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In this work we have studied the properties of asymmetric nuclear matter at zero and 

finite temperature in a wide range of density and asymmetry parameter using recently pro­
posed generalized hybrid derivative coupling model. The temperature and asymmetry depen­
dence of the bulk quantities such as compressibility, binding energy per nucleon, saturation 

density, chemical potential, entropy per nucleon, etc. have been explored. This is useful 
to understand the dynamics of supernova explosion. We have studied the density and tem­
perature dependence of symmetry energy and briefly discussed its role in the evaluation of 

proton fraction at T = 0, in equilibrium with neutron rich matter. We have also studied 
proton fraction for T =1= 0 by free energy minimization. Dependence of bulk properties on the 
hybridization parameter of our model has been studied. The asymmetry and temperature 
dependence of the characteristics of liquid-gas phase transition have also been studied. We 
have compared our results with those of other investigators. 

§1. Introduction 

The study of the properties of cold and hot asymmetric nuclear matter is very 

important to understand the dynamics of iron-core collapse of some massive stars 

which produce type II supernova, the mechanism of supernova explosion, the struc­

ture of neutron-star remnants and also unstable neutron rich nuclei produced in the 

laboratory.!) For this purpose we need an equation of state (EOS) which is reliable 

at high density and/or non-zero temperature. The later stage of the collapsing pre­

supernova core involves neutron rich matter with N ~ 2Z (or proton concentration 

(Z/(N + Z) of about 1/3) at moderate temperature T = 1 - 10 MeV and densities 

up to about 4P02) where Po is the saturation density of nuclear matter. Neutron 

star structure involves almost pure neutron matter with N » Z, essentially at zero 

temperature and densities up to about (8 - 1O)Po.2
) 

The problem of asymmetric nuclear matter for zero and non-zero temperature 

has been investigated by several investigators who used non-relativistic Brueckner­

Bethe-Goldstone approach. 2
),3) They assumed potential theory description. In this 

problem several workers4
) have performed relativistic Dirac-Brueckner calculations, 

based on a one-meson exchange interaction only. Prakash and Ainsworth5
) applied 

field theoretic method based on chiral sigma model to study asymmetric nuclear mat­

ter properties at zero temperature. We intend to study the properties of asymmetric 

nuclear matter using a recently proposed general form of hybrid derivative coupling 

model6
) considering different values of asymmetric parameter (3( = (N - Z) / (N + Z)) 

and hybridization parameter Q. It may be noted that several investigators7
) have 
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602 B. Malakar and S. Sarkar 

studied certain aspects of asymmetric nuclear matter and neutron matter using 

derivative coupling model8
) of Zimanyi and Moszkowski which is a particular case 

of our hybrid derivative coupling model. 6
) We may further note that Delfino et al.9 ) 

and Miyazaki 10) have proposed modified and generalized form of the Zimanyi and 

Moszkowski model. In the present model the strength of the Yukawa point coupling 

and that of the derivative coupling of scalar mesons to nucleons is taken in the ratio 

(1 - 0.)/0.. In pure derivative scalar coupling (DSC) model8
) the scalar meson (0") 

couples only to the derivative of the nucleon wave function ('lj;) and to the iso-scalar 

vector meson (wit), in contrast to Walecka's modePl) in which the scalar mesons have 

the Yukawa point coupling to the nucleons. Further modification of the DSC model8) 

was done by Glendenning et al. 12
) who used a particular form of hybrid derivative 

coupling in which a scalar meson couples equally (with equal strength) to both the 

baryon wave function and its derivative. 

It may be noted that a soft EOS is needed to understand the explosion mech­

anism of a type II supernova. 13
) On the other hand, a quite stiff EOS is favored 

by the systematic analysis of the observed masses of neutron star. 14
) In this con­

nection Nishizaki et al. 15
) observed that such a 'conflicting constraint' arising from 

maximum neutron star mass and supernova explosion can be resolved by considering 

asymmetry and temperature dependence of compressibility K. This dependence of 

K on asymmetry parameter (3 and temperature T has been studied in this paper. 

In the present hybrid derivative coupling model we can have a soft or a stiff EOS 

depending upon the value of the hybridization parameter 0.. 6
) 

The present work is just an extension of our previous work6
) on symmetric nu­

clear matter by including the contribution of p-meson. The effect of temperature is 

also considered in this paper. Several investigators16) have remarked that the prop­

erties of asymmetric nuclear matter for any arbitrary value of {3 can be extracted by 

interpolation method from the corresponding findings for symmetric nuclear matter 

({3 = 0) and neutron matter ({3 = 1) with the help of parabolic approximation. We 

have somewhat verified the empirical parabolic law16) (involving (32 term) satisfied 

by the binding energy per nucleon in all the range of the asymmetry parameter {3 

for different baryon densities at zero and non-zero temperature in our model. How­

ever, theoretical analysis shows a small {34 dependence besides the (32 dependence 

of the binding energy of the asymmetric nuclear matter. It may be noted that the 

symmetry energy, related to the binding energy of asymmetric system, determines 

the amount of conversion of neutrons to protons and leptons near the top of the 

Fermi sea5
) at zero temperature. For T :f. 0, proton fraction has been studied by 

minimizing the free energy. 

Liquid gas phase transition is one of the striking features of nuclear matter 

at sub nuclear density. The characteristics of liquid-gas phase transition, such as 

critical temperature Te and critical density Pc, are found to depend on the value 

of asymmetry parameter ({3) and hybridization parameter (a). The dependence of 

isothermal bulk modulus, specific heat, effective mass and neutron and proton chem­

ical potentials on asymmetry parameter {3 , temperature T and also on hybridization 

parameter a have been investigated. We have determined the value of {3 and the 

corresponding density at which both pressure and compressibility vanish. Further, 
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Thermodynamical Properties of Asymmetric Nuclear Matter 603 

the values of f3 and density for which binding energy and pressure simultaneously 

become zero have also been evaluated. It may be mentioned that satisfactory values 

of bulk properties of nuclear matter can be obtained by choosing a suitable value of 

the hybridization parameter a which is found to be about 1/4 in our model. 6
) We 

have calculated the entropy per nucleon (s / p) in our model for Ct = ~ and compared 

it with the experimental values.17) The isoentropic bulk modulus (K8) as a function 

of entropy has been calculated. The dependence of symmetry energy on density and 

temperature has also been studied. 

