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The manner in which the intermolecular potentialu(r) governs structural relaxation in liquids is a long standing
problem in condensed matter physics. Herein, we show, in agreement with recent experimental results, that
diffusion coefficients for simulated Lennard-Jonesm-6 liquids (8 e m e 36) in normal and moderately
supercooled states are a unique function of the variableFγ/T, whereF is density andT is temperature. The
scaling exponentγ is a material specific constant whose magnitude is related to the steepness of the repulsive
part of u(r), evaluated around the distance of closest approach between particles probed in the supercooled
regime. Approximations ofu(r) in terms of inverse power laws are also discussed.

Establishing a quantitative connection between the relaxation
properties of a liquid and the interactions among its constituent
molecules is thesine qua nonfor fundamental understanding
and prediction of the dynamical properties. The supercooled
regime is of particular interest, since both intermolecular forces
and steric constraints (excluded volume) exert significant effects
on the dynamics. This makes temperature, pressure, and volume
essential experimental variables to characterize the relaxation
properties. One successful approach to at least categorize
dynamic properties of supercooled liquids and polymers is by
expressing them as a function of the ratio of mass densityF to
temperatureT, with the former raised to a material specific
constantγ, namely,

wherex is the dynamic quantity under consideration, such as
the structural relaxation timeτ, the viscosityη, or the diffusion
coefficientD, andF is a function. This scaling was first applied
to a Lennard-Jones (LJ) fluid, withγ ) 4 yielding approximate
master curves of the reduced “excess” viscosity for different
thermodynamic conditions.1 More recently, eq 1 has been shown
to superpose relaxation times measured by neutron scattering,2

light scattering,3 viscosity,4 and dielectric spectroscopy5-9 for
a broad range of materials, including polymer blends and ionic
liquids. The scaling exponentγ, which varies in the range from
0.13 to 8.5,10 is a measure of the contribution of density (or
volume) to the dynamics, relative to that due to temperature.
The only breakdown of the scaling is observed for hydrogen-
bonded liquids, in which the concentration of H-bonds changes
with T andP, causingτ to deviate from eq 1.4

The functionF in eq 1 is unknowna priori. Its form can be
derived from entropy models for the glass transition, leading
to an exponential dependence of logτ on Fγ/T.11,12 Another
interpretation of the scaling is that the supercooled dynamics is
governed by activated processes with an effective activation

energyE(F, T),13 in which theF-dependence ofE(F, T) can be
factored and expressed in terms of a power law ofF. The scaling
exponentγ can also be expressed in terms of the ratio between
activation energies at constant densityEF and constant pressure
EP.10 The power law scaling arose from the idea that the
intermolecular potential for liquids can be approximated as a
repulsive inverse power law (IPL), with the weaker attractive
forces treated as a spatially uniform background term14-16

wherer is the intermolecular distance. In the case of an IPL, in
fact, all reduceddynamical quantities17 can be cast in the form
of eq 1, withγ ) mj /3; that is, the thermodynamic scaling is
strictly obeyed. For instance, this applies to the reduced diffusion
coefficientD* ∼ (F1/3T-1/2)D ∼ (T1/mj -1/2)D.17 A similar reduc-
tion of D by macroscopic variables (F and T) has also been
employed in entropy scaling laws of diffusion.18

The IPL approximation emphasizes the dominant role of the
short-range repulsive interactions for local properties such as
structural relaxation. Various groups have explored through
numerical simulations the relationship of the steepness of the
repulsive potential to properties such as the equation of
state,19-21 longitudinal wave transmission,22 vibrational spec-
trum,23 liquid24 and gaseous25 transport, the correlation between
fluctuations of energy and pressure,26 and the fragility.27,28

Recently, two simulations have appeared in which eq 1 was
used to superpose dynamical data for polymer chains described
using an LJm-6 potential withm ) 12 and an added term for
the intrachain interactions. The results appear contradictory:
Tsolou et al.29 obtained a scaling exponent ofγ ) 2.8 for the
segmental relaxation times of simulated 1,4-polybutadiene, while
Budzien et al.30 superposed diffusion coefficients for prototypical
polymer chains usingγ ) 6 when attractions were included in
the simulation andγ ) 12 when they were omitted. Thus, the
scaling exponentγ is either less than29 or greater than30 m/3.

