3$ $1.536$ $380$ $120.9$ $178.3$ $24.6$ $1.566$ $400$ $123.9$ $184.6$ $29.5$ $1.566$ $420$ $126.8$ $190.7$ $34.0$ $1.566$ $440$ $129.6$ $196.7$ $38.3$ $1.566$ $460$ $132.1$ $202.5$ $42.3$ $1.6666$ $480$ $134.6$ $208.2$ $46.1$ $1.66666$ $500$ $136.8$ $213.7$ $49.7$ $1.666666666666666666666666666666666666$	298.15	107.0	150.7	0.0	150.7
360 $117.7$ $171.9$ $19.3$ $1.7380$ $380$ $120.9$ $178.3$ $24.6$ $1.7380$ $400$ $123.9$ $184.6$ $29.5$ $1.7380$ $420$ $126.8$ $190.7$ $34.0$ $1.7380$ $440$ $129.6$ $196.7$ $38.3$ $1.7380$ $460$ $132.1$ $202.5$ $42.3$ $1.7380$ $480$ $134.6$ $208.2$ $46.1$ $1.7590$ $500$ $136.8$ $213.7$ $49.7$ $1.7590$ $520$ $138.9$ $219.1$ $53.1$ $1.7590$ $540$ $140.8$ $224.4$ $56.3$ $1.7590$ $560$ $142.6$ $229.5$ $59.4$ $1.7590$ $580$ $144.2$ $234.6$ $62.3$ $1.7590$ $600$ $145.7$ $239.5$ $65.00$ $1.7700$ $640$ $148.2$ $249.00$ $70.2$ $1.7590$	320	110.9	158.4	7.4	151.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	340	114.3	165.2	13.6	151.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	860	117.7	171.9	19.3	152.5
420 $126.8$ $190.7$ $34.0$ $1.1$ $440$ $129.6$ $196.7$ $38.3$ $1.1$ $460$ $132.1$ $202.5$ $42.3$ $1.1$ $480$ $134.6$ $208.2$ $46.1$ $1.1$ $500$ $136.8$ $213.7$ $49.7$ $1.1$ $520$ $138.9$ $219.1$ $53.1$ $1.1$ $540$ $140.8$ $224.4$ $56.3$ $1.1$ $560$ $142.6$ $229.5$ $59.4$ $1.1$ $580$ $144.2$ $234.6$ $62.3$ $1.1$ $600$ $145.7$ $239.5$ $65.0$ $1.1$ $640$ $148.2$ $249.0$ $70.2$ $1.1$	38 <b>0</b>		178.3	24.6	153.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+00	123.9	184.6	29.5	155.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	126.8	190.7	34.C	156.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			196.7		158.4
500       136.8       213.7       49.7       1         520       138.9       219.1       53.1       1         540       140.8       224.4       56.3       1         560       142.6       229.5       59.4       1         580       144.2       234.6       62.3       1         600       145.7       239.5       65.0       1         620       147.1       244.3       67.7       1         640       148.2       249.0       70.2       1		132.1	202.5	42.3	160.1
520       138.9       219.1       53.1       1         540       140.8       224.4       56.3       1         560       142.6       229.5       59.4       1         580       144.2       234.6       62.3       1         600       145.7       239.5       65.0       1         620       147.1       244.3       67.7       1         640       148.2       249.0       70.2       1	80	134.6	208.2	46.1	162.0
540140.8224.456.31560142.6229.559.41580144.2234.662.31600145.7239.565.01620147.1244.367.71640148.2249.070.21	500	136.8	213.7	49.7	164.0
560142.6229.559.41580144.2234.662.31600145.7239.565.01620147.1244.367.71640148.2249.070.21	520	138.9	219.1	53.1	166.0
580144.2234.662.31600145.7239.565.01620147.1244.367.71640148.2249.070.21	540	140.8	224.4	56.3	168.1
600145.7239.565.01620147.1244.367.71640148.2249.070.21		142.6	229.5	59.4	170.2
620147.1244.367.71640148.2249.070.21					172.3
640 148.2 249.0 70.2 1				65.0	174.5
				67.7	176.6
660 149.3 253.6 72.5 1					178.8
		149.3	253.6	72.5	181.0
					183.2
700 151.0 262.4 77.0 1	00	151.0	262.4	77.0	185.4

Table 7. Molar thermodynamic properties of (alpha)  $UO_3 \cdot 0.85H_2O$ 

#### Estimated Thermodynamic Properties of Coffinite

Natural coffinite samples usually contain dispersed, fine-grained uraninite, quartz, and organic material (Nord, 1977). Synthetic coffinite prepared by Fuchs and Hockstra (1959) contained excess silica and some uraninite. Thus preparation of a coffinite sample (natural or synthetic) that has sufficient purity, mass, or that can be properly characterized for calorimetric studies appears improbable. Therefore, the thermochemical properties of coffinite must be estimated from the qualitative experiments and geological information available to us.

Brookins (1975) and Langmuir (1978) have estimated the free energy of formation of coffinite as  $-1907.9\pm10.9$  and -1891.2 kJ/mol, respectively. Brookins' estimate was based upon the method of differences and used the thermodynamic properties for uraninite, zircon, baddeleyite, thorite, and thorianite in the model. From this model, Brookins predicted that uraninite would be unstable with respect to coffinite where the log of the activity of H₄SiO₄ was greater than -6.9. Langmuir felt that Brookins' model predicted an unreasonably low equilibrium silica activity for coffinite and uraninite and noted that coffinite would be stable with respect to uraninite in all natural waters, a point at variance with the common occurrance of uraninite and quartz. Langmuir assumed that the average value of the concentration of silica (about  $10^{-3}$ ) found in ground waters draining the Grants mineral belt in New Mexico, where both uraninite and coffinite occur in uranium ore deposits, would represent a better estimate of the equilibrium silica activity for reaction (7).

 $USiO_4 + 2H_2O = UO_2 + H_4SiO_4^{\circ}$  (7)

Brookins (1975) and Langmuir (1978) have each assumed that coffinite is more stable than the component oxides uraninite and quartz at 298.15K. However, qualitative evidence from synthesis experiments and from petrographic studies of coffinite ore suggest that this assumption may not be valid.

Brookins (1975) rationale for assuming that the free energy for reaction (8) as calculated by Schuiling

 $Zr0_2 + Si0_2 = ZrSi0_4$  (8)  $U0_2 + Si0_2 = USi0_4$  (9)

et al. (1976) could be used for  $\Delta G_{\Gamma}$  of reaction (9) was based upon his hypothesis that U and Zr are ideally diadochic and upon literature data which implied that both coffinite and zircon break down to their respective oxides at high temperature. If U and Zr were ideally diadochic, a complete solid solution between zircon and coffinite should exist. However, Mumpton and Roy (1961) found that only 4±2 mole percent of coffinite dissolved in zircon and that only 8±2 mole percent of baddeleyite dissolved in uraninite (both studies at 1623 K and in controlled oxygen atmospheres).

Curtis and Sowman (1953) concluded that zircon decomposed at 1813 K. Earlier, Geller, and Lang (1949) had reported that zircon underwent incongruent melting at 2048 K. Mumpton and Roy (1961) prepared zircon from zirconia and silica gels at 1573 K (24 hour heating) and heated the zircon at 1773 and 1873 K for 72 hours. Mumpton and Roy observed peaks for  $ZrO_2$  in the X-ray pattern for the sample heated at the higher temperature and concluded that this represented unequivocal proof that Curtis and Sowman were correct. However, Harris (1959) synthesized huttonite under conditions similar to those followed by Mumpton and Roy and concluded that the reaction was so sluggish that as many as five homogenization runs were required to attain In all of the X-ray data taken for huttonite samples prepared eauilibrium. at temperatures above 1673 K, a pattern for  $ThO_2$  was clearly evident. Thus the appearance of an X-ray pattern for  $ZrO_2$  in the data of Mumpton and Roy does not provide unequivocal evidence of the temperature of thermal decomposition for zircon, but more likely represents incomplete reaction of the initial components.

Knowledge of the temperature of thermal decomposition of zircon and huttonite combined with the observation that coffinite decomposed to uraninite and anorphous silica at 1518 K, and with the estimated values for the free energy formation of zircon and huttonite given by Schuiling et al. (1976) should allow us to make a better estimate of the free energy of formation of coffinite. Schuiling et al. have estimated that the free energies of reactions (9) and (10) at 1000 K and <u>1 kbar</u> where quartz is the SiO₂ phase were between the limits - 22.1 kJ  $\langle \Delta G \langle -14.3 \rangle$  kJ based upon the study of 19 go, no-go type reactions involving the phases ZrO₂, SiO₂, ThO₂, ZrSiO₄ and ThSiO₄ among others.

 $ThO_2 + SiO_2 = ThSiO_4$ (10)

These results are consistent with decomposition temperatures for huttonite and zircon above 2000 K and with the silicates more stable than the oxide components at 298.15 K.

The thermal stability of coffinite is not well known. Fuchs and Hoekstra (1959) observed complete dissociation of coffinite to uraninite and amorphous silica at 1518 K and placed the upper limit of thermal stability at 1273 K (for coffinite heated in a vacuum) based upon short term (3 to 4 hours) heating experiments at 473, 673, 873, and 1073 K. On the basis of these observations we may estimate that the free energy of reaction (9), where the SiO₂ phase is approximated by silica glass, is zero at 1273 K. Using the heat capacities of quartz ( $\alpha$ - $\beta$ transition removed) and uraninite to approximate the heat capacity of coffinite between 298.15 and 1273 K and using ancillary thermochemical data from Robie et al. (1979), the free energy of coffinite is estimated to be  $-1886\pm 6$  kJ/mol at 298.15 K. Coffinite, so defined, would be less stable than quartz and uraninite at 298.15 K and at higher temperatures.

#### A Model for the Deposition of Coffinite and Some Uraninites

At this point, it must be determined whether the estimate for the free energy of coffinite is realistic in light of our knowledge of the natural occurrence of coffinite. Cuney (1978) has made a detailed study of the Bois Noirs - Limouzat uranium vein, Forez, France, and discussed a six stage paragenetic sequence. Stage 1 began with the precipitation of fibrous

quartz and large quartz crystals. Hematite and sericite were frequently trapped in quartz. Colloform pitchblende (nominally uraninite) coated the quartz and was, in turn, coated with pyrite. The half-spherules of pitchblende show mutual integrowths with guartz. This sequence was followed by several cyclic periods of deposition of marcasite that was coated by pyrite. Evidence for simultaneous preciptitation of marcasite and pitchblende was not observed. Stage 2 began with the precipitation of microcrystalline quartz and chalcedony which were colored red by microcrystalline hematite. Older pitchblende coatings frequently broke off and became brecciated inclusions in the precipitated silica. Concretionary coffinite precipitated on quartz surfaces toward the end of stage 2. Marcasite, precipitated in stage 1, underwent strong corrosion and stage 1 pyrite was corroded around the pitchblende spherules during stage 2. In addition, adularia grew on K-feldspar surfaces during stage 2. Stages 3 and 4 were characterized by precipitation of chalcopyrite, hematite, goethite, galena, and white to smokey quartz followed by precipitation of carbonates. Bismuth minerals were precipitated with quartz, chalcopyrite, pyrite and some hematite in stage 5. Uranium was remobilized in stage 6 and deposited as hexavalent uranium along joints in the brecciated previous mineralization and in the granite.

The paragenetic sequence described by Cuney (1978) indicates that uraninite and quartz were precipitated contemporaneously. The geologic record would suggest that the free energies of formation of coffinite estimated by Brookins (1976) and Langmuir (1978) overstate the stability of coffinite. Cuney has shown that the activity of silica rose high enough for chalcedony to precipitate (log  $a(H_4SiO_4) = -3.68$  based upon the free energy of formation of chalcedony from Walther and Helgeson, 1977, and ancillary thermochemical data from Robie et al., 1979). Using the free energy of coffinite derived in this report and the ancillary thermochemical data from Robie et al., the equilibrium silica activity defined by reaction (7) would be log  $a(H_4SiO_4) = -3.59$ , a value in good agreement with the activity of silica necessary to precipitate contemporaneous chalcedony as observed by Cuney.

The value of the log of the activity of silica in equilibrium with coffinite and uraninite is in general agreement with the value [log  $a(H_4SiO_4) = -3.0$ ] postulated by Langmuir (1978). However, the free energy of formation of coffinite given by Langmuir is not consistent with his estimate for the equilibrium silica activity for reaction (7).

Leroy (1978) has described the Margrac and Fanay uranium deposits (western Massif Central, France) and noted a similar paragenetic sequence to that observed by Cuney (1978). An important observation reported by Leroy was that transformation of uraninite precipitation to coffinite precipitation was contemporaneous with the formation of montmorillonite. Kittrick (1970) observed silica activities of  $10^{-2.38}$  to  $10^{-3.53}$ in solubility studies of montmorillonite samples. These results support the equilibirum silica activity for reaction (7) and free energy of formation for coffinite derived above.

Although uraninite and coffinite are common in sandstone-host uranium ore deposits, paragenetic sequences for these ore bodies have not been developed (Ludwig and Grauch, 1980). However, a review of some of the literature describing the mineralized zones of the Colorado Plateau uranium ores clearly associates coffinite precipitation with an increase in silica activity in the local depositional environment. For example, Garrels et al. (1959) have noted that precipitation of overgrowths on quartz preceeded mineralization at the Virgin No. 3 mine, Montrose County, Colorado, and that mineralization began with the deposition of vanadiferous clays. A similar increase in silica activity can be inferred from the description of the ore deposit at the J. J. mine, Montrose County, Colorado, reported by Elston and Botinelly (1959). Finally, Dahlkamp (1978) studied the Key Lake U-Ni deposits, Northern Saskatchewan, Canada, and found that coffinite always occurred with kaolinite and chlorite as a coating on earlier pitchblende deposits.

In several of the natural occurrences of coffinite cited above the mode of deposition suggests a preliminary colloidal gel precipitation followed by crystallization of coffinite (also see Noench, 1962, and Ludwig and Grauch, 1980). Coffinite also occurs intermixed with uraninite, both of very small crystal size, as a matrix replacing woody material (Gas Hills District, Wyoming) or as alternating concentric bands with uraninite (South Power River basin, Wyoming) as shown by Ludwig and Grauch.

Fuchs and Hoekstra (1959) had great difficulty finding a procedure to prepare synthetic coffinite while others were completely unsuccessful (e.g., Mumpton and Roy, 1961). Fuchs and Hoekstra found that coffinite could only be obtained from runs which were buffered between pH 8 and 10.5 and which contained a sample that represented a coprecipitate of U⁴⁺ and silica gel. Gast (1977) has shown that silica has a maximum in ligand exchange capacity (OH⁻ or H₂O are displaced from surfaces allowing the formation of partial covalent bonds with cations) near a pH of 9.5. It is suggested that the formation of coffinite in the runs prepared by Fuchs and Hoekstra were only successful where the covalent bonding between U⁴⁺ and H₃SiO₄⁻ was strong enough to allow the coffinite structure to form as water was expelled. Under such conditions, the formation of large crystals through the process of diffusion would be greatly limited as dehydration and fragmentation of the gel structure progressed during crystallization of coffinite.

Several attempts (in this study) to produce coffinite from crystalline and noncrystalline mixtures of uranyl and silica were unsuccessful. Fresh precipitates of crystalline material obtained from basic solutions of sodium metasilicate and uranyl nitrate yielded an X-ray diffraction pattern similar to that for kasolite  $(Pb0_3 \cdot U0_3 \cdot Si0_2 \cdot H_20)$  although the solution contained no lead. Heating the kasolite-like phase for 3 days at 518 K yielded a phase which produced an X-ray diffraction pattern similar to soddyite. Soddyite and the kasolite-like material heated to 523 K (for about 3 weeks) at a pressure of 80 bars of hydrogen gas decomposed yielding uraninite, amophous silica and some quartz (Nord, written communication, 1979). Freshly precipitated uranyl silicate gel mixed with sodium thiosulfate in a slightly acidified solution yielded a greenish gray solid with an X-ray diffraction pattern similar to that of natural boltwoodite (the presence of Na in the structure was not confirmed). Similar negative results were obtained using methane and hydrogen plasma (Irving Breger, written communication, 1978) as the reducing agents for soddyite. Freshly precipitated uranyl silicate gel placed in a bomb for 24 hours at 523 K and a pressure of 50 bars of hydrogen gas yielded several black chunks that had several light blue patches on the surfaces. A few areas appeared

dark blue where uraninite was mixed into the blue material. This material resembles the coffinite described by Fuchs and Hoekstra (1959), but was not produced in sufficient quantity to allow a positive identification to be made (X-ray data non-conclusive). Evidence collected in this brief set of experiments, suggest that  $U^{6+}$  must be reduced to  $U^{4+}$  before or shortly after the uranium is absorbed on the amorphous silica surface in order to form coffinite. Reduction of uranium in a crystalline uranyl silicate will result in the formation of uraninite and quartz when the uranyl silicate is decomposed.

