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Thermodynamically-efficient local computation and the inefficiency
of quantum memory compression

Samuel P. Loomis* and James P. Crutchfield†

Complexity Sciences Center and Physics Department, University of California at Davis, One Shields Avenue, Davis, California 95616, USA

(Received 8 January 2020; accepted 16 March 2020; published 14 April 2020)

Modularity dissipation identifies how locally implemented computation entails costs beyond those required by
Landauer’s bound on thermodynamic computing. We establish a general theorem for efficient local computation,
giving the necessary and sufficient conditions for a local operation to have zero modularity cost. Applied
to thermodynamically-generating stochastic processes it confirms a conjecture that classical generators are
efficient if and only if they satisfy retrodiction, which places minimum-memory requirements on the generator.
This extends immediately to quantum computation: Any quantum simulator that employs quantum memory
compression cannot be thermodynamically efficient.

DOI: 10.1103/PhysRevResearch.2.023039

I. INTRODUCTION

Recently, Google AI announced a breakthrough in quan-
tum supremacy, using a 54-qubit processor (“Sycamore”) to
complete a target computation in 200 seconds, claiming the
world’s fastest supercomputer would take more than 10 000
years to perform a similar computation [1]. Shortly afterward,
IBM announced that they had proven the Sycamore circuit
could be successfully simulated on the Summit supercom-
puter, leveraging its 250 PB storage and 200 petaFLOPS speed
to complete the target computation in a matter of days [2].
This episode highlights two important aspects of quantum
computing: first, the importance of memory and, second, the
subtle relationship between computation and simulation.

Feynman [3] broached the notion that quantum computers
would be singularly useful for the simulation of quantum
processes, without supposing that this would also make them
advantageous at simulating classical processes. Here, we ex-
plore issues raised by the recent developments in quantum
computing, focusing on the problem of simulating classical
stochastic processes via stochastic and quantum computers.
We show that using quantum computers to simulate classical
processes typically requires nonzero thermodynamic cost,
while stochastic computers can theoretically achieve zero cost
in simulating classical processes. This supports the view-
point originally put forth by Feynman—that certain types of
computers would each be advantageous at simulating cer-
tain physical processes—which challenges the current claims
of quantum supremacy. Furthermore, we show that in both
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classical and quantum simulations, thermodynamic efficiency
places a lower bound on the required memory of the simulator.

To demonstrate both, we must prove a new theorem on the
thermodynamic efficiency of local operations. Correlation is
a resource: it has been investigated as such in the formalism
of resource theories [4] such as that of local operations
with classical communication [5], with public communica-
tion [6], and many others, as well as the theory of local
operations alone, under the umbrella term of common in-
formation [7–9]. Correlations have long been recognized as
a thermal resource [10–13], enabling efficient computation
to be performed when taken properly into account. Local
operations that act only on part of a larger system are known to
never increase the correlation between the part and the whole;
most often, they are destructive to correlations and therefore
resource-expensive.

Thermodynamic dissipation induced by a local
operation—say on system A of a bipartite system AB to
make a new joint system CB—is classically proportional to
the difference in mutual information [14]:

�Sloc = kBT (I[A : B] − I[C : B]).

This can be asymptotically achieved for quantum sys-
tems [15]. By the data processing inequality [16,17], it is
always nonnegative: �Sloc � 0. Optimal thermodynamic ef-
ficiency is achieved when �Sloc = 0.

To identify the conditions, in both classical and quantum
computation, when this is so, we draw from prior results on
saturated information-theoretic inequalities [18–24]. Specif-
ically, by using a generalized notion of quantum sufficient
statistic [24–27], we show that a local operation on part of
a system is efficient if and only if it unitarily preserves the
minimal sufficient statistic of the part for the whole. Our
geometric interpretation of this also draws on recent progress
on fixed points of quantum channels [28–31].

Paralleling previous results on �Sloc [14], our particular in-
terest in locality arises from applying it to thermal transforma-
tions that generate and manipulate stochastic processes. This
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is the study of information engines [12,13,32–35]. Rooted
in computational mechanics [36–41], which investigates the
inherent computational properties of natural processes and
the resources they consume, information engines embed
stochastic processes and Markovian generators in the physical
world, where Landauer’s bound for the cost of erasure holds
sway [10].

A key result for information engines is the information-
processing second law (IPSL): the cost of transforming one
stochastic process into another by any computation is at least
the difference in their Kolmogorov-Sinai entropy rates [33].
However, actual physical generators and transducers of pro-
cesses, with their own internal memory dynamics, often ex-
ceed the cost required by the IPSL [14]. This arises from
the temporal locality of a physical generator—only operating
from time step to time step, rather than acting on the entire
process at once. The additional dissipation �Sloc induced by
this temporal locality gives the true thermodynamic cost of
operating an information engine.

Previous work explored optimal conditions for a classical
information engine to generate a process. Working from the
hidden Markov model (HMM) [42] that determines an en-
gine’s memory dynamics, it was conjectured that the HMM
must be retrodictive to be optimal. For this to hold, the current
memory state must be a sufficient statistic of the future data
for predicting the past data [14].

