
Journal of Statistical Mechanics: Theory and Experiment (2008) P01002 (24 pages)
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We here present the complete analysis of experiments on driven Brownian motion and electric noise
in a RC circuit, showing that thermodynamic entropy production can be related to the breaking of
time-reversal symmetry in the statistical description of these nonequilibrium systems. The symmetry
breaking can be expressed in terms of dynamical entropies per unit time, one for the forward
process and the other for the time-reversed process. These entropies per unit time characterize
dynamical randomness, i.e., temporal disorder, in time series of the nonequilibrium fluctuations.
Their difference gives the well-known thermodynamic entropy production, which thus finds its origin
in the time asymmetry of dynamical randomness, alias temporal disorder, in systems driven out of
equilibrium.
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I. INTRODUCTION

According to the second law of thermodynamics, nonequilibrium systems produce entropy in a time asymmetric
way. This thermodynamic time asymmetry is usually expressed in terms of macroscopic concepts such as entropy.
The lack of understanding of this time asymmetry in terms of concepts closer to the microscopic description of the
motion of particles has always been a difficulty. Only recently, general relationships have been discovered which allows
us to express the thermodynamic time asymmetry at the mesoscopic level of description in terms of the probabilities
ruling the molecular or thermal fluctuations in nonequilibrium systems. More specifically the entropy production rate
in a system driven out of equilibrium can be estimated by measuring the asymmetries between the probabilities of
finding certain time evolutions when the system is driven with forward nonequilibrium driving and those of finding
the corresponding reversed time evolutions with a backward driving. In a recent letter [1], experimental evidence
has been reported that, indeed, the entropy production finds its origin in the time asymmetry of the dynamical
randomness, alias temporal disorder, in driven Brownian motion and in the electric noise of a driven RC circuit. In
these two experiments we record long time series, either of the position of the Brownian particle or of the fluctuating
voltage of the RC circuits, which allow us to define the probabilities of given time evolutions, also called paths. This
result shows that, under nonequilibrium conditions, the probabilities of the direct and time-reversed paths break the
time-reversal symmetry and that the entropy production is given by the difference between the decay rates of these
probabilities. These decay rates characterize the dynamical randomness of the paths (or their time reversals) so that
the entropy production turns out to be directly related to the breaking of the time-reversal symmetry in the dynamical
randomness of the nonequilibrium fluctuations.

The purpose of the present paper is to provide a detailed report of these two experiments and of the data analysis.
The dynamical randomness of the forward time series is characterized by the so-called (ε, τ)-entropy per unit time,
which represents the average decay rate of the probabilities of paths sampled with a resolution ε and a sampling time
τ [2]. The precise definition of these quantities will be given in Sec. III. To each possible path in the forward time
series, we look for the corresponding time-reversed path in the backward time series. This allows us to further obtain
the time-reversed (ε, τ)-entropy per unit time. Remarkably, the difference between the backward and forward (ε, τ)-
entropies per unit time gives the right positive value of the thermodynamic entropy production under nonequilibrium
conditions. This result shows by direct data analysis that the entropy production of nonequilibrium thermodynamics
can be explained as a time asymmetry in the temporal disorder characterized by these new quantities which are the
(ε, τ)-entropies per unit time.

These quantities were introduced in order to generalize the concept of Kolmogorov-Sinai entropy per unit time
from dynamical systems to stochastic processes [2, 3]. In this regard, the relationship here described belongs to the
same family of newly discovered large-deviation properties as the escape-rate and chaos-transport formulas [4–6], the
steady-state or transient fluctuation theorems [7–24], and the nonequilibrium work fluctuation theorem [25–29]. All
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these relationships share the common mathematical structure that they give an irreversible property as the difference
between two decay rates of mesoscopic or microscopic properties [30, 31]. These relationships are at the basis of the
important advances in nonequilibrium statistical mechanics during the last two decades [32]. Recently, the concept of
time-reversed entropy per unit time was introduced [33] and used to express the thermodynamic entropy production
in terms of the difference between it and the standard (Kolmogorov-Sinai) entropy per unit time [30, 33–35]. This
relationship can be applied to probe the time asymmetry of time series [1, 36] and allows us to understand the origin
of the thermodynamic time asymmetry.

The paper is organized as follows. In Sec. II, we introduce the Langevin description of the experiments. In
particular, we show that the thermodynamic entropy production arises from the breaking of the forward and time-
reversed probability distributions over the trajectories. In Sec. III, we introduce the dynamical entropies and describe
an algorithm for their estimation using long time series. It is shown that the difference between the two dynamical
entropies gives back the thermodynamic entropy production. The experimental results on driven Brownian motion are
presented in Sec. IV where we analyze in detail the behavior of the dynamical entropies and establish the connection
with the thermodynamic entropy production. The experimental results on electric noise in the driven RC circuit are
given in Sec. V. The relation to the extended fluctuation theorem [15–17] is discussed in Sec. VI. The conclusions
are drawn in Sec. VII.

II. STOCHASTIC DESCRIPTION, PATH PROBABILITIES, AND ENTROPY PRODUCTION

We consider a Brownian particle in a fixed optical trap and surrounded by a fluid moving at the speed u. In a
viscous fluid such as water solution at room temperature and pressure, the motion of a dragged micrometric particle
is overdamped. In this case, its Brownian motion can be modeled by the following Langevin equation [16]:

α
dz

dt
= F (z) + αu+ ξt (1)

where α is the viscous friction coefficient, F = −∂zV the force exerted by the potential V of the laser trap, αu is the
drag force of the fluid moving at speed u, and ξt a Gaussian white noise with its average and correlation function
given by

〈ξt〉 = 0 (2)
〈ξt ξt′〉 = 2 kBT α δ(t− t′) (3)

In the special case where the potential is harmonic of stiffness k, V = kz2/2, the stationary probability density is
Gaussian

pst(z) =

√
βk

2π
exp

[
− βk

2
(z − u τR)2

]
(4)

with the relaxation time

τR =
α

k
(5)

and the inverse temperature β = (kBT )−1. The maximum of this Gaussian distribution is located at the distance uτR
of the minimum of the confining potential. This shift is due to dragging and corresponds to the position where there
is a balance between the frictional and harmonic forces.