Jones and Uehara (1973) have studied amorphous coatings on mineral surfaces using electron microscopy. They observed that after 6 months, finely crushed quartz particles develop a gel coating which coalesced forming coat-of-paint appearance. Similar features were seen on kaolin particles and particularly in soils developed from volcanic ash. It is suggested here that a silica gel coating such as that observed by Jones and Uehara is a necessary first stage in the formation of natural coffinite.

Mark et al. (1970) used radio-tracer  $(^{233}\text{U0}_2^{2+})$  techniques to study the absorption of aqueous uranyl species on the surface of glass scintillators at various pH, temperature, and uranyl concentration values. They concluded the surface coverage was a monolayer or less thick. It is assumed here that the study by Mark et al. could be extended to the interaction of agueous uranyl species and silica gel. Stanton and Maatman (1963) have studied the strong interaction of aqueous uranyl species and the surface of silica gel.

The following model of coffinite formation has been derived from the preceeding discussion and from some additional experimental studies that are discussed below. The initial stage in the formation of coffinite is the precipitation of a gel coat (containing both uranium and silica gel) on the surfaces through which the ore forming solutions pass. Both gels continue to accumulate with older portions of the precipitated gels recrystallizing. Coffinite formation occurs where temperature and pressure conditions do not result in rapid dehydration and alteration of the precipitated gel structure. Coffinite precipitation ceases where the Eh of the solution causes oxidation of  $U^{4+}$  to  $U^{6+}$ , or where crystallization of  $U_{02}$  occurs before bonding between the uranium gel and silica gel components can be established. Excess silica or uranium will be excluded from the precipitating coffinite and crystallize as quartz (or another silica polymorph) or uraninite (under reduced conditions).

Uranium is generally considered to have been transported as the uranyl ion or a complexed uranyl species (Reynolds and Goldhaber, 1978; Brookins, 1976; Langmuir, 1978; and Weeks and Garrels, 1959), for unmetamorphosed deposits which are younger than about 2200 m.y. and to have been of detrital origin in older deposits (Robertson et al., 1978). Robertson et al. and Cloud (1976) have suggested that the first appearance of red beds at about 2000 m.y. indicated a major change in oxidation potential of the atmosphere and Robertson et al. further suggest that this change in atmospheric conditions led to increased solubility of uranium (as uranyl species) and the loss of uraninite as a stable phase under surface weathering conditions. Dissolved uranium is deposited and concentrated under unique sedimentary conditions where either sedimentary or structural conditions developed a permeable zone through which the oxidized uranium bearing solutions were channeled, and within which, chemical conditions resulted in the reduction of  $U^{6+}$  to  $U^{4+}$ . The mechanisms by which the uranyl species may be reduced have been extensively discussed in the literature (e.g. Reynolds and Goldhaber, 1978; Brookins, 1976; and Moench, 1962) and, therefore, will not be discussed in detail here.

The two commonly cited mechanisms by which uranyl ions may be reduced are through the oxidation of sulfides and of organic material. Humic and fulvic acids form complexes with  $U02^+$  (Kribek and Podlaha, 1980) and with Th(IV) (Nash and Choppin, 1980). Nash and Choppin have shown that desolvation of aqueous Th(IV) is an important result of complexation by fulvate and humate. It may be assumed that this effect is important in the uranyl-humic complexes as well.

The desolvation associated with uranyl-humic complexes may be an important contributing factor to the high correlation of coffinite and organic material in the uranium ore bodies of the Colorado Plateau. Dalton et al. (1962) have shown that ion exclusion from the pores of silica gel is directly related to the charge density of the cation. Desolvation of the uranyl ion followed by reduction of  $U^{6+}$  to  $U^{4+}$  and destruction of the bonding with fulvate or humate may allow penetration of  $U^{4+}$  into existing silica gel rather than limiting the association to a strictly surfacial reaction. This mechanism could allow coffinites precipitated in and near organic material to occur in relatively massive volumes of uraninite, coffinite, and quartz mixtures while coffinites developed in vein deposits would tend to be built from thin coatings.

Corrosion of early sulfide precipitates and a lack of evidence of coprecipitation of uraninite or coffinite and sulfides (e.g. Leroy, 1978; and Cuney, 1978) have been cited as proof that sulfides play an important role in reducing  $U^{6+}$  from solutions that have transported uranium. Miller (1958) qualitatively studied this process by investigating the conditions under which pitchblende precipitated from solutions of uranyl fluoride, sulfate, carbonate, and hydroxide as these solutions were saturated with H₂S. Miller's observations combined with the X-ray analysis of natural uraninites and a few of Miller's synthetic uraninite samples (Croft, 1956) support this idea.

Croft (1956) noted that the common morphologies for uraninite were the cube, octahedron, and cubo-octahedron. The cube was the most commonly occurring crystal habit in pegmatite deposits of uraninite. Croft's X-ray data showed that the major development in crystals in vein type UO₂ deposits and in botryoidal pitchblende was in the [111] direction. Miller (1958) noted that Croft had found that pitchblende that precipitated directly as hemispherical and botryoidal masses from uranyl sulfate solutions saturated with  $H_2S$  also showed elongation in the [111] direction. Croft also found that the fine-grained material that precipitated originally as a uranyl sulfide (in Miller's experiments) and then reacted to form uraninite showed elongation in the [111] direction was observed; Croft determined that the adjacent fibers were randomly oriented with respect to rotation about [111].

The theory may then be advanced that crystal growth in the [111] direction would be consistent with an accumulation of linear  $U0^+_2$  molecules

from the solution on the (111) plane. Reduction of  $U0_2^{++}$  to  $U0_2^{++}$  is rapid and reversible (Ahrland et al., 1973), while reduction to  $U^{4+}$  requires the breaking of metal-oxygen bonds and proceeds at a lower rate.  $U0_2^{++}$  has the same linear structure as  $U0_2^{++}$  and could easily be accommodated on a (111) growth surface. Final reduction of  $U^{5+}$  to  $U^{4+}$  could then proceed during the change in oxygen-uranium bonding as each 0 - U - 0is incorporated into the growing crystal.

A similar sequence would allow the development of bonding between 0 - U - O and silica gel. Thus, natural coffinite may form (in the absence of organic catalysts) only where  $UO_2^+$  is absorbed on a silica gel surface and then reduced to  $U^{4+}$ . The occurrance of uraninite and quartz in pegmatites where the uranium was presumably carried in a reduced state ( $U^{4+}$ ) and the lack of coffinite deposition from these reduced high silica solutions supports this theory. In addition, the occurrance of hematite (e.g. Cuney, 1978) in hydrothermal veins associated with pegmatites or granite, preceeding the deposition of uranium phases, suggests some oxidation of the ore forming fluids from which the coffinite and uraninite (elongated in the [111] direction) were precipitated, also in support of this theory.

The theory is also supported by studies conducted on the related system Zr-0-H-Si. Clearfield (1964) and Garvie (1965) have shown that  $Zr0_2$  would crystallize in a metastable tetragonal form that is elongated in the [111] direction when  $Zr0_2$  is precipitated from aqueous solutions at low temperature. Wells (1975) and Teufer (1962) describe tetragonal  $Zr0_2$  as having four oxygen in a flattened tetrahedron and four oxygen in an elongated tetrahedron, rotated at 90° with respect to the former tetrahedron, surrounding the Zr. This distorted cubic arrangement is similar to the structure in  $ZrSi0_4$  as noted by both Teufer and by Wells.

Because  $Zr^{4+}$  and  $U^{5+}$  have similar ionic radii (Shannon and Prewitt, 1969),  $U^{5+}$  can be expected to react similar to  $Zr^{4+}$  in nucleation and early crystallization. The smaller ionic radius of  $U^{5+}$  compared to  $U^{4+}$  (Shannon and Prewitt) would cause initial distortion of the oxygen bonding at the growing surface that would favor the growth of uraninite in the [111] direction or favor bonding to form coffinite.

Ahrland et al. (1973) have shown that uranium ions with the highest charge are stabilized with respect to other uranium species through hydrolysis. Both  $U02^+$  and  $U^{4+}$  are stabilized with respect to  $U02^+$  in this manner. In contrast to  $U^{4+}$  and  $U02^+$ , the actual charge on the  $U02^+$  ion is small enough that protons are not split off from the hydration shell in acidic solutions. Thus reduction of  $U02^+$  to  $U02^+$  would decrease the stability of the dissolved uranium and favor the incorporation of the uranium species into either uraninite or coffinite crystals.

The model for coffinite deposition may then be summarized as follows. Uranium must be transported into a zone in which reduction from  $U^{6+}$  proceeds through a two step reaction. Initial reduction of  $U02^+$  to  $U02^+$  decreases the solubility of the dissolved uranium leading to adsorption of the linear  $U02^+$  molecule onto a boundary surface. Reduction of  $U^{5+}$  to  $U^{4+}$  results in the bonding of the linear 0 - U - 0 molecule to the surface. If the boundary surface is an amorphous silica coating, bonding between the linear 0 - U - 0 molecule and the silica may result in the formation of coffinite. The

absence of amorphous silica as the boundary layer or a rapid influx of hexavalent uranium would lead to the crystallization of uraninite (elongated in the [111] direction). Variations in the rate of adsorption of these components (as a consequence of a change in Eh or a change in mass transport) could lead to the deposition of alternating bands of uraninite and coffinite with or without bands of a silica polymorph. The tendency for the linear  $U0^+_2$  molecule to be adsorbed with its pole parallel to the surface and at a thickness of a monolayer provides the necessary proximity for coffinite formation as thin coatings.

The proposed model of coffinite formation does not depend upon the presence of either impurity cations (e.g.  $Ca^{2+}$ ) or anions (e.g.  $OH^-$ ). However, the metastable nature of the crystals initially formed and the distorted bonding on the growth surfaces presumably would promote the formation of many nuclei of crystallization and prevent these crystallites from becoming very large. Such surfaces may easily accommodate ions of an appropriate size and charge although they may not be necessary to stabilize the structure.

Finally, coffinite is metastable with respect to uraninite and quartz at all geologically important temperatures.

## Estimated values for the free energy of formation of selected uranyl silicates

Models for estimating the Gibbs free energy and enthalpy of formation of geologically important phases have been developed using several methods (Slaughter, 1966; Karpov and Kashik, 1968; Kittel, 1971; Eugster and Chou, 1973; Tardy and Garrels, 1974; Chen, 1975; Nriagu 1976, and Tardy and Garrels, 1976 and 1977). Slaughter and Kittel have used models to predict crystal lattice energies while the other studies have attempted to correlate differences in energy between a series of phases and reference substances through regression analysis.

A complete review of the various models by which free energies or enthalpies of formation have been estimated is beyond the scope of this paper. The method followed by Chen (1975), however, will be examined in some detail. Chen calculated the free energy of a phase (called here the standard phase) by summation of several types of reference materials and assigned an integer value, x, between 0 and about 6 representing what he called the order or degree of complexity of the reaction (several examples are provided in table 8). The estimated free energies, G_E, were fit to an equation of the form G_E=ae^{bx}+c where a, b, and c were obtained through regression analysis and where c represented the estimated free energy of the phase. Alternatively, Chen's model predicts that the free energy of reaction,  $\Delta$  Gr, from the selected reference phases will vary as  $ae^{bx}$ .

Karpov and Kashik (1968) and Nriagu (1976) calculated non-standard state values for simple reference oxide and/or hydroxide componenets which partitioned the free energy of reaction from these reference phase in their standard states among these oxide and/or hydroxide reference substances. Estimated values of the free energy of formation of several phases using the non-standard state reference values yield values between 0.5 and 1.0 percent different than the best current experimentally derived values for the same phase. There is an equal probability that the model will overestimate or

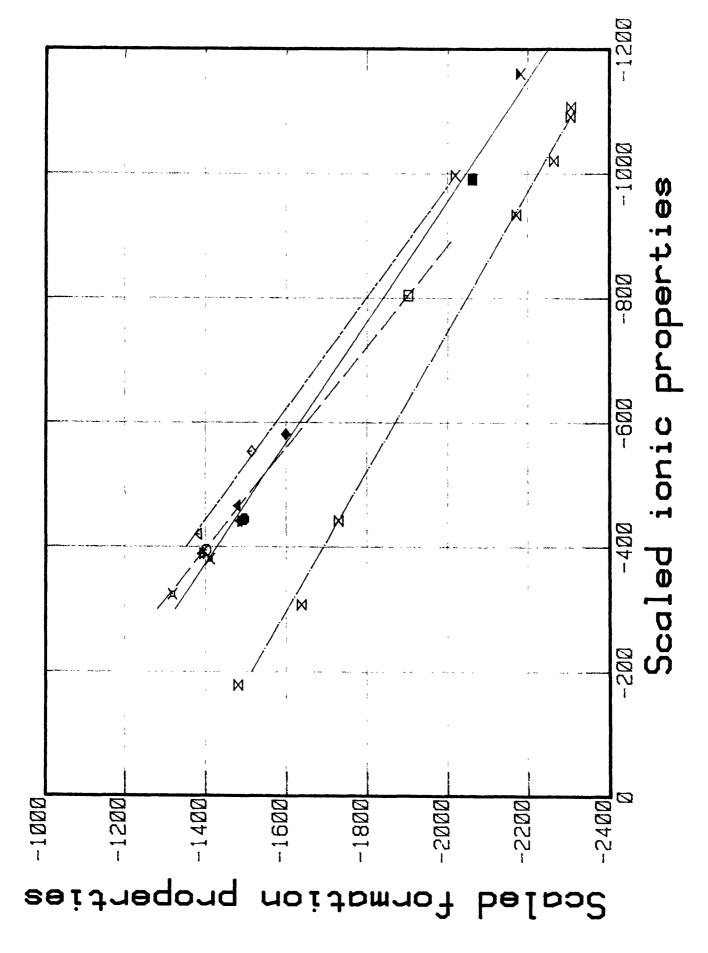
Table 8. Examples of the procedure suggested by Chen (1975) for estimating the free energies of formation for silicate minerals. The sums of the free energies of the reference phases,  $G_E$ , are fit to an equation of the form  $G_E = ae^{DX} + c$ , where the values of a, b, and c were obtained thru regression analysis and x was the order assigned to the reaction

Standard Phase*	Reference Phases*	G*E kJ/mol	0rder	∆G**r kJ
Low albite	0.5Na20+0.5A1203+3Si02	-3548.023	0	163.698
NaAlSi ₃ 08 measured	0.5Na20+0.5A12Si05+2.5Si02	-3548.711	0	163.010
-3711.720 calculated	0.5Na2Si03+0.5A12Si05+2Si02	-3666.222	1	45.498
-3705.0	0.5Na2Si205+0.5A12Si05+1.5Si02	-3666.478	1	45.242
difference	NaAlSiO ₄ + 2SiO ₂	-3690.074	2	21.646
0.2%	$NaAlSi_20_6 + Si_2$	-3707.122	3	4,598
Jadeite	0.5Na20 + 0.5A1203 + 2Si02	-2691.735	0	159.099
NaAlSi206 measured	0.5Na20 + 0.5A12SiO5 + 1.5SiO2	-2692.423	0	158.411
-2850.834	$0.5Na_2Sin_3 + 0.5Al_2Sin_5 + Sin_2$	-2809.934	1	40,900
calculated -2839.5	0.5Na2Si2O5 + 0.5A12SiO5 + 0.5SiO2	-2810.190	1	40.644
difference 0.4%	NaAlSiO ₄ + SiO ₂	-2833.786	2	17.048
Paragonite	0.5Na20 + 1.5A1203 + 3Si02 + H20	-5367.392	0	187.509
NaAl2[AlSi3010](OH)2	0.5Na2Si03+1.5A12Si05+Si02+H20	-5486.967	1	67.933
measured -5554.900	$NaAlSiO_4 + Al_2SiO_5 + SiO_2 + H_2O_2$	-5510.819	2	44.081
calculated	$NaAlSi_2O_6 + Al_2SiO_5 + H_2O$	-5527.867	3	27.033
-5532.500 difference 0.4%	NaAlSi ₃ 0 ₈ + Al ₂ 0 ₃ + H ₂ 0	-5531.089	4	23,811

Standard Phase*	Reference Phases*	G*E kJ/mol	Order	∆ G <b>**</b> kJ
Microcline KAlSi ₃ 0 ₈	$0.5K_20 + 0.5A1_20_3 + 3Si0_2$	-3521.022	N	221.309
	0.5K ₂ SiO ₃ + 0.5Al ₂ SiO ₅ + 2SiO ₂	-3660.412	1	81.918
measured -3742.330	$KAlsiO_4 + 2SiO_2$	-3718.551	2	23.779
calculated -3746.0	$KA1Si_20_6 + Si0_2$	-3732.178	3	10.152
difference 0.1%				

*The thermodynamic data are taken from Robie et al., (1979), Stull and Prophet (1971), and Robie and Hemingway (1981, unpublished data for paragonite).