It may be noted that several investigators18) have used the variational method 

to study the correlation effect in the framework of potential theory formalism. They 

have considered correlation induced by two nucleon potential. Serot and Walecka,11) 

Brittan19) and Boguta and Bodmar20) have observed that compressibility (K) can 

be reduced by two body correlation or by explicit introduction of nonlinear nucleon 

meson couplings. In our hybrid model equivalent form of the field theoretic La­

grangian contains the feature of nonlinear interaction term involving scalar meson 

field and nucleon wave function. This feature of our model like correlation reduces the 

compressibility which is quite large in the Walecka Model. 11) In the renormalizable 

Walecka model it is found that the scalar meson exchange energy21) f~x = H 2~ )4 g8 k} 

(where g8 is the scalar meson nucleon coupling constant and kF is the Fermi mo­

mentum) and there is a similar expression for vector meson exchange energy. The 

mean field theory energy is proportional to k}. This implies21) that exchange energy 

corrections are not important in the high density region in which we are interested. 

The relativistic DSC model8) and the other related models9
),1O) including the present 

one6
) are not renormalizable. In this connection Glendening et aP2) observed that 

since nuclear field theory is an effective one, this is not a 'weighty objection'. In the 

mean field theory calculation the parameters of our nonlinear model are chosen to 

reproduce the bulk properties of nuclear matter and thus to some extent take into 

account higher order 'corrections' to direct energy part like exchange energy and 

correlation effect specially in the region around saturation density. Further these 

corrections are negligible for highly dense nuclear matter. 

The parameters of field theoretic model which are applied to determine the 

EOS of nuclear matter and also properties of finite nuclei, are obtained from the 

bulk properties of nuclear matter. So it is natural to expect that our model giving 

reasonable values for properties of nuclear matter, is likely to give satisfactory values 

for the properties of finite nuclei. It may be noted that recently Delfino et al.9) and 

Miyazaki lO
) have used extended versions of the DSC model to study only infinite 

nuclear matter. The purely derivative scalar coupling (DSC) model of Zimanyi 

and Moszkowski (a = 1) has already been used to study finite nuclei.22),23) In our 

previous paper6
) it has already been discussed that we may obtain better result for 

spin orbit splitting in our hybrid model (for a ~ D than that in the DSC model. 

We intend to apply our hybrid model (an extension of the DSC model) to study 

finite nuclei in a later paper. The relativistic p-meson-nucleon coupling used in this 

paper for asymmetric nuclear matter (N =I- Z) is the same as applied by other recent 

investigators. Some nonrelativistic interaction potential used to study unstable finite 

nuclei (N =I- Z) may not give a satisfactory result for the properties of highly dense 
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604 B. Malakar and S. Sarkar 

and hot asymmetric nuclear matter in which we are interested in this paper. 

This paper is organized as follows. In §2 we give a brief description of our model. 

In §3 we give the results of our calculation and the comparison of our results with 

other recent findings. Section 4 contains a summary of our work. 

§2. General form of hybrid derivative scalar coupling model to study 

asymmetric nuclear matter 

The details of the general form of the hybrid derivative coupling model have 

already been given in our earlier publication. 6) We give here a brief description of 

the above model for asymmetric nuclear matter where additional contribution due 

to isovector-vector meson is to be considered. We consider the following form of 

Lagrangian for asymmetric nuclear matter 

1 ( 2 2) 1 v 1 2 1 v 1 2 +- 8J.L a () a - m a - -wJ.L W + -m wJ.Lw - _pJ.L . P + -m pJ.L. P 
2 J.L s 4 J.LV 2 v Il 4 J.LV 2 p Il' (1) 

where 'ljJ denotes a baryon (neutron and proton) wave function of mass M. a, w ll 

and pll are iso-scalar scalar, iso-scalar vector and iso-vector vector meson fields with 

masses m s , mv and m p, respectively. The quantities WilY and pllV are the antisymmet­

ric field tensors for w- and p-mesons. The p-meson coupling constant gp is adjusted 

to give the empirical symmetry energy coefficient. Equation (1) implies that the 

ratio of the strength of Yukawa point coupling and that of the derivative coupling 

is given by (1 - 0.)/0.. A suitable value of a may be chosen which gives satisfactory 

results for bulk properties of nuclear matter. It is also evident from the relation (1) 

that there is coupling between scalar meson and vector meson. We have used the 

notation and convention of Refs. 6), 8), 11) and 12). It is convenient to work with 

the following transformed Lagrangian,6) 

L = ~ (i')'J.L81l - M* - gy'YIlWIl - ~gp'YIlT . PJ.L) 'ljJ 

1 (!W!l _ 2 2) _! J.LV ! 2 Il _! Ilv. ! 2 J.L. +2 U aUj.ta msa 4W WilY + 2 m vw wll 4P Pj.tv + 2mpp Pll 

which is obtained from (1) by rescaling6) the baryon wave function 

The effective mass M* occurring in (2) is given by 

M* = 1 - (1 - o.)ags/M M. 

1 + o.ags/M 

(2) 

(3) 

(4) 

The hybridization parameters a = 0.0, 1/2 and 1 correspond to the models of 

Walecka,ll) Glenndening et al.,12) and Zimanyi and Moszkowski8
) respectively. In 
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Thermodynamical Properties of Asymmetric Nuclear Matter 605 

the mean field theory (MFT) approximation the field equations for uniform static 

nuclear matter are given in the following, 

Wo = (:::~) P B, (5) 

where 

P = PB = L Pi, (6) 
i=n,p 

is the total baryon density and 

Pi = (2!)3 [1
00 

d
3
k(nik(T) - nik(T))] , (7) 

where the suffix i refers to either neutron (n) or proton (p). In Eq. (7) nik(T) and 

nik(T) are baryon and anti-baryon thermal distribution functions with 

[ 
E; ( k) - Vi ] -1 

nik(T) = exp T + 1 , (8) 

_ [E; ( k) + Vi ] -1 
nik(T) = exp T + 1 , (9) 

where 

(10) 

and Vi is the shifted (or effective) chemical potential. The expectation value of the 

time like, neutral component of the PI-' field is given by 

P03 = t (gpjm;) P3, 

where 

P3 == Pp - Pn· 

The asymmetry parameter (3 is defined as 

(3 - Pn - Pp _ P3 
- Pn + Pp - - PB . 

