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In order to determine finite-temperature properties of the infinite one-dimensional Hubbard 
model for the half-filled band, finite systems such as chains with 2 to 5 atoms and rings with 
4 and 6 atoms are studied with the application of the grand canonical ensemble. The ob
tained temperature dependence of the specific heat, the entropy, the magnetic susceptibility 
and some correlation functions clearly shows a rearrangement of the electronic state of the 
system with the increase of the strength of the Coulomb interaction relative to the transfer 
integral. In the light of our new results the functional integral approach recently proposed 
by Kimball and Schrieffer as well as Hubbard's approximate theory is examined. 

§ 1. Introduction 

In a previous paper,!> of which this may be regarded as a continuation, we 
presented results of exact calculations on thermodynamic properties of finite sys
tems described by the one-dimensional half-filled-band Hubbard model. There the 
canonical-ensemble method of statistical mechanics was applied, which may be 
appropriate to "real" molecules. In order to guess properties of the infinite 
systems from results for finite systems the grand-canonical-ensemble method should 
be better as will be explained later and shown in this paper clearly. 

Let us start with a brief summary of previous studies for self-containedness. 
The Hubbard Hamiltonian, which consists of the tight-binding approximation plus 
short-range Coulomb interaction between two electrons with opposite spins, is a 
simplified model to investigate the origin of transition-metal magnetism, especial
ly the role of the electron correlation.2l An important conclusion of three repre
sentative theories3l-5l is that when electron-to-atom ratio is far from unity, as the 
result of the correlation effect electrons avoid each other at a sacrifice of their 
kinetic energy, and the effective interaction between electorons is reduced. Se
condly Hubbard3 l pointed out that in the half-filled band, where the electron-to
atom ratio is equal to 1, the metal-insulator transition may occur as the relative 

tl Work supported in part by the National Science Foundation. Grant No. GP-21290. 
*> Present address: Department of Physics, Faculty of Science, Osaka University, Toyonaka. 
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2172 H. Shiba 

magnitude of Coulomb repulsion to transfer integral increases. Since the one
dimensional model of the Hubbard Hamiltonian is easy to handle mathematically 
and to give some exact conclusions without resorting to any approximations, one 
should be able to throw additional light on the correlation-effect problem. Be
sides that there are some reasons to believe it worthwhile to study thoroughly 
the one-dimensional Hubbard model. i) Low-dimensional systems such as one
dimensional ones must have their peculiar behaviors different from those of three
dimensional systems. Especially properties of one-dimensional itinerant-electron 
systems should be a fascinating problem, but it has not yet been well understood 
theoretically. ii) Experimental investigations have been reported on one-dimen
sional itinerant-electron systems such as "mixed-valence" square-planar complex 
salt K 2Pt(CN)4Bro.s · 2.3H20 6l• 7l and organic charge transfer salt N-methylphenazi
nium tetracyanoquinodimethan (NMP-TCNQ). 8h 9l In particular it is an con
troversial problem10l whether the effect of correlation is vitally important to un
derstand NMP-TCNQ or not. Therefore it must be useful to study in detail 
the role of the electron correlation in the one-dimensional Hubbard model, a 
simple itinerant-electron system. 

Let us review what is already known about the one-dimensional Hubbard 
model. 

i) Ground-state properties 

Lieb and Wu11l gave an excellent analysis, based on which the analytic ex
pression has been obtained for ground-state energy11l and magnetic susceptibility12l 

of the half-filled band. It is also possible to study exactly those quantities for 
arbitrary values of electron-to-atom ratio.18l 

ii) Finite-temperature properties 

An integral-equation formulation was given14l on the basis of some plausible 
conjectures. It must be useful, but unfortunately the equations have not yet been 
solved. In the previous paper I we proposed a different approach to study the 
one-dimensional Hubbard model at finite temperatures. There all eigenvalues and 
eigenfunctions for finite half-filled-band systems with 2 to 6 atoms were calculated 
exactly and the temperature dependence of various thermodynamic quantities was 
determined by applying the canonical ensemble. 