The work Wt done on the system by the moving fluid during the time interval t is given by [15, 16, 37]

Wt = −
∫ t

0

u F (zt′) dt′ (6)

while the heat Qt generated by dissipation is

Qt =
∫ t

0

(żt′ − u) F (zt′) dt′ (7)

We notice that the quantities (6) and (7) are fluctuating because of the Brownian motion of the particle. Both
quantities are related by the change in potential energy ∆Vt ≡ V (zt)− V (z0) so that

Qt = Wt −∆Vt (8)
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Brownian particle RC circuit

zt qt − It

żt q̇t − I

ξt −δVt

α R

k 1/C

u −I

TABLE I: The analogy between the Brownian particle and the electric RC circuit. For the Brownian particle, zt is its position,
żt its velocity, ξt the Langevin fluctuating force, α the viscous friction coefficient, k the harmonic strength or stiffness of the
optical trap, and u the fluid speed. For the electric circuit, qt is the electric charge passing through the resistor during time t,
it = q̇t the corresponding current, δVt the fluctuating electric potential of the Nyquist noise, R the resistance, C the capacitance,
and I the mean current source.

In a stationary state, the mean value of the dissipation rate is equal to the mean power done by the moving fluid
since limt→∞(1/t)〈∆Vt〉 = 0. The thermodynamic entropy production is thus given by

diS

dt
= lim

t→∞

1
t

〈Qt〉
T

= lim
t→∞

1
t

〈Wt〉
T

=
αu2

T
(9)

in the stationary state. The equilibrium state is reached when the speed of the fluid is zero, u = 0, in which case the
entropy production (9) vanishes as expected.

An equivalent system is an RC electric circuit driven out of equilibrium by a current source which imposes the
mean current I [16, 17]. The current fluctuates in the circuit because of the intrinsic Nyquist thermal noise. This
electric circuit and the dragged Brownian particle, although physically different, are known to be formally equivalent
by the correspondence shown in Table I [16].

Our aim is to show that one can extract the heat dissipated along a fluctuating path by comparing the probability
of this path, with the probability of the corresponding time-reversed path having also reversed the external driving,
i.e., u→ −u for the dragged Brownian particle (respectively, I → −I for the RC circuit).

We use a path integral formulation. A stochastic trajectory is uniquely defined by specifying the noise history of
the system ξt. Indeed, the solution of the stochastic equation (1), i.e.,

zt = z0 +
∫ t

0

dt′ żt′

= z0 +
1
α

∫ t

0

dt′
[
F (zt′) + αu+ ξt′

]
(10)

is uniquely specified if the noise history is known. Since we consider a Gaussian white noise, the probability to have
the noise history ξt is given by [38]

P [ξt] ∝ exp
[
− 1

4kBTα

∫ t

0

dt′
(
ξt′

)2
]

(11)

According to Eq. (1), the probability of a trajectory zt starting from the fixed initial point z0 is thus written as

P [zt|z0] ∝ exp
[
− 1

4kBTα

∫ t

0

dt′
(
αż − F (z)− αu

)2
]

(12)

We remark that the corresponding joint probability is obtained by multiplying the conditional probability (12) with
the stationary probability density (4) of the initial position as

P [zt] ∝ P [zt|z0] pst(z0) (13)

To extract the heat dissipated along a trajectory, we consider the probability of a given path over the probability
to observe the reversed path having also reversed the sign of the driving u. The reversed path is thus defined by
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zR
t′ = zt−t′ which implies żR

t′ = −żt−t′ . Therefore, we find that

ln
P+[zt|z0]
P−[zR

t |zR
0 ]

= − 1
4kBTα

∫ t

0

dt′
[(
αż − F (z)− αu

)2

−
(
− αż − F (z) + αu

)2
]

=
1

kBT

∫ t

0

dt′
(
ż − u

)
F (z)

=
1

kBT

[
V (z0)− V (zt)− u

∫ t

0

dt′ F (z)
]

=
Qt

kBT
(14)

which is precisely the fluctuating heat (7) dissipated along the random path zt and expressed in the thermal unit
kBT . The detailed derivation of this result is carried out in Appendix A. The dissipation can thus be related to
time-symmetry breaking already at the level of mesoscopic paths. We notice that the mean value of the fluctuating
quantity (14) behaves as described by Eq. (9) so that the heat dissipation rate vanishes on average at equilibrium
and is positive otherwise. Relations similar to Eq. (14) are known for Boltzmann’s entropy production [13], for
time-dependent systems [20, 25, 29], and in the the context of Onsager-Machlup theory [21]. We emphasize that the
reversal of u is essential to get the dissipated heat from the way the path probabilities P+ and P− differ.

The main difference between these path probabilities comes from the shift between the mean values of the fluctua-
tions under forward or backward driving. Indeed, the average position is equal to 〈z〉+ = uτR under forward driving
at speed +u, and 〈z〉− = −uτR under backward driving at speed −u. The shift 2uτR in the average positions implies
that a typical path of the forward time series falls, after its time reversal, in the tail of the probability distribution
P− of the backward time series. Therefore, the probabilities P− of the time-reversed forward paths in the backward
time series are typically lower than the probabilities P+ of the corresponding forward paths. The above derivation
(14) shows that the dissipation can be obtained in terms of their ratio P+/P−. We emphasize that this derivation
holds for anharmonic potentials as well as harmonic ones, so that the result is general in this respect.

In the stationary state, the mean entropy production (9) is given by averaging the dissipated heat (14) over all
possible trajectories:

diS

dt
= lim

t→∞

kB

t

〈
ln

P+[zt|z0]
P−[zR

t |zR
0 ]

〉
= lim

t→∞

kB

t

〈
ln
P+[zt]
P−[zR

t ]

〉
= lim

t→∞

kB

t

∫
Dzt P+[zt] ln

P+[zt]
P−[zR

t ]
≥ 0 (15)

The second equality in Eq. (15) results from the fact that the terms at the boundaries of the time interval t are
vanishing for the statistical average in the long-time limit. Equation (15) relates the thermodynamic dissipation to
a so-called Kullback-Leibler distance [39] or relative entropy [40] between the forward process and its time reversal.
Such a connection between dissipation and relative entropy has also been described elsewhere [28, 29, 33]. Since the
relative entropy is known to be always non negative, the mean entropy production (15) satisfies the second law of
thermodynamics, as it should. Accordingly, the mean entropy production vanishes at equilibrium because of Eq. (9)
or, equivalently, as the consequence of detailed balance which holds at equilibrium when the speed u is zero (see
Appendix A).