The scalar field is given by 

where 

Ps = L Psi· 
i=n,p 

The scalar density Psi is expressed as 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

8
/3

/6
0
1
/1

9
4
0
6
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



606 B. Malakar and S. Sarkar 

Combining Eqs. (4) and (13) we obtain the expression for dimensionless effective 

mass 

(17) 

Using standard procedure we obtain the following expression for the total energy 

density, 

and pressure 

where 

and 
M2 (M - M*)2 

E" = 2C; [(1- a(1 - M*)f' 

In Eqs. (17), (20) and (21) we introduce dimensionless quantities given by 

C 2 = 9;M2 
s 2 ' ms 

and 
92M2 

C2 - P 
P - --2-' 

mp 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

The chemical potentials for neutron (/-Ln) and proton (/-Lp), at non-zero temperature 

(T =I 0), are given by 

1 
/-Ln = Vn + 9vW o - 29pP03, (25) 

1 
/-Lp = vp + 9vWo + 29pP03' (26) 

At zero temperature (T = 0) 

(27) 

The entropy per nucleon (dimensionless) at temperature T is given by 

/ 

E + P - Pp/-Lp - Pn/-Ln 
S PB = . 

TPB 
(28) 
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Thermodynamical Properties of Asymmetric Nuclear Matter 607 

§3. Results and discussion 

3.1. Variation of energy per nucleon with density, 

perature 
asymmetry parameter and tem-

Binding energy (flpB - M) ver-

sus PBI Po for (3 = 0, 0.3 and 1 at 

T = 0 MeV and 30 MeV are shown in 

Fig. 1. For T = 0 Me V minima of bind­

ing energy are -16 MeV (occurring at 

PBlpo = 1) and -13.47 MeV (occur­

ring at PBI Po = .902) for (3 = 0 and 

0.3 respectively. Neutron matter has no 

negative binding energy at any density 

even for T = 0 MeV. As evident from 

Fig. 5, the effective mass M* for neu­

tron matter is greater than that for sym­

metric nuclear matter and consequently 

Fermi energy density for neutron mat­

ter is greater than that for symmetric 

system at the same density and temper­

ature. Even without the repulsive con­

tribution of p-meson to the binding en­

ergy it is found that (f I P - M) (in Me V) 

is -O.0071(Psat = 0.569po), -2.74(Psat 

= 0.602po) and -3.71(Psat = 0.51po) for 

a = 0, 1/4 and 1 respectively. Terms 

380 

280 

L: 180 
I 

~ 
<.V 

80 

-- ----- TdOM.V 

------ T, OM.V 

5 6 

Compression (Pe/Pol 

Fig. 1. Variation of binding energy per nu­

cleon with dimensionless density PB / po for 

different values of asymmetry parameter 

(3 and temperature T for the model char­

acterized by hybridization parameter a 

= 1/4. 

within the bracket refer to the saturation density. Since the repulsive contribution 

of p-meson to the binding energy increases as (3 is enhanced, the 'minimum point' of 

the binding energy moves to the low density region as shown by the above-mentioned 

data and the curves of Fig. 1. Purely neutron matter is always found to be unbound. 

Since thermal effect is larger at the lower density, the minimum point generally oc­

curs at higher density15) with increasing temperature. For symmetric matter ((3 = 0) 

as T is increased the value of (PBI PO)min at which the minimum of (fl PB-M) occurs, 

first increases to the value 1.37 (at T = 77.8 MeV), then slightly decreases to the 

value 1.29 (at T = 120 MeV) and afterwards continuously increases with temper­

ature. For T = 30 MeV the value of (pBI PO)min is 1.27, 1.19 and .558 for (3 = 0, 

0.3 and 1, respectively. We also find that (PBI PO)min continuously increases with in­

creasing temperature for (3 = 0.3 and (3 = 1 (neutron matter). For (3 = 1, (PBI PO)min 

does not exist for T < 3.5 MeV. In Fig. 1 we assume a = 1/4. The binding energy 

per nucleon defined as 

) 
f(p B, T, (3) (a) 

B(PB,T,(3 - M = ---I -- - M = E PB,T,fJ - M 
IB 

(29) 

satisfies the following empirical parabolic law16
) for all values of (3 and for densities 

up to and even greater than 5po and for temperature up to and somewhat greater 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/9

8
/3

/6
0
1
/1

9
4
0
6
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



608 B. Malakar and S. Sarkar 

than 40 MeV. 

(30) 

In the case when density is not very large, Esym(PB, T){32 ({3 dependent part of energy 

per nucleon in a field theoretic model), can be expressed as 

Esym(PB, T){32 

_ 1 2 2 1 [ 2 k~ 1 4 k~ ( 1 k} ) ] 
- 8M2{3 CpPB + 6 {3 (k~ + M*2)1/2 + 27{3 M* 1 + 4" M*2 + ... + .... 

(31) 

The term involving {34 in the above relation has not been considered by Prakash and 

Ainsworth.5
) However, this term is not negligible when {3 is nearly equal to unity. 

Neglect of {34 involving term leads to the above-mentioned empirical parabolic law. 16) 

The relation (30) has been verified by Bombaci and Lombardo16
) for zero temper­

ature and for several densities. They have used the Brueckner-Bethe-Goldstone 

Table 1. Dependence of binding energy B(po, T = 0, ,8), saturation density p(T,,8) bulk modulus 

K(PB, T,,8) and the parameters a and b on asymmetry parameter ,8 at zero temperature for 

different models. 

