THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS

SECOND EDITION

HERBERT B. CALLEN University of Pennsylvania

JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

CONTENTS

	T I VERAL PRINCIPLES OF SSICAL THERMODYNAMICS	1
	luction The Nature of Thermodynamics and the Basis of nostatistics	2
1 TI	HE PROBLEM AND THE POSTULATES	5
1.1	The Temporal Nature of Macroscopic Measurements	5
1.2	The Spatial Nature of Macroscopic Measurements	6
1.3	The Composition of Thermodynamic Systems	9
1.4	The Internal Energy	11
1.5	Thermodynamic Equilibrium	13
1.6	Walls and Constraints	15
1.7	Measurability of the Energy	16
1.8	Quantitative Definition of Heat—Units	18
1.9	The Basic Problem of Thermodynamics	25
1.10	The Entropy Maximum Postulates	27
2 ТІ	HE CONDITIONS OF EQUILIBRIUM	35
2.1	Intensive Parameters	35
2.2	Equations of State	37
2.3	Entropic Intensive Parameters	40
2.4	Thermal Equilibrium—Temperature	43
2.5	Agreement with Intuitive Concept of Temperature	45
2.6	Temperature Units	46
2.7	Mechanical Equilibrium	49
2.8	Equilibrium with Respect to Matter Flow	54
2.9	Chemical Equilibrium	56

	OME FORMAL RELATIONSHIPS,	59
	ND SAMPLE SYSTEMS	59
3.1	The Euler Equation	
3.2	The Gibbs–Duhem Relation	60
3.3	Summary of Formal Structure	63
3.4	The Simple Ideal Gas and Multicomponent	
<u> </u>	Simple Ideal Gases	66
3.5	The "Ideal van der Waals Fluid"	74
3.6	Electromagnetic Radiation	78
3.7	The "Rubber Band"	80
3.8	Unconstrainable Variables; Magnetic Systems	81
3.9	Molar Heat Capacity and Other Derivatives	84
	EVERSIBLE PROCESSES AND THE	0.7
	AXIMUM WORK THEOREM	91
4.1	Possible and Impossible Processes	91
4.2	Quasi-Static and Reversible Processes	95
4.3	Relaxation Times and Irreversibility	99
4.4	Heat Flow: Coupled Systems and Reversal of Processes	101
4.5	The Maximum Work Theorem	103
4.6	Coefficients of Engine, Refrigerator, and	
	Heat Pump Performance	113
4.7	The Carnot Cycle	118
4.8	Measurability of the Temperature and of the Entropy	123
4.9	Other Criteria of Engine Performance; Power Output and	
	"Endoreversible Engines"	125
4.10	Other Cyclic Processes	128
5 AI	LTERNATIVE FORMULATIONS	
Al	ND LEGENDRE TRANSFORMATIONS	131
5.1	The Energy Minimum Principle	131
5.2	Legendre Transformations	137
5.3	Thermodynamic Potentials	146
5.4	Generalized Massieu Functions	151
6 T	HE EXTREMUM PRINCIPLE IN THE	
	EGENDRE TRANSFORMED REPRESENTATIONS	153
6.1	The Minimum Principles for the Potentials	153
6.2	The Helmholtz Potential	157
6.3	The Enthalpy; The Joule-Thomson or "Throttling" Process	160
6.4	The Gibbs Potential; Chemical Reactions	167
6.5	Other Potentials	172
6.6	Compilations of Empirical Data; The Enthalpy of Formation	172
6.7	The Maximum Principles for the Massieu Functions	179

Contents	xiii

7	MAXWELL RELATIONS	181
7.1	The Maxwell Relations	181
7.2	2 A Thermodynamic Mnemonic Diagram	183
7.3	A Procedure for the Reduction of Derivatives in	
	Single-Component Systems	186
7.4	Some Simple Applications	190
7.5	5 Generalizations: Magnetic Systems	199
8	STABILITY OF THERMODYNAMIC SYSTEMS	203
8.1		203
8.2	2 Stability Conditions for Thermodynamics Potentials	207
8.3	B Physical Consequences of Stability	209
8.4	Le Chatelier's Principle; The Qualitative Effect	
	of Fluctuations	210
8.5	5 The Le Chatelier-Braun Principle	212
9	FIRST-ORDER PHASE TRANSITIONS	215
9.1	First-Order Phase Transitions in Single-Component Systems	215
9.2	2 The Discontinuity in the Entropy–Latent Heat	222
9.3	3 The Slope of Coexistence Curves; the Clapeyron Equation	228
9.4	4 Unstable Isotherms and First-Order Phase Transitions	233
9.5	5 General Attributes of First-Order Phase Transitions	243
9.6	5 First-Order Phase Transitions in Multicomponent	
	Systems—Gibbs Phase Rule	245
9.7	7 Phase Diagrams for Binary Systems	248
10	CRITICAL PHENOMENA	255
10.1	1 Thermodynamics in the