We point out that the heat dissipated along an individual path given by Eq. (14) is a fluctuating quantity and may be
either positive or negative. We here face the paradox raised by Maxwell that the dissipation is non-negative on average
but has an undetermined sign at the level of the individual stochastic paths. The second law of thermodynamics holds
for entropy production defined after statistical averaging with the probability distribution. We remain with fluctuating
mechanical quantities at the level of individual mesoscopic paths or microscopic trajectories.

III. DYNAMICAL RANDOMNESS AND THERMODYNAMIC ENTROPY PRODUCTION

The aim of this section is to present a method to characterize the property of dynamical randomness in the time series
and to show how this property is related to the thermodynamic entropy production when the paths are compared with
their time reversals. In this way, we obtain a theoretical prediction on the relationship between dynamical randomness
and thermodynamic entropy production.



5

A. (ε, τ)-entropies per unit time

Dynamical randomness is the fundamental property of temporal disorder in the time series. The temporal disorder
can be characterized by an entropy as well as for the other kinds of disorder. In the case of temporal disorder, we have
an entropy per unit time, which is the rate of production of information by the random process, i.e., the minimum
number of bits (digits or nats) required to record the time series during one time unit. For random processes which are
continuous in time and in their variable, the trajectories should be sampled with a resolution ε and with a sampling
time τ . Therefore, the entropy per unit time depends a priori on each one of them and we talk about the (ε, τ)-entropy
per unit time. Such a quantity has been introduced by Shannon as the rate of generating information by continuous
sources [41]. The theory of this quantity was developed under the names of ε-entropy [42] and rate distortion function
[43]. More recently, the problem of characterizing dynamical randomness has reappeared in the study of chaotic
dynamical systems. A numerical algorithm was proposed by Grassberger, Procaccia and coworkers [44, 45] in order to
estimate the Kolmogorov-Sinai entropy per unit time. Thereafter, it was shown that the same algorithm also applies
to stochastic processes, allowing us to compare the property of dynamical randomness of different random processes
[2, 46]. Moreover, these dynamic entropies were measured for Brownian motion at equilibrium [47, 48]. We here
present the extension of this method to out-of-equilibrium fluctuating systems.

Since we are interested in the probability of a given succession of states obtained by sampling the signal Z(t) at
small time intervals τ , a multi-time random variable is defined according to Z = [Z(t0), Z(t0 + τ), . . . , Z(t0 +nτ − τ)],
which represents the signal during the time period t− t0 = nτ . For a stationary process, the probability distribution
does not depend on the initial time t0. From the point of view of probability theory, the process is defined by the
n-time joint probabilities

Ps(z; dz, τ, n) = Pr{z < Z < z + dz; s} = ps(z) dz (16)

where ps(z) denotes the probability density for Z to take the values z = (z0, z1, . . . , zn−1) at times t0 + iτ (i =
0, 1, 2, ..., n− 1) for some nonequilibrium driving s = u/|u| = ±1. Now, due to the continuous nature in time and in
space of the process, we will consider the probability P+(Zm; ε, τ, n) for the trajectory to remain within a distance ε
of some reference trajectory Zm, made of n successive positions of the Brownian particle observed at time intervals τ
during the forward process. This reference trajectory belongs to an ensemble of M reference trajectories {Zm}M

m=1,
allowing us to take statistical averages. These reference trajectories define the patterns, i.e., the recurrences of which
are searched for in the time series.

On the other hand, we can introduce the quantity P−(ZR
m; ε, τ, n) which is the probability for a reversed trajectory

of the reversed process to remain within a distance ε of the reference trajectory Zm (of the forward process) for n
successive positions.

Suppose we have two realizations over a very long time interval Lτ � nτ given by the time series {z±(kτ)}L
k=1,

respectively for the forward (+) and backward (−) processes. Within these long time series, sequences of length n
are compared with each other. We thus consider an ensemble set of 1 �M � L reference sequences, which are all of
length n:

Zm = [Z(mτ), · · · , Z(mτ + nτ − τ)], m ∈ {m1, · · · ,mM} (17)

These reference sequences are taken at equal time intervals in order to sample the forward process according to its
probability distribution P+. The distance between a reference sequence and another sequence of length n is defined
by

distn(Zm,Zj) = max{|Z(mτ)− Z(jτ)|, · · · , |Z(mτ + nτ − τ)− Z(jτ + nτ − τ)|} (18)

for j = 1, 2, ..., L′ = L− n+ 1. The probability for this distance to be smaller than ε is then evaluated by

P+(Zm; ε, τ, n) =
1
L′

Number{Zj : distn(Zm,Zj) ≤ ε} (19)

The average of the logarithm of these probabilities over the different reference sequences gives the block entropy

H(ε, τ, n) = − 1
M

M∑
m=1

lnP+(Zm; ε, τ, n) (20)

also called the mean pattern entropy. The (ε, τ)-entropy per unit time is then defined as the rate of the linear growth
of the block entropy as the length n of the reference sequences increases [2, 44, 45]:

h(ε, τ) = lim
n→∞

lim
L′,M→∞

1
τ

[
H(ε, τ, n+ 1)−H(ε, τ, n)

]
(21)
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Similarly, the probability of a reversed trajectory in the reversed process can be evaluated by

P−(ZR
m; ε, τ, n) =

1
L′

Number{Z̃j : distn(ZR
m, Z̃j) ≤ ε} (22)

where ZR
m = [Z(mτ +nτ − τ), · · · , Z(mτ)] is the time reversal of the reference path Zm of the forward process, while

{Z̃j}L′

j=1 are the paths of the reversed process (with the opposite driving −u). In similitude with Eqs. (20) and (21),
we may introduce the time-reversed block entropy:

HR(ε, τ, n) = − 1
M

M∑
m=1

lnP−(ZR
m; ε, τ, n) (23)

and the time-reversed (ε, τ)-entropy per unit time:

hR(ε, τ) = lim
n→∞

lim
L′,M→∞

1
τ

[
HR(ε, τ, n+ 1)−HR(ε, τ, n)

]
(24)

We notice that the dynamical entropy (21) gives the decay rate of the probabilities to find paths within a distance
ε from a typical path Z = (Z0, Z1, Z2, ..., Zn−1) with Zi = Z(t0 + iτ):

P+(Z; ε, τ, n) ∼ exp[−nτh(ε, τ)] (n→∞) (25)

as the number n of time intervals increases. In the case of ergodic random processes, this property is known as
the Shannon-McMillan-Breiman theorem [49]. The decay rate h characterizes the temporal disorder, i.e., dynamical
randomness, in both deterministic dynamical systems and stochastic processes [2, 3, 44–46]. On the other hand, the
time-reversed dynamical entropy (24) is the decay rate of the probabilities of the time-reversed paths in the reversed
process:

P−(ZR; ε, τ, n) ∼ exp[−nτhR(ε, τ)] (n→∞) (26)

Since hR is the decay rate of the probability to find, in the backward process, the time-reversed path corresponding to
some typical path of the forward process, the exponential exp(−hR∆t) evaluates the amount of time-reversed paths
among the typical paths (of duration ∆t). The time-reversed entropy per unit time hR thus characterizes the rareness
of the time-reversed paths in the forward process.