I 
PB 

I 

B(pB, 0,,8) K 
Model ,8 

(MeV) (MeV) 
a b 

eo 
0.0 1.000 -16.00 548 0.68 0.60 

0.4 0.904 -10.91 401 
Q= 0.0 

0.8 0.547 +.326 88.6 

0.902 0.278 +2.85 0 

0.0 1.000 -16.00 307 1.41 0.92 

0.2 0.963 -15.06 295 

0.4 0.852 -11.36 241 
Q = 0.25 

0.6 0.680 -6.04 156 

0.8 0.442 -.363 62.7 

0.915 0.190 +2.23 0 

0.0 1.000 -16.00 225 1.30 1.00 

0.4 0.83 -11.05 177 
Q = 1.0 

0.8 0.385 -.704 51.5 

0.925 0.160 +1.83 0 

Chiral o.o(ir = .851) 244 1.61 1.05 

a-ModeI5
) O.O(M· = .824) 358 1.61 0.78 

Paris16) 0.0 1.000 -18.35 182±9 2.03 1.12 

(po = .289 frn -3 ) 0.2 0.962 -16.74 174±6 

0.4 0.823 -12.19 127±9 

sm29) 
_.--_. 

0.0 355 1.28 

(po = .145 fm- 3
) 0.33 306 

SKM' (HF)29) 0.0 -15.77 217 1.60 

(M' = .795) 0.33 179 

SKM' (TF)28) 
"---. 

0.0 217 2.00 0.75 

0.33 170 

AVI4+Uvn18) 0.0 -12.4 209 2.196 

(po = .194 fm- 3
) 0.33 159 
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Thermodynamical Properties of Asymmetric Nuclear Matter 609 

approach for their calculations. Das et a1. 3
) who used non-relativistic Brueckner 

theory observed that the above relation is valid for temperature up to T = 20 

MeV. We have plotted the difference [B(p, T,,8) - B(p, T,,8 = 0)] against ,82 in 

Fig. 2 for T = 0, 20 and 40 MeV for PB/PO = 1/2, 1, 2 and 5 in the case when 

the model is characterized by a = 1/4. Values of B(PB' T = 0,,8) have also been 

listed in Table I for several values of (3 and a. In every case the above parabolic 

law has been found to be fairly correct. We also find that as the value of the 

asymmetry parameter ,8 increases the minimum in the binding energy versus den­

sity curve gradually disappears before pure neutron matter (,8 = 1) is reached as 

can be seen from Table 1. This is due to the fact that as ,8 increases the system 

becomes more and more unbound.2) It is found that (E/ P - M) and pressure P 

both vanish at ,811 given by ,811 = 0.79(0.562po), 0.82(0.415po) and 0.84(0.32po) for 

a = 0,1/4 and 1, respectively. The quantities within the parenthesis refer to the cor-

responding density. ______ ~ __________ --, 

3.2. Symmetry energy 

In view of the parabolic law for 

binding energy expressed by Eq. (30), 

the symmetry energy Esym(PB, T) can 

be written as16
) 

1
fPB

I Esym(PB, T) = "2 8,82 13=0' (32) 

Esym (p B, T) can also be determined 

from the two extreme situations of pure 

neutron matter (,8 = 1) and symmetric 

nuclear matter (,8 = 0) by using the fol­

lowing formula, 

Esym(PB, T) 

= B(PB,T,,8 = 1) - B(PB,T,,8 = 0) 

= E(PB,T,,8 = 1) - E(PB' T,,8 = 0). 

(33) 

We have calculated the symmetry en­

ergy Esym (p B, T) at different tempera­

tures and densities by using Eq. (33). 

The symmetry energy at a particular 

temperature and density can also be 

obtained from the corresponding line 

shown in Fig. 2. Using nonrelativistic 

Brueckner theory with effective interac­

tion Das et a1.3
) have studied variation of 

Esym(PB, T) with PB for T = 10 and 20 

MeV. Somewhat similar work has been 

160 
.-~.~-- T= 40MeV 

~ _______ H T::20M,V 

:>- - ---- ... 1: OMeV 

::c 120 -
?, 
"'-

~-

[I) 
80 

1 

<>:: 40-

m 

o~~~~~~~~ __ ~~ 
o 0.4 0.6 0.8 1.0 

Fig. 2. Variation Of[B(P8, T,,8) - B(p8, T,,8 

= 0)] with ,82 for different densities and 

temperatures for 0: = 1/4. 

" 
> 
::;.: 160-

E 
>-
111 

[tl 120-­
>-

~ .. 
c: 

[" 

C .. 
f 
E 
>-
Vl 

80 --

40 --

0_ 
0 

Fig. 3. Symmetry energy versus density at 

T = 0 MeV, 20 MeV and 40 MeV for 

0: = 1/4. 
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610 B. Malakar and S. Sarkar 

done by Bombaci and Lombardo16
) for zero temperature. In Fig. 3 we have plotted 

symmetry energy Esym(PB, T) against density for T = 0, 20 and 40 MeV for our 

relativistic field theoretic model characterized by a = ~. In our calculation the value 

of the symmetry energy at saturation density for T = 0 is found to be 34 Me V which 

is in good agreement with the empirical value taken from the mass formula. 24
) The 

value of C; defined by (24) is calculated by using the following formula, 12) 

[ 
1 P ] 127r2 M2 

C; = Esym(PB = Po, T = 0) - 6 (k;" + ~*2)1/2 k}' (34) 

0.4.-----------------. 

c 0.3 

.!? 
v 
o 
~ 

LL 0.2 

c 
o 

e 
n. 0.1 

P
a 

fm- 3 

Fig. 4. Proton fraction against density for dif­

ferent values of Q and corresponding C; as 

given in Table II. 
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Fig. 5. Variation of effective mass of symmet­

ric nuclear matter (;3 = 0) and pure neu­

tron matter (;3 = 1) with temperature for 

PB/PO = 1 and 3 for Q = 1/4. The scale for 

M* in the case P B / po = 1 (solid lines) is 

given on the left side and that for the case 

with PB/PO = 3 (dashed lines) is written 

on the right side. 