Employing a general result on conditions for reversible
local computation, the following confirms this conjecture in
the form of an equivalent condition on the HMM’s structure.
We then extend this, showing that it holds for quantum
generators of stochastic processes [15,43–51]. Notably, quan-
tum generators are known to provide potentially unbounded
advantage in memory storage when compared with classical
generators of the same process [44,45,47–50]. Surprisingly,
the advantage is contingent: optimally-efficient generators—
those with �Sloc = 0—must not benefit from any memory
compression. We show this to be true not only for previously
published quantum generators but also for a new family of
quantum generators derived from time reversal [49,52–54].

While important on its own, this also provides a comple-
mentary view of our previous result on quantum generators,
which showed that a quantum-compressed generator is never
less thermodynamically-efficient than the classical generator
it compresses [15]. Combined with our current result, one
concludes that a quantum-compressed generator is efficient
with respect to the generator it compresses but, to the extent
that it is compressed, it cannot be optimally efficient. In
short, only classical retrodictive generators achieve the lower
bound dictated by the IPSL. Practically, this highlights a
pressing need to experimentally explore the thermodynamics
of quantum computing.

II. THERMODYNAMICS OF QUANTUM
INFORMATION RESERVOIRS

The physical setting of our work is in the realm of infor-
mation reservoirs—systems all of whose states have the same
energy level. Landauer’s principle for quantum systems says
that to change an information reservoir A from state ρA to state

ρ ′
A requires a work cost satisfying the lower bound

W � kBT ln 2 (H[ρA] − H[ρ ′
A]), (1)

where HρA is the von Neumann entropy [17]. Note that the
lower bound Wmin := kBT ln 2 (H[ρA] − H[ρ ′

A]) is simply the
change in free energy for an information reservoir. Further-
more, due to an information reservoir’s trivial Hamiltonian,
all of the work W becomes heat Q. Then the total entropy
production—of system and environment—is

�S := Q + kBT ln 2 �H[A] = W − Wmin. (2)

Thus, not only does Landauer’s principle provide the lower
bound but it also reveals that any work exceeding Wmin repre-
sents dissipation.

Reference [14] showed that Landauer’s bound may indeed
be attained in the quasistatic limit for any channel acting on
a classical information reservoir. This result generally does
not extend to single-shot quantum channels [55]. However,
when we consider asymptotically many parallel applications
of a quantum channel, we recover the tightness of Landauer’s
bound [15].

These statements are exceedingly general. To derive use-
ful results, we must place further constraints on the system
dynamics to see how Landauer’s bound is affected. Refer-
ence [14] introduced the following perspective: Consider a
bipartite information reservoir AB on which we wish to apply
the local channel E ⊗ IB, where E : B(HA) → B(HC ) maps
the states of system A into those of system C, transforming
the initial joint state ρAB to the final state ρCB. The Landauer
bound for AB → CB is given by Wmin = kBT ln 2 (H[ρAB] −
H[ρCB]). However, since we constrained ourselves to use local
manipulations, the lowest achievable bound is actually Wloc :=
kBT ln 2 (H[ρA] − H[ρC]). Thus, we must have dissipation of
at least

�S � Wloc − Wmin

= kBT ln 2 (H[ρA] − H[ρAB] − H[ρC] + H[ρCB])

= kBT ln 2 (I[A : B] − I[C : B]),

(3)

where I[A : B] = H[ρA] + H[ρB] − H[ρAB] is the quantum
mutual information. And so we have a minimal locality dis-
sipation:

�Sloc := kBT ln 2 (I[A : B] − I[C : B]), (4)

which arises because we did not use the correlations to fa-
cilitate our erasure. See Fig. 1 for a simple example of this
phenomenon.

This local form of Landauer’s principle is still highly
general, but the following shows how to examine it for specific
classical and quantum computational architectures The key
question we ask is the following: For which architectures can
�Sloc be made to exactly vanish? We first we consider this
problem generally and then provide a solution.

III. REVERSIBLE LOCAL COMPUTATION

Suppose we are given a bipartite system AB with state ρAB.
We wish to determine the conditions for a local channel EA ⊗
IB that maps A to C:

ρ ′
CB = EA ⊗ IB(ρAB), (5)

023039-2
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FIG. 1. Thermodynamics of locality: Suppose we have two bits
XY in a correlated state where 1

2 probability is in XY = 00 and 1
2

probability is in XY = 11. (a) A thermodynamically irreversible op-
eration can be performed to erase only X (that is, set X = 0 without
changing Y ) if we are not allowed to use knowledge about the state of
Y . (b) A reversible operation can be performed to erase X if we are
allowed to use knowledge about Y . Both operations have the same
outcome given our initial condition, but the nonlocal operation (a) is
more thermodynamically costly because it is irreversible. According
to Theorem 1, operation (a) is costly since it erases information in X
that is correlated with Y .

to preserve the mutual information I[A : B] = I[C : B]. Proofs
of the following results are provided in the Supplemental
Material (SM) [56].

Stating our result requires first defining the quantum no-
tion of a sufficient statistic. Previously, quantum sufficient
statistics of A for B were defined when AB is a classical-
quantum state [27]. That is, when ρAB commutes with a local
measurement on A. They were also introduced in the setting
of sufficient statistics for a family of states [24,25]. This
corresponds to the case where AB is quantum-classical—ρAB

commutes with a local measurement on B. Our definition
generalizes these cases to fully-quantal correlations between
A and B.