The dynamical randomness of the stochastic process ruled by the Langevin equation (1) can be characterized in
terms of its (ε, τ)-entropy per unit time. This latter is calculated for the case of a harmonic potential in Appendix B.
For small values of the spatial resolution ε, we find that

h(ε, τ) =
1
τ

ln

√
πeDτR

2ε2
(
1− e−2τ/τR

)
+O(ε2) (27)

with the diffusion coefficient of the Brownian particle:

D =
kBT

α
(28)

The (ε, τ)-entropy per unit time increases as the resolution ε decreases, meaning that randomness is found on smaller
and smaller scales in typical trajectories of the Brownian particle. After having obtained the main features of the
(ε, τ)-entropy per unit time, we go on in the next subsection by comparing it with the time-reversed (ε, τ)-entropy
per unit time, establishing the connection with thermodynamics.

B. Thermodynamic entropy production

Under nonequilibrium conditions, detailed balance does not hold so that the probabilities of the paths and their
time reversals are different. Similarly, the decay rates h and hR also differ. Their difference can be calculated by
evaluating the path integral (15) by discretizing the paths with the sampling time τ and resolution ε

diS

dt
= lim

t→∞

kB

t

∫
Dzt P+[zt] ln

P+[zt]
P−[zR

t ]

= lim
ε→0

lim
τ→0

lim
n→∞

lim
L′,M→∞

kB

nτ

1
M

M∑
m=1

ln
P+(Zm; ε, τ, n)
P−(ZR

m; ε, τ, n)
(29)



7

The statistical average is carried out over M paths of the forward process and thus corresponds to the average with
the probability P+[zt]. The logarithm of the ratio of probabilities can be splitted into the difference between the
logarithms of the probabilities, leading to the difference of the block entropies (23) and (20). The limit n→∞ of the
block entropies divided by n can be evaluated from the differences between the block entropy at n + 1 and the one
at n, whereupon the (ε, τ)-entropies per unit time (21) and (24) appear. Finally, the mean entropy production in the
nonequilibrium steady state is given by the difference between the time-reversed and direct (ε, τ)-entropies per unit
time:

diS

dt
= lim

ε→0
lim
τ→0

kB

[
hR(ε, τ)− h(ε, τ)

]
(30)

The difference between hR and h characterizes the time asymmetry of the ensemble of typical paths effectively
realized during the forward process. Equation (30) shows that this time asymmetry is related to the thermodynamic
entropy production. The entropy production is thus expressed as the difference of two usually very large quantities
which increase for ε going to zero [2, 46]. Out of equilibrium, their difference remains finite and gives the entropy
production. At equilibrium, the time-reserval symmetry hR = h is restored so that their difference vanishes with the
entropy production. In the next two sections, the theoretical prediction (30) is tested experimentally.

IV. DRIVEN BROWNIAN MOTION

The first experimental system we have investigated is a Brownian particle trapped by an optical tweezer, which
is composed by a large numerical aperture microscope objective (×63, 1.3) and by an infrared laser beam with a
wavelength of 980 nm and a power of 20 mW on the focal plane. The trapped polystyrene particle has a diameter of
2 µm and is suspended in a 20% glycerol-water solution. The particle is trapped at 20 µm from the bottom plate of the
cell which is 200 µm thick. The detection of the particle position zt is done using a He-Ne laser and an interferometric
technique [50]. This technique allows us to have a resolution on the position of the particle of 10−11 m. In order
to apply a shear to the trapped particle, the cell is moved with a feedback-controlled piezo actuator which insures a
perfect linearity of displacement [51].

The potential is harmonic: V = kz2/2. The stiffness of the potential is k = 9.62 10−6 kg s−2. The relaxation time
is τR = α/k = 3.05 10−3 s, which has been determined by measuring the decay rate of the autocorrelation of zt. The
variable zt is acquired at the sampling frequency f = 8192 Hz. The temperature is T = 298 K.

The mean square displacement of the Brownian particle in the optical trap is σ =
√
kBT/k = 20.7 nm, while the

diffusion coefficient is D = σ2/τR = 1.4× 10−13 m2/s. We notice that the relaxation time is longer than the sampling
time since their ratio is fτR = 25.
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FIG. 1: (a) The time series of a typical path zt for the trapped Brownian particle in the fluid moving at the speed u for the
forward process (upper curve) and −u for the reversed process (lower curve) with u = 4.24×10−6 m/s. (b) Gaussian probability
distributions of the forward and backward experiments. The mean value is located at ±uτR = ±12.9 nm.

In order to test experimentally that entropy production is related to the time asymmetry of dynamical randomness
according to Eq. (30), time series have been recorded for several values of |u|. For each value, a pair of time series is
generated, one corresponding to the forward process and the other to the reversed process, having first discarded the
transient evolution. The time series contain up to 2× 107 points each. Figure 1a depicts examples of paths zt for the
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trapped Brownian particle in the moving fluid. Figure 1b shows the corresponding stationary distributions for the
two time series. They are Gaussian distributions shifted according to Eq. (4).
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FIG. 2: (a) The block entropy (or mean pattern entropy) as a function of time nτ for the trapped Brownian particle in the fluid
moving at the speed u = 4.24× 10−6 m/s. The time interval τ is equal to the sampling time τ = 1/f = 1/8192 s. The different
curves correspond to different values of ε = k× 0.558 nm with k = 1, . . . , 20 given in the right-hand column. The distance used
in this calculation is defined by taking the maximum among the distances |Z(t) − Zm(t)| for the times t = 0, τ, . . . , (n − 1)τ .
The larger slopes correspond to the smaller value of ε. The linear growth persists up to a maximal value of the mean pattern
entropy given by the total length of the time series: Hmax = ln(1.4× 107). (b) The mean reversed block entropy as a function
of time corresponding to (a). After a linear growth, HR saturates and falls down to zero (not shown) because of the finiteness
of the time series which limits the statistics. (c) Differences between the backward and forward (ε, τ) dynamical entropies in
(b) and (a) for ε between 5.6-11.2 nm for the Brownian particle. Straight lines are fitted to the first part of the curves and
their slopes give the entropy production according to Eq. (30).