where Esym(PB = Po, T = 0) = 34 

MeV and kF is the saturation Fermi 

momentum of symmetric nuclear mat­

ter (kFp = kFn = kF)' It is found 

from Fig. 3 that the symmetry energy 

increases with density for a particular 

temperature. Figure 3 further shows 

that Esym(PB, T) decreases with tem­

perature at a fixed density. This may 

be due to the fact that M* (appear­

ing in (34)) increases with T in the low 

temperature region as can be seen from 

Fig. 5. In Table II we have given the 

values of C; for different values of a (re­

lated to bulk modulus K). It can be 

seen that C; increases -with increasing 

a which is due to the fact that M* (at 

saturation density) appearing in (34) in­

creases with a. 

It may be pointed out that symme­

try energy of an asymmetric system in 

a certain way determines the amount of 

possible beta decay of some of the neu­

trons near the top of Fermi sea.5
) Bom­

baci and Lombardo16
) have shown that 

in neutron rich star ({3 ~ 1) the proton 

fraction 

Y = 1/2(1 - {3) = Z/(N + Z) (35) 

at zero temperature is approximately 

given by 

which is obtained by minimizing the in­

ternal energy. It follows from Eqs. (34) 
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Thermodynamical Properties of Asymmetric Nuclear Matter 611 

Table II. Values of the coupling constants to obtain the saturation nuclear matter properties (bind-

ing energy = -16 MeV, Fermi momentum kF = 1.33 fm-I, symmetry energy = 34 MeV) for 

different values of the hybridization parameter 0:. 

0: 
I 

Nf* 
I C2 

• I 
C2 

v I C2 
p K(MeV) 

0.0 0.54 357.4 273.8 77.0 548 

0.25 0.73 235.0 136.0 104 307 

0.5 0.79 192.2 92.87 109.9 265 

0.75 0.82 180.0 73.0 112.6 239 

1.0 0.85 169.5 59.1 115.0 225 

and (36) that proton fraction increases with density as shown in Fig. 4. Bombaci 

and Lombardo16
} have remarked that in the final stage of a pre-supernova collapse 

electron capture process leads to an equilibrium state where (3 and proton fraction 

are about 1/3. They further observed that this proton fraction is controlled by 

symmetry energy. 

For non-zero temperature (T =1= 0) proton fraction (Y) is obtained by minimizing 

the free energy per baryon, F = (E - Ts) / P with respect to Y. In the following we 

construct an expression for Y in the region of low temperature and density around 

normal nuclear matter density. 

Using the results of Fermi integral and some previous results25
} we obtain the 

expressions for the density Pi defined by (7) and other thermodynamic quantities 

like energy density Ei given by (18) and PFi defined by Fermi integral part of (19). 

_ 'Yi [1 ( 2 *2)3/2 () 2 2v; - M*2 ] _ "Yi 3 ( ) ( ) 
Pi - 21T2 3 Vi - M + ( 2 T (v; _ M*2)1/2 + . .. - 61T2 kFi say, 37 

where ((2) = 1T2 /6 and the suffix i stands either for neutron or proton. We have 

kFp,n = (1 =f (3)1/3kF' (38) 

using Eqs. (18), (19), (37) and (38) we find25
) 

(39) 

and 
1T2 M* 

PF · = PF ' T - O + _p·_T2 + .... 
• ., - 3' k~i 

(40) 

Using standard relations and Eqs. (25), (26) and (37)"-'(40), we obtain the following 

expression for entropy density Si, 

2 M* 2 
Ts· = E· +~. - /I.p' = 1T p·-T + ... t t z. ,...,~ Z. t k 2 • 

Fi 
(41) 

In view of the above relations the free energy F = E - T s = - P + f..tp for hadrons 

is given by 

(F/P)h = (F/P)h,f3=O + (32 [ESYffi + ~;M*:;] . (42) 

In beta equilibrium mass of the electron may be neglected, energy density26) at low 

temperature can be expressed by the relation 
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612 B. Malakar and S. Sarkar 

tz = 311 = 1/{7r
2

) [lvt + 3«(2)T
2vr + ... ] 

applying Eqs. (37), (41) and (43) we obtain 

(43) 

(FI p)z = ~ [kF (2Y)4/3 - k: T2(2Y)2/3] . (44) 

The suffixes hand 1 in (42) and (44) refer to hadrons and leptons or electrons, 

respectively. Using the procedure of Bombaci and Lombardo, 16) we obtain from 

( 42), (44) and (35) the following relations to determine proton fraction Y, 

or 

1/3 ~ 4Esym [ 2 ( T ) 2 (1 M* 1 ( kF ) 2) 1 
y - 21/ 3kF 1 + 7r kF 18 Esym +"3 4Esym . 

(46) 

Expression (46) shows that proton fraction Y increases with increasing temperature. 

3.3. Effective mass 

It is of interest to study the nature of the variation of effective nucleon mass 

M* with temperature T for different normalized densities PBI Po (= 1 and 3) in 

the case of symmetric matter ({3 = 0) and neutron matter ({3 = 1). Curves 

for the above cases with a = 114 are plotted in Fig. 5. It is found that M* 

increases with temperature and also with asymmetry parameter {3 while it de­

creases with PBI Po. However, M* decreases with T when temperature is very 

large. For a particular PBI Po difference between the values of M* for {3 = 0 

1.5 

1.0 

Cv 

0.5 

o L-----'-_--'-_-' I I. 
o 10 20 30 

Temperature (MeV) 

Fig. 6. Specific heat Cv is plotted against tem­

perature T for different values of j3 and for 

PB/PO = 1 and 3 for Q = 1/4. 

and that for {3 = 1, slowly decreases 

with increasing T. Further, {3 depen­

dence of M* is decreased when PBI Po 

is diminished. We may mention that 

using modified Sussex interaction and 

Brueckner method Das et al. 27
) have 

discussed the variation of M* for nu­

clear matter and neutron matter with 

temperature. Nishizaki et al. 15) have 

also studied {3, T and density depen­

dence of effective proton and neutron 

masses in the framework of temper­

ature dependent Hartree-Fock theory 

with an effective interaction. 