**The calculated difference between the sum of the free energies of the reference phases and the measured free energy of the standard phase.


underestimate the stability of the standard phase.

Eugster and Chou (1973) estimated the enthalpy of formation of several phyllosilicates from a linear relationship between the enthalpy of formation of a phyllosilicate divided by the number of tetrahedrally coordinated silicon and aluminum atoms in the structure and the sum of the enthalpies of formation of the aqueous ions representing the octahedral and exchangeable ions in the structure, also divided by the number of tetrahedrally coordinated silicon and aluminum ions. The experimental values used to develop the linear relationships scattered by less than 1.0 percent. A revised figure showing this relationship is included as figure 3. The thermodynamic data were taken from Robie et al.(1979) and Robie and Hemingway (1981, unpublished data).

A procedure similar to that followed by Euster and Chou (1973) was used by Tardy and Garrels (1976). Tardy and Garrels developed a linear relationship between the free energy of formation of ortho- and metasilicates from an oxide reference state and the average difference in free energy between the oxide components and the free energy of the common aqueous cation. Care must be exercised when examining or using the data of Tardy and Garrels because the several sets of free energy values are derived from largely the same experimental data but contain slight to major differences in the free energy values for the reference oxides. These differences cancel out in the procedures followed by Tardy and Garrels to obtain their linear relationship, but do not cancel out in the absolute magnitude of the free energies of formation from the elements.

Of those methods described above, the method of Chen (1975) and that of Eugster and Chou (1973) appear the most readily adaptible in providing estimates of the free energy of formation of the uranyl silicate phases. The method of Eugster and Chou was modified such that the free energies of formation rather than the enthalpies of formation were used. The results for the free energy calculations are shown in Figure 3. These results appear as valid as the correlation provided by Eugster and Chou. However, the estimated free energies of formation for the uranyl silicates derived from the relationship shown in Figure 3 were consistently of equal magnitude to the summation of the component oxide values. The fact that the method of Eugster and Chou does not appear to provide a good estimate for the free energies of the uranyl silicates is not supprising nor is it a reflection in the usefulness of the procedure. Rather, it reflects the degree to which the model is dependent upon the structural similarity of the phases. To illustrate this point, data for several ortho- and metasilicates are also shown in Figure 3, that are based upon similar calculations.

The method of Chen (1975) was applied by using a summation of oxide component free energies for the order O reaction, using meta-silicate, water, chalcedony, and schoepite values for the order 1 reactions, and using uranate, water, chalcedony, and schoepite values for the order 2 reactions. No reactions greater than order 2 were used. The data for the magnesium uranate and meta-silicate phases produced a reversal of the reaction order (as defined by Chen ) with respect to the other cations examined that may indicate an error in one of these values. The estimated values for the uranyl silicates are listed in Table 1. Figure 3: The linear relationship between scaled formation properties and scaled ionic properties as an example of the procedure followed by Eugster and Chou (1973) to estimate enthalpies of formation of several phyllosilicates. The scaled formation properties represent the enthalpy or free energy of formation (in J/mol) divided by the number of tetrahedrally coordinated silicon and aluminum atoms in the structure. The scaled ionic properties represent the sum of the enthalpies or free energies of formation of the octahedral or exchangeable ions in the structure divided by the number of tetrahedrally coordinated silicon and aluminum atoms. The hour glass shaped symbols and dash-dot line represent a modification of the procedure for ortho- and metasilicate phases (fayalite, willemite, tephroite, forsterite, monticellite, distrontium silicate, and larnite, respectively from left to right on the figure). Other phases represented are paragonite, star; chrysolite, inverted triangle with extended sides; pyrophyllite, squares with extended lines at corners; talc, triangles; and fluorphlogopite, diamonds. The open symbols represent enthalpy of formation values and the filled symbol represent free energy data. The solid curve represents the trend of the enthalpy of formation values. The dashed lines represent the free energy of formation results. As can be seen in the results presented for the free energy data. the values obtained from phases that have Al in the octahedral sites (dash pattern) represent a different trend than those containing Mg in the octahedral sites (long-short dash pattern).



#### Uranyl Carbonate Complex Ions

The uranyl carbonate aqueous species have commogly been assigned the composition  $UO_2(CO_3)_3^{4-}(UTC), UO_2(CO_3)_2^{2-}(UDC)$  and  $UO_2CO_3$  (e.g. Langmuir, 1978; Scanlan, 1977; Sergeyeva et al. 1972; and Bullwinkel, 1954). Other workers (see Ciavatta et al. 1979, for a concise summary) have considered mixed or polynuclear species such as  $(UO_2)_2(OH)_2(CO_3)_2^{-}, (UO_2)_2(OH)_3CO_3^{-}$ , and  $UO_2OHCO_3^{-}$ . Recently, Ciavatta et al. (1979 and 1981) have proposed that in addition to the uranyl hydrolysis species present in highly acid solutions, the uranyl carbonate complexes are  $UO_2CO_3$ ,  $(UO_2)_3(OH)_3CO_3^{+}$ , and  $UO_2(CO_3)_3^{-}$  with two polynuclear complexes,  $(UO_2)_{11}(OH)_{24}(CO_2)_6^{-}$  and  $(UO_2)_3(CO_3)_6^{-}$  appearing in those special conditions just preceeding the initiation of precipitation of uranyl carbonate. Although some questions still remain regarding the exact composition of the uranyl carbonate complexes, the results provided by Ciavatta et al. appear to be in better agreement with the chemistry of the natural uranium system than those provided by Langmuir, Scanlan, or Bullwinkel.

Scanlan (1977), Bullwinkel (1954), and Blake et al. (1956) examined the uranyl carbonate complex ions in aqueous solutions that contained additional carbonate added as sodium carbonate or  $HCO_3$ . Ciavatta et al. (1979 and 1981) examined changes in the aqueous uranyl species associated with changes in the concentration of initial dissolved uranium and with variations in the pressure of  $CO_2$  gas in equilibrium with the solution, but in the absence of added carbonate or bicarbonate ions. Scanlan has shown that the difference in these experimental procedures is reflected in the absorption spectra for the uranyl carbonate solution. Where the concentration of NaHCO₃ was less than 0.03M, Scanlan found an increase in the intensity in the absorption spectrum at a wavelength of 425 nm. Sutton (1949) has shown this absorption peak to be associated with the hydrolysis of the uranyl ion.

Bullwinkel (1954) measured the absorption spectrum of uranyl carbonate solutions in the wavelength range of 340 to 490 nm for solutions with pH from 9 to 5. Bullwinkel identified the structure of the spectrum observed for the more basic solutions as that belonging to UTC. A shift in the position of the absorption peaks with the addition of H⁺ was interpreted by Bullwinkel to indicate a second mono-uranyl complex that he suggested was UDC. The loss of the fine structure of the absorption spectra upon further addition of H⁺ was interpreted by Bullwinkel as indicating that no other uranyl carbonate complexes were present in the solutions he studied. His final spectra at the lowest pH he studied was similar to that given by Sutton (1949) for the uranyl hydrolysis species.

Scanlan (1977) refined the absorption spectra for UDC and studied the variation of the UDC spectra with changes in the concentration of sodium bicarbonate. Scanlan did not alter the interpretation of the absorption spectra for UDC and UTC as given by Bullwinkel (1954), but did note that when the pressure of  $CO_2$  was 1 bar, the concentration of NaHCO₃ was less than 0.03m, and the solution pH was lower than 6.5 significant hydrolysis of the uranyl species could be observed. Scanlan assumed that  $UO_2CO_3$  was an additional uranyl carbonate species, but offered no additional proof that the aqueous species was present in the solutions he studied.

Ciavatta et al. (1981) made potentiometric measurements of uranyl carbonate solutions having pH>5.7. They concluded that two uranyl carbonate species were present in these solutions,  $UO_2(CO_3)_3^{-1}$  and  $(UO_2)_3(CO_3)_6^{-1}$ . This interpretation retains the ratio of U/C found in UDC, but suggests a polynuclear species forms as the solution containing UTC is acidified to the point at which precipitation of  $UO_2CO_3$  begins. Preliminary ¹³C nuclear magnetic resonance (NMR) data cited by Ciavatta et al. suggest that a single NMR peak was representative of equivalent bonding between the three coordinated carbonate groups of  $UO_2(CO_3)_3^{-1}$  and that the two NMR peaks observed in the solutions containing the polynuclear complex,  $(UO_2)_3$  ( $CO_3$ ) $_6^{-1}$ , represented both bridging and terminal carbonate groups. Ciavatta et al. found no evidence for aqueous species of the form  $(UO_2)_x(OH)_y(CO_3)_7$  or for the species  $UO_2(CO_3)_7^{-1}$ .

Ciavatta et al. (1979) have also made potentiometric measurements of uranyl carbonate solutions with a pH<5. Ciavatta et al. have shown that their data is consistent with the assumption of the aqueous species  $UO_2CO_3$ ,  $(UO_2)_3(OH)_3CO_3^+$  and a large polynuclear species with an estimated composition of  $(UO_2)_{11}(OH)_{24}(CO_2)_6^-$  that occurs in the solutions as the pH is raised to the point where uranyl carbonate precipitation results. Ciavatta, et al. suggests that the species  $(UO_2)_3(OH)_3CO_3^+$  may be viewed as having about the same structure as the uranyl hydrolysis species  $(UO_2)_3(OH)_5^+$  with  $CO_3^-$  substituting for 20H⁻.

One may readily postulate that the uranyl carbonate phase that precipitates from aqueous uranyl carbonate solutions will have a composition that varies in the ratio of  $U02^+$  to  $H_20$ ,  $OH^-$  and  $C03^-$  as pH,  $P_{C0}$ ,  $pC03^-$ ,  $pU02^+$ , and temperature change. As the precipitation of uranyl carbonate is approached from the basic pH region, rutherfordine would be expected to be the phase that precipitated. As the precipitation point is approached from the acidic pH region, the initial uranyl carbonate phase to precipitate would be sharpite. The composition of the sharpite phase would be expected to show greater variability in  $C03^-$ ,  $OH^-$  and  $H_2O$  than would the rutherfordine phase because of the greater influence of hydrolysis in the more acidic solutions. This theory is developed in a previous section of this study.

Ciavatta et al. (1979) have provided the equilibrium constants for the aqueous uranyl species  $UO_2CO_3$ ,  $(UO_2)_3(OH)_3CO_3^+$ , and  $(UO_2)_{11}(OH)_{24}(CO_2)_6^-$  as  $\log \beta_{1,2,1} = -9.02$ ,  $\log \beta_{3,5,1} = -16.34$ , and  $\log \beta_{11,24,6} = -72.0$ , respectively, from which we may calculate the free energy of formation of each species. Ciavatta et al. (1981) provide a value for the equilibrium constant * $\beta_{3,12,66}$  (for the reaction of UTC to  $(UO_2)_3(CO_3)_6^-$  or  $(UO_2)_3(OH)_{12}(CO_2)_6^-$ ) of  $\log *\beta_{3,12,6} = -6.43\pm0.08$ , but they were unable to calculate the formation constants  $\beta_{1,6,3}$  and  $\beta_{3,12,6}$  from their data. Consequently, we must rely upon the free energy of formation of UTC calculated by Langmuir (1978) to obtain a free energy value for the species  $(UO_2)_3 (CO_3)_6^-$ . Langmuir calculated a value for the free energy of formation of UDC from the equilibrium constants of Tsymbal (1969) and Scanlan (1977). If we assume that both sets of measurements refer to the species  $(UO_2)_3 (CO_3)_6^-$  defined by Ciavatta et al. (1981) the free energy of formation of UDC may be recalculated to reflect this change in aqueous species representation. The corrected free energy of formation of 3 UDC is 4 kJ/mol greater than the free energy of  $(UO_2)_3(CO_3)_6^{6-}$ 

calculated from the data of Ciavatta et al., well within the uncertainty of the several data sets cited above and in good agreement with the results of Lemire and Tremaine (1980), again corrected to  $(UO_2)_3(CO_3)_6^{6-1}$ .

# $U^{4+}$ hydrolysis products and $U0_2 \cdot 2H_20$

Langmuir (1978) has reported estimated values for the thermodynamic properties of the aqueous species  $U(0H)_{2}^{+}$ ,  $U(0H)_{3}^{+}$ ,  $U(0H)_{4}^{+}$ , and  $U(0H)_{5}^{-}$ . Langmuir based his estimate upon the solubility of  $U0_{2}^{\circ}2H_{2}0$  in basic solutions (Gayer and Leider, 1957), an estimate of the free energy of formation of  $U0_{2}^{\circ}2H_{2}0$  (ie.  $\Delta G_{r} = 0$  for  $U0_{2} + 2H_{2}0 = U0_{2}^{\circ}2H_{2}0$ ), and upon assuming a regular progression of stepwise stability constants. Langmuir's assumption that the free energy of  $U0_{2}^{\circ}2H_{2}0$  is equivalent to the sum of the free energy of 2H₂0 and  $U0_{2}$  is clearly incorrect.

Miller (1958) has shown that freshly precipitated  $UO_2 \cdot 2H_2O$  maintains a uranium concentration of 3.4 - 6x  $10^{-3}M$  for several months at room temperature and pH values of 8.5 to 4.6. Upon heating the system to 573 K, the solid phase recrystallizes to uraninite and the concentration of uranium drops below  $10^{-6}M$  when the solution is cooled and maintained at 298.15 K. Freshly precipitated  $UO_2 \cdot 2H_2O$  is amorphous to X-rays and precipitates have the characteristics of a gel. Drying the gel-like material at room temperature yields microcrystalline uraninite (Miller).

Gayer and Leider (1957) prepared  $U0_2^{*}2H_20$  by two procedures obtaining samples with different characteristics. The first sample was prepared by adding NaOH to a solution of  $U^{4+}$  sulfate. This procedure was similar to that followed by Miller (1958) and yielded a solid that was very fine grained. A coarser grained sample was prepared by the reaction of NaOH with crystalline  $U(S0_4)_2^{*}4H_20$ . The second sample was used in the solubility experiment referenced by Langmuir (1978) as discussed above. The first sample yielded higher solubility values, comparable with those found by Miller.

Because Langmuir (1978) referenced the free energy of  $U(OH)_{\overline{5}}$  to  $UO_2$ (by assuming that  $\Delta G_r = 0$  as discussed above) by using the data of Gayer and Leider (1957) that gave an equilibrium concentration for dissolved uranium of about 4.5x10⁻⁵M in basic solutions over  $UO_2^{\circ}H_2O$ , and because Miller (1958) has shown that the concentration of uranium in equilibrium with uraninite in basic solutions is less than  $10^{-6}M$ , Langmuir has overestimated the stability of  $U(OH)_{\overline{5}}$  and, most likely, the other hydrolysis species.

Based upon the preceeding discussion, we may estimate that  $\Delta G_r$ =11.4 kJ for the reaction uraninite plus 2 water = well crystallized U02°2H₂O and that  $\Delta G_f$ ,298 = -1494.6±4.0 kJ/mol for well crystallized U02°2H₂O. We may also estimate the free energy of amorphous U02°2H₂O as  $\Delta f$ ,298=-1483±8kJ/mol. Finally, we may estimate the free energy of formation of U(OH)⁵ as  $\Delta G_f$ ,298 = -1630.4±6.0 KJ/mol using the estimated free energy of U02°2H₂O derived above and the equilibrium constant given by Gayer and Leider (1957).

Part II. Properties at higher temperatures.

#### Introduction

The thermodynamic properties reported in this study at temperatures above 298.15 K were derived from the properties of these phases at 298.15 K listed in Part I of this report and from heat-content or heat-capacity data. The heat-content or heat-capacity data were fit to an equation of the form suggested by Haas and Fisher (1976) and used by Robie et al. (1979). Data for sixteen phases are tabulated in the format used by Robie et al. and included in this section.

## Methods of calculation

The methods and procedures followed in this study were largely those followed by Robie et al. (1979). The tables of thermodynamic properties were calculated using the FORTRAN IV programs of Hemingway and Robie (1975, unpublished software for IBM 370 or MULTICS computer systems) and the thermodynamic data base of Robie et al.

#### Problem data sets

1.  $U_30_8$ : Several investigations of the heat capacity or heat content of  $U_30_8$  at temperatures above 298.15 K are available in the literature (Girdhar and Westrum, 1968; Maglic and Herak, 1970; Popov et al., 1958; Powers, 1949; and Khomyakov et al., 1961). Westrum and Gronvold (1959) measured the heat capacity of  $U_30_8$  from 5 to 350 K.

Girdhar and Westrum (1968) and Westrum and Gronvold (1959) used the same sample of  $U_30_8$ , but used different calorimetric systems for their experiments. The results reported by Girdhar and Westrum are 1 percent larger in heat capacity and 0.8 percent larger in  $H_{350}-H_{298}$  than the results given by Westrum and Gronvold. The calculated value of  $H_{550}-H_{350}$  obtained from the data of Girdhar and Westrum is 0.6 percent larger than the value calculated from the data of Maglic and Herak. Consequently, the data of Girdhar and Westrum as the values given by Maglic and Herak and by Westrum and Gronvold.

The results reported by Powers (1949), Popov et al. (1958) and Khomyakov et al. (1961) show substantial scatter within each data set and significant deviations from the selected data sets.

The table of high temperature thermodynamic data for  $U_3O_8$  is terminated at 1000 K. Khomyakov et al. (1961) found evidence for transitions in the heat capacity of  $U_3O_8$  at 1046 and 1213 K. However, Ackermann and Chang (1973) have shown that the pressure of  $O_2$  gas must exceed 1.01 bars at 840 K to maintain stoichiometric  $U_3O_8$ . Ackermann and Chang have shown that requilibration proceeds slowly following dissociation at temperatures above 1000 K. Consequently, heat-content and heat-capacity data reported for temperatures above 1000 K must be considered as suspect for stoichiometric  $U_3O_8$ . 2.  $U_4O_9$ : Osborne et al. (1957) measured the heat capacity of  $U_4O_9$  from 5 to 310 K. Westrum et al. (1965) using the sample of  $U_4O_9$  previously studied by Osborne et al. extended the heat capacity measurements on this sample to about 400 K. Gronvold et al. (1970) measured the heat capacity of  $U_4O_9$  in the temperature range of 300 to 1000 K. Finally, Macleod (1972) measured the heat content of  $U_4O_9$  from 845 to 1568 K.

Westrum et al. (1965) defined a  $\lambda$ -type transition in U₄O₉ with a maximum at 348 K. Gronvold et al. (1970) confirmed this transition, but reported values of the heat capacity of U₄O₉ which were about 1 percent greater than those of Westrum et al. in the temperature range of 300 to 330 K. Such differences are not unexpected because the shape of  $\lambda$ -type heat-capacity curves are known to vary with the measurement technique, the particle size of the sample and with radiation damage within the sample.

Gronvold et al. (1970) observed an increase in the heat capacity of their  $U_4O_9$  sample above 800 K. They interpreted this result as representing evidence for a transition in  $U_4O_9$  in the region of 900 to 950 K. Macleod (1972) found no evidence to support the interpretation of Gronvold et al. However, Macleod found evidence for a disorder-disproportionation transition at about 1398K that is consistent with the phase diagram constructed by Roberts and Walter (1961). Furthermore, if the heat-capacity data given by Gronvold et al. are smoothed and the smoothed function is integrated to yield heat-content values that may be compared with the data of Macleod, one finds that the data of Gronvold et al. yield values 2 percent or more larger than those of Macleod.

Macleod (1972) attributed much of the difference between his results and those of Gronvold et al. (1970) to the slight difference in oxygen content in the two samples (2.248±.003 0/U for Macleod and 2.254 0/U for Gronvold et al.) Macleod, using the data of Affortit and Marcon (1972) for the  $UO_{2+x}$  phase, estimated that a difference of 0.01 0/U yields a difference of 1.5 percent in the heat capacity. Gronvold et al. estimated that a difference of 0.017 0/U yielded a difference of 0.7 percent in the heat capacity. However, both estimates are based upon data for uraninite with compositions between  $UO_2$  and  $UO_{2.1}$  and probably are not realistic models for  $U_4O_9$ . That is, the energy changes associated with the changes occurring during the initial oxidation of uraninite may be assumed to be greater than those associated with small deviations from the more oxidized form  $U_4O_9$ .

Because the results of Gronvold et al. (1970) are 1 percent larger than those of Westrum et al. (1965), whose sample was considered stoichiometric or 2.250 O/U, and about 2 percent larger than the results of Macleod (1972) a difference attributable to the variation in oxygen cannot be discounted. However, another process may be of equal or greater significance in explaining the divergent results of Gronvold et al. and Macleod. Ackermann et al. (1960), Macleod (1972), and Roberts and Walter (1961) have shown that gaseous uranium oxide can be observed over solid uranium oxides at 1000 K. The thermal effect of the volatilization of small amounts of  $UO_3$  gas (or oxygen) would be negligible at 1000 K for heat-content experiements, but could have a significant effect on heat capacity results. The heat capacity results of Gronvold et al. for temperatures above 900 K show significant scatter and a lack of reproducibility that is characteristic of the evoluation of a gaseous phase. Therefore, rather than observing a transition in the heat capacity of  $U_4O_9$  Gronvold et al. more likely observed apparently higher heat capacities associated with the development of the  $UO_3$  gas phase.

The results of Roberts and Walter (1961) provide some support for the foregoing interpretation. Roberts and Walter studied the oxygen pressure in equilibrium with uranium oxides with compositions from 0/U of 2.221 to 2.250 and in the temperature range of 1175 to 1475 K. Significant volalility of UO₃ gas was found only in the sample with the highest 0/U ratio (the final composition of the sample was 0/U = 2.249). Gronvold et al. (1970) analyzed their  $U_4O_9$  sample after completing the heat capacity experiments and obtained the ratio 0/U = 2.254, well into the 0/U range were the data of Roberts and Walter suggests the formation of  $UO_3$  gas could be significant.

Blank and Ronchi (1968) examined electron diffraction patterns of thin foils of  $U_4O_9$  taken between room temperature and 1275 K. They concluded that  $U_4O_9$  underwent a partial disorder transformation between 825 and 1175 K. The variation in the temperature at which the superstructure lines disappeared was inferred to be related to the degree to which  $U_4O_9$  was reduced (phase designated as  $U_4O_{9-y}$ ). As y increased, the temperature of the transformation decreased. In support of this conclusion, Blank and Ronchi noted that Ferguson and Street (1963) had shown that the transformation temperature of a single sample (with O/U = 2.235) was lowered by 150 K when powdered platinum was added to the sample (sample reduction by the platinum was assumed).

The data presented by Blank and Ronchi (1968) would support the conclusion of Gronvold et al. (1970) regarding the interpretation of the heat capacity data in the 900 to 1000 K temperature region. However, Gronvold et al. reported a composition with 0/U = 2.254 which would suggest the highest transition temperature (that is, the transition would have occurred above the temperature range studied by Gronvold et al.) and the transition has not been shown to occur in  $U_4O_9$  samples which are not somewhat oxygen difficient (that is,  $U_4O_{9-y}$ ).

In support of the interpretation of Gronvold et al. (1970) it should be noted that Gronvold (1967) was in the practice of sealing his calorimeter under a reduced pressure of hydrogen gas. If that procedure had been followed by Gronvold et al., then we may infer from the data of Ferguson and Street (1963) that partial reduction of the sample by the hydrogen gas could result in a lowering of the transition temperature for a portion of the calorimetric sample. Macleod (1972) sealed his sample under a reduced pressure of helium gas that would not support an equivalent reduction of his calorimetric sample.

The interpretation by Blank and Ronchi (1968) of their electron microscope data is not straightforward. Blank and Ronchi were aware that

the thin foils of  $U_40_9$  underwent reduction in the electron beam and obtained sufficient reduction in some experiments to observe precipitation of the  $U0_{2+x}$  phase in their sample as they passed into the two phase region  $U0_{2+x}+U_40_{9-y}$ . The interaction between the electron beam and the thin foil may have increased the vaporization of  $U0_3$  and  $0_2$  gasses and that may have resulted in loss of the superstructure data observed in the fresh foils rather than a change in structure of an intact sample mass. Ferguson and Street (1963) have concluded that the transformation that they observed represented the change from the stability field for the  $U_40_{9-y}$  phase to the 2 phase field of  $U0_{2+x} + U_40_{9-y}$  in contrast to the interpretation proposed by Blank and Ronchi.

Although a clear resolution to the problem of incompatible heat-capacity and heat-content data is not available, it appears reasonable to assume that the "transition" observed by Gronvold et al. (1970) in the temperature region 900 to 1000K is not characteristic of the stoichiometric phase  $U_4O_9$ . Furthermore, the heat-content data provided by Macleod (1972) will overestimate the heat capacity and heat content of  $U_4O_9$  above 1000K because of the generation of significant pressure of  $O_2$  and  $UO_3$  gas during the drop calorimetric experiments.

3.  $U0_2F_2$ : Cordfunke et al. (1979) measured the heat content of  $U0_2F_2$ from 374.8 to 810.8 K. They fit their data with an equation of the form a + bT + cT² + d/T and concluded that their results were not consistent with the earlier heat capacity data for  $U0_2F_2$  reported by Wacker and Cheney (1947). The two data sets were fit with a five term equation where the additional term was  $eT^{1/2}$ . The statistics of the fit show the  $T^{1/2}$  term to be more important than the T² or T⁻¹ terms. The total data set (Cp values from 200 to 425K and heat-content values from 374 to 800 K) was fit with an average deviation of 0.20 percent. The heat capacity data of Wacker and Cheney were analytically smoothed and the smoothed values were integrated to provide heat-content data that were fit with the values given by Cordfunke et al. The results agree within the experimental error of each experiment. Table 9. The thermodynamic properties of 16 selected uranium-bearing phases at 298.15 K and at higher temperatures and at 1 bar.

• • ----

URANIN	[ TE				- F(	ORMULA WEIGHT	270.028
⁰⁰ 2:	Crystals	298.15 to	1800 K.				
	****	*********	****		FORMATION	FROM THE ELEM GIBBS	ENTS
TEMP.	(H [•] _T -H [•] ₂₉₈ )	/T S [•] T	$-(G_{T}^{\bullet}-H_{298}^{\bullet})$	/T C _p	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol•K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.1	5 0.000	77.03	77.03	63.60	-1084.910	-1031.710	180.752
UNCERT		0.24			1.000		
400	17.350	97.00	79.65	71.59	-1083.913	-1013.685	132.374
500	28.626	113.43	84.80	75.50	-1082.685	-996.270	104.080
600	36.660	127.43	90.77	78.01	-1081.500	-979.098	85.238
700	42.709	139.61	96.90	79.92	-1080.490	-962.120	71.795
800	47.464	150.39 160.08	102.93	81.54	-1079.732	-945.260 -928.480	
900	51.333	160.08	108.75	83.02	-1079.292	-928.480	53.888
1000	54.572	168.90		84.42	-1081.628	-911.568	47.616
1100	57.347	177.01	119.66	85.78	-1085.433	-894.363	42.470
1200	59.772	184.53	124.76		-1084.167	-877.048	
1300	61.926	191.55	129.62		-1082.804	-859.828	34.548
1400	63.864	198.16		89.77		-842.760	31.444
1500				0,00		-825.152	
1600		204.40					
	67.271		143.05	00 76	1007 (05	-807.576	
1700 1800	68.789 70.213	215.96 221.36	147.17 151.15		-1088.504 -1087.685 -1086.756	-790.048 -772.566	
MELTING	POINT		 K	BOILING	*****		 K
FNTHATS	Y OF MELTI	NG	<b>۲</b>	THTUAT DY	OF VAPORIZA	N.T.T.O.N.	kJ
						ALLON	KJ
H 298 -	н <mark>о</mark>		kJ	MOLAR VO	LUME	2.46	•
TRANSIT	TONS IN REA	FERENCE ST	TATE ELEMEN	TS		24.61	8 cm ³
URAI	IUM AL	PHA-BETA S	941, BETA-G.	AMMA 1048,	M. P. 1405	к.	
HEAT CA	APACITY EQUA	ATION					
	62.867 +	1.4610x10	-2 T + 2.7 FROM 298 -	429x10 ² т 1800 к)	-0.5 - 1.734]	$1 \times 10^{6} T^{-2}$	
REFEREN	ICE 133	133		*******	]	33	COMPILED 3-19-81

TETRAU	RANIUM ENNE	AOXIDE	FORMULA WEICHT 1096.11				
^U 4 ⁰ 9:	Alpha pha	se 298.15	to 348 K.	Beta phase	e 348 to 1400	) к.	
					FORMATION	FROM THE ELE	MENTS
TEMP.	(H [•] _T -H [•] ₂₉₈ )	/T S [•] _T	-(G [*] _T -H [*] ₂₉₈ )	/T C [•] _P	ENTHALPY	GIBBS FREE ENERGY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol•K	kJ/mol	kJ/mol	
298.15 UNCERT		335.93 0.67	335.93 0.67	293.34	-4512.000 15.100	-4276.900 15.200	749.298 2.663
400	116.000	466.10	350.10	314.49	-4490.884	-4198.439	548.262
500	130.410	503.26	372.85	328.19	-4498.191	-4122.126	430.637
600	164.118	563.89	399.77	336.63	-4492.499	-4047.453	352.364
700	189.243	616.29	427.05	343.20	-4487.688	-3973.684	296.52
800	208.871	662.52	453.65	349.32	-4483.994	-3900.502	254.678
900	224.822	704.02	479.20	355.66	-4481.607	-3827.715	222.150
1000	238.249	741.85	503.60	362.59	-4490.258	-3754.478	196.11
1100	249.896	776.76	526.86	370.30	-4504.634	-3680.141	174.750
1200	260.282	809.34	549.06	378.91	-4498.469		
1300	269.768	840.04	570.27	388.50	-4491.561	-3531.277	141.889
1400	278.621	869.22	590.60	399.12	-4483.801	-3457.769	129.012
MELTING	G POINT		K	BOILING	POINT	*******	ĸ
ENTHALI	PY OF MELTI	NG	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
H [•] 298 -	н°		kJ	MOLAR VO	LUME	9.6	570 J/bar
TRANSIT	CIONS IN RE	FERENCE ST	ATE ELEMEN	rs		96.5	70 cm ³
URAN	NIUM AL	PHA-BETA 9	41, BETA-G	AMMA 1048,	M. P. 1405	к.	
HEAT CA	APACITY EQU	ATIONS					
c <u>*</u> =	4.5153792x	$10^5 - 7.04$	$127 \times 10^2$ T	+ 0.55685	$234 T^2 - 5.4$	159017x10 ⁶ T	-0.5 +
P	2.0308879x	$10^9 t^{-2}$	ROM 250 -				
c <mark>•</mark> =	366.62 - 5	.5972x10 ⁻²		885x10 ⁻⁵ T	² - 6.2481x1	.0 ⁶ T ⁻²	
REFEREN	NCE 120,71 159,94	120				49	COMPILED

TRIURAN	IUM OCTAOX	IDE	*******	********	- F	ORMULA WEIGHT	842.082
⁰ 308:	Crystals	298.15 to	1000 K. A	reversib	le lambda-ty	pe thermal and	omaly
	is prese	nt at 482.	7 K. The a	lpha-beta	transition	temperature i	s 1043 K.
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		FORMATION	FROM THE ELEI GIBBS	MENTS
TEMP.	(H [•] -H [•] 298)	/T S [•] T	-(G _T -H ₂₉₈ )	T CP	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol•K	J/mol•K	J/mol·K	kJ/mol	kJ/mol	
UNCERTA	INTY	0.50	282.59 0.50	238.36	-3574.800 1.000	-3369.400 1.200	
400	64.200	356.49	292.29	263.65	-3569.973	-3299.938	430.930
300	103./00	41/+14	311.44	276.27	-3564.302	-3233.132	337.764
600	133.363	466.69		269.17	-3559.792	-3167.345	275.743
700 800	152.833	508.26		2/1.20	-3556./52	-3102.206	231.490
900	180.767	578.17	397.40	2/0.00	-3554.000	-3037.408 -2972.849	198.32
	192.036					-2907.948	
MELTING	POINT	****	K	BOILING	POINT	*****	к К
ENTHALP	Y OF MELTIN	NG	kJ	ENTHALPY	OF VAPORIZ	ATION	kJ
H [*] 298 -	H.		kJ	MOLAR VO	DLUME	10.0	320 J/ban
	IONS IN REI					100.3	20 cm ³
URAN	IUM ALI	PHA-BETA 9	41, BETA-GA	AMMA 1048,	, M. P. 1405	к.	
HEAT CA	PACITY EQUA	ATIONS					
c <mark>*</mark> =	3.3931x10 ² (EQUATIO	+ 3.9418 DN VALID F	x10 ⁻² T - 1 ROM 200 -	L.6164x10 482.70 H	$T^{-0.5} - 1.5$	6973x10 ⁶ T ⁻²	
c <mark>*</mark> =	1.2170x10 ² EQUATION	+ 0.1587 N VALID FR	7 T + 1.87 OM 482.70	796x10 ⁷ - 1800 к)	- 2		
REFEREN	CE 157,95 66	157	# # # # # # # # # # # # # # # # # # #	****	)	23	COMPILED 3-20-81

. . .

61

URANIU	M TRIOXIDE (	GAMMA)		******	F(	ORMULA WEIGHT	286.027
vo ₃ :	Crystals 2	98.15 to	900 K.				
*-*-*-			****		FORMATION	FROM THE ELEM GIBBS	IENTS
TEMP.	(H [•] _T -H [•] ₂₉₈ )/	T ST	-(G [*] -H [*] 298)/1	c°	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
			96.11 0.21			-1145.700 1.250	
500	35.736	141.70	105.96	92.53	-1221.064	-1119.239 -1093.609 -1068.241	114.249
	52.773 58.447 62.944	173.74 186.84 198.50	120.97 128.39 135.56	97.53 98.68 99.14	-1218.588 -1217.754 -1217.351	-1043.091 -1018.070 -993.144	77.837 66.473 57.641
MELTING	G POINT		K	BOILING	POINT	***	 K
ENTHALI	PY OF MELTIN	G	kJ	ENTHALPY	OF VAPORIZA	ATION	kJ
H [•] 298 -	H •		kJ	MOLAR VOLUME 3.5			60 J/bar
	U	ERENCE S	TATE ELEMENTS	5		35.56	0 cm ³
URAI	NIUM ALP	RA-BETA	941, BETA-GAN	IMA 1048,	M. P. 1405	к.	
HEAT CA	APACITY EQUA	TION					
C [•] _P =	215.00 - 3. (EQUATIO	8496x10 ⁻² N VALID 1	² T - 2.52725 FROM 298 -	10 ³ T ⁻⁰ . 900 K)	⁵ + 2.4500	$x10^{6} T^{-2}$	
REFEREI	NCE 133	156	ه به گان کا بی کا بی کا بی کا بی کا بی کا بی کا ا			23	COMPILED 3-19-81

.

•

.

						FROM THE ELEM GIBBS	
TEMP.	(H [•] _T -H [•] ₂₉₈ )/	r s [•] T	-(G [*] _T -H [*] _{2.9.8} )/	T CP	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol·K	J/mol•K	J/mol·K	kJ/mol	kJ/mol	
298.15 UNCERTA	0.000 INTY	156.60 8.00	156.60 8.00	109.00	-1534.500 4.000	-1404.900 4.000	246.13 0.70
500 600	50.664 66.242	220.81 247.06	170.15 180.82	139.30 148.33	-1533.231 -1531.407	-1360.602 -1317.281 -1274.247 -1231.555	137.61 110.93
ELTING	POINT		K	BOILING	POINT	*****	K
ENTHALP	Y OF MELTIN	G	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
1298 - 1	H •		kJ	MOLAR VOLUME 4.			
TRANSIT:	IONS IN REF	ERENCE ST	TATE ELEMENT	S		46.40	0 cm ³
URAN	IUM ALP	HA-BETA 9	941, BETA-GA	MMA 1048,	M. P. 1405	К.	
HEAT CA	PACITY EQUA	TION					
c _P = -:	302.61 + 29 (EQUATIO	9.0152 T ^C N VALID F	).5 - 0.4760 ROM 298 -	63 T + 1 700 K)	.5717x10 ⁴ T	•1	
	302.61 + 2 (EQUATIO) CE 166		0.5 - 0.4760 PROM 298 -	63 T + 1 700 K)	**********		COM 3-

.

,

******	TRICHLORI	*******				ORMULA WEIGHT	344.388
JC1 ₃ :	Crystals :	298.15 to	1000 K.				
	****					FROM THE ELEM GIBBS	
CEMP.	(H _T -H ₂₉₈ )	T ST	-(G _T -H ₂₉₈ )/1	c c <mark>e</mark>	ENTHALPY	FREE ENERGY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol·K		kJ/mol	
298.15 INCERTA		158.95 0.40		101.73		-823.820	144.330
400 500 600			162.57 170.23 178.88	104.23 105.71 107.02		-800.997 -779.257 -757.910	104.600
700 800 900	60.569 66.891	248.18 263.01	187.61 196.12	109.43 113.09	-883.364 -881.785	-736.854 -716.025	54.98 46.752
1000			204.32 212.19	123.75	-881.003	-695.417 -674.803	35.248
ELTING	POINT		K	BOILING	POINT		K
NTHALP	Y OF MELTIN	ſG	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
298 -	0						40 J/bai 0 cm ³
RANSIT	IONS IN REI	PERENCE ST	ATE ELEMENTS	5		62.04	U CH
URAN	IUM ALI	PHA-BETA 9	941, BETA-GAN	MA 1048,	M. P. 1405	К.	
IEAT CA	PACITY EQUA	TION					
C [•] _P = -	175.29 + ( (EQUATIO	0.13399 T DN VALID F	+ 5.4565x10 ROM 298 - 1	) ³ т ^{-0.5} .000 к)	- 7.5036x10 ⁶	T ⁻²	
EFEREN	CE 133	6 5		******	1	.33	COMPILED 3-19-81

--

URANIUM	TETRACHLO		FORMULA WEIGHT 379.841				
UC1 ₄ :	Crystals 2	298.15 to	700 K.				
				***	FORMATION	FROM THE ELEM GIBBS	ENTS
TEMP.	(H _T [•] -H ₂₉₈ )	∕T S [•] _T	-(G _T -H ₂₉₈ )/	T C _P	ENTHALPY	FREE ENERGY	LOG K
к	J/mol·K	J/mol•K	J/mol·K	J/mol·K	kJ/mol		
298.15 UNCERTA	0.000 INTY	196.60 0.50	196.60 0.50	119.89	-1018.390	-928.990 4.200	162.756
500 600	51.174 64.878	261.90 286.21	210.73 221.33	131.32	-1013.001 -1010.255	-898.855 -869.951 -841.596 -813.708	90.884 73.268
MELTING	POINT		K	BOILING	POINT		K
ENTHALP	Y OF MELTIN	NG	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
H [•] ₂₉₈ -	н.		kJ	MOLAR VOLUME 7.7600			00 J/bar
	•	FERENCE ST	TATE ELEMENT	s		77.60	0 cm ³
URAN	IUM ALI	PHA-BETA	941, BETA-GA	MMA 1048,	M. P. 1405	К.	
	PACITY EQUA						
C <mark>* = -</mark>	80.231 + ( (EQUATIO	0.12983 T ON VALID 1	+ 3.6987x1 FROM 298 -	0 ³ т ^{-0.5} 700 к)	- 4.6948x10 ⁶	τ ⁻²	
	CE 133			** * * * * * * * *		48	3-19-81

-

.

						FROM THE ELEM GIBBS	
TEMP.	(H [*] _T -H [*] ₂₉₈ )/	T ST	-(G _T -H ₂₉₈ )/	r c <mark>*</mark>	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
				107.86	-1243.070	-1145.280	
JNCERTA	INTY	0.42	0.42		2.100	2.200	0.385
400	28.475	183.36	154.89	115.28	-1241.155	-1112.167	145.23
500	46.348	209.63	163.28	120.01	-1239.083	-1112.167 -1080.158	112.84
600	58.913	231.82	172.91	123.28	-1237.037	-1048.565	91.28
700	68.286	251.01	182.72	125.63	-1235.148	-1017.308 -986.296	75.91
800	75.567	267.90	192.33	127.34	-1233.512	-986.296	64.39
ELTING	POINT		K	BOILING	POINT		K
ENTHALP	Y OF MELTIN	IG	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
298 -	H [•]		kJ	MOLAR VO	6.32	00 J/ba	
	Ũ	TOPNCT CT	TATE ELEMENT			63.20	0 ст ³
				_			
URAN	IUM ALP	PHA-BETA S	941, BETA-GA	MMA 1048,	M. P. 1405	К.	
HEAT CA	PACITY EQUA	TION					
<b>c</b> • -	1 7418-102	0 (10)			$r^{-0.5} + 7.7$	-2 -2	
G _ =	1./410X10	- 9.01241	ROM 298 -	110/#10	r + /./	166 <b>x</b> 10 T	

•

.

^{UO} 2 ^F 2:	Crystals 29	8.15 to	800 K.				
					FORMATION FROM THE ELEMENTS GIBBS		
TEMP.	(H _T [•] -H ₂₉₈ )/1	s• T	-(C _T -H [*] 298)/7	c°P	ENTHALPY	FREE ENERCY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.15 0.000 135.55 UNCERTAINTY 0.50				103.20		-1557.700 1.200	
500 600	66.334	192.67 214.29 233.02	147.83 157.15 166.69	120.25	-1650.226 -1648.341 -1646.639	-1525.087 -1493.546 -1462.389 -1431.536 -1400.901	156-030 127.313 106.823
MELTING POINT			K	BOILING	POINT		ĸ
ENTHALPY OF MELTING k			kJ	ENTHALPY OF VAPORIZATION			kJ
$H_{298}^{\bullet} - H_{0}^{\bullet}$			kJ			4.79	80 J/bar
TRANSITIONS IN REFERENCE STATE ELEMENTS						47.98	0 cm ³
URAN	IUM ALPH	A-BETA 9	941, BETA-GAN	MA 1048,	M. P. 1405	К.	
HEAT CA	PACITY EQUAT	ION					
C [•] _P =	174.31 - 1.1 (EQUATION	443x10 ⁻² VALID 1	² T - 1.1491 7ROM 200 -	10 ³ т ⁻⁰ . 800 к)	5 - 1.0228 x	$10^5 r^{-2}$	
REFERENCE 29 29							COMPILED

•••••

•

					FORMATION	FROM THE ELEM	
TEMP.	(H [*] -H [*] ₂₉₈ )/	T S [•] T	-(G [*] _T -H [*] ₂₉₈ )/1	r c <mark>e</mark>	ENTHALPY	GIBBS FREE ENERGY	LOG K
ĸ	J/mol·K				kJ/mol	kJ/mol	
			142.70 2.00		-1704.100	-1577.000 2.100	276.28
600	64.292	230.61	166.32	142.48	-1701.953	-1533.621 -1491.165 -1448.888 -1406.800	126.13
MELTING	POINT		K	BOILING	POINT		
ENTHALP	Y OF MELTIN	ſG	kJ	ENTHALPY	OF VAPORIZA	ATION	kJ
1. 298 -	H •		kJ	MOLAR VO	LUME	5.76	90 J/ban
270	v	ERENCE S	FATE ELEMENTS	5		57.69	0 cm ³
URAN	IUM ALP	HA-BETA	941, BETA-GAM	MA 1048,	M. P. 1405	К.	
	PACITY EOUA						
c <u>*</u> = -	87.541 + 1	15.7163	0.5 - 0.257 ROM 298 -	862 T -	1.3463x10 ²	r ⁻¹	

4

.

.

BARIUM	MONOURANATI	E	FORMULA WEIGHT 439.36				
Bauo ₄ :	Crystals 2	298.15 to	1100 к.				
					FORMATION	FROM THE ELEM GIBBS	ENTS
TEMP.	(H _T [•] -H ₂₉₈ )/	T S [•] T	-(G _T [*] -H ₂₉₈ )	/T C _p	ENTHALPY	FREE ENERGY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.19 UNCERTA		153.97 0.31	153.97 0.31	125.27	-1997.100 2.100	-1887.070 2.100	
400		192.46			-1995.768		
500 600	54.758 69.978	223.70 250.32	168.94 180.34	143.44 148.45	-1994.784	-1813.295 -1777.017	189.434
700		273.49		148.45	-1993.383	-1740.877	154.704
800	90.485		203.52			-1704.822	
900	97.778	312.38	214.60		-1992.476	-1668.818	96.856
1000	103.800	329.03	225.23	158.84	-1994.748	-1632.715	85.28
1100	108.868	344.24	235.37	160.19	-2006.890	-1595.497	75.764
MELTING	POINT		K	BOILING	POINT		K
ENTHALI	Y OF MELTIN	۲G	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
H [•] 298 -	H.		kJ	MOLAR VO	LUME	5.80	80 J/bar
270	TIONS IN REE	ERENCE ST	ATE ELEMEN	rs		58.08	0 cm ³
BAR	[UM ALF	PHA-BETA 6	43. M. P. 1	BETA 983.	B. P. 2169 H	τ.	
				•	M. P. 1405		
	PACITY EQUA	•	•	•	•		
C <mark>P</mark> =	215.49 - 8. (EQUATIO	.8192x10 ⁻³ )n valid f	T - 1.512 ROM 298 -	5x10 ³ T ⁻⁰ . 1100 K)	5		
REFEREN	ICE 108	108		*		.08 .07	COMPILED 3-18-81

CALCIUM	MONOURANATI				F(	RMULA WEIGHT	342.10
CaU0 ₄ :	Crystals	298.15 t	o 1000 K.	Small soli	d-phase trai	nsition at 102	5 K.
	***********	و هو خو هو هو خو خو ه	ی بی بی بی وی بی		FORMATION	FROM THE ELEM GIBBS	ENTS
TEMP.	(H [•] _T -H [•] ₂₉₈ )/1	r s _T	-(G _T [•] -H ₂₉₈ )	/T C _p	ENTHALPY	FREE ENERGY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.15	0.000		144.30	129.56	-2001.700	-1895.000	331.99
UNCERTA	INTY	8.00	8.00		2.100	3.000	0.52
400	33.600	183.04	149.44	134.33	-1999.848	-1858.812	242.73
500			149.44 159.31	139.02	-1998.084	-1858.812 -1823.769	190.52
600	68.737	239.28	170.54	143.70	-1996.468	-1789.054 -1754.606	155.75
700	79.779	261.78	182.00	148.38	-1995.077	-1754.606	130.93
800	88.646	281.90	193.25	153.06	-1994.696	-1720.240	112.32
900	96.067	300.20	204.13	157.74	-1993.812	-1685.978	97.85
1000	102.465	317.06	214.59	162.42	-1995.855	-1651.635	86.27
MELTING	POINT		ĸ	BOILING	POINT		 K
ENTHALP	Y OF MELTING	;	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
H [•] 298 - 1	H •		kJ	MOLAR VO	LUME	4.59	10 J/bas
	IONS IN REFE	RENCE ST	ATE ELEMEN	TS		45.91	0 cm ³
CALC	IUM ALPH	A-BETA 7	37, M. P.	BETA 1123,	B. P. 1755	К.	
URAN	IUM ALPH	A-BETA 9	41, BETA-G	AMMA 1048,	M. P. 1405	К.	
HEAT CA	PACITY EQUAT	ION					
C° =	115.60 + 4. (EQUATION	6820x10 VALID F	² T + 0.1 ROM 298 -	2838 Т ^{-0.5} 1000 к)			
REFEREN	CE 107	107				.07	COMPILEI

.

70

.

-

DICESI	UM MONOURAN	ATE	*******	-	F(	ORMULA WEIGHT	567.83
Cs2 ^{UO} 4	: Crystals :	298.15 to					
	****				FORMATION	FROM THE ELEM GIBBS	IENTS
TEMP.	(H [*] -H [*] 298)	T S _T	-(G _T -H [*] 298)	/T CP	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.1		219.66 0.45		152.76	-1929.800 1.500	-1807.144 1.500	
400 500	40.100 64.968	265.87 302.55	225.77 237.58	161.47	-1934.867 -1934.238	-1763.695 -1720.963	230.31
	82.350 95.266 105.287	333.39 360.02 383.44	251.04 264.75 278.15	171.17 174.21 176.56	-1932.696 -1930.847 -1929.236	-1678.428 -1636.210 -1594.220	146.12 122.09 104.09
900 1000	113.311 119.904	404.35	291.04	178.43 179.93	-1928.384	-1552.402 -1502.284	90.099
1100	125.418	440.44	315.02	181.16	-2065.015	-1446.100	68.670
MELTING	; POINT		K	BOILING	POINT		K
ENTHALI	PY OF MELTIN	1G	kJ	ENTHALPY	OF VAPORIZA	ATION	kJ
H [•] 298 -	н°		kJ	MOLAR VO	LUME		40 J/ban
TRANSIT	TIONS IN REP	ERENCE ST	ATE ELEMENT	r s		85.44	0 cm ³
URAB	NIUM ALI	PHA-BETA 9	41, BETA-GA	MMA 1048,	M. P. 1405	К.	
CESI	LUM M.	P. 301.55	к, в. р. 9	942 K.			
HEAT CA	APACITY EOUA	TION					
C [•] _P =	221-62 - 4. (EQUATIO	.8832x10 ⁻³ DN VALID F	T - 1.1639 ROM 298 -	ж10 ³ т ⁻⁰ . 1100 к)	5		
REFEREN	NCE 51	117		********		10,30 08	COMPILEI 3-18-81

MgU0 ₄ :	Crystals		1400 K.				
*****	) én 12 m, én én (n 14 m) én 14 m)				FORMATION	FROM THE ELEM GIBBS	ENTS
TEMP.	(H _T -H ₂₉₈ )	∕T S [•] T	-(GT-H298)/1	r c <mark>e</mark>	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol•K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
			131.90	128.10		-1749.300	
UNCERTA	INTY	0.50	0.50		1.300	1.300	0.228
400	33.400	170.40	137.00	133.91	-1855.206	-1712.722	223.660
500	53.950	200.77	146.82			-1677.314	175.229
600	68.312	226.30	157.99	141.89	-1851.911	-1642.223	142,969
700	79.053 87.482	248.42 267.98	169.37 180.50 191.21	145.05	-1850.609	-1607.393 -1572.717 -1538.128	119.946
800		267.98	180.50	147.89	-1849.629	-1572.717	102.688
900	94.344		191.21	150.51	-1849.032	-1538.128	89.271
1000	100.082	301.53	201.45	152.96	-1860.231	-1502.671	78.492
1100	104.995	316.22	211.22	155.29	-1863.902	-1466.725	69.649
1200	109.279	329.83	211.22 220.55	157.51	-1862.454	-1466.725 -1430.683	62.276
1300	113.072	342.52	229.45	159.65	-1860.861	-1394.760	56.042
1400	116.471	354.43	237.96	161.73	-1986.089	-1355.389	50.570
MELTING	POINT		K	BOILING	POINT		к К
ENTHALP	Y OF MELTI	NG	kJ	ENTHALPY	OF VAPORIZA	ATION	kJ
H-298 -	H.		kJ	MOLAR VO			
230	v					44.70	0 cm ³
TRANSIT	IONS IN REL	FERENCE ST	TATE ELEMENTS	5		44070	• • •
MAGN	ESIUM M.	P. 922, P	8. P. 1361 K.				
URAN	IUM AL	PHA-BETA 9	41, BETA-GAM	MA 1048,	M. P. 1405	к.	
HEAT CA	PACITY EQUA	ATION					
	•		. 1	2			
с <mark>р</mark> =	154.55 + 1 (EQUATIO	L.5352x10 DN VALID F	⁻² T - 5.3568 ROM 298 - 1	8x10 ² т ⁻⁰ .400 к)			
	CE 106	30					COMPILED

•

Na 2 ⁰⁰ 4	Alpha cry	stals 298	.15 to 1193	K. Beta	crystals 119	3 to 1300 K.	
~~~~					FORMATION	FROM THE ELEN GIBBS	IENTS
TEMP.	(H [°] T-H [°] 298)	/T S [•] T	-(G [*] _T -H [*] ₂₉₈ )	/T C _P	ENTHALPY	FREE ENERGY	LOG K
K	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.1	0.000	166.00	166.00	146.60	-1890.200	-1771.800	310.41
UNCERTA	INTY	0.30	0.30		4.500	4.500	0.78
400	39.000	210.91	171.91	158.74	-1894.917	-1730.986	226.04
500	63.790	247.25	183.46	166.78	-1894.035	-1690.110 -1649.437 -1608.993 -1568.765	176.56
600	81.468	278.20	196.73	172.65	-1892.743	-1649.437	143.59
700	94.831	305.17	210.34	177.17	-1891.289	-1608.993	120.06
800	105.356	329.07	223.71	180.77	-1889.853	-1568.765	102.43
900	113.900	350.54	236.64	183.71	-1888.592	-1528.710	88.72
1000	121.013	350.54 370.03	249.02	186.17	-1890.027	-1488.617	77.75
1100	127.034	387.87	260.84	188.26	-1892.942	-1448.301	
1200	149.918			224.68	-2064.386	-1403.731	61.10
1300	155.669	439.27	283.60	224.68	-2057.076	-1348.157	54.17
MELTING	POINT		K	BOILING	POINT		к К
ENTHALP	Y OF MELTI	NG	kJ	ENTHALP	Y OF VAPORIZA	ATION	kJ
H [°] 298 -	H.		kJ	MOLAR V	OLUME	5.85	50 J/ba
	J.					58.59	i0 cm ³
<b>FRANSI</b>	IONS IN RE	FERENCE SI	ATE ELEMEN	TS			
SODI	UM M.	P. 370.98	, B. P. 11	75 K.			
URAN	IIUM AL.	PHA-BETA	41, BETA-G	AMMA 1048	, M. P. 1405	к.	
HEAT CA	PACITY EQU.	ATIONS					
c <mark>*</mark> =	237.73 - 2 (EQUATI)	.1460x10 ⁻³ On Valid P	T - 1.562 ROM 298 -	6×10 ³ т ⁻⁰ 1193 К)	.5		

· - ·

						FROM THE ELEM GIBBS	
CEMP.	(H _T -H ₂₉₈ )/	r s [•] T	-(G _T -H ₂₉₈ )/1	C [•] P	ENTHALPY	FREE ENERGY	LOG K
ĸ	J/mol·K	J/mol·K	J/mol·K	J/mol·K	kJ/mol	kJ/mol	
298.15	0.000	198.20	198.20	173.00	-2021.700	-1897.600	332.453
JNCERTA	INTY	0.40	0.40		6.000	6.000	1.051
400	46.100	251.32	205.22	187.01	-2029.252	-1854.625	242.190
500	74.994	293.81	218.82	193.46	-2028.710	-1854.625 -1811.030	189.198
600	95.115	329.48	234.36	197.77	-2027.848	-1767.568 -1724.245	153.881
700	110.046	360.24	250.19	201.42	-2026.883	-1724.245	128.665
800	121.686	387.37	265.68	204.91	-2025.942	-1681.085 -1638.024	109.764
				208.44	-2025.123	-1638.024	95.069
000	139.042	433.86	294.82	212.07	-2026.926	-1594.896	83.309
100	145.851	454.24	308.39	215.83	-2030.080	-1551.493	73.675
200	151.844	473.19	321.35	219.72	-2320.251	-1501.921	65.377
1ELTING	POINT		K	BOILING	POINT		к К
ENTHALF	Y OF MELTIN	3	kJ	ENTHALPY	OF VAPORIZA	TION	kJ
298 -	н <b>•</b>		kJ	MOLAR VOI	LUME		J/bar
RANS IT	IONS IN REFI	ERENCE ST	ATE ELEMENTS	:			
SODI	UM M. 1	P. 370.98	, B. P. 1175	к.			
URAN	IUM ALPI	HA-BETA 9	41, BETA-GAM	MA 1048,	M. P. 1405	К.	
HEAT CA	PACITY EQUA	TION					
C° =	111.37 + 5 (EQUATIO)	.3940×10 VALID F	² T + 1.613 ROM 298 - 1	$4 \times 10^3 T^{-0}$ 200 K)	0.5 - 4.2576	$x10^{6} T^{-2}$	
	CE 50	110			-	15	COMPILEI

**)** 

74

.

- Part III. References cited
  - 1. Ackerman, R.J. and Chang, A.T., 1973, Thermodynamic characterization of the  $U_3O_{8-Z}$  phase: Jour. Chem. Thermodynamics, v. 5, p. 873-890.
  - Ackermann, R.J., Thorn, R.J., Alexander, C. and Tetenbaum, M., 1960, Free energies of formation of gaseous uranium, molybdenum, and tungsten trioxides: Jour. Phys. Chem., v. 64, p. 350-355.
  - Affortit, C. and Marcon, J.P., 1970, Specific heat of uranium and plutonium oxides at high temperature: Rev. Int. Hautes Temp. Refract., v. 7, p. 236-241.
  - -. Alwan and Williams, 1980, see reference 170.
  - 4. Argue, G.R., Mercer, E.E. and Cobble, J.W., 1961, An ultrasensitive thermistor microcalorimeter and heats of solution of neptunium, uranium, and uranium tetrachloride: Jour. Phys. Chem., v. 65, p. 2041-2048.
  - Ahrland, S., Liljenzin, J.O. and Rydberg, J., 1973, Solution Chemistry: in Comprehensive Inorganic Chemistry. Vol 5. Actinides. Pergamon Press, p. 465-635.
  - Babko, A.K. and Kodenskaya, V.S., 1960, Equilibria in solutions of uranyl carbonate complexes: Rus. Jour. Inorg. Chem., v. 5, p. 1241-1244.
  - 7. Baes, C.F., Jr., and Mesmer, R.E., 1976, The hydrolysis of cations: Wiley-Interscience Publ., New York, 489pp.
  - 8. Bailey, A.R. and Larson, J.W., 1971, Heats of dilution and the thermodynamics of dissociaton of uranyl and vanadyl sulfates: Jour. Phys. Chem., v. 75, p. 2368-2372.
  - 9. Battles, J.E., Shinn, W.A., and Blackburn, P.E., 1972, Thermodynamic investigation of trisodium uranium (V) oxide (Na₃UO₄) IV. Mass spectrometric study of the Na + U + O system: Jour. Chem. Thermodynamics, v. 4, p. 425-439.
  - Blake, C.A., Coleman, C.F., Brown, K.B., Hill, D.G., Lowrie, R.S., and Schmitt, J.M., 1956, Studies in the carbonateuranium system: Amer. Chem. Soc. Jour., v. 78, p. 5978-5983.
  - Blank, H. and Ronehi, C., 1968, Electron diffraction of U40g: Acta Cryst., v. A24, p. 657-666.
  - 12. Brickwedde, F.G., Hoge, H.J. and Scott, R.B., 1948, The lowtemperature heat capacities, enthalies and entropies of  $UF_4$  and  $UF_6$ : Jour. Chem. Phys., v. 16, p. 429-431.

- 13. Brookins, D.G., 1975, The Grants mineral belt, New Mexico: Comments on the coffinite-uraninite relationship, probable clay mineral reactions, and pyrite formation: in Tectonics and mineral resources of southwest North America: Woodward, L.A. and Northrop, S.A., eds., New Mexico Geol. Survey Spec. Publ. No. 6, p. 158-166.
- Bullwinkel, E.P., 1954, The chemistry of uranium in carbonate solutions: Topical Report RMO-2614, The Merrill Co., San Francisco, 59pp.
- 15. Burns, J.H., Osborne, D.W. and Westrum, E.F., Jr. 1960, Heat capcity of uranium tetrafluoride from 1.3 to 20°K and the thermodynamic functions to 300°K. Calorimeter for the range 0.8° to 20°K: Jour. Chem. Phys., v. 33, p. 386-394.
- --. Chen, 1975, see reference 174.
- 16. Chernyaev, I.I., Golovnya, V.A. and Ellert, G.V., 1956, Uranyl aquocarbonate compounds. I. Synthesis of U0₂[•]C0₃ and U0₂C0₃[•]H₂O: Rus. Jour. Inorg. Chem., v. 1, p. 2726-2735.
- 17. Christ, C.L. and Clark, J.R., 1960, Crystal chemical studies of some uranyl oxide hydrates: Amer. MIneral., v. 45, p. 1026-1061.
- Christ, C.L., Clark, J.R., and Evans, H.T., Jr., 1955, Crystal structure of rutherfordine, U0₂CO₃: Science, v. 121, p. 472.
- --. Ciavatta et al., 1981, See reference 168.
- 19. Ciavatta, L., Ferri, D., Grimaldi, M., Palombari, R. and Salvatore, F., 1979, Dioxouranium (VI) carbonate complexes in acid solution: Jour. Inorg. Nucl. Chem., v. 41, p. 1175-1182.
- 20. Clark, J.R. and Christ, C.L., 1956, Some observations on rutherfordine: Amer. Mineral., v. 41, p. 844-850.
- 21. Clearfield, A., 1964, Crystalline hydrous zirconia: Inorg. Chem., v. 3, p. 146-148.
- 22. Cloud, P., 1976, Major features of crustal evolution: Geol. Soc. South Africa, Annexo., v. 59, 33 pp.
- 23. CODATA 1977 task group, 1978, Recommended key values for thermodynamics, 1977: Jour. Chem. Thermodynamics, v. 10, p. 903-906.
- 24. Cole, C.V. and Jackson, M.L., 1950, Colloidal dihydroxy dihydrogen phosphates of aluminum and iron with crystalline character established by electron and x-ray diffraction: Jour. Phys. Colloid Chem., v. 54, p. 128-142.

- 25. Cordfunke, E.H.P., 1964, Heats of formation of some hexavalent uranium compounds: Jour. Phys. Chem., v. 68, p. 3353-3356.
- 26. Cordfunke, E.H.P. and Ailing, P., 1965, System  $UO_3-U_3O_8$ ; dissociation pressure of  $\gamma-UO_3$ : Faraday Soc. Trans., v. 61, p. 50-53.
- 27. Cordfunke, E.H.P. and Debets, P.C., 1964, Preparation and properties of a new monohydrate of uranium trioxide ε-U0₃·H₂O: Jour. Inorg. Nucl. Chem., v. 26, p. 1671-1677.
- 28. Cordfunke, E.H.P. and Loopstra, B.O., 1971, Sodium uranates: Preparation and thermochemical properties: Jour. Inorg. Nucl. Chem., v. 33, p. 2427-2436.
- 29. Cordfunke, E.H.P., Muis, R.P. and Prins, G., 1979, Hightemperauture enthalpy increments of uranyl dihalides U0₂X₂(X=F,Cl, Br), and thermodynamic functions: Jour. Chem. Thermodynamics, v. 11, p. 819-823.
- 30. Cordfunke, E.H.P. and O'Hare, P.A.G., 1978, The chemical thermodynamics of actinide elements and compounds. Part 3. Miscellaneous actinide compounds: International Atomic Energy Agency, Vienna, Austria, 83 pp.
- Cordfunke, E.H.P. and Ouweltjes, W., 1977, Standard enthalpies of formation of uranium compounds III. U0₂F₂: Jour. Chem. Thermodynamics, v. 9, p. 71-74.
- 32. Cordfunke, E.H.P. and Ouweltjes, W., 1977, Standard enthalpies of formation of uranium compounds IV. α-U0₂S0₄, β-U0₂Se0₄, and U0₂Se0₃: Jour. Chem. Thermodynamics, v. 9, p. 1057-1062.
- 33. Cordfunke, E.H.P. and Ouweltjes, W., 1981, Standard enthalpies of formation of uranium compounds VII: UF₃ and UF₄ (by solution calorimetry): Jour. Chem. Thermodynamics, v. 13, p. 187-192.
- -- Cordfunke and Ouweltjes, 1981, See reference 167.
- 34. Cordfunke, E.H.P., Ouweltjes, W., and Prins, G., 1975, Standrad enthalpies of formation of uranium compounds I.  $\beta$ -UO₃ and  $\gamma$ -UO₃: Jour. Chem. Thermodynamics, v. 7, p. 1137-1142.
- 35. Cordfunke, E.H.P., Ouweltjes, W., and Prins, G., 1976, Standard enthalpies of formation of uranium compounds II. U0₂Cl₂ and UCl₄: Jour. Chem. Thermodynamics, v. 8, p. 241-250.
- 36. Croft, W.J., 1956, An X-ray study of uraninite: Ann. N.Y. Acad. Sci., v. 62, p. 449-502.
- 37. Cuney, M., 1978, Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France: Econ. Geol., v. 73, p. 1567-1610.

- 38. Curtis, C.E. and Sowman, H.G., 1953, Investigation of thermal dissociation, reassociation and synthesis of zircon: Jour. Amer. Ceram. Soc., v. 36, p. 190-198.
- 39. Dahlkamp, F.J., 1978, Geologic appraisal of the Key Lake U-Ni deposits, northern Saskatchewan: Econ. Geol., v. 73, p. 1430-1449.
- Dalton, R.W., McClanaham, J.L. and Maatman, R.W., 1962, The partial exclusion of electrolytes from the pores of silica gel: Jour. Colloid. Sci., v. 17, p. 207-219.
- 41. Dawson, J.K., Wait, E., Alcock, K. and Chilton, D.R., 1956, Some aspects of the system uranium trioxide-water: Chem. Soc. Jour. (London), p. 3531-3540.
- 42. Debets, P.C. and Loopstra, B.O., 1963, On the uranates of ammonium-II. X-ray investigation of the compounds in the system NH₃-UO₃-H₂O: Jour. Inorg. Nucl. Chem., v. 25, p. 945-953.
- 43. Dharwadkar, A.R. and Chandrasekharaiah, M.S., 1973, Nonstoichiometry of the uranium oxide  $(U_30_8)$  phase at high temperature: High Temp. Sci., v. 5, p. 5-7.
- 44. Dongarra, G. and Langmuir, D., 1980, The stability of U0₂OH⁺ and U0₂[HP0₄]⁵⁻ complexes at 25°C: Geochim. Cosmochim. Acta, v. 44, p. 1747-1751.
- 45. Donnay, J.D.H. and Ondik, H.M., 1973, Crystal data determinative tables. Volume II: Inorganic compounds, 3rd edition: Office of Standrad Reference Data, U.S. National Bureau of Standards.
- 46. Elston, D.P. and Botinelly, T., 1959, Geology and mineralogy of the J.J. mine, Montrose County, Colorado: in Geochemistry and mineralogy of the Colorado Plateau uranium ores, Garrels, R.M. and Larsen, E.S., III, eds., U.S.Geol. Survey Prof. Paper 320, p. 203-212.
- --. Eugster and Chou, 1973, see reference 175.
- Ferguson, I.F. and Street, R.S., 1963, High temperature X-ray diffraction studies. IV. Thermal expansion of U40g: At. Energy Res. Estab. (Gt. Brit.), Memo. AERE-M1192, 6pp.
- Fitzgibbon, G.C., Pavone, D., Holley, C.E., Jr., 1971, Enthalpy of formation of uranium tetracholoride: Jour. Chem. Thermodynamics, v. 3, p. 151-162.
- 49. Fitzgibbon, G.C., Pavone, D., Holley, C.E., Jr., 1967, Enthalpies of solution and formation of some uranium oxides: Jour. Chem. Eng. Data, v. 12, p. 122-125.
- 50. Fredrickson, D.R. and Chasanov, M.G., 1972, Thermodynamic investigation of trisodium uranium (V) oxide (Na₃UO₄) III. Enthalpy to 1200K by drop calorimetry: Jour. Chem. Thermodynamics, v. 4, p. 419-423.

- 51. Fredrickson, D.R. and O'Hare, P.A.G., 1976, Enthalpy increments for  $\alpha$ -and  $\beta$ -Na₂UO₄ and Cs₂UO₄ by drop calorimetry. The enthalpy of the  $\alpha$  to  $\beta$  transition in Na₂UO₄: Jour. Chem. Thermo-dynamics, v. 8, p. 353-360.
- 52. Frondel, C., 1958, Systematic mineralogy of uranium and thorium: U.S. Geol. Survey Bull. 1064, 400pp.
- 53. Frondel, C. and Barnes, I., 1958, Structural relations of UO₂, isometric PbUO₄ and orthochombic PbUO₄: Acta Cryst., v. 11, p. 562-563.
- 54. Frondel, C. and Meyrowitz, R., 1956, Studies of uranium minerals (XIX): Rutherfordine, diderichite, and clarkeite: Amer. Mineral., v. 41, p. 127-133.
- 55. Fuchs, L.H. and Hoekstra, H.R., 1959, The preparation and properties of uranium (IV) silicate: Amer. Mineral., v. 44, p. 1057-1063.
- 56. Fuger, J. and Oetting, F.L., 1976, The chemical thermodynamics of actinide elements and compounds - Part 2, The actinide aqueous ions: International Atomic Energy Agency, Vienna, Austria, 65pp.
- 57. Garrels, R.M., Larsen, E.S., III, Pommer, A.M. and Coleman, R.G., 1959, Detailed chemical and mineralogical relations in two vanadium-uranium ores: in Geochemistry and mineralogy of the Colorado Plateau, Garrels, R.M. and Larsen, E.S., III, eds., U.S. Geol. Survey Prof. Paper 320, p. 165-184.
- 58. Garvie, R.C., 1965, The occurrence of metastable tetragonal zirconia as a crystallite size effect: Jour. Phys. Chem., v. 69, p. 1238-1243.
- 59. Gast, R.G., 1977, Surface and colloid chemistry: in Minerals in Soil environments, Dixon, J.B. and Weed, S.B., eds., Soil Sci. Soc. Amer., Madison, Wisconsin, p. 27-73.
- 60. Gato, K., 1968, Composition of uranium oxides heated in the air: Nippon Kagaku Zasshi, v. 89, p. 927-929.
- 61. Gayer, K.H. and Leider, H., 1955, The solubility of uranium trioxide, UO₃·H₂O, in solutions of sodium hydroxide and perchloric acid at 25°: Amer. Chem. Soc. Jour., v.77, p. 1448-1450.
- 62. Gayer, K.H. and Leider, H., 1957, The solubility of uranium (IV) hydroxide in solutions of sodium hydroxide and perchloric acid at 25°C: Can. Jour. Chem., v. 35, p. 5-7.
- 63. Geller, R.F. and Lang, S.M., 1949, System SiO₂-ZrO₂: Jour. Amer. Ceram. Soc., v. 32, p. 157.

- 64. Giaugue, W.F. and Archibald, R.C., 1937, The entropy of water from the third law of thermodynamics. The dissociation pressure and calorimetric heat of the reaction  $Mg(OH)_2 = MgO + H_2O$ . The heat capacities of  $Mg(OH)_2$ , and MgO from 20 to 300°K: Amer. Chem. Soc. Jour., v. 59, p. 561-569.
- 65. Ginnings, D.C. and Corruccini, R.J., 1947, Heat capacities at high temperature of uranium, uranium trichloride, and uranium tetrachloride: U.S. Natl. Bur. Standards Jour. Res., v. 38, p. 593-600.
- 66. Girdhar, H.L. and Westrum, E.F., Jr., 1968, λ-type thermal anomaly in triuranium octaoxide at 482.7K: Jour. Chem. Eng. Data, v. 13, p. 531-533.
- 67. Goldshmid, T. and Rubin, A.J., 1978, Aqueous chemistry and precipitation of aluminum phosphate: in Chemistry of wastewater technology, Rubin, A.J., ed., Ann Arbor Science, Ann Arbor, Mich., p. 59-80.
- 68. Greenberg, E. and Westrum, E.F., Jr., 1956, Heat capacity and thermodynamic functions of uranyl chloride from 6 to 350°K: Amer. Chem. Soc. Jour., v. 78, p. 4526-4528.
- 69. Gronvold, F., 1967, Adiabatic calorimetry for the investigation of reaction substances in the range from 25 to 775°C. Heat capacity of α-aluminum oxide: Acta Chem. Scand., v. 21, p. 1695-1713.
- 70. Gronvold, F., 1968, Uranium chalcogenides II. Heat capacities and thermodynamic properties of US₂ and US₃ from 5 to 350°K: Jour. Inorg. Nucl. Chem., v. 30, p. 2127-2133.
- 71. Gronvold, F., Kveseth, N.J., Sveen, A. and Tichy, R., 1970, Thermodynamics of the UO_{2+x} phase. I. Heat capacities of UO_{2.017} and UO_{2.254} from 300 to 1000 K and electronic contributions: Jour. Chem. Thermodynamics, v. 2, p. 665-679.
- 72. Harris, L.A., 1959, Preliminary study of the phase equilibria diagram of ThO₂-SiO₂: Amer. Ceramic Soc. Jour., v. 42, p. 74-77.
- 73. Hemingway, B.S., 1982, Gibbs free energies of formation for bayerite, nordstrandite, Al(OH)²⁺ and Al(OH)⁴ and aluminum mobility and the formation of bauxite and laterites: Adv. in Phys. Geochem., v. 2, p. 285-316.

- 74. Hoekstra, H.R., Santoro, A. and Siegel, S., 1961, The low temperature oxidation of UO₂ and U₄O₉: Jour. Inorg. Nucl. Chem., v. 18, p. 166-178.
- 75. Hoekstra, H.R. and Siegel, S., 1961, The uranium-oxygen system: U₃O₈ - UO₃: Jour. Inorg. Nucl. Chem., v. 18, p. 154-165.
- 76. Honea, R.M., 1959, New data on gastunite, an alkali uranyl silicate: Amer. Mineral., v. 44, p. 1047-1056.
- 77. Huber, E.J. and Holey, C.E., Jr. 1969, Enthalpies of formation of triuranium octaoxide and uranium dioxide: Jour. Chem. Thermodynamics, v. 1, p. 267-272.
- 78. Ippolitova, E.A., Faustova, D.G., and Spitsyn, V.I., 1964, Determination of enthalpies of formation of monouranates of alkali elements and calcium: in Investigations in the field of uranium Chemistry, Spitsyn, V.I., ed., ANL-Trans. 33, p. 170-172.
- 79. Johnson, G.K., 1979, The enthalpy of formation of uranium hexafluoride: Jour. Chem. Thermodynamics, v. 11, p. 483-490.
- 80. Johnson, G.K., Smith, P.N., and Hubbard, W.N., 1973, The enthalpies of solution and neutralization of HF(l); enthalpies of dilution and derived thermodynamic properties of HF(aq): Jour. Chem. Thermodynamics, v. 5, p.793-809.
- Jones, R.C. and Uehara, G., 1973, Amorphous coatings on mineral surfaces: Soil Sci. Amer. Proc., v. 37, p. 792-798.
- 82. Jones, W.M., Gordon, J., and Long, A.E., 1952, The heat capacities of uranium, uranium trioxide, and uranium dioxide from 15° to 300°K: Jour. Chem. Phys., v. 20, p. 695-699.
- --. Karpov and Kashik, 1968, see reference 176.
- 83. Katz, J.J. and Rabinowitch, E.I., 1951, The chemistry of uranium. Part I. The element, its binary and related compounds: McGraw-Hill Book Co., Inc., 609 pp.
- 84. Kelley, K.K and King, E.G., 1961, Contributions to the data on theoretical metallurgy XIV. Entropies of the elements and inorganic compounds: U.S. BUr. Mines Bull. 592, 149 pp.
- 85. Khomyakov, K.G., Spitsyn, V.I., and Zhvanko, S.A., 1964, True thermal capacity of uranoso-uranic oxide: in Investigations in the field of uranium chemistry, Spitsyn, V.I., ed., ANL-Trans - 33, p. 165-169.
- 86. King, E.G., Siemens, R.E., and Richardson, D.W., 1971, The enthalpy of formation of sodium uranium (V) trioxide: Report No. USBM-RC-1516, U.S. Dept. Interior, Bur. Mines, Albany Metal. Res. Center, Albany, Ore., 6 pp.

- --. Kittel, 1971, see reference 177.
- 87. Kittrick, J.A., 1970, Precipitation of kaolinite at 25°C and 1 atm: Clays and Clay Minerals, v. 18, p. 261-267.
- 88. Kribek, B. and Podlaha, J., 1980, The stability constant of the U02⁺ - humic acid complex: Organic Geochem., v. 2, p. 93-97.
- Langmuir, D., 1978, Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits: Geochim. Cosmochim. Acta, v. 42, p. 547-570.
- 90. Lemire, R.J. and Tremaine, P.R., 1980, Uranium and plutonium equilibria inaqueous solutions to 200°C: Jour. Chem. Eng. Data, v. 25, p. 361-370.
- 91. Leroy, J., 1978, The Margrac and Fanay uranium deposits of the La Crouzille district (Western Massif Central, France): Geologic and fluid inclusion studies: Econ. Geol., v. 73, p. 1611-1634.
- 92. Ludwig, K.R. and Grauch, R.I., 1980, Coexisiting coffinite and uraninite in some sandstone-host uranium ores of Wyoming: Econ. Geol., v. 75, p. 296-302.
- 93. Lyon, W.G., Osborne, D.W., Flotow, H.E. and Hoekstra, H.R., 1977, Sodium uranium (V) trioxide, Na₃UO₃: Heat capacity and thermodyanamic properties form 5 to 350K: Jour. Chem. Thermodyamics, v. 9, p. 201-210.
- 94. Macleod, A.C., 1972, Enthalpy of U02.25 to 1600K by drop calorimetry: Jour. Chem. Thermodynamics, v. 4, p. 699-708.
- 95. Maglic, K. and Herak, R., 1970, Enthalpy and heat capcity of triuranium octaoxide between 273 and 1000°K: Rev. Int. Hautes Temper. et Refract., v.7, p. 247-251.
- 96. Mark, E.L., Porter, R.A., Chanda, R.N. and Schuman, R.P., 1970, Direct counting method for studying the adsorption of aqueous ²³³UO₂⁺ onto glass scintillatori surfaces: U.S. Atomic Energy Comm., IN-1396, 77pp.
- 97. Miller, L.J., 1958, The chemical environment of pitchblende: Econ. Geol., v. 53, p. 521-545.
- 98. Miller, P.D., Pray, H.A. and Munger, H.P., 1949, The preparation of uranyl carbonate and measurement of its solubility: U.S. Atomic Energy Comm. Report AECD-2740, 14pp.
- 99. Mills, K.C., 1974, Thermodynamic data for inorganic sulfides, selenides, and tellurides: Butterworths, London, 845pp.

- 100. Moench, R.H. 1962, Properties and paragenesis of coffinite from the Woodrow mine, New Mexico: Amer. Mineral., v. 47, p. 26-33.
- 101. Moore, G.E. and Kelley, K.K., 1947, High temperature heat contents of uranium, uranium dioxide, and uranium trioxide: Amer. Chem. Soc. Jour., v. 69, p. 2105-2107.
- 102. Mumpton, F.A. and Roy, R., 1961, Hydrothermal stability studies of the zircon-thorite group: Geochim. Cosmochim. Acta, v. 21, p. 217-238.
- 103. Nash, K.L. and Choppin, G.R., 1980, Interaction of humic and fulvic acids with Th(IV): Jour. Inorg. Nucl. Chem., v. 42, p. 1045-1050.
- 104. Nikolaeva, N.M., 1976, Solubility product of uranyl carbonate at elevated temperatures: Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk, v. 6, p. 30-31.
- 105. Nord, G.L., 1977, Characteristics of fine-grained black uranium ores by transmission electron microscopy: Short Papers of the U.S. Geol.Survey, Uranium-Thorium Symposium, Campbell, J.A., ed., U.S. Geol.Survey Circ. 753, p. 29-31.
- ---. Nriagu, 1975, see reference 178.
- ---. O'Brien and williams, 1981, see reference 169.
- 106. O'Hare, P.A.G., Boerio, J., Fredrickson, D.R. and Hoekstra, H.R., 1977, Thermochemistry of urnaium compounds IX. Standard enthalpy of formation and high-temperature thermodynamic funcitons of mangnesium uranate (MgUO₄). A comment on the non-existence of beryllium uranate: Jour. Chem. Thermodynamics, v. 9, p. 963-972.
- 107. O'Hare, P.A.G., Boerio, J., and Hoekstra, H.R., 1976, Thermochemistry of uranium compounds VIII. Standard enthalpies of formation at 298.15K of the uranates of calcium (CaUO₄) and barium (BaUO₄). Thermodynamics of the behavior of barium in nuclear fuels: Jour. Chem. Thermodynamics, v. 8, p. 845-855.
- 108. O'Hare, P.A.G., Flotow, H.E. and Hoekstra, H.R., 1980, Heat capacity (5 to 350K) and recommended thermodynamic properties of barium uranate (BaUO₄) to 1100K: Jour. Chem. Thermodynamics, v. 12, p. 1003-1008.
- 109. O'Hare, P.A.F. and Hoekstra, H.R., 1973, Thermochemistry of uranium compounds. II. Standard enthalpy of formation of α-sodium uranate (α-NaUO₄): Jour. Chem. Thermodynamics, v. 5, p. 769-775.

- 110. O'Hare, P.A.G. and Hoekstra, H.R., 1974a, Thermochemistry of uranium compounds. III. Standard enthalpy of formation of cesium uranate (Cs₂UO₄): Jour. Chem. Thermodynamics, v. 6, p.251-258.
- 111. O'Hare, P.A.G. and Hoekstra, H.R., 1974b, Thermochemistry of uranium compoinds. V. Stndard enthalpies of formation of the monouranates of lithium, potassium, and rubidium: Jour. Chem. Thermodynamics, v. 6, p. 1161-1169.
- 112. O'Hare, P.A.G. and Hoekstra, H.R., 1974c, Thermochemistry of uranium compounds. IV. Stnadard enthalpy of formation of sodium uranium (V) trioxide (NaUO₃): Jour. Chem. Thermodynamics, v. 6, p. 965-972.
- 113. O'Hare, P.A.G. and Hoekstra, H.R., 1975, Thermochemistry of uranium compounds. VI. Standard enthalpy of formation of cesium diuranate (Cs₂U₂O₇). Thermodynamics of formation of cesium and rubidium uranates of elevated temperatures: Jour. Chem. Thermodynamics, v. 7, p. 831-838.
- 114. O'Hare, P.A.G., Hoekstra, H.R., and Frederickson, D.R., 1976, Thermochemistry of uranium compounds. VII. Solution calorimetry of  $\alpha$ - and  $\beta$ -Na₂UO₄, standard enthalpy of formation of  $\beta$ -Na₂UO₄, and the enthalpy of the  $\alpha$  to  $\beta$ transition at 298.15K: Jour. Chem. Themodynamics, v. 8, p. 255-258.
- 115. O'Hare, P.A.G., Shinn, W.A., Mrazek, F.C., and Martin, A.E., 1972, Thermodynamic investigation of trisodium uranium (V) oxide (Na₃UO₄). I. Preparation and enthalpy of formation: Jour. Chem. Thermodynamcis, v. 4, p. 401-409.
- 116. Ondik, H.M. and Mighell, A.D., 1978, Crystal data determinative tables. Volume 4: Inorganic compounds 1967-1969: Office of Standard Reference Data, U.S. National Bureau of Standard.
- 117. Osborne, D.W., Brletic, P.A., Hoekstra, H.R. and Flotow, H.E., 1976, Cesium uranate, Cs₂UO₄: heat capacity and entropy from 5 to 350K and standard Gibbs energy of formation at 298.15K: Jour. Chem. Thermodynamics, v. 8, p. 361-365.
- 118. Osborne, D.W. and Flotow, H.E., 1972, Thermodynamic investigation of trisodium uranium (V), oxide (Na₃UO₄) II. Heat capacity, entropy, enthalpy increment from 5 to 350K. Gibbs energy of formation at 298.15K: Jour. Chem. Thermodynamics, v. 4, p. 411-418.
- 119. Osborne, D.W., Flotow, H.E., Dallinger, R.P., and Hoekstra, H.R., 1974, Heat capacity of α-sodium uranate (α-Na₂UO₄) from 5 to 350K. Standard Gibbs energy of formation at 298.15K: Jour. Chem. Thermodynamics, v. 6, p. 751-756.

- 120. Osborne, D.W., Westrum, E.F., Jr. and Lohr, H.R, 1957, The heat capacity and thermodynamic functions of tetrauranium nonoxide from 5 to 310°K: Amer. Chem. Soc. Jour., v. 79, p. 529-530.
- 121. Parker, V.B., Wagman, D.D., and Garvin, D., 1976, Selected thermochemical data compatible with the CODATA recommendations: U.S. National Bur. Standards Standard Ref. Data 75-968, 3pp.
- 122. Popov, M.M, Gal'chenko, G.L., and Sevin, M.D., 1958, True heat capacities of UO₂, U₃O₈ and UO₃ at high temperatures: Zh. Neorg. Khimii, v. 3, p. 1734-1737.
- 123. Popov, M.M, Kostylev, F.A. and Karpova, T.F., 1957, The heats of formation of uranyl fluoride and the heats of reaction of hexa- and tetra-fluorides of uranium with water: Russ. Jour. Inorg. Chem., v. 2, p. 9-21.
- 124. Porte, A.L., Gutowsky, H.S, and Boggs, J.E., 1962, Proton magnetic resonance studies of polycrystalline uranium oxide hydrates. I. β-U0₃·2H₂0: Jour. Chem. Phys., v. 36, p. 1695-1699.
- 125. Porte, A.L., Gutowsky, H.S. and Boggs, J.E., 1962, Proton magnetic resonance studies of polycrystalline uranium hydrates. II. β-U0₃H₂O: Jour. Chem. Phys., v. 36, p. 1700-1703.
- 126. Powers, H. 1949, The heat capacity of U₃0₈ powder as a function of temperature (400-1800°F): U.S. Dept. Comm., Off. of Tech. Serv., P.B. Rept. 162011, 16pp.
- 127. Prins, G., Cordfunke, E.H.P. and Ouweltjes, W., 1978, Standard enthalpies of formation of uranium compounds V. U02Br2, U02Br2*H20, U02Br2*3H20, and U02(0H)Br*2H20. A comment on the stability of uranyl iodide and its hydrates: Jour. Chem. Thermodynamics, v. 10, p. 1003-1010.
- 128. Rand, M.H. and Kubaschewski, 0., 1963, The thermochemical properties of uranium compounds: Interscience, New York, 106 pp.
- 129. Reynolds, R.L. and Goldhaber, M.B., 1978, Origin of a south Texas roll-type uranium deposit: I. Alteration of irontitanium oxide minerals: Econ. Geol., v. 73, p. 1677-1689.
- 130. Robb, R.A. and Zimmer, M.F., 1968, Solubility and heat of solutions of arsenous oxide, arsenic pentoxide, and hydrochloric acid: Jour. Chem. Eng. Data, v. 13, p. 200-203.
- 131. Roberts, L.E.J. and Walter, A.J., 1961, Equilibrium pressures and phase relations in the uranium oxide system: Jour. Inorg. Nucl. Chem., v. 22, p. 213-229.

- 132. Robertson, D.S., Tilsley, J.E. and Hogg, G.M., 1978, The timebound character of uranium deposits: Econ. Geol., v. 73, p. 1409-1419.
- 133. Robie, R.A., Hemingway, B.S., and Fisher, J.R., 1979, Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (10⁵ pascals) pressure and at higher temperatures (revised edidtion): U.S. Geol. Survey Bull. 1452, 456 pp, (originally printed in 1978).
- 134. Ross, V., 1955, Studies of uranium mineals (XXI): Synthetic hydrogen-autunite: Amer. Mineral., v. 40, p. 917-919.
- 135. Scanlan, J.P., 1977, Equilibria in uranyl carbonate system-II. The overall stability constant of  $UO_2(CO_3)_2^{2^-}$ and the third formation constant of  $UO_2(CO_3)_3^{3^-}$ : Jour. Inorg. Nucl. Chem., v. 39, p. 635-639.
- 136. Schuiling, R.D., Vergouwen,L. and van der Rijst, H., 1976, Gibbs energies of formation of zircon (ZrSiO₄), thorite (ThSiO₄), and phenacite (Be₂SiO₄): Amer. Mineral., v. 61, p. 166-168.
- 137. Sergeyeva, E.I., Nikitin, A.A., Khodakovskiy, I.L., and Naumov, G.B., 1972, Experimental investigation of the equilibria in the system U0₃-C0₂-H₂O in 25-200°C temperature interval: Geochemistry International, v. 9, p. 900-910.
- 138. Settle, J.L., Feder, H.M., and Hubbard, W.N., 1963, Fluorine calorimetry. VI. The enthalpy of formation of uranium hexafluoride: Jour. Phys. Chem., v. 67, p. 1892-1895.
- 139. Shannon, R.D. and Prewitt, C.T., 1969, Effective ionic radii in oxides and fluorides: Acta Cryst., v. B25, p. 925-946.
- 140. Shchukarev, S.A., Vasil'Kova, I.V., Martynova, N.S. and Mal'tsev, Yu.G., 1958, Heats of formation of uranyl chloride and uranium oxytrichloride: Zh. Neorg. Khim., v. 3, p. 2647-2650.
- ---. Slaughter, 1966, see reference 182.
- 141. Smith, D.K., Gruner, J.W. and Lipscomb, W.N., 1957, The crystal structure of uranophane  $[Ca(H_30)_2](U0_2)_2(Si0_4)_2$ °  $3H_20$ : Amer. Mineral., v. 42, p. 594-618.
- 142. Stanton, J. and Maatman, R.W., 1963, The reaction between aqueous uranyl ion and the surface of silica gel: Jour. Colloid. Sci., v. 18, p. 132-146.
- ---. Stohl and Smith, 1981, see reference 171.
- 143. Stull, D.R. and Prophet, H., 1971, JANAF thermochemical tables: Second ed., National Standard Ref. Data Ser., U.S. National Bur. Standards NSRDS-NBS 37, 1141pp.

- 144. Sutton, J. 1949, The hydrolysis of the uranyl ion. Part I: Jour. Chem. Soc. (London), Suppl. Issue-2, p. 275-286.
- ---. Tardy and Garrels, 1974, 1976, and 1977, see references 179-181.
- 145. Teufer, G., 1962, The crystal structure of tetragonal ZrO₂: Acta Cryst., v. 15, p. 1187.
- 146. Turner-Peterson, C.E., 1977, Uranium mineralization during early burial, Newark Basin, Pennsylvania-New Jersey: in Short papers of the U.S. Geological Survey Uranium-Thorium Symposium, U.S. Geol. Survey Circ. 753, p. 3-4.
- 147. Tsymbal, C., 1969, Contribution to the solution chemistry of uranium (VI): Nucl. Sci. Abs., v. 23, p. 24.
- 148. Vaes, J.F., 1947, Six nouveaux mineraux d'urane provenanta de Shinkolobwe (Katanga). La billietite (uanate hydrate' de Ba), la vandendriesscheite (uranate hydrate de Pb), la masuyite (uranate hydrate' de (?) Pb), la studite (carbonate hydrate' d'urane) et la diderichite (carbonate dydrate' d'urane): Soc. Geol. belgique Ann., v. 70, p. B212-B225.
- 149. Vidavskii, L.M., Byakhova, N.I., and Ippolitova, E.A., 1965, Enthalpy of the reaction of  $\gamma$ -UO₃ with hydrofluoric acid and enthalpy of formation of  $\gamma$ -UO₃: Russ. Jour. Inorg. Chem., v. 10, p. 953-954.
- ---. Wacker and Cheney, 1947, see reference 172.
- 150. Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M. and Schumm, R.H., 1968, Selected values of chemical thermodynamic properties: U.S. National Bur. Standards Tech. Note 270-3, 264 pp.
- ---. Wagman et al., 1981, see reference 173.
- 151. Wait, E., 1955, A cubic form of uranium trioxide: Jour. Inorg. Nucl. Chem., v. 1, p. 309-312.
- 152. Walenta, K., 1974, On studtite and its composition: Amer. Mineral., v. 59, p. 166-171.
- 153. Walther, J.V. and Helgeson, H.C., 1977, Calculation of the thermodynamic properties of aqueous silica and solubility of quartz and its polymorphs at high pressures and temperatures: Amer. Jour. Sci., v. 277, p. 1315-1351.
- 154. Weeks, A.D. and Garrels, R.M., 1959, Geologic setting of the colorado Plateau ores: in Geochemistry and mineralogy of the Colorado Plateau uranium ores, Garrels, R.M. and Larsen, E.S., III, eds., U.S. Geol. Survey Prof. Paper 320, p. 3-12.

- 155. Wells, A.F., 1975, Structural inorganic chemistry: 4th ed., Clarendon Press, Oxford, 1095pp.
- 156. Westrum, E.F., Jr., 1966, Recent developments in the chemical thermodynamics of the uranium chalcogenides: Thermodynamics, International Atomic Energy Agency, Vienna, Austria, v. II, p. 497-510.
- 157. Westrum, E.F., Jr., and Gronvold, F.J., 1959, Low-temperature heat capacity and thermodynamic functions of triuranium octaoxide: Amer. Chem. Soc. Jour., v. 81, p. 1777-1780.
- 158. Westrum, E.F., Jr., and Gronvold, F., 1962, Triuranium heptaoxides: Heat capacities and thermodynamic properties of - and  $\beta$ -U₃O₇ from 5 to to 350°K: Jour. Phys. Chem. Solids, v. 23, p. 39-53.
- 159. Westrum, E.F., Jr., Takahashi, Y., and Gronvold, F., 1965,  $\lambda$ -type thermal anomaly in tetrauranium enneaoxide at 348°K: Jour. Phys.Chem., v. 69, p. 3192-3193.
- 160. Westrum, E.F., Jr., Walters, R.R., Flotow, H.E. and Osborne D.W., 1968, Uranium monosulfide. The ferromagnetic transition. The heat capacity and thermodynamic properties from 1.5° to 350°K: Jour. Chem. Phys., v. 48, p. 155-161.
- 161. Wheeler, V.J., Dell, R.M. and Wait, E., 1964, Uranium trioxide and the UO₃ hydrates: Jour. Inorg. Nucl. Chem., v. 26, p. 1829-1845.
- 162. Zachariasen, W.H., 1948, Crystal chemical studies of the 5fseries of elements. III. A study of the disorder in the crystal structure of anhydrous uranyl fluoride. Acta Cryst., v. 1, p. 277-281.
- 163. Zachariasen, W.H., 1948, Crystal chemical studies of the 5f-series of elements. IV. The crystal structure of Ca(U0₂)0₂ and Sr(U0₂)0₂: Acta Cryst., v. 1, p. 281-285.
- 164. Zachariasen, W.H., 1948, Crystal chemical studies of the 5fseries of elements. V. The crystal structure of uranium hexachloride: Acta Cryst., v.1, p. 285-289.
- 165. Zielinski, R.A., Ludwig, K.R., and Lindsey, D.A., 1977, Uranium-lead apparent ages of uraniferous secondary silica as a guide for describing uranium mobility: in Short papers of the U.S. Geological Survey Uranium-Thorium Symposium, U.S. Geol. Survey Circ. 753, p. 39-40.
- 166. This study
- 167. Cordfunke, E.H.P. and Ouweltjes, W., 1981, Standard enthalpies of formation of uranium compounds VI. MUO₃(M=Li, Na, K, and Rb): Jour. Chem. Thermodynamics, v. 13, p. 187-192.

- 168. Ciavatta, L., Ferri, D., Grenthe, I., and Salvatore, F., 1981, The first acidification step of the Tris (carbonato) dioxouranate (VI) ion, U0₂(C0₃)⁴/₃: Inorg. Chem., v. 20, p. 463-467.
- 169. O'Brien, T.J. and Williams, P.A., 1981, The aqueous chemistry of uranium minerals. Part 3. Monovalent cation zippeites: Inorg. Nucl. Chem. Letters, v. 17, p. 105-107.
- 170. Alwan, A.K. and Williams, P.A., 1980, The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group: Min. Mag., v. 43, p. 665-667.
- 171. Stohl, F. V. and Smith, D.K., 1981, The crystal chemistry of the uranyl silicate minerals: Amer. Mineral., v. 66, p. 610-625.
- 172. Wacker, P.F. and Cheney, R.K., 1947, Specific heat, enthalpy and entropy of uranyl fluoride: Natl. Bur. Std. Jour. Res., v. 39, p. 317-320.
- 173. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., and Nuttall, R.L., 1981, Selected valuesof chemical thermodynamic properties. Compounds of uranium, protactinium, thorium, actinium, and the alkali metals: U.S. National Bur. Standards Tech. Note 270-8, 40pp.
- 174. Chen, C.H., 1975, A method of estimation of standard free energies of formation of silicate minerals at 298.15°K: Amer. Jour. Sci., v. 275, p. 801-817.
- 175. Eugster, H.P. and Chou, I.M., 1973, The depositional environments of Precambrian banded iron-formations: Econ. Geol., v. 68, p. 1144-1168.
- 176. Karpov, I.K. and Kashik, S.A., 1968, Computer calculations of standard isobaric-isothermal potentials of silicates by multiple regression: Geochem. Int., v.5, p. 706-713.
- 177. Kittel, C., 1971, Introduction to solid state physics: 4th edition, John Wiley and Sons, Inc., 599p.
- 178. Nriagu, J.O., 1975, Thermochemical approximations for clay minerals: Amer. Mineral., v. 60, p. 834-839.
- 179. Tardy, Y. and Garrels, R.M., 1974, A method of estimating the Gibbs energies of formation of layer silicates: Geochim. Cosmochim. Acta, v. 38, p. 1101-1116.
- 180. Tardy, Y. and Garrels, R.M., 1976, Predictions on Gibbs energies of formation-I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions: Geochem. Cosmochim. Acta, v. 40, p. 1051-1056.

- 181. Tardy, Y. and Garrels, R.M., 1977, Prediction of Gibbs energies of formation of compounds from the elements - II. Monovalent and divalent metal silicates: Geochim. Cosmochim. Acta, v. 41, p. 87-92.
- 182. Slaughter, M., 1966, Chemical binding in the silicate minerals. Part II. Computational methods and approximations for the binding energy of complex silicates: Geochim. Cosmochim. Acta, v. 30, p. 315-322.