We start, as an example, by giving the following definition
of a minimum sufficient statistic of a classical joint random
variable XY ∼ Pr(x, y) in terms of an equivalence relation.
We define the predictive equivalence relation ∼ for which
x ∼ x′ if and only if Pr(y|x) = Pr(y|x′) for all y. The minimum
sufficient statistic (MSS) [X ]Y is given by the equivalence

classes [x]Y := {x′ : x ∼ x′}. Let us denote � := [X ]Y and let
Pr(y|σ ) := Pr(y|x) for any x ∈ σ .

This cannot be directly generalized to the quantum set-
ting since correlations between A and B cannot always be
described in the form of states conditioned on the outcome of
a local measurement on A. If the latter were the case, the state
would be classical-quantum, but general quantum correlations
can be much more complicated than these. However, we can
take the most informative local measurement that does not dis-
turb ρAB and then consider the “atomic” quantum correlations
it leaves behind.

Let ρAB be a bipartite quantum state. A maximal local
commuting measurement (MLCM) of A for B is any local
measurement X with projectors {�(x)} on system A such that

ρAB =
⊕

x

Pr(X = x)ρ (x)
AB , (6)

where

Pr (X = x) = Tr
[(

�
(x)
X ⊗ IB

)
ρAB

]
, (7)

and

Pr (X = x)ρ (x)
AB = (

�
(x)
X ⊗ IB

)
ρAB

(
�

(x)
X ⊗ IB

)
, (8)

and any further local measurement Y on ρ
(x)
AB disturbs the state:

ρ
(x)
AB �=

∑
y

(
�

(y)
Y ⊗ IB

)
ρ

(x)
AB

(
�

(y)
Y ⊗ IB

)
. (9)

We call the states {ρ (x)
AB} quantum correlation atoms.

Proposition 1: MLCM uniqueness. Given a state ρAB, there
is a unique MLCM of A for B.

Now, as in the classical setting, we define an equivalence
class over the values of the MLCM via the equivalence
between their quantum correlation atoms. Classically, these
atoms are simply the conditional probability distributions
Pr(·|x); in the classical-quantum setting, they are the con-
ditional quantum states ρ

(x)
B . Note that each is defined as

a distribution on the variable Y or system B. In contrast,
the general quantum correlation atoms ρ

(x)
AB depend on both

systems A and B.
The resulting challenge is resolved in the following way:

Let ρAB be a bipartite quantum state and let X be the MLCM
of A for B. We define the correlation equivalence relation x ∼
x′ over values of X where x ∼ x′ if and only if ρ

(x)
AB = (U ⊗

IB)ρ (x′ )
AB (U † ⊗ IB) for a local unitary U .

Finally, we define the minimal local sufficient statistic
(MLSS) [X ]∼ as the equivalence class [x]∼ := {x′ : x′ ∼ x}
generated by the relation ∼ between correlation atoms. Thus,
our notion of sufficiency of A for B is to find the most
informative local measurement and then coarse-grain its out-
comes by unitary equivalence over their correlation atoms.
The correlation atoms and the MLSS [X ]∼ together describe
the correlation structure of the system AB.

The machinery is now in place to state our result. The
proof depends on previous results regarding the fixed points
of stochastic channels [28–31] and saturated information-
theoretic inequalities [18–24]. This background and the proof
are described in the SM.

Theorem 1: Reversible local operations. Let ρAB be a
bipartite quantum state and let EA ⊗ IB be a local operation
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with EA : B(HA) → B(HC ). Suppose X is the MLCM of ρAB

and Y , that of ρCB = EA ⊗ IB(ρAB). The decomposition into
correlation atoms is

ρAB =
⊕

x

Pr A(x)ρ (x)
AB , (10)

ρCB =
⊕

y

Pr C (y)ρ (y)
CB. (11)

Then, I[A : B] = I[C : B] if and only if EA can be expressed
by Kraus operators of the form:

K (α) =
⊕
x,y

eiφxyα
√

Pr (y, α|x)U (y|x), (12)

where φxyα is any arbitrary phase and Pr(y, α|x) is a stochastic
channel that is nonzero only when ρ

(x)
AB and ρ

(y)
CB are equivalent

up to a local unitary operation U (y|x) that maps H(x)
A to H(y)

C .
The theorem’s classical form follows as a corollary:
Corollary 1: Reversible local operations, classical. Let

XY be a joint random variable and let Pr(Z = z|X = x) be
a channel from X to some set Z , resulting in the joint random
variable ZY . Then I[X : Y ] = I[Z : Y ] if and only if Pr(Z =
z|X = x) > 0 only when Pr(Y = y|Z = z) = Pr(Y = y|X =
x) for all y.

In light of the previous section, there is a simple thermo-
dynamic interpretation of Theorem 1 and Corollary 1: local
channels that circumvent dissipation due to their locality (i.e.,
those which have �Sloc = 0) are precisely those channels that
preserve the sufficiency structure of the joint state. They may
create and destroy any information that is not stored in the
sufficient statistic and the correlation atoms. However, the
sufficient statistic itself must be conserved and the correlation
atoms must be only unitarily transformed.