3.4. Specific heat 

In Fig. 6 we have plotted specific 

heat per nucleon at constant volume 

Cv (for a = 1/4) with temperature 
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Thermodynamical Properties of Asymmetric Nuclear Matter 613 

for {3 = 0 (symmetric nuclear matter) and {3 = 1 (neutron matter) with PBI Po = 1 

and 3. A similar curve for asymmetric nuclear matter with {3 = 0.3 at PBI Po = 1 is 

also displayed in the above figure. The reason for the decrease of Cv with increased 

(3, as shown in Fig. 6, lies in the fact that at a certain density the thermal effect 

is stronger for symmetric nuclear matter than that for neutron matter involving 

different Fermi momenta. I5
) Further Cv is larger for smaller PBI Po since thermal 

effect is enhanced for lower density. Figure 6 also displays that the variation of Cv 
with T is more linear for larger P B I Po· 

3.5. Bulk modulus 

The nuclear matter compressibility K (or the bulk modulus) is a very signifi­

cant quantity to characterize the nuclear medium. A correct determination of this 

quantity is required for the study of heavy ion reaction, pre-supernova collapse and 

neutron star. As mentioned in §1 'conflicting constraint' on the value of K aris­

ing from supernova dynamics and maximum neutron star mass I5
) can possibly be 

resolved by considering asymmetry and temperature dependence of K. So it is of 

interest to investigate how the nuclear matter compressibility changes with asym­

metry parameter {3, temperature T and also with hybridization parameter a. We 

have evaluated bulk modulus for particular values of temperature T and asymmetry 

parameter (3 using the following relation, 

(47) 

where Po(T, (3) is the saturation density at temperature T and asymmetry parameter 

{3 for which pressure vanishes. In our calculation it is found that the compressibil­

ity K decreases as the temperature T increases for a particular value of (3 and K 

vanishes at a certain temperature, called 550..------------------. 

flashing temperature Tfl . In Fig. 7 

we have shown the variation of K U~ 

= 0, T) with temperature T for sym­

metric nuclear matter ({3 = 0) for differ·­

ent values of hybridization parameter a. 

From Fig. 7 it is further found that the 

flashing temperature Tfl falls off with in­

creasing a (or decreasing K associated 

with a). This variation of bulk modulus 

with temperature T can be fitted well 

with the following parabolic law, 2) 

K({3, T) = K({3, T = 0)(1 - aT({3)T2). 

(48) 
It appears from Fig. 7 that 'aT' de­

creases as the value of the hybridization 

parameter a increases. Further, Table 

III shows that aT increases as {3 is en­

hanced from 0 to 0.3 for temperature T 

> .. 
~ 

OJ 
U 

o 
::;;: 

-"-

450 -

g; 150 

Temperature (MeV) 

Fig. 7. Bulk modulus K is plotted against 

temperature T for symmetric nuclear mat­

ter ((3 = 0) for different values of Q. 
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614 B. Malakar and S. Sarkar 

Table III. Dependence of the bulk quantities like saturation density po({3, T), bulk modulus K, 

parameter aT({3) (defined by (48», entropy per nucleon sip and iso-entropic compressibility Ks 

on asymmetry parameter {3 and temperature T for different models. 

Model 
aT({3) 

10-3 MeV-2 

5.1 

4 0.977 287 

6 0.945 255 

Q = 0.25 8 0.905 222 

10 0.84 168 1.15 239 

12 0.747 103 1.45 188 

13 0.673 59 1.65 158 

0.3 0 0.917 272 6.8 

5 0.86 225 

Q = 0.25 10 0.78 87 

11 0.67 55 

12 0.62 39 

Paris16) 0.33 0 144 7.87 

(po = .289 4 131 
f -3 m, 6 101 

B = -18.35 8 71.4 0.5 134 

MeV) 1.0 99 

1.5 34 

SKM* (HF)28) 0.33 0 179 7.33 

(i;[* = .795) 4 158 

6 129 

8 89 

10 29 

to be quite small (~ 12 MeV). Values of 'aT' and K ({3, T) for different values of {3 

(0 and 0.3) and T are given in Table III for the model characterized by a = 1/4. 

Table III also displays values of K ({3 = .33, T) determined by several authors2) who 

used interaction potential approach in the framework of Brueckner-Bethe-Goldstone 

theory and other investigators28),29) who performed Hartree-Fock calculation with 

different Skyrme type interaction SKM* (H F) and SKM* (T F). 

The nuclear matter compressibility is always found to decrease with the increase 

in asymmetry parameter (3. This decrease in K can be described by the following 
relation,13),2) 

K({3, T = 0) = K(O, 0)(1 - a(32). (49) 

From field theoretic formulation 

(50) 

where pressure P is given by 

P = P+ {32p{J, (51) 

where P stands for pressure due to symmetric matter ({3 = 0) and 
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(52) 

The relation (50) in a different equivalent form has been given by other 

investigators.S) In Table I values of 'a' for models based on two-body and three­

body interaction potentials16),29),28) and field theoretic models like hybrid derivative 

coupling model (for a = 0,1/4 and 1) and chiral sigma modelS) are listed. It may 

be noted that in chiral sigma model, effective nucleon masses M* / M = 0.851 and 

0.824, corresponding to K = 244 MeV and 358 MeV, respectively, are quite large in 

comparison with the recent empirical value for M* /M = 0.69.30
) 

The relation (49) holds quite well for small value of (3. Using the above­

mentioned models values of K((3, T = 0) for several values of asymmetry parameter 