To clarify this situation and to establish the connection
between the thermodynamic scaling and the repulsive part of
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x ) F (Fγ/T) (1)

u(r) ∼ r-mj + const (2)
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the intermolecular potential, we carried out molecular dynamics
simulations for supercooled LJm-n liquids, in which the
repulsive exponentm was systematically varied. Our models
are binary mixtures composed ofN ) 500 particles enclosed
in a cubic box with periodic boundary conditions and interacting
with a LJ m-n potential

whereR, â ) 1, 2 are indexes of species. We fixed the attractive
exponentn ) 6, as in the standard LJ potential, and variedm
) 8, 12, 24, and 36. The potentialuRâ(r) was smoothed atrc )
2.5σRâ using the cutoff scheme of Stoddard and Ford.31 Reduced
LJ units are used, assumingσ11, ε11, and (m1σ11

2/ε11)1/2 as units
of distance, energy, and time, respectively. The mixture on
which we focus is an additive, equimolar mixture with size ratio
λ ) σ22/σ11 ) 0.64, equal massesm1 ) m2 ) 1.0, and a unique
energy scaleεRâ ) 1.0. The choicem ) 12 corresponds to the
AMLJ-0.64 mixture studied by Coslovich and Pastore.32,33The
samples were quenched isobarically at different pressuresP )
5, 10, and 20 by coupling the system to a Berendsen thermostat
and barostat during equilibration32 and performing the produc-
tion runs in the NVE ensemble using the velocity Verlet
algorithm. The time stepδt was varied according to the repulsive
exponent, ranging from 0.001 (m ) 36) to 0.004 (m ) 8) at
high T and from 0.003 (m ) 36) to 0.008 (m ) 8) at low T.
The equilibration criteria were similar to the ones used in
previous simulations.32

The effectiveness of the thermodynamic scaling for LJm-6
systems is demonstrated in Figure 1 for different values of the
repulsive exponentm. For eachm, reduced total diffusion
coefficientsD* ) (F1/3T-1/2)D, computed through the usual
Einstein relation, were gathered along different isobaric paths
(P ) 5, 10, 20) and the material specific scaling exponentγ
was obtained by maximizing the overlap between different sets
of data, plotted as a function ofFγ/T. Repeating the analysis
for D, instead ofD*, yields very similar values ofγ, but the
quality of the scaling forD* is slightly superior. The choice of
reduced diffusion coefficients highlights the connection (further
discussed below) with IPL systems, in which the thermodynamic
scaling is exactly obeyed by reduced dynamical quantities.17

Our data span roughly 5 decades of variation ofD, over about
2 of which the temperature is lower than the so-called onset
temperatureTO,34 where non-exponential relaxation typical of
the supercooled regime first becomes apparent upon cooling
the liquid. Analyzing the variation of the scaling exponent in
our models, we find thatγ increases with increasingm, but its
actual value is systematically larger thanm/3. For instance, in
the case ofm ) 12, we obtainγ ) 5.0, a value which we also
found to provide scaling ofD* for other supercooled Lennard-
Jones (m ) 12) mixtures, such as the AMLJ-0.76 mixture32 and
the mixture of Kob and Andersen.35

The origin of the discrepancy betweenγ andm/3 lies in the
fact that the asymptotic region of small interparticle distances,
in which u(r) ∼ r-m, is not dynamically accessible in normal
simulation conditions. The presence of the fixed attractive term
in the potential (eq 3) gives rise to an effective IPL which is
steeper in the region ofr close to the minimum than in ther f
0 limit. This effect is illustrated in Figure 2 for the case ofm )
24. The lower panel of Figure 2 shows a fit of the pair potential
u11(r) to an IPL (eq 2) performed in the range [r0:r1], with r0 )
0.95 andr1 ) 1.01. The valuemj ) 27.5 obtained through this
procedure is indeed larger thanm ) 24 and is in very good
agreement with the value expected from the dynamical scaling
(3γ ) 27.3 ( 0.03). The range [r0:r1] corresponds to typical

distances of closest approach between particles probed within
our simulation conditions, as it can be seen by inspection of
the radial distribution functionsg11(r) (see upper panels of Figure
2). Extending the range for the fit up tor1 ) 1.06, which is
close to the average position of the first peak in theg11(r), yields
a larger value ofmj ) 28.8, revealing howγ is dictated by the
portion of r around the distance of closest approach in the
supercooled regime.

To proceed in a more systematic way, we considered allR-â
pairs (1-1, 1-2, and 2-2) in the potentialuRâ(r) and performed
a simultaneous fit to the following IPL

The range for fitting was defined by two conventional distances
determined from the radial distribution functionsgRâ(r): the
distance of closest approach between particles,r0 (i.e., the value
of r for which gRâ(r) first becomes nonzero), and the position
corresponding to half of the height of the first peak,r1 (i.e.,
gRâ(r1) ) gRâ(rm)/2, whererm is the position of the first peak

uRâ(r) ) 4εRâ[(σRâ/r)
m - (σRâ/r)

n] (3)

Figure 1. Reduced diffusion coefficientsD* as a function ofFγ/T for
different values of the repulsive exponentm at different pressures:P
) 5 (squares),P ) 10 (circles), andP ) 20 (triangles). From top to
bottom: m ) 36 (γ ) 13.4),m ) 24 (γ ) 9.1),m ) 12 (γ ) 5.0), and
m ) 8 (γ ) 3.5). The estimated uncertainty onγ is (0.1 ((0.2 for m
) 36).