We now turn to apply this perspective to classical and
quantum generators—systems that use thermodynamic mech-
anisms to produce stochastic processes. We compute the nec-
essary and sufficient conditions for these generators to have
zero locality dissipation: �Sloc = 0. And so, in this way we
determine precise criteria for when they are thermodynami-
cally efficient.

IV. THERMODYNAMICS OF CLASSICAL GENERATORS

A classical generator is the physical implementation of
a hidden Markov model (HMM) [42] G = (S,X , {T (x)

s′s }),
where (here) S is countable, X is finite, and for each x ∈ X ,
T(x) is a matrix with values given by a stochastic channel
from S to S × Y , T (x)

s′s := Pr G(s′, x|s). We define generators
to use recurrent HMMs, which means the total transition
matrix Ts′s := ∑

x T (x)
s′s is irreducible. In this case, there is a

unique stationary distribution πG(s) over states S satisfying
πG(s) > 0,

∑
s πG(s) = 1, and

∑
s Ts′sπG(s) = πG(s′).

During its operation, a generator’s function is to produce
a stochastic process—for each 
, a probability distribution
Pr G(x1 . . . x
) over words x1 . . . x
 ∈ X 
. The probabilities for
words of length 
 generated by G are defined by

Pr G(x1 . . . x
) :=
∑

s0,...,s
∈S
+1

T (x
 )
s
s
−1

· · · T (x1 )
s1s0

π (s0). (13)

FIG. 2. Information ratchet sequentially generating a symbol
string on an empty tape: At time step t , St is the random variable
for the ratchet state. The generated symbols in the generated (output)
process are denoted by Xt−1, Xt−2, Xt−3, . . .. The most recently
generated symbol Xt (green) is determined by the internal dynamics
of the ratchet’s memory by using heat Q from the thermal reservoir
as well as work W from the work reservoir. (Inside ratchet) Ratchet
memory dynamics and symbol emission are governed by the condi-
tional probabilities Pr(st+1, xt |st ), where st is the current state at time
t , xt is the generated symbol, and st+1 is the new state. Graphically,
this is represented by a hidden Markov model, depicted here as
a state-transition diagram in which nodes are states s and edges
represent transitions s → s′ labeled by the generated symbol and
associated probability: x : Pr(s′, x|s). (Reproduced with permission
from Ref. [15].)

Typically, we view a generator as operating over discrete time,
writing out a sequence of symbols from x ∈ X on a tape, while
internally transforming its memory state; see Fig. 2. Starting
with an initial state S0 ∼ π (s) and empty tape at time t = 0,
the entire system at time t is described by the joint random
variable X1 . . . Xt St , with distribution

Pr G(x1 . . . xt , st ) :=
∑

s0,...,st−1∈St

T (xt )
st st−1

· · · T (x1 )
s1s0

πG(s0). (14)

Continuing this technique, one can compute the joint random
variable X1 . . . Xt St Xt+1St+1.

This picture of a generator as operating on a tape while
continually erasing and rewriting its internal memory allows
us to define the possible thermodynamics, also shown in
Fig. 2. Erasure generally requires work, drawn from the work
reservoir, while the creation of noise often allows the extrac-
tion of work, which is represented in our sign convention
by drawing negative work from the reservoir. Producing a
process X1 . . . Xt ∼ Pr(x1 . . . xt ) of length t has an associated
work cost W � −kBT ln 2H[X1 . . . Xt ]. The negative sign, as
discussed, indicates work kBT ln 2H[X1 . . . Xt ] may be trans-
ferred from the thermal reservoir to the work reservoir. For
large t , this can be asymptotically expressed by the work rate
W/t � −kBT ln 2 hμ, where

hμ := lim
t→∞

1

t
H[X1 . . . Xt ] (15)

is the process’s Kolmogorov-Sinai entropy rate [33]. This is a
reasonable description of the average entropy rate of a pro-
cess that is stationary—that is, Pr(Xt . . . Xt+
 = x1 . . . x
−1)
is independent of t—and ergodic. Said differently, for large
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t a typical realization x1 . . . xt contains the word x̂1 . . . x̂


approximately t × Pr(̂x1 . . . x̂
) times. Recurrent generators
produce exactly these sorts of processes.

Now, a given generator cannot necessarily be implemented
as efficiently as the minimal work rate Wmin := −kBT ln 2 hμ

indicates. This is because a generator acts temporally locally,
only being able to use its current memory state to generate the
next memory state and symbol. The true cost at time t must
be bounded below by Wloc := Wmin + �Sloc, where in this case
the locality dissipation is [14]

�Sloc = kBT ln 2 (I[St : X1 . . . Xt ] − I[St+1Xt+1 : X1 . . . Xt ]).
(16)

In this case, the dissipation does not represent work lost
to heat but rather the increase in tape entropy that did not
facilitate converting heat into work. To understand this in
some detail, this section identifies the necessary and sufficient
conditions for efficient generators—those with �Sloc = 0.