The purpose of this paper is to report the results of our new calculations 
on the same system as in I. The Hamiltonian is given by 

(1·1) 

ni,.=Cl,.Ci,. 

with ti1=t for Ji-jJ=1, and t 0 =0 otherwise. Here Cu (C},.) is the annihila
tion (creation) operator of an electron with spin (J at the j site. The grand
canonical-ensemble method is applied in this paper instead of the canonical en-
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Thermodynamic Properties of the One-Dimensional Half-Filled-Band 2173 

semble. It turns out that the present approach is better to guess thermal prop

erties of the infinite one-dimensional Hubbard model from finite systems. Our 

basic standpoint is that most thermodynamic properties of the infinite chain of the 

Hubbard Hamiltonian (1·1) are well represented by those of small finite systems. 

Suppose an infinite chain is cut into segments, each of which consists of a finite 

number of atoms as shown in Fig. 1. One can expect that the properties of a 

segment asymptotically approaches those of the infinite chain irrespective of the 

-9--+0-+---+0--+--+0--+--+0--+---tO--+---t-0--+---tO~O,-----+ 

n-1 n n + 1 

Fig. 1. An infinite Hubbard chain is cut into segments, each of which consists of a finite number 

of atoms (say, 3 atoms in this case). In the grand canonical ensemble for the half-filled band 

the average number of electrons in a segment is assumed to be equal to the number of atoms 

of the segment. 

boundary conditions imposed on the ends of the segment, if the number of consti

tuent atoms of a segment is increased. Since the nearest-neighbor transfer is 

assumed in our Hamiltonian, we hope even a segment with a small number of atoms 

should be able to describe essential features of the infinite one-dimensional Hubbard 

model. In order to make our argument convincing it is important to confirm that 

the convergence with respect to the size of the system is reasonably rapid. But 

the results in I are not satisfactory enough for these reasons : The high-tempera

ture peak of the specific heat, which was found at kBTrvtU when U/t';;P-4, de

pends on the size of the system too strongly to estimate the position and height 

of the peak for the infin.ite chain. For the same reason it was difficult to get a 

quantitative conclusion on the temperature dependence of the entropy and the in

ternal energy of the infinite chain at high temperatures (kBT>t U). The reason 

for the difficulty may be traced back to the following fact. In the canonical

ensemble treatment the total number of electrons in a segment is strictly kept 

constant, while if one regards the segment as a part of the infinite chain there 

always exist fluctuations of the electron number arising from charge transfers 

from one segment to another. In the grand canonical method this charge fluctua

tions are statistically taken into account. Since the dominant contribution to 

high-temperature properties comes from single-particle excitations (or charge

transfer excitations), one can expect that the grand canonical ensemble is a better 

approach to study thermodynamic properties of the infinite Hubbard chain from 

finite systems. The calculations presented in this paper show that it is the 

case. Another advantage of the grand canonical method is that in the atomic 

limit (t/U~O) it always gives exact thermodynamics of the infinite chain even 

when applied to a segment with a finite number of atoms. 
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2174 H. Shiba 

Thus in this paper we will be able to determine in a considerable accuracy 
the temperature dependence of thermodynamic quantities of the infinite half-filled
band Hubbard chain. After the results of our calculations are presented, our 
next task will be to examine some approximate theories applied to the same sys
tem by comparing their conclusions with ours. Especially a recently proposed, 
sophisticated theoryu),lD) based on the functional integral formulation is worth
while to discuss in this connection, because the adequacy of the approximations 
they used has not yet been examined in the light of such a comparison. 

The program of this paper is as follows: In § 2 we describe the results of 
our calculations for finite systems and discuss the properties of the infinite chain. 
Section 3 is devoted to a comparison of approximate theories with our conclu
sions and a brief comment on their validity. Supplementary discussions are given 
in the last section. 