ujRâ(r) ) εj(σRâ/r)
mj + kh (4)
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and r0 < r1 < rm). These quantities depend on the thermody-
namic state under consideration, but their variation withP and
T is mild within our simulation conditions. (At fixedP, r0 and
r1 show a weak increase with decreasingT but they become
almostT-independent belowTO.) With our interest being the
supercooled regime, we simply consider the interval [r0:r1]
obtained from the low-T behavior ofgRâ(r). For eachR-â pair,
we used the corresponding range [r0:r1] for fitting. In general,
the fitted values ofmj are in good agreement with 3γ (see Table
1) for all values ofm. Thus, the scaling exponent can be
reasonably accounted for in terms of an IPL approximation of
the pair potential, provided that a sensible choice of the relevant
range of distances is made.

The above procedure suggests that a model of soft spheres
(SS) withmj ) 3γ should provide a good reference system for
the LJm-6 mixtures. To this aim, we approximate eq 3 with

where mj , εj, and kh are expressed in terms ofxj by requiring
continuity of the 0th, 1st, and 2nd derivatives ofVRâ(r) at r )
xσRâ. The value ofxj is then fixed by requiring that 3γ ) mj (xj)
) (m2/xjm+1 - n2/xjn+1)/(m/xjm+1 - n/xjn+1). The parameters
defining the reference SS models for all values ofmare reported
in Table 1. We checked that the distancexjσRâ always lies in
the range [r0:r1] defined above. Diffusivity data for the LJ 12-6
mixture are compared in Figure 3 to those of the corresponding
reference SS mixture along two isochores (F ) 1.5, F ) 1.7),
which correspond to typical densities attained at lowT by the
LJ system (at constantP). The trend ofD(T) for the reference
system closely follows the one for the full LJ system. As
expected, the SS mixture has a larger diffusion coefficient for
a given thermodynamic state. The contribution toD due to the
attractive part of the potential could also be explicitly included
using a WCA-like splitting ofVRâ(r).36 For the present purposes,
however, it is more useful to note that a simple rescaling ofεj
(increased by around 10%) yields an excellent superposition of
D* for all sets of data (see inset of Figure 3). Thus, at least to
a first approximation, the contribution of the attractive part of
the potential to the dynamics alters the shape of the functionF
without affectingthe scaling exponentγ.

To summarize, the thermodynamic scaling, observed gener-
ally for supercooled molecular liquids and polymers and shown
herein for the diffusion coefficient in supercooled LJm-6
mixtures, reflects the importance of the repulsive part of the
pair potential in determining the dynamical properties of glass-
forming systems. The scaling exponentγ is larger thanm/3 for
LJ m-6 liquids, a fact which can be rationalized by ap-
proximating the repulsive part of the potential with an IPL
having the exponentmj ≈ 3γ. Generalizing such arguments to
more realistic models of glass-formers29,30 and establishing
connections with other scaling procedures forD*18,37 are open
challenges for future investigations.
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Figure 2. Top panel: radial distribution functions between large
particlesg11(r) at P ) 10 for T < TO: T ) 1.20 (dotted),T ) 1.00
(dashed), andT ) 0.84 (solid). Middle panel:g11(r) at the lowest
equilibratedT: T ) 0.75 atP ) 5 (dotted),T ) 0.84 atP ) 10 (dashed),
and T ) 1.05 atP ) 20 (solid). Bottom panel: pair potentialu11(r)
(solid) and fitted IPL (dotted) in the range [0.95:1.01]. The latter range
is indicated by vertical dotted lines in all panels.

TABLE 1: Parameters of IPL Approximations for urâ(r)
(The effective exponentmj is obtained from fitting to eq 4,
whereasEj, kh, and xj are the optimal values for eq 5)

m 3γ mj xj εj kh

8 10.5(3) 10.9 0.86 0.93 -1.05
12 15.0(3) 14.9 0.93 1.74 -1.80
24 27.3(3) 27.2 0.97 2.72 -2.74
36 40.2(6) 39.9 0.99 3.01 -3.01

VRâ(r) ) {εj(σRâ/r)
xj + kh r < xjσRâ

uRâ(r) r g xjσRâ
(5)

Figure 3. Arrhenius plot of diffusion coefficientD for the LJ 12-6
mixture and the reference SS mixture (mj ) 15.0,εj ) 1.74) along two
isochores:F ) 1.5 andF ) 1.7. Inset: reduced diffusion coefficient
D* as a function ofFmj /3/T. For the SS mixture, a reoptimized energy
scale ofε̃ ) 1.13εj was used.
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