To state our result for classical generators, we must in-
troduce two further notions regarding generators. As before,
proofs of results are given in the SM. Consider a partition of
S: P = {Pθ }, Pθ ∩ Pθ ′ ,

⋃
θ Pθ = S , labeled by index θ . Let

Pr GP (θ ′, x|θ ) :=
∑

s′ ∈ Pθ ′
s ∈ Pθ

Pr G(s′, x|s)π (s|θ ), (17)

with πG(s|θ ) = πG(s)/πGP (θ ) and πGP (θ ) = ∑
s∈Pθ

πG(s).
We say a partition {Pθ } is mergeable with respect to the
generator G = (S,X , {T (x)

s′s }) if the merged generator GP =
(P,X , {T̃ (x)

θ ′θ }), with transitions T̃ (x)
θ ′θ := Pr(θ ′, x|θ ), generates

the same process as the original.
Pertinent to our goals here is the notion of

retrodictive equivalence. Let Pr G(x1 . . . xt |st ) :=
Pr G(x1 . . . xt , st )/πG(st ). Given two states s, s′ ∈ S
of a generator (S,X , {T (x)

s′s }), we say that s ∼ s′ if
Pr G(x1 . . . xt |s) = Pr G(x1 . . . xt |s′) for all words x1 . . . xt .
The equivalence class [St ]∼ is the sufficient statistic
of St for predicting the past symbols X1 . . . Xt . The set
P∼ := {[s]∼ : s ∈ S} of equivalence classes is a partition on
S that we index by σ .

Proposition 2. Given a generator (S,X , {T (x)
s′s }), the parti-

tion P := P∼ induced by retrodictive equivalence is merge-
able.

We now state our theorem for efficient classical generators:
Theorem 2. A generator G = (S,X , {T (x)

s′s }) satisfies I[St :
X1 . . . Xt ] = I[St+1Xt+1 : X1 . . . Xt ] for all t if and only if the
retrodictively state-merged generator GP = (P∼,X , {T̃ (x)

σ ′σ })
satisfies T̃ (x)

σ ′σ ∝ δσ, f (σ ′,x) for some function f : S × X → S .
We say that a generator G = (S,X , {T (x)

s′s }) satisfying
T (x)

s′s ∝ δs, f (s′,x) for some f is co-unifilar. The dual property
T (x)

s′s ∝ δs′, f (s,x) for some f is called unifilar [57]. For every
process, there is a unique generator, called the reverse ε-
machine, constructed by retrodictively state-merging any co-
unifilar generator [50]. Similarly, by using a different partition
called predictive equivalence on states, any unifilar generator
for a process can be state-merged into a unique generator
called the forward ε-machine of that process [50].

The reverse ε-machine has the following property: Let−→
X t := Xt+1Xt+1 . . . represent all future generated symbols,
the reverse ε-machine state �t at time t is the minimum
sufficient statistic of

−→
X t for predicting X1 . . . Xt . Any genera-

tor whose state St is a sufficient statistic of
−→
X t for X1 . . . Xt

is called a retrodictor. The reverse ε-machine can then be
considered the minimal retrodictor.

Reference [14] conjectured that the necessary and suffi-
cient condition for �Sloc = 0 is that the generator in question
is a retrodictor. In the SM we confirm this by establishing
that the conditions of Theorem 2 imply that the generator is
a retrodictor.

A similar result, for classical generators, was presented
in Ref. [34] where a lower bound on �Sloc was derived for
predictive generators [Eq. (A23) in Ref. [34] ]. A consequence
of this bound is that �Sloc = 0 only when the predictor is
also a retrodictor. However, this bound does not extend to
nonpredictive generators. In contrast, Theorem 2 applies to
all generators.

Our result is complemented by another recent result [35]
which demonstrated how, from a predictive generator, one
can construct a sequence of generators that asymptotically
approach a retrodictor and whose dissipation �Sloc asymptot-
ically approaches zero. Helpfully, this result points to possible
perturbative extensions of Theorem 2.

These results bear on the trade-off between dissipation
and memory for classical generators. The reverse (forward)
ε-machine, being a state-merging of any co-unifilar (unifilar)
generator, is minimal with respect to the co-unifilar (unifilar)
generators via all quantifications of the memory, such as the
number of memory states |S| and the entropy H[S] [50].

As a consequence, we now see that the above showed
that any thermodynamically efficient generator can be state-
merged into a co-unifilar generator. This means it can be
further state-merged into the reverse ε-machine of the process
it generates. In short, thermodynamic efficiency comes with
a memory constraint. And, when the memory falls below this
constraint, dissipation must be present.

V. THERMODYNAMICS OF QUANTUM MACHINES

A process’s forward ε-machine, a key player in the previ-
ous section, may be concretely defined as the unique generator
G = (S,X , {T (x)

s′s }) for a given process satisfying [38]
(1) Recurrence: Ts′s := ∑

x T (x)
s′s is an irreducible matrix;

(2) Unifilarity: T (x)
s′s > 0 only when s′ = f (s, x) for some

function f : S × X → S;
(3) Predictively Distinct States: Pr(xt xt+1 . . . x
|st ) =

Pr(xt xt+1 . . . x
|s′
t ) for all 
 and xt xt+1 . . . x
 implies st = st ′ .