(3 are given in Table I. Further, values of (3 = (3infl and other related quantities 

for which both pressure and K((3infl, T = 0) vanish are reported in Table I for 

a = 0, 1/4 and 1. The above-mentioned results show that bulk modulus K decreases 

as the value of the asymmetry parameter (3 or the temperature T increases. This 

implies that the EOS becomes softer 8..."l (3 or T increases. This soft EOS is found to 

be very useful in understanding the generation of strong shock waveS) initiated by 

rebounding core in a stellar collapse and the mechanism of subsequent explosion of 

type II supernova. 16
) This decrease in the value of compressibility as (3 or T increases 

is due to the fact that with the increase in (3 or T the system becomes less and less 

bound and the saturation density shifts to some lower value. This decrease in the 

value of the saturation density Po((3, T) with (3 and T can be fitted approximately 

by the following relations,2) 

Po((3) = Po((3 = 0)(1 - b(32) (53) 

and 

Po ((3, T) = Po ((3, T = 0)(1 - bT ((3)T2), (54) 

where for field theoretic model b = (9po/ K)d/dp(Esym) as given by several authors.S) 

Equation (54) holds quite well for small value of T. In Table I we list values of the 

parameters a and b for hybrid derivative coupling model (for a = 0,1/4 and 1), 

chiral sigma modelS) and various types of Skyrme interaction.28),29) Values of bT ((3) 

defined by (54) are found to be bT(O) = 1.65 . 10-3 MeV-2 for (3 = 0, a = 1/4 

and bT (.3) = 2.04.10-3 MeV-2 for (3 = 0.3 and a = 1/4 which implies an increase 

of bT ((3) with (3. Isoentropic bulk modulus K s , for different values of entropy per 

nucleon with a = 1/4 (in our model) and also similar results of Bombaci et a1.2) 

are listed in Table III. It is found that Ks decreases as entropy per nucleon (s/ p) 

increases. As expected, the isoentropic bulk modulus Ks is found to be greater than 

the corresponding isothermal bulk modulus which can be seen from Table III in the 

case a = 0.25 and (3 = O. 

We have compared our results for the parameters which govern the variation of 

compressibility, saturation density, binding energy and isoentropic compressibility 

with asymmetry parameter (3 and/or temperature T with the existing results of re­

cent investigators. Some of the bulk properties like saturation density Po, binding 

energy B, compressibility K and effective mass M* at saturation obtained by several 
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616 B. Malakar and S. Sarkar 

investigators as shown in Tables I and III do not agree very well with the empirical 

values where as the corresponding results of our model (characterized by hybridiza­

tion parameter Q = 1/4) are quite satisfactory. So it is likely that the numerical 

values of the above-mentioned characteristics of nuclear matter in our model are 

somewhat more acceptable than the corresponding results obtained by other inves­

tigators. It may be seen from Tables I and III that Po = 0.284 fm -3, binding energy 

B = -18.35 MeV and K = 182 ± 9 MeV in Bombaci et al.'s work16
) based on Paris 

potential and effective mass M* = 0.85 M appearing in the investigation of Prakash 

and Anisworth5) based on chiral () model, differ much from the corresponding em­

pirical values of the bulk properties when we keep in mind the recent estimates of 

Jaminon and Mahaux30
) for M* = 0.69 M and Sharma et al. 'S31) estimate of K 

to be 300 ± 25 MeV. Some of the above investigators used a combination of two­

nucleon potential based on nucleon-nucleon scattering data and a phenomenological 

three-body potential adjusted to give correct energies for light nuclei and improved 

nuclear matter properties at saturation. Our relativistic field theoretic model is likely 

to give better results for properties of high density asymmetric nuclear matter than 

the nonrelativistic potential formalism of these investigators. 

3.6. Chemical potential 

The chemical potentials of neutron and proton at zero and finite tempera­

tures are evaluated using the relations (25) and (26). The asymmetry (/3) de­

pendence of chemical potential is shown in Fig. 8 for PB = Po and PB = 3po 

at T = 0 and 25 MeV. It is found that as the value of the asymmetry param­

eter (/3) increases, the chemical potential of neutron, /-In, increases and that of 

proton, /-lp, decreases. As expected both /-In and /-lp are found to increase with 

the increase in baryon density P B. They further decrease slightly as the tem­

perature T increases. It is evident from Fig. 8 that thermal effect in chem­

ical potential decreases as density increases as in the case of (E / P - M) (see 

Fig. 1). Somewhat similar results are obtained by Nishizaki et al,15) who used 

> 

'" ::;: 

1300 

- 1200 

OJ 

'" L 
U 

Fig. 8. Chemical potentials of neutron (P,n) 

and proton (p,p) as function of the asym­

metry parameter /3 with PB = Po and 3Po 

at two different temperatures T = 0 MeV 

and 25 MeV for a = 1/4. 

the temperature dependent Hartree­

Fock theory with an effective interac­

tion. Das et al. 27) have also studied the 

temperature and density dependence of 

chemical potential for symmetric nu­

clear matter ({3 = 0) and neutron mat­

ter ({3 = 1). Further, Das et al. 27
) have 

plotted (/-In - /-lp) against density. From 

Fig. 8 we can also extract (/-In - /-lp) 

for any value of {3 when PB = Po and 

PB = 3po· It may be pointed out that in 

beta stable neutron rich matter the re­

lation (/-In - /-lp) = /-le(/-le = kFp being the 

chemical potential of electron) controls 

the proton fraction in beta equilibrium 

state of neutron rich matter. 
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3.7. Entropy 

We have calculated the entropy per 

nucleon which remains constant during 

adiabatic process by using Eq. (28). In 

Fig. 9 entropy per nucleon has been plot­

ted against normalized density P B I Po 

for /3 = 0, 0.3 and 1 at temperatures 

T = 20 and 40 MeV. Figure 9 shows 

that entropy per nucleon (sip) increases 

as the nucleon density decreases which 

may be related to the fact that the 

thermal effect is larger in the low den­

sity region. I5
) This can also be under­

stood from Eq. (41). As the asymmetry 

parameter /3 increases the entropy de­

creases and which can also be explained 

with the help of relations (41) and (38). 