The analysis of these time series is performed by calculating the block entropy (20) versus the path duration nτ ,
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FIG. 3: Entropy production of the Brownian particle versus the driving speed u. The solid line is the well-known rate of
dissipation given by Eq. (9). The dots depict the results of Eq. (30) calculated with the differences between the (ε, τ)-entropies
per unit time. The equilibrium state is at zero speed u = 0 where the entropy production vanishes.
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FIG. 4: (a) (ε, τ)-entropy per unit time of the Brownian particle scaled by the time interval τ as a function of δ =

ε/
p

1− exp(−2τ/τR), for different values of the time interval τ = 1/f, 2/f, 4/f, 8/f , with the sampling time 1/f = 1/8192 s.
The dots are the results of the computation from the time series for the speed u = 4.24× 10−6 m/s. The solid line depicts the
expected behavior according to Eqs. (27) and (30). (b) Scaled reversed and direct (ε, τ)-entropies per unit time for τ = 4/f .
The solid line is the result expected from Eq. (30).

and this for different values of ε. Figure 2a shows that the block entropy increases linearly with the path duration nτ
up to a maximum value fixed by the total length of the time series. The time interval is taken equal to the sampling
time: τ = 1/f . The forward entropy per unit time h(ε, τ) is thus evaluated from the linear growth of the block
entropy (20) with the time nτ .

Similarly, the time-reversed block entropy (23) is computed using the same reference sequences as for the forward
block entropy, reversing each one of them, and getting their probability of occurrence in the backward time series.
The resulting time-reversed block entropy is depicted in Fig. 2b versus nτ for different values of ε. Here also, we
observe that HR grows linearly with the time nτ up to some maximum value due to the lack of statistics over long
sequences because the time series is limited. Nevertheless, the linear growth is sufficiently extended that the backward
entropy per unit time hR(ε, τ) can be obtained from the slopes in Fig. 2b.

Figure 2c depicts the difference between the backward and forward block entropies HR and H versus the time
nτ , showing the time asymmetry due to the nonequilibrium constraint. We notice that the differences HR −H are
small compared with the block entropies themselves, meaning that dynamical randomness is large although the time
asymmetry is small. Accordingly, the values HR−H are more affected by the experimental limitations than the block
entropies themselves. In particular, the saturation due to the total length of the time series affects the linearity of
HR − H versus nτ . However, we observe the expected independence of the differences HR − H on ε. Indeed, the
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FIG. 5: Measure of the heat dissipated by the Brownian particle along two randomly selected trajectories in the time series
of Fig. 1. The fluid speeds are ±u with u = 4.24 × 10−6 m/s. (a)-(b) Inset: The two randomly selected trajectories. The
conditional probabilities P+ and P− of the corresponding forward (filled circles) and the backward (open circles) paths for
ε = 8.4 nm, as evaluated by Eqs. (31) and (32). These probabilities present an exponential decrease modulated by the
fluctuations. At time zero, the conditional probabilities are not defined and, instead, we plotted at this time the stationary
probabilities for indication. (c)-(d) The dissipated heat given by the logarithm of the ratio of the forward and backward
probabilities according to Eq. (14) for different values of ε = k× 0.558 nm with k = 12, . . . , 19 in the range 6.7-10.6 nm. They
are compared with the values (squares) directly calculated from Eq. (7). For small values of ε, the agreement is quite good for
short time and are within experimental errors for larger time.

slope which can be obtained from the differences HR−H versus nτ cluster around a common value (contrary to what
happens for H and HR). According to Eq. (30), the slope of HR −H versus nτ gives the thermodynamic entropy
production.

This prediction is indeed verified. Figure 3 compares the difference hR(ε, τ) − h(ε, τ) with the thermodynamic
entropy production given by the rate of dissipation (9) as a function of the speed u of the fluid. We see the good
agreement between both, which is the experimental evidence that the thermodynamic entropy production is indeed
related to the time asymmetry of dynamical randomness. As expected, the entropy production vanishes at equilibrium
where u = 0.

The dynamical randomness of the Langevin stochastic process can be further analyzed by plotting the scaled entropy
per unit time τh(ε, τ) versus the scaled resolution δ ≡ ε/

√
1− exp(−2τ/τR) for different values of the time interval τ ,

as depicted in Fig. 4a. According to Eq. (27), the scaled entropy per unit time should behave as τh(ε, τ) ' ln(1/δ)+C
with some constant C in the limit δ → 0. Indeed, we verify in Fig. 4a that, in the limit δ → 0, the scaled curves only
depend on the variable δ with the expected dependence ln(1/δ). For large values of δ, the experimental curves deviate
from the logarithmic approximation (27), since this latter is only valid for δ → 0. The calculation in Appendix B
shows that we should expect corrections in powers of ε2 to be added to the approximation as ln(1/δ).

In Fig. 4b, we depict the scaled direct and reversed (ε, τ)-entropies per unit time. We compare the behavior of
hR with the behavior τhR ' τ

(
h+ k−1

B diS/dt
)

expected from the formula (30). This figure shows that the direct
and reversed (ε, τ)-entropies per unit time are quantities which are large with respect to their difference due to the
nonequilibrium constraint. This means that the positive entropy production is a small effect on the top of a substantial
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dynamical randomness.
Maxwell’s demon vividly illustrates the paradox that the dissipated heat is always positive at the macroscopic

level although it may take both signs if considered at the microscopic level of individual stochastic trajectories. The
resolution of Maxwell’s paradox can be remarkably demonstrated with the experimental data. Indeed, the heat
dissipated along an individual trajectories is given by Eq. (7) and can be obtained by searching for recurrences in the
time series according to Eq. (14). The conditional probabilities entering Eq. (14) are evaluated in terms of the joint
probabilities (19) and (22) according to