ε-machines are a process’s minimal unifilar generators, in
the sense that they are smallest with respect to the number
of memory states |S|, the entropy H[S], and all other ways
of measuring memory, such as the Rényi entropies Hα[S] :=

1
1−α

log2[
∑

s πG(s)α]. In this, they are unique.
However, one can implement ε-machines with even lower

memory costs, by encoding them in a quantum system and
generating symbols by means of a noisy measurement. This
encoding is called a q-machine. In terms of qubits, as a
unit of size, these implementations can generate the same
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process at a much lower memory cost than the ε-machine’s
bit-based memory cost. It has also been shown that these
quantum implementations have a lower locality cost Wloc

than their corresponding ε-machine, and so they are more
thermodynamically efficient [15]. This section identifies the
constraints for quantum generators to have zero dissipation;
that is, �Sloc = 0. We show that this results in a peculiar pair
of constraints. First, the forward ε-machine memory must not
be smaller than the memory of the reverse ε-machine. (This
mirrors the results of Theorem 2 in the SM.) Second, the quan-
tum generator achieves no compression. That is, the memory
of the quantum generator in qubits is precisely the mem-
ory of the forward ε-machine in bits. Thus, compression of
memory and perfect thermodynamic efficiency are exclusive
outcomes.

To state this precisely, we review q-machines and introduce
several new definitions to capture their properties (see the SM
for the proofs).

Given a forward ε-machine G = (S,X , {T (x)
s′s }), for any set

of phases {φxs : x ∈ X , s ∈ S} there is an encoding {|ψs〉 : s ∈
S} of the memory states S into a Hilbert space HS and a set
of Kraus operators {K (x) : x ∈ X } on said Hilbert space such
that

K (x) |ψs〉 = eiφxs

√
T (x)

f (s,x),s |ψ f (s,x)〉 . (18)

This expression implicitly defines the Kraus operators given
the encoding {|ψs〉}. The encoding, in turn, is determined up
to a unitary transformation by the following constraint on their
overlaps:

〈ψr |ψs〉 =
∑
x∈X

ei(φxs−φxr )
√

T (x)
r′,r T (x)

s′,s 〈ψr′ |ψs′ 〉 , (19)

where r′ = f (r, x) and s′ = f (s, x). This equation has a
unique solution for every choice of phases {φxs} [51].

We note that if πG(s) is the ε-machine’s stationary distri-
bution, then the stationary state of this quantum generator is
given by the ensemble

ρπ =
∑

s

πG(s) |ψs〉 〈ψs| (20)

and satisfies

ρπ =
∑

x

K (x)ρπK (x)†. (21)

When we say that a quantum generator uses less mem-
ory than its classical counterpart, we mean that dim HS �
|S|, H[ρπ ] � H[S], and further that Hα[ρπ ] � Hα[S], where
Hα[ρπ ] := 1

1−α
log2 Tr[ρα

π ] are the Rényi-von Neumann en-
tropies [44,49,50].

To see this quantum generator as a physical system, as in
Fig. 2, requires us to interpret the tape as being written on as
a series of copies of a single Hilbert space HA that represents
one cell on the tape. On HA we define the computational basis
{|x〉 : x ∈ X } in which outputs will be written. The system at
time t can be described by using the joint Hilbert space HA1 ⊗
HAt ⊗ HS , where each HAk is unitarily equivalent to HA, and

the state is

ρG(t ) :=
∑
x1...xt

|x1 . . . xt 〉 〈x1 . . . xt | ⊗ K (xt ...x1 )ρπK (xt ...x1 )†,

(22)

where K (xt ...x1 ) = K (xt ) · · · K (x1 ) and |x1 . . . xt 〉 = |x1〉A1
⊗

· · · ⊗ |xt 〉At
. From this we get the process generated by the

ε-machine and quantum generator in terms of the Kraus
operators as

Pr G(x1 . . . xt ) := Tr[K (xt ...x1 )ρπK (xt ...x1 )†]. (23)

Let us now briefly discuss the thermodynamic properties
of quantum generators, homing in on our main result about
conditions for their efficiency. The previous section discussed
how a process, to be generated, requires the minimal work rate
Wmin = −kBT ln 2 hμ. However, this is not typically achiev-
able for classical generators. The same principle holds for
quantum generators: Since they act temporally locally, the true
cost at time t is bounded below by Wloc = Wmin + �Sloc and
the locality dissipation �Sloc has the same form:

�Sloc = kBT ln 2 (I[St : A1 . . . At ] − I[St+1At+1 : A1 . . . At ]).
(24)

There are two crucial differences, though. First, the mu-
tual information I above is the quantum mutual information
derived from the von Neumann entropy. Second, even the
work rate Wloc is not necessarily achievable in the single-shot
case [55]. However, it may be attained for asymptotically
parallel generation [15]. We will not concern ourselves with
this second problem here. Our intent is to focus, as in the
previous section, on the necessary and sufficient conditions
for �Sloc = 0.

The preceding material was, in fact, review. We now in-
troduce a simple partition that may be constructed on the
memory states of the ε-machine for a given quantum im-
plementation. Specifically, we define the maximal commuting
partition (MCP) on S to be the most refined partition {Bθ }
such that the overlap matrix 〈ψr |ψs〉 is block diagonal. That is,
{Bθ } is such that 〈ψr |ψs〉 = 0 if r ∈ Bθ and s ∈ Bθ ′ for θ �= θ ′.

Our result on thermodynamically-efficient quantum gener-
ators is as follows:

Theorem 3: Maximally-efficient quantum generator. Let
G = (S,X , {T (x)

s′s }) be a given process’s ε-machine. Suppose
we build from it a quantum generator with encoding {ψs}
and Kraus operators {K (x)}. Let B := {Bθ } be the MCP of
S . Then the quantum generator has �Sloc = 0 if and only if
the partition B is trivially maximal—in that |Bθ | = 1 for each
θ—and the retrodictively state-merged generator GB of G is
co-unifilar.