§ 2. Thermodynamic properties of finite systems 

2. 1 Scheme of calculation 

As emphasized in the previous section our approach is to perform exact cal
culations of thermodynamic quantities of finite half-filled-band systems described 
by the Hamiltonian (1·1). Two types of boundary conditions are imposed: (i) 
Chain-a system with free ends or (ii) ring-a system with cyclic boundary con
ditions. The total number of eigenvalues we need in the grand canonical en
semble is 4N (N is the total number of atoms in the system), while in the ca
nonical ensemble (2N) !j (N!)2 eigenvalues are needed. The size of the eigenvalue 
matrix to be diagonalized can be reduced to a large extent by using the sym
metry of the system : 

(1) There is the electron-hole symmetry in rings with even number of atoms and 
in chains. 

(2) The total spin and its z-component are conserved. 
(3) The geometry of the system further simplifies the problem. 

Actually we have calculated all eigenvalues (and eigenfunctions if necessary) 
for chains with 2 to 5 atoms and rings with 4 and 6 atoms. Thermodynamic 
properties such as specific heat, entropy and magnetic susceptibility have been 
evaluated by employing the elementary statistical mechanics of the grand canonical 
ensemble. In the half-filled band with the electron-hole symmetry the chemical 
potential tt is equal to U /2 independent of the temperature. Thus the grand 
partition function Z is given by 

Z=Trexp(-{3Jl), (2·1) 

where Tr denotes the trace and ..9C is defined by 

(2·2) 

with tt = U /2. 
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2176 H. Shiba 

2. 2 Specific heat, entropy and magnetic susceptibility 

The temperature dependence of the specific heat of chains with 2 to 5 atoms 
is shown in Figs. 2(a)'"'-'(d) for some typical values of Ujt. When Ujt~4 the 
gross feature of the specific heat is essentially the same as that of the noninter
acting electrons with Ujt = 0. As shown in Fig. 2 of I the specific heat of the 
infinite chain for U/t=O has a peak at kBT/t'"'-'0.65. As Ujt is increased, the 
peak splits into two. It clearly reflects a rearrangement of the electronic struc
ture in the system. The low-temperature peak for Ujt';JJ>4 arises from low-lying 
collective spin-wave excitations, while the high-temperature broad peak comes 
from single-particle excitations (or charge-transfer excitations) across the Hub
bard gap. That picture was first presented in I and we still believe it correct. 
Comparing the present calculation with I, one notices that in the present results 
the convergence with respect to the size of the system is excellent in contrast 
to I. In the low-temperature region, where charge-transfer excitations are not 
important, the present result is essentially the same as that of I, but at high 
temperatures, i.e., around the high-temperature peak, it is drastically different from 
the previous result (Figs. l(a)'"'-'(c) of I) obtained by the application of the ca
nonical ensemble. As far as the high-temperature peak is concerned, the size 
dependence of the present result is much weaker than that of the previous one. 
It is because in the temperature region near the high-temperature peak, charge 
fluctuations are dominant, which are in a statistical way taken into account in 
the grand canonical method. Thanks to the improvement we can now guess the 
specific heat of the infinite chain. A very accurate extrapolation from our re
sults to the infinite system does not seem possible, for our calculations are limited 
to systems with less than 6 atoms. But we can make a semiquantitative guess 
of the specific heat of the infinite chain on the basis of our calculations, and it 
is shown in Figs. 2(a)'"'-'(d). The size dependence of our results for finite sys
tems is not so large. Therefore we may expect that the specific heat of the in
finite chain should be very close to our extrapolation shown in the figures. We 
also expect that the specific heat of the infinite chain is proportional to kBT at 
very low temperatures and the coefficient becomes large with Ujt. 