P+(Z; ε, τ, n|Z0) = P+(Z; ε, τ, n)/P+(Z0; ε, τ, 1) (31)

P−(ZR; ε, τ, n|Zn−1) = P−(ZR; ε, τ, n)/P−(Zn−1; ε, τ, 1) (32)

where we notice that the probabilities with n = 1 are approximately equal to the corresponding stationary probability
density (4) multiplied by the range dz = 2ε. The heat dissipated along two randomly selected paths are plotted in
Fig. 5. We see the very good agreement between the values computed with Eq. (7) using each path and Eq. (14)
using the probabilities of recurrences in the time series. We observe that, at the level of individual trajectories, the
heat exchanged between the particle and the surrounding fluid can be positive or negative because of the molecular
fluctuations. It is only by averaging over the forward process that the dissipated heat takes the positive value depicted
in Fig. 3. Indeed, Fig. 3 is obtained after averaging over many reference paths as those of Fig. 5. The positivity of
the thermodynamic entropy production results from this averaging, which solves Maxwell’s paradox.

V. ELECTRIC NOISE IN RC CIRCUITS

The second system we have investigated is an RC electric circuit driven out of equilibrium by a current source
which imposes the mean current I [17]. The current fluctuates in the resistor because of the intrinsic Nyquist thermal
noise [16]. The RC electric circuit and the dragged Brownian particle, although physically different, are known to be
formally equivalent by the correspondence given in Table I.

The electric circuit is composed of a capacitor with capacitance C = 278 pF in parallel with a resistor of resistance
R = 9.22 MΩ. The relaxation time of the circuit is τR = RC = 2.56 × 10−3 s. The charge qt going through the
resistor during the time interval t is acquired at the sampling frequency f = 8192 Hz. The temperature is here also
equal to T = 298 K.

The mean square charge of the Nyquist thermal fluctuations is σ =
√
kBTC = 6.7× 103 e where e = 1.602× 10−19

C is the electron charge. The diffusion coefficient is D = σ2/τR = 1.75× 1010 e2/s. The ratio of the relaxation time
to the sampling time is here equal to fτR = 21.

As for the first system, pairs of time series for opposite drivings ±I are recorded. Their length are 2× 107 points
each. Figure 6 depicts an example of a pair of such paths with the corresponding probability distribution of the charge
fluctuations.

6.5 6.55 6.6 6.65

time   (s)

−4 10−15

−2 10−15

0

2 10−15

4 10−15

q  t
 
−

 I
 t

  
  

(C
)

(a)

−4 10−15
−2 10−15 0 2 10−15 4 10−15

q
 t
− I t    (C)

10−5

10−4

10−3

p
ro

b
ab

il
it

y
 

(b)

FIG. 6: (a) The time series of a typical path qt − It for the Nyquist noise in the RC electric circuit driven by the current I
(upper curve) and opposite current −I (lower curve) with I = 1.67 × 10−13 A. (b) Gaussian probability distributions of the
forward and backward experiments. The unit of the electric charge qt − It is the Coulomb (C).

The block entropies are here also calculated using Eqs. (20) and (23) and the (ε, τ)-entropies per unit time are
obtained from their linear growth as a function of the time nτ . The scaled entropies per unit time τh are depicted
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versus δ in Fig. 7a. Here again, the scaled entropy per unit time is verified to depend only on δ for δ → 0, as expected
from the analytical calculation in Appendix B. In Fig. 7b, we compare the scaled reversed (ε, τ)-entropy per unit
time to the behavior τhR ' τ

(
h+ k−1

B diS/dt
)
, expected by our central result (30).
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FIG. 7: (a) (ε, τ)-entropy per unit time of the RC electric circuit scaled by the time interval τ as a function of δ =

ε/
p

1− exp(−2τ/τR), for different values of the time interval τ = 1/f, 2/f, 4/f, 8/f , with the sampling time 1/f = 1/8192 s.
The dots are the results of the computation from the time series for the current I = 1.67× 10−13 A. The solid line depicts the
expected behavior according to Eqs. (27) and (30). (b) Scaled reversed and direct (ε, τ)-entropies per unit time for τ = 4/f .
The solid line is the result expected from Eq. (30). The unit of δ is the Coulomb (C).

The difference between the time-reversed and direct (ε, τ)-entropies per unit time is then compared with the
dissipation rate expected with Joule’s law. We observe the nice agreement between both in Fig. 8, which confirms
the validity of Eq. (30). Here also, we observe that the entropy production vanishes with the current at equilibrium.
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FIG. 8: Entropy production of the RC electric circuit versus the injected current I. The solid line is the Joule law, TdiS/dt =
RI2. The dots are the results of Eq. (30). The equilibrium state is at zero current, I = 0, where the entropy production is
observed to vanish.

VI. DISCUSSION

In this section, we discuss about the comparison between the present results and other nonequilibrium relations.
The relation (30) expresses the entropy production as the difference between the backward and forward (ε, τ)-

entropies per unit time. The backward process is obtained by reversing the driving constraints, which is also a
characteristic feature of Crooks relation [25]. However, Crooks relation is concerned with systems driven by time-
dependent external controls starting at equilibrium. In constrast, our results apply to nonequilibrium steady states.
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Another point is that Crooks relation deals with the fluctuations of the work performed on the system, while the
present relation (30) gives the mean value of the entropy production and, this, in terms of path probabilities. In
this respect, the relation (30) is closer to a formula recently obtained for the mean value of the dissipated work in
systems driven out of equilibrium by time-dependent external controls [29]. This formula relates the mean value of
the dissipated work to the logarithm of the ratio between two phase-space probability densities associated with the
forward and backward processes, respectively. These phase-space probability densities could in principle be expressed
as path probabilities. Nevertheless, these latter would be defined for systems driven over a finite time interval starting
from the equilibrium state, although the present equation (30) applies to nonequilibrium steady states reached in the
long-time limit.