We previously found that, in the limit of asymptotically
parallel generation, a quantum generator is always more ther-
modynamically efficient than its corresponding ε-machine, in
that it has a lower dissipation [15]. Yet this does not imply that
dissipation can be made to vanish for quantum generators of a
process. In fact, only for processes whose forward ε-machine
is also a retrodictor can dissipation be made to vanish. In
these cases, the memory states will be orthogonally encoded,
and so no memory compression is achieved, which is seen
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FIG. 3. Performance trade-offs for q-machines, whose variety
and dependence on phases {φxs} is depicted by a torus: Under all
ways of quantifying memory, the q-machines constructed from a pre-
dictor achieve nonnegative memory compression [50], and they also
have a smaller dissipation �Sloc, rendering them more thermodynam-
ically efficient [15]. However, to achieve positive compression, they
must also have a nonzero �Sloc, rendering them less efficient than a
classical retrodictor.

by the trivial maximality of B. The situation is heuristically
represented in Fig. 3.

VI. THERMODYNAMICS OF REVERSE q-MACHINES

We showed that forward ε-machines compressed via the
q-machine cannot achieve the efficiency of a classical retrod-
ictor. However, one may wonder what happens to a retrodic-
tor’s optimal efficiency if it is directly compressed. We now
demonstrate a method for such compression, derived from the
time-reversal of the q-machine, and prove that even here any
nonzero compression of memory precludes optimal efficiency.

A process’s reverse ε-machine may be defined similarly
to the forward ε-machine as the unique generator G =
(S,X , {T (x)

s′s }) for a given process satisfying:
(1) Recurrence: Ts′s := ∑

x T (x)
s′s is an irreducible matrix;

(2) Co-unifilarity: T (x)
s′s > 0 only when s = f (s′, x) for

some function f : S × X → S;
(3) Retrodictively Distinct States: Pr(x1 . . . xt |st ) =

Pr(x1 . . . xt |s′
t ) for all t and x1 . . . xt implies st = st ′ .

Reverse ε-machines are a process’s minimal co-unifilar
generators, in the sense that they are smallest with respect to
the number of memory states |S|, the entropy H[S], and all
other ways of measuring memory, such as the Rényi entropies
Hα[S] := 1

1−α
log2[

∑
s πG(s)α].

There is an intricate relationship between forward and
reverse ε-machines that can only be appreciated in the lan-
guage of time reversal. The time-reverse of a generator
G = (S,X , {T (x)

s′s }) is the generator G̃ = (S,X , {T̃ (x)
s′s }) where

T̃ (x)
s′s = πsT

(x)
s′s /πs′ [54]. The generator G̃ is associated with

the reverse process, PrG̃(x1 . . . xt ) = PrG(xt . . . x1). Note that
time reversal preserves both the state space S and the station-
ary distribution πs.

Given a process’s forward ε-machine F, its time reverse F̃

is the reverse ε-machine of the reverse process. Conversely,
given a process’s reverse ε-machine G, its time reverse G̃

is the forward ε-machine of the reverse process. Since the
stationary distribution and state space are preserved under
time reversal, F and F̃ have the same memory costs, as do G

and G̃. However, somewhat surprisingly, this does not mean
that F and G have the same memory costs [53].

Previous work compared the results of compressing the
forward ε-machine F of a process and the forward ε-machine
G̃ of the reverse process using the q-machine formalism.
The result, for compressing G̃, is a q-machine that generates
the reverse process—remarkably, with identical cost to the
q-machine constructed from F [49].

The q-machine constructed from G̃ generates a quantum
process and as such can itself undergo quantum time re-
versal [52], resulting in a new process that is generated by
what we call the reverse q-machine. Just as the q-machine
compresses G̃, the reverse q-machine is a compression of
G. Although the reverse q-machine is derived from the q-
machine via time reversal, there is genuinely new physics
present, because the dissipation �Sloc [Eq. (24)] is not invari-
ant under time reversal. Thus, they must be approached as a
separate case from the traditional q-machine when examining
their thermodynamic efficiency.

The details of the time reversal are handled in the SM.
Here, we present the resulting technique for compressing
the reverse ε-machine. Given a reverse ε-machine G =
(S,X , {T (x)

s′s }), for any set of phases {φxs : x ∈ X , s ∈ S} there
is an encoding {|ψs〉 : s ∈ S} of orthogonal states into a
Hilbert space HS and a set of Kraus operators {K (x) : x ∈ X }
on said Hilbert space such that

K (x)|ψs〉 =
∑
s′∈S

eiφxs′
√

T (x)
s′s |ψs′ 〉. (25)

The orthogonality of {|ψs〉} allows us to turn this into an
explicit definition of the Kraus operators:

K (x) =
∑
s′∈S

eiφxs′
√

T (x)
s′ f (s′,x)|ψs′ 〉〈ψ f (s′,x)|. (26)

The stationary state ρπ of this machine is, unlike the q-
machine, generically not expressible as an ensemble of the
encoding states {|ψs〉}. If this were so, the orthogonality of
{|ψs〉} would make them a diagonalizing basis for ρπ , and we
would achieve no memory compression. Rather, compression
is achieved for the reverse q-machine precisely because the
stationary state ρπ is generically not diagonal in the encoding
states—in contrast with the q-machine, which derived com-
pression from the nonorthogonality of the encoding states.

The reverse q-machine stochastic dynamics Eq. (23) and
thermodynamics Eq. (24) are defined precisely as those for
q-machines in the previous section. As before, to prove our
result we must define a special partition of the generator
states. Here, it is important to note a relationship between
a process’s forward ε-machine F = (P,X , {R(x)

p′ p}) and its

reverse ε-machine G = (S,X , {T (x)
s′s }). Specifically, the state

St of G after seeing the word x1 . . . xt and the state Pt of F after
the same are related by

Pr
G̃

(st |x1 . . . xt ) =
∑

pt

Pr C (st |pt ) Pr F(pt |x1 . . . xt ) (27)

for some channel Pr C (s|p). Let λp be the station-
ary distribution of F’s states and let Pr E (s′|s) =∑

p Pr C (s|p) Pr C (s′|p)λp/πs. Let B = {Bθ } be the ergodic
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FIG. 4. Performance trade-offs for reverse q-machines, whose
variety and dependence on {φxs} is represented by a torus: Under all
quantifications of memory, the reverse q-machines constructed from
a retrodictor achieve non-negative memory compression. However,
to achieve positive compression, they must also have a nonzero
dissipation �Sloc. The latter renders them less thermodynamically
efficient.

partition of Pr E (s′|s), such that Pr E (s′|s) > 0 only when
θ (s) = θ (s′). The SM shows that ρπ is diagonal in the blocks
defined by B.

Our result for reverse q-machines, proven in the SM, can
now be stated:

Theorem 4: Maximally-efficient reverse q-machine. Let
G = (S,X , {T (x)

s′s }) be a given process’ reverse ε-machine.
Suppose we build from it a reverse q-machine with encoding
{|ψs〉} and Kraus operators {K (x)}. Let B := {Bθ } be the MCP
of S . Then the reverse q-machine has �Sloc = 0 if and only if
the partition B is trivially maximal—in that |Bθ | = 1 for each
θ—and the predictively state-merged generator GB of G is
unifilar.

Notice that this statement is a similar to that made in
the last section and is essentially its time reverse. It implies
that the only reverse ε-machines which can be quantally
compressed are those which are also predictive generators.
Also, again the trivial maximality of the ergodic partition
B implies an inability to achieve nonzero compression. A
heuristic diagram of the situation is shown in Fig. 4.

In conjunction with the previous section, this is a profound
result on the efficiency of quantum memory compression.
Distinct from the classical case, where Theorem 2 established
that every process has certain generators that do achieve zero
dissipation, Theorems 3 and 4 imply that only certain pro-
cesses have zero-dissipation quantum generators and, more-
over, those particular processes achieve no memory compres-
sion. The memory states, being orthogonally encoded, take no
advantage of the quantum setting to reduce their memory cost.

VII. CONCLUDING REMARKS

We identified the conditions under which local operations
circumvent the thermodynamic dissipation �Sloc that arises
from destroying correlation. We started by showing how a
useful theorem can be derived by using recent results on the
fixed points of quantum channels. We applied it to the setting

of local operations to determine the necessary and sufficient
conditions for vanishing �Sloc in classical and quantum set-
tings, with the aid of a generalized notion of quantum suffi-
cient statistic. We employed this fundamental result to review
and extend previous results on the thermodynamic efficiency
of generators of stochastic processes. We confirmed a recent
conjecture regarding the conditions for vanishing �Sloc in a
classical generator. And, then, we showed that the exact same
conditions hold for quantum generators, even to the point of
requiring orthogonal encoding of memory states. This implies
the profound result that quantum memory compression and
perfect efficiency (�Sloc = 0) are incompatible.

It is appropriate here to recall the lecture by Feynman in
the early days of thinking about quantum computing, in which
he observed that quantum systems can only be simulated on
classical (even probabilistic) computers with great difficulty,
but on a fundamentally-quantum computer they could be more
realistically simulated [3]. Here, we considered the task of
simulating a classical stochastic process by two means: one
by using fundamentally-classical but probabilistic machines
and the other by using a fundamentally-quantum machine.
Previous results generally indicated quantum machines are ad-
vantageous in memory for this task, in comparison with their
classical counterparts. Historically, this led to a much stronger
notion of “quantum supremacy” than Feynman proposed:
quantum computers may be advantageous in all tasks [58].

However, the quantum implementation we examined, al-
though advantageous in memory, requires nonzero dissipation
in order to cash in on that advantage. Furthermore, not every
process necessarily has a quantum generator that achieves
zero dissipation. This is in sharp contrast with the classical
outcome. And so, this returns us to the spirit of Feynman’s
vision for simulating physics, in which it may sometimes
be the case that the best machine to simulate a classical
stochastic process is a classical stochastic computer—at least,
thermodynamically speaking.

To further exercise these results, further extensions must
be made to quantum generators, beyond the q-machine and its
time reverse. We must determine if the exclusive relationship
between compression and zero dissipation continues to hold
in such extensions. We pursue this question in forthcoming
work.
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