For pure neutron matter (/3 = 1) the en­

tropy decreases by about 25 % compared 

to that for symmetric matter (/3 = 0) 

in our field theoretic model. Somewhat 

similar results have been observed by 

7 .----------.--.-.-------. 

6 

c: 
III 4 

.. .. .. 
g 3 

.. 
c .. 
. ~ 2 -
Cl 

Fig_ 9. Entropy per nucleon s/ p as func­

tion of dimensionless density PB / po for f3 
= 0_0,0_3 and 1.0 at temperatures T = 20 

MeV and 40 MeV for a = 1/4. 

other authors. I5
) We have found numerically that sip at T = 20 MeV is almost 

two times the corresponding result for T = 10 MeV. Such results have also been 

obtained by Nishizaki et al. I5
) It can be seen from Fig. 9 and actual numerical cal­

culation that at some higher temperature like T = 40 MeV, entropy per nucleon 

is somewhat less than two times the corresponding value at T = 20 Me V implying 

some deviation from linear dependence of sip on T at higher temperature. Jacak 

et alP) measured the entropy per nucleon from the fragment distributions of the 

heavy-ion reaction using 40 Ar beams of 42, 92 and 137 MeV I nucleon and Au target. 

They obtained sl P ~ 2 - 2.4 at temperature T ~ 18, 25 and 35 MeV and the corre­

sponding density lies in the range of (0.3 - 0.7)po. In our calculation we have found 

sip = 2.14 at T = 20 MeV for symmetric nuclear matter (/3 = 0) with PB = 0.72po. 

3.8. Liquid gas phase transition 

The pressure versus density curves at several temperatures are displayed in 

Fig. 10 for /3 = 0, 1/3 and 1 in the region of low density and low temperatures. They 

exhibit some features signifying liquid gas phase transition as in the case of a non­

ideal gas with van der Waals type interaction. This first order liquid gas phase tran­

sition in nuclear matter occurs at suffieiently low density PB < ~Po and below some 

critical temperature Tc « 20 Me V). In this paper we have studied the asymmetry 

dependence of the characteristics of liquid gas phase transition like critical tempera­

ture Tc and the corresponding pressure Pc and normalized density Pel Po for Q = 1 I 4. 

These quantities also depend upon the value of the hybridization parameter Q. 
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<II 
L. 

:J 
til 
til 

'" .... 
a.. 

-1 
o 

I I I 
0.2 0.4 0.6 1.2 

Pe/po 

Fig. 10. Equation of state where pressure P 

is plotted against dimensionless density 

PB / po for j3 = 0.0,0.3 and 1.0 and for 

temperatures T = 0,5 and 15 MeV for 

a = 1/4. 

It appears from Fig. 10 that as the 

asymmetry parameter 13 increases the 

coexistence region of the two phases be­

comes narrower and the critical temper­

ature Tc decreases and finally becomes 

zero before pure neutron matter (13 = 1) 

is reached, indicating absence of liquid 

gas phase transition. In our model it is 

found that Tc and other related quanti­

ties are diminished as hybridization pa­

rameter a is enhanced (or bulk modu­

lus is diminished) as observed by other 

investigators. 32) In our calculation for 

the model characterized by a = i we 

find that the liquid gas phase transition 

disappears for 13 > 0.85 and for T > 17.5 

MeV. In Table IV we have listed the 

values of critical temperature Tc and re­

lated quanitities Pel Po and Pc for differ­

ent values of 13 for the model character­

ized by a = 1/4. Results of Nishizaki et 

al. 15
) for Tc for different values of 13 are 

also reported in the table. 

Table IV. Characteristics of liquid gas phase transition for different values of asymmetry parameter. 

Model j3 
Tc 

Pc/po 
Pc 

MeV MeV/fm3 

a = 1/4 0.0 17.5 0.357 0.313 

(K = 307 0.3 16.0 0.310 0.273 

MeV) 0.6 11.5 0.270 0.162 

0.7 9.00 0.250 0.105 

Nishizaki 0.0 18.5 

et al. 15
) 0.2 18.0 

(K = 250 MeV) 0.4 16.0 

0.6 13.0 

§4. Summary 

We have studied the dependence of the properties of asymmetric nuclear matter 

on temperature T, and asymmetry parameter f3 in the framework of generalized hy­

brid derivative coupling mode1.6
) The asymmetry dependence of the bulk properties 

in field theoretic model can be explained by the presence of interaction term involving 

vector-isovector meson and is also due to different Fermi momenta possessed by neu-
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tron and proton. The thermal effect on the bulk quantities is larger in the low density 

region than in the high density region. Both the quantity [B(p, T, (3) - B(p, T, f3 = 0)] 

and the symmetry energy Esym (p B, T) increase with density and decrease with tem­

perature. The empirical parabolic law satisfied by the binding energy per nucleon is 

confirmed by the present calculation in all the range of asymmetry parameter and 

also for high density (2:: 5po) and high temperature (2:: 40 MeV). The EOS becomes 

softer as the value of asymmetry parameter f3 or temperature T increases. This helps 

us to understand the dynamics of supernova 'implosion-explosion'.4) The saturation 

density shifts to some lower value as f3 or T increases. In our model we can have 

a soft or stiff EOS depending upon the value of hybridization parameter a. The 

chemical potential of neutron, J-tn, increases and that of proton, J-tp, decreases with 

f3. Both J-tp and J-tn increase with density and decrease with temperature. We may 

mention that symmetry energy Esym and also the difference (J-tn - J-tp) controls the 

proton fraction of neutron rich matter in beta equilibrium. Adiabatic processes are 

characterized by constant entropy per nucleon which increases with the increase of 

temperature and decreases as density or asymmetry parameter f3 increases. The 

characteristics (Te, Pc, Pc) of liquid gas phase transition are strongly asymmetry pa­

rameter dependent. As the value of asymmetry parameter increases the coexistence 

region becomes narrower and the critical temperature decreases. Finally, for asym­

metry parameter close to unity or for pure neutron matter the critical temperature 

vanishes indicating the absence of liquid gas phase transition. 
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