We now compare our results to the extended fluctuation theorem, which concerns nonequilibrium steady states
[15–17]. The extended fluctuation theorem is a symmetry relation of the large-deviation properties of the fluctuating
heat dissipation (7) during a time interval t. The probability that this fluctuating quantity takes the value

ζ ' 1
t

Qt

T
(33)

decays exponentially with the rate

G(ζ) ≡ lim
t→∞

−1
t

ln Pr
{
ζ <

Qt

tT
< ζ + dζ

}
(34)

This rate is a function of the value ζ. Since the variable ζ can significantly deviate from the statistical average for
some large fluctuations, the rate (34) is called a large-deviation function. The extended fluctuation theorem states
that the ratio of the probability of a positive fluctuation to the probability of a negative one increases exponentially
as exp(ζt) in the long-time limit t → ∞ and over a range of values of ζ, which is limited by its average 〈ζ〉 [15–17].
Taking the logarithm of the ratio and the long-time limit, the extended fluctuation theorem can therefore be expressed
as the following symmetry relation for the decay rate (34):

ζ = kB

[
G(−ζ)−G(ζ)

]
for − 〈ζ〉 ≤ ζ ≤ 〈ζ〉 (35)

In this form, we notice the analogy with Eq. (30). A priori, the decay rate (34) can be compared with the (ε, τ)-
entropy per unit time, which is also a decay rate. However, the decay rate (34) concerns the probability of all the paths
with dissipation ζ while the (ε, τ)-entropy per unit time concerns the probability of the paths within a distance ε of
some reference typical paths. The (ε, τ)-entropy per unit time is therefore probing more deeply into the fluctuations
down to the microscopic dynamics. In principle, this latter should be reached by zooming to the limit ε→ 0.

A closer comparison can be performed by considering the mean value of the fluctuating quantity ζ which gives the
thermodynamic entropy production:

〈ζ〉 = lim
t→∞

1
t

〈Qt〉
T

=
diS

dt
(36)

Since the decay rate (34) vanishes at the mean value:

G
(
〈ζ〉

)
= 0 (37)

we obtain the formula

〈ζ〉 = kBG
(
− 〈ζ〉

)
(38)

which can be quantitatively compared with Eq. (30) since both give the thermodynamic entropy production. Although
the time-reversed entropy per unit time hR(ε, τ) is a priori comparable with the decay rate G(−ζ), it turns out that
they are different and satisfy in general the inequality hR(ε, τ) ≥ G(−〈ζ〉) since the entropy per unit time is always non
negative h(ε, τ) ≥ 0. Moreover, h(ε, τ) is typically a large positive quantity. The greater the dynamical randomness,
the larger the entropy per unit time h(ε, τ), as expected in the limit where ε goes to zero. This shows that the
(ε, τ)-entropy per unit time probes finer scales in the path space where the time asymmetry is tested.

VII. CONCLUSIONS

We have here presented detailed experimental results giving evidence that the thermodynamic entropy production
finds its orgin in the time asymmetry of dynamical randomness in the nonequilibrium fluctuations of two experimental
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systems. The first is a Brownian particle trapped by an optical tweezer in a fluid moving at constant speed 0 ≤ |u| <
4.3 µm/s. The second is the electric noise in an RC circuit driven by a constant source of current 0 ≤ |I| < 0.3 pA.
In both systems, long time series are recorded, allowing us to carry out the statistical analysis of their properties of
dynamical randomness.

The dynamical randomness of the fluctuations is characterized in terms of (ε, τ)-entropies per unit time, one for the
forward process and the other for the reversed process with opposite driving. These entropies per unit time measure
the temporal disorder in the time series. The fact that the stochastic processes is continuous implies that the entropies
per unit time depend on the resolution ε and the sampling time τ . The temporal disorder of the forward process is
thus characterized by the entropy per unit time h(ε, τ), which is the mean decay rate of the path probabilities. On
the other hand, the time asymmetry of the process can be tested by evaluating the amount of time-reversed paths of
the forward process among the paths of the reversed process. This amount is evaluated by the probabilities of the
time-reversed forward paths in the reversed process and its mean decay rate, which defines the time-reversed entropy
per unit time hR(ε, τ). The time asymmetry in the process can be measured by the difference hR(ε, τ) − h(ε, τ).
At equilibrium where detailed balance holds, we expect that the probability distribution ruling the time evolution is
symmetric under time reversal so that this difference should vanish. In contrast, out of equilibrium, detailed balance
is no longer satisfied and we expect that the breaking of the time-reversal symmetry for the invariant probability
distribution of the nonequilibrium steady state. In this case, a non-vanishing difference is expected.

The analysis of the experimental data shows that the difference of (ε, τ)-entropies per unit time is indeed non
vanishing. Moreover, we have the remarkable result that the difference gives the thermodynamic entropy production.
The agreement between the difference and the thermodynamic entropy production is obtained for the driven Brow-
nian motion up to an entropy production of nearly 120 kBT/s. For electric noise in the RC circuit, the agreement
is obtained up to an entropy production of nearly 200 kBT/s. These results provide strong evidence that the ther-
modynamic entropy production arises from the breaking of time-reversal symmetry of the dynamical randomness in
out-of-equilibrium systems.
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française de Belgique” (contract “Actions de Recherche Concertées” No. 04/09-312), and by the French contract
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APPENDIX A: PATH PROBABILITIES AND DISSIPATED HEAT

The detailed derivation of Eq. (14) is here presented for the case of the Langevin stochastic process ruled by
Eq. (1). This stochastic process is Markovian and described by a Green function G(z, z0; t) which is the conditional
probability that the particle moves to the position z during the time interval t given that its initial position was z0
[52]. For small values τ of the time interval, this Green function reads

G(z, z0; τ) '
√

βα

4πτ
exp

{
−βα

4τ

[
z − z0 − τ

(
F (z0)
α

+ u

)]2
}

(A1)

If we discretize the time axis into small time intervals τ , the path probability (12) becomes

P [zt|z0] ∝
n−1∏
i=1

G(zi, zi−1; τ) (A2)

with (n− 1)τ = t. The ratio (14) of the direct and reversed path probabilities is thus given by

P+[zt|z0]
P−[zR

t |zR
0 ]
'

n−1∏
i=1

G+(zi, zi−1; τ)
G−(zn−i−1, zn−i; τ)

(A3)
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where the subscript is the sign of the fluid speed u. Inserting the expression (A1) for the Green functions, we get

ln
P+[zt|z0]
P−[zR

t |zR
0 ]

' −βα
4τ

n−1∑
i=1

{[
zi − zi−1 − τ

(
F (zi−1)

α
+ u

)]2

−
[
zn−i−1 − zn−i − τ

(
F (zn−i)

α
− u

)]2
}

=
β

2

n−1∑
i=1

[(zi − zi−1)F (zi−1)− (zn−i−1 − zn−i)F (zn−i)]−
βuτ

2

n−1∑
i=1

[F (zi−1) + F (zn−i)] +O(τ)