The calculation of the entropy was also performed and the results are shown 
in Figs. 3(a)'"'-'(c). One finds at once that the size dependence of the entropy 
is quite small. The reason for that may be understood by writing the entropy 
S(T) in the form 

S(T) = ST C(T') dT' 
T' 

with the specific heat C (T).. Thus the overshooting and undershooting in the 
specific heat are considerably cancelled out in the entropy. Anyhow it is a great 
advantage of the present calculation based on the grand canonical method that 
the entropy does not strongly depend on the size of the system. Therefore one 
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2178 H. Shiba 

may easily guess the entropy of the infinite chain from our results. When U/t 
is increased two stages of excitations become distinct. Roughly speaking, the first 
stage up to kB In 2 is connected with the spin-wave excitations and the second 
one from kB In 2 to kB In 4 arises from charge transfer-excitations, which create 
holes and doubly occupied states. As for the entropy of the infinite system we 
believe that at low temperatures it is linear in kBT with the coefficient increas
ing with Ujt, and that at high temperatures it is very close to the entropy of 
finite systems. 

Let us turn to the magnetic susceptibility. The results for finite systems 
are given in Figs. 4 (a)'"'-'(c). The magnetic susceptibility of the infinite chain 
for U = 0 is included in Fig. 4 (a) for comparison. It turns out that in the re
gion kBT>t the magnetic susceptibility of the infinite chain is close to that of 
finite systems. It is because the discreteness of energy levels of finite systems 
is not essential to thermal properties in that temperature region. On the other 
hand, at low temperatures kBT <t, the even-odd effect is evident. The exact 
theory for the ground state12> gives the zero-temperature susceptibility of the in
finite chain as a function of U / t. Therefore using the exact result at T = 0°K and 
our result at high temperatures, we can semiquantitatively estimate the magnetic 
susceptibility of the infinite chain at arbitrary values of U/t as shown in Figs. 4(b) 
and (c). We believe that the magnetic susceptibility of the infinite chain starts 
with a finite value given by Takahashi's theory, has a maximum around kBT'"'"" 
2t3/U when U/t":;>l and then goes down. The susceptibility x(T) is enhanced 
over the value for U/t=O due to the effect of correlation. The difference of the 
present calculation and the previous one (Fig. 4 in I) is small, but the conver
gence of the present results is a little better at high temperatures. 

Summing up the results obtained so far, it is clear that the application of 
the grand canonical method has greatly improved the convergence in the high
temperature region. Therefore just by using the grand canonical ensemble the 
thermodynamic properties of the infinite chain seem to be quite well represented 
by those of small finite systems. The exact solution for the absolute-zero tem
perature is helpful to determine the thermodynamic behavior of the infinite 
chain throughout the whole temperature domain. The obtained results should be 
useful to examine the validity of approximate theories proposed so far. The dis
cussion on the subject will be made in § 3. 

2. 3 Correlation functions 

As we showed in I, the temperature dependence of the correlation function 

(2·3) 

is useful to obtain the detailed information on the electronic structure of the one
dimensional half-filled-band Hubbard model. Here (- · ·) denotes the average over 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/6

/2
1
7
1
/1

8
5
7
3
4
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



lx
}M

 
-

t 

0
.5

 
U

lt
:O

.O
 

0
.4

 
(a

) 

0
.3

 

0
.2

 

0
.1

 

k 6
T

it
 

1
.0

 
2

.0
 

3
.0

 
4

.0
 

1
.2

 

1.
0 

0
.8

 

0
.6

 

0
.4

 

0
.2

 

I 
1

 
I 

1
.0

 
2.

0 
3
.0

 
4

.0
 

I \
!!d

. 
X

/ 
t 

U
lt

=
8

.0
 

0
.8

 

0
.6

 
(c

) 

0
.4

 

0
.2

 

k 8
T

it
 

1
.0

 
2

.0
 

3.
0 

F
ig

. 
4
. 

T
e
m

p
e
ra

tu
re

 
d

e
p

e
n

d
e
n

c
e
 

o
f 

th
e
 

su
sc

e
p

ti
b

il
it

y
 

'X
/(

N
I-

IB
2
ft

) 

o
f 

c
h

a
in

s 
w

it
h

 
2
 

to
 

5
 

a
to

m
s.

 
T

h
e
 

b
ro

k
e
n

 
li

n
e
 

in
 

(a
) 

is
 

th
e
 

m
a
g

n
e
ti

c
 s

u
sc

e
p

ti
b

il
it

y
 
o

f 
th

e
 i

n
fi

n
it

e
 c

h
a
in

 
fo

r 
U

/t
=

O
. 

In
 

(b
) 

a
n

d
 (

c
) 

th
e
 r

e
su

lt
s 

fo
r 

th
e
 r

in
g

 w
it

h
 6

 a
to

m
s 

a
re

 i
n

c
lu

d
e
d

. 
T

h
e
 

c
ro

ss
 
a
t 

T
=

O
·K

 s
h

o
w

s 
th

e
 e

x
a
c
t 

v
a
lu

e
 
fo

r 
th

e
 i

n
fi

n
it

e
 
ch

ai
n
,1

2
>

 

a
n

d
 t

h
e
 d

o
t-

d
a
sh

e
d

 l
in

e
s 

a
re

 e
x

tr
a
p

o
la

ti
o

n
s 

to
 

th
e
 i

n
fi

n
it

e
 
c
h

a
in

. 

~ ~ c ~ ~ ~ ....
 

C
') ~ ~ ~ ... ~- ~ ... ~ a ;:s
 

(I
>

 t;
 

~- (~> ~ .... c ;:s
 

~ ....
.. ~ ~ ~ ~ ~ ;:s
 
~ t
\
j 
~ --

1
 

(.
0

 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/6

/2
1
7
1
/1

8
5
7
3
4
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



2180 

.1. 
4 

5.0 

H. Skiba 

4.0 k8 Tit 
tL-----~~----~----~~----~----~~--

1.0 2.0 3.0 4.0 5.0 

Fig. 5. Temperature dependence 

of Lo for two "typical values 

of U/t. Lo was evaluated for 

the N=6 ring. The crosses at 

T=O·K show the exact values 

of Lo obtained for the infinite 

chain.1> 

the grand canonical ensemble and 81 is the spin operator at the j site 81 

= :E .... ,(a-ISIO"')q .. ci<r'· L 0, L1 and L2 were determined for the N=6 ring, the 
largest system in our calculation. The results for two typical values of U/t are 
shown in Figs. 5 and 6. Note that L 0 for completely localized electrons (one 
electron per atom) is equal to 3/4, while for half-filled-band free electrons L 0 

= 3/8. Comparing the present results with the previous ones based on the ca
nonical ensemble (Figs. 8 and 10 of I), one notices that the temperature depend
ence of L 0 of the present calculation is more rapid than that in the canonical ensem
ble, while the present results for L1 and L2 are essentially the same as the pre
vious ones. We belive that the present Lo should be closer to the corresponding 
quantity of the infinite chain, for as argued in § 2. 2, the charge :fluctuations 
mainly responsible for the high-temperature properties of the infinite chain are 
statistically taken into account in the grand-canonical-ensemble treatment. In fact 
L 0 goes to 3/8 at kBT / U';P 1, which is independent of the size of segment N, 
while in the canonical ensemble the high-temperature limit of L 0 is (3/8)2N/(2N -1) 
and is strongly size-dependent. · 

Fig. 6. Correlation functions L 1 and 

L2 vs temperature. They were 

calculated for the 6-atom ring. 

The circle shows the value of 

Lt for the infinite antiferro

magnetic Heisenberg chain at 
T=O·K.t7> 

2.0 k8 Tit 3.0 4.0 
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The physical picture emerging from the temperature dependence of L 0, L 1 

and L2 is as follows. Suppose Ujt is large, say, Uft>4. Then as the tempera

ture goes down, each site is occupied by one electron and local moments are 

formed. At low temperatures (kBT<2t2/U) the antiferromagnetic short-range 

spin ordering becomes evident. The short-range order manifests itself not only 

in the temperature dependence of L 1 and L 2 but also in the slight decrease of 

L0 at low temperatures as explained in I. 

2. 4 The case of the attractive interaction (U<O) 

Since the origin of the second term of the Hamiltonian (1·1) is Coulomb 

interaction between electrons, U should be regarded as positive, but a hypothe

tical system with U<O is worthwhile to discuss. 

Notice, first of all, that one can establish a simple relation between the cases 

with positive U and negative U, if the band is half-filled. Let us assume U is 

negative. The Hamiltonian Jl relevant to the grand canonical ensemble for the 

half-filled system is given by Eq. (2·2) with the chemical potential fJ.= U/2. 

With the use of newly defined creation and annihilation operators 

{ c~~ = ei" 1 b,~' 

C1t=b~t' 

we can transform .!}{ into the form 

c,~=e-i"jb~~' 

CJt=b1t, 
(2·4) 

(2·5) 

Here the system is assumed to be a chain or a ring with even N. Therefore 

except for the constant term -tUN Jl is equivalent to the Hamiltonian having 

the interaction term I Ul instead of U. One of the consequences of this fact is 

that for the half-filled band the specific heat and entropy of a chain or a ring 

with even number of atoms is independent of the sign of U, because these qu

antities are determined just by the distribution of energy levels. The nature of 

wave functions for U<O is of course quite different from that for U>O. The 

ground state for U>O is antiferromagnetic, while for U<O the ground state is, 

so to speak, the charge density wave, which may be visualized in Fig. 7 for I Ul 
";?t. Actually in the ground state for U<O there exists a zero-point oscillation, 
which corresponds to the change of the places of a doubly occupied state and a 

neighboring vacant state with each other just as the spin :flipping motion in the 

antiferromagnetic ground state. Since the charge density wave is the ground 

0 @ 0 @ 0 ® 0 
Fig. 7. A picture of the ground state for the large attractive interaction between electrons (IUI~t). 

A vacancy and a doubly occupied state are alternating. As a matter of fact a vacant state and 
a neighboring doubly occupied state are changing places with each other in the ground state. 
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0 2 X/ Np,• 
. t 

Ult =-4.0 

Ult =-8.0 

2.0 3.0 4.0 

Fig. 8. Magnetic susceptibility vs temperature of chains with 2 to 5 atoms. Two typical values of 
the attractive interaction are taken. In contrast to Figs. 4(a)-(c) there appears no even·odd 
effect in this case, because for the attractive interaction the lowest state for an . even number of 
electrons always has an eigenvalue of .if lower than for any odd numbers of electrons. 

state for U<O, the susceptibility at zero temperature is equal to zero.12l The tem
perature dependence of the magnetic susceptibility for two typical values of U/t 
is shown in Fig. 8. Compared with the value for U/t=O, the susceptibility is 
clearly suppressed by the attractive interaction between electrons. 

§ 3. Discussion of some approximate theories 

In § 2 we have determined the thermodynamic properties of finite half-filled
band systems on the basis of the grand canonical treatment. Judging from the fact 
that the size dependence of the present results is weak compared with that of I using 
the canonical ensemble, we have concluded that the grand canonical approach is bet
ter to guess the thermal properties of the infinite system. Therefore our results 
should be useful to discuss the reliability of some of typical approximate theories 
proposed so far for the Hubbard model and to make some comments on them. 

(i) Functional integral method 

Recently Kimball and Schrieffer15l have presented a theory of thermodynamic 
properties of the one-dimensional half-filled-band Hubbard model, employing the 
functional integral method and applying several steps of approximations described 
below. An analogous theory was proposed independently by Cyrot.16l They use 
the identity 

(3·1) 

and rewrite the partition function of the system exactly in terms of the functio
nal integral over time-dependent fluctuations. To make this approach feasible 
they make the following approximations: 

(1) It is assumed that magnetic fluctuations (coupled with n1t- n 1 ~) are more 
important than charge fluctuations (coupled with nit+ n 1 ~) and they replace the 
latter by the extremal value. 

(2) The static part of the magnetic fluctuations are assumed to be the most Im
portant. 

(3) The system is assumed paramagnetic. 
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Thermodynamic Properties of the One-Dimensional Half-Filled-Band 2183 

(4) Under the static approximation one can establish the analogy between the 
present system and a binary alloy. On this basis they apply the coherent po
tential approximation (CPA).18l 

(5) Dynamical fluctuations are roughly taken into account as the Kondo spin 
quenching in essence. 

For comparison with our results (Fig. 2) we show in Fig. 9 the specific 
heat calculated by Kimball and Schrieffer. At first glance both of them have a 
double-peak structure and resemble each 
other. But carefully examing Fig. 9, one 
notices that the high-temperature peak for 
a large U case (say, U/t = 8) is located 
at a too low temperature compared with 
our curves. Secondly their theory is not 
applicable to the low-temperature region 
with large U because of the assumption 
(3). We have shown that the low-tem
perature peak has its origin in the short
range antiferromagnetic ordering contrary 
to the Kondo spin quenching. One of the ap
parent shortcomings of Kimball and Schri
effer's theory is, as pointed out by Bari,I9l 

that it predicts incorrect results for the 
atomic limit (t~O). This is due to the 
approximation (1), but may be overcome 
by using 

0.5 

0.4 

0.3 

0.2 

C/Nka 

{Uit=O.O 
I 

0.1 I 
I 
I 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Fig. 9. Temperature dependence of the spe
cific heat of the one-dimensional half
filled-band Hubbard model obtained by 
Kimball and Schrieffer.15l 

Unnn,~= U (nJt+n,~)- U (nn-n 1 ~Y 
2 2 

(3·2) 

instead of (3·1), although the use of (3·2) brings difficulties in the RPA calcu
lation.21' In any case a big trouble about the functional integral method is that 
the approximations are not controlled. 

(ii) Hubbard's approximation 

In I we showed details of the results obtained by applying Hubbard's "im
proved" approximation8l to the one-dimensional half-filled-band Hubbard model and 
assuming the system is paramagnetic throughout the whole temperature domain. 
His theory is based on a truncation scheme for coupled Green's functions, which 
is analogous to the CPA. We will not repeat the results in I. But since the 
thermal properties of the infinite chain have been determined with a good accuracy 
on the basis of the grand canonical ensemble, it is interesting to discuss briefly 
the Hubbard approximation in the light of the present calculations. 

In the previous paper I the specific heat, the magnetic susceptibility and the 
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quantity L 0 (T) were determined for a typical large value U/t (U/t=8) by the 

Hubbard approximation. They should be compared with Figs. 2(c), 4(c) and 5 

of this paper, respectively. One finds that at high temperatures (say, kBT/t>1.5) 

the results by Hubbard's approximation remarkably coincide with our present 

ones. Therefore as far as thermal properties at high temperatures are concerned, 

Hubbard's theory may be regarded as a good approximation for large Uft in 

contrast to Kimball and Schrieffer's. We believe that the main reason for that 

is Hubbard's theory correctly reproduces the atomic limit (t~O). 

At low temperatures the difference between Hubbard's and ours is striking. 

It is simply because in the latter the paramagnetism is assumed and the CPA

like approximation is used, in which the short-range spin ordering is completely 

ignored. Thus such behaviors characteristic of antiferromagnetic spin correla

tions as the low-temperature peak of the specific heat (Fig. 2(c)), the low-tem

perature maximum of the magnetic susceptibility (Fig. 4 (c)) and the decrease 

of L0 at low temperatures (Fig. 5) are completely missing in Hubbard's theory. 

§ 4. Supplementary Discussion 

In this section we will make comments on some problems related to the 

subject of this paper. 

(i) The infinite one-dimensional half-filled-band Hubbard model is equivalent to 

a certain localized spin system. In fact introducing Pauli operators by22> 

j-1 

l a~.= q. exp [in :E cr.c~.J' 
1=1 

N J-1 

a~t=qt exp[in(I:; Ci.Cz.1. + 2:; C/rCit)J, 
1=1 1=1 

(4·1) 

we can write the Hamiltonian ${ ( = ${- ( U/2) :Eiania) of a chain with N sites 

in terms of Pauli .operators. It is more natural to use spin operators for spin 

1/2 

{ 
S}a+iSJa=a~a, 

Sja=a~aaJa-i · 

Then the Hamiltonian .ffC is given by 

$C = - 2t 2:; (S}+IaS}a + SJ'+1aSJa) + U 2:; SJrSJ.- tUN. 
ja J 

(4·2) 

(4·3) 

Therefore the grand partition function Z ( = Tr exp (- {3.ffC)) of the one-dimensional 

half-filled-band Hubbard chain is equivalent to the partition function of a ladder 

consisting of localized spins (spin 1/2) shown in Fig. 10. In other words the 

present work may be regarded as a study of thermodynamic properties of such 

a ladder of localized spins. On the basis of this equivalence we can interpret 

our results in this way. When U is small compared with t, the ladder is essen

tially equivalent to two independent XY chains, and the correlation between 
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\ 
2t ... l \ / ....,...,.. 

~ 2t 2t ~ 2t I 
I I I I I 
IU :u :u IU IU 
I I I I ~ 

I v ..... 

" ' 
.... 2t I 2t 2t I 2t 

Fig. 10. A ladder of localized spins (spin 1/2) which is equivalent to the one-dimensional half-filled
band Hubbard model. Spins are coupled with each other by the nearest-neighbor XY interaction 
(with the coupling constant 2t) as well as the Ising interaction (with the strength U). 

two spins connected with each other by "steps" of the ladder is very weak. 
When U becomes larger than t, the Ising interaction corresponding to "steps" 
plays an important role. In fact, at low temperatures, the antiparallel alignment 
of Sn to S1J, is favorable, and the correlation of this type brings the high-tem
perature peak of the specific heat. As the temperature goes down further, two 
neighboring spins connected by the XY interaction becomes antiparallel to each 
other. This short-range spin ordering gives the low-temper~ture peak of the specific 
heat. 

(ii) In this paper we have restricted our discussions strictly to the one-dimen
sional case. One might ask what will happen in two- and three-dimensional sys
tems. It is still an unsolved problem. The following is a conjecture based on 
our results. We have emphasized in § 2 that the high-temperature peak found in 
this paper for the one-dimensional system arises from excitations across the Hub
bard gap8> or the formation of local moments. There is no cooperative nature 
in its origin. Therefore the peak will remain broad even in two- or three-di
mensional case. On the other hand the antiferromagnetic spin ordering accom
panying the low-temperature peak of the specific heat will turn to a long-range 
order in the 3-dimensional case, which brings a singularity of the specific heat 
at Neel temperature TN· 
(iii) The last comment is concerning a controversial question on the role of the 
electron correlation in NMP-TCNQ.10' Epstein et al.8' concluded that the elec
tron correlation is playing a crucial role in NMP-TCNQ and that it is a good ex
ample realizing the one-dimensional half-filled-band Hubbard model. According to 
their analysis U is estimated to be 0.17 e V, and t:::::::0.021 e V. A completely different 
opinion was presented by Bloch et al./0' who argue that a certain disorderedness 
in the system is essential to understand the temperature dependence of the con
ductivity. Anyway a conclusive evidence has not been found. A comment we 
can make is the following. We believe that magnetic susceptibility of the one
dimensional half-filled-band Hubbard model starts with a finite value and has a 
maximum in the low-temperature region. If we use the value obtained for U and 
t by Epstein et al., X should have a maximum around 60°K, while the experi
mental result of NMP-TCNQ does not seem to have such behavior. 
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