= β
n−1∑
i=1

F (zi−1) + F (zi)
2

(zi − zi−1)− βuτ
n−1∑
i=1

F (zi−1) + F (zi)
2

+O(τ) (A4)

where we used the substitution n− i→ i in the last terms of each sum. In the continuous limit n→∞, τ → 0 with
(n− 1)τ = t, the sums become integrals and we find

ln
P+[zt|z0]
P−[zR

t |zR
0 ]

= β

[∫ zt

z0

F (z) dz − u

∫ t

0

F (zt′) dt′
]

= β

[
V (z0)− V (zt)− u

∫ t

0

F (zt′) dt′
]

(A5)

since F (z) = −∂zV (z). We thus obtain the expression given in Eq. (14).
Now, we show that the detailed balance condition

equilibrium: P+[zt] = P−[zR
t ] (u = 0) (A6)

holds in the equilibrium state when the speed of the fluid is set to zero. Indeed, the equilibrium probability density
of a Brownian particle in a potential V (z) is given by

peq(z) = C exp [−βV (z)] (A7)

with a normalization constant C. Since the joint probabilities are related to the conditional ones by Eq. (13) with
pst = peq at equilibrium, we find

ln
P+[zt]
P−[zR

t ]

∣∣∣
eq

= ln
P+[zt|z0] peq(z0)
P−[zR

t |zR
0 ] peq(zR

0 )

∣∣∣
eq

= 0 (A8)

The vanishing occurs at zero speed u = 0 as a consequence of Eqs. (A5), (A7), and zR
0 = zt. Hence, the detailed

balance condition is satisfied at equilibrium. Therefore, the last expression of Eq. (15) vanishes at equilibrium with
the entropy production, as expected.

APPENDIX B: DYNAMICAL RANDOMNESS OF THE LANGEVIN STOCHASTIC PROCESS

In this appendix, we evaluate the (ε, τ)-entropy per unit time of the Grassberger-Procaccia algorithm for the
Langevin stochastic process of Eq. (1) with a harmonic trap potential. In this case, the Langevin process is an
Ornstein-Uhlenbeck stochastic process for the new variable

y ≡ z − uτR (B1)

The Langevin equation of this process is

dy

dt
= − y

τR
+
ξt
α

(B2)

The probability density that the continuous random variable Y (t) takes the values y = (y0, y1, ..., yn−1) at the
successive times 0, τ, 2τ, ..., (n− 1)τ factorizes since the random process is Markovian:

p(y0, ..., yn−1) = G(yn−1, yn−2; τ) · · ·G(y1, y0; τ) pst(y0) (B3)

with the Green function

G(y, y0; t) =
1√

2πσ2(1− e−2t/τR)
exp

[
− (y − e−t/τRy0)2

2σ2(1− e−2t/τR)

]
(B4)
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with the variance

σ2 =
kBT

k
(B5)

The stationary probability density is given by the Gaussian distribution

pst(y) = lim
t→∞

G(y, y0; t) =
1√

2πσ2
exp

(
− y2

2σ2

)
(B6)

Denoting by yT the transpose of the vector y, the joint probability density (B3) can be written as the multivariate
Gaussian distribution

p(y0, ..., yn−1) =
exp

(
− 1

2y
T ·C−1

n · y
)

(2π)
n
2 (detCn)

1
2

(B7)

in terms of the correlation matrix

Cn = σ2


1 r r2 . . . rn−1

r 1 r . . . rn−2

r2 r 1 . . . rn−3

...
...

...
. . .

...
rn−1 rn−2 rn−3 . . . 1

 (B8)

with

r = exp(−τ/τR) (B9)

The inverse of the correlation matrix is given by

C−1
n =

σ−2

(1− r2)



1 −r 0 . . . 0 0
−r 1 + r2 −r . . . 0 0
0 −r 1 + r2 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + r2 −r
0 0 0 . . . −r 1


(B10)

and its determinant by

detCn = σ2n(1− r2)n−1 (B11)

The (ε, τ)-entropy per unit time is defined by

h(ε, τ) = lim
n→∞

− 1
nτ

∫ +∞

−∞
dy0 · · ·

∫ +∞

−∞
dyn−1 p(y0, ..., yn−1) ln

∫ +ε

−ε

dη0 · · ·
∫ +ε

−ε

dηn−1 p(y0 + η0, ..., yn−1 + ηn−1)

(B12)
where {y′j = yj +ηj}n−1

j=0 represents the tube of trajectories satisfying the conditions |y′j−yj | < ε with j = 0, 1, ..., n−1,
around the reference trajectory sampled at the successive positions {yj}n−1

j=0 . After expanding in powers of the variables
ηj and evaluating the integrals over −ε < ηj < +ε, the logarithm is obtained as

ln
∫ +ε

−ε

dη0 · · ·
∫ +ε

−ε

dηn−1 p(y0 + η0, ..., yn−1 + ηn−1) = ln
(2ε)n

(2π)
n
2 (detCn)

1
2
− 1

2
yT ·C−1

n · y +O(ε2) (B13)

The integrals over −∞ < yj < +∞ can now be calculated to get the result (27) by using Eq. (B11). We find

h(ε, τ) =
1
τ

ln

√
πeσ2

2ε2
(1− r2) +O(ε2) (B14)
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Since the relaxation time is given by Eq. (5) and the diffusion coefficient by Eq. (28), the variance of the fluctuations
can be rewritten as σ2 = kBT/k = DτR. Substituting in Eq. (B14), we obtain the (ε, τ)-entropy per unit time given
by Eq. (27). The above calculation shows that the (ε, τ)-entropy per unit time of the Ornstein-Uhlenbeck process is
of the form

h(ε, τ) =
1
τ
φ

(
DτR
ε2

, e−τ/τR

)
(B15)

with some function φ(s, r) of s = DτR/ε
2 = σ2/ε2 and r = exp(−τ/τR).

In the limit where the time interval τ is much smaller than the relaxation time τR, the only dimensionless variable
is the combination Dτ/ε2. In this case, we recover the result that the (ε, τ)-entropy per unit time is given by

h(ε, τ) =
1
τ
ψ

(
2Dτ
ε2

)
for τ � τR (B16)

This (ε, τ)-entropy per unit time is characteristic of pure diffusion without trap potential, as previously shown [2, 46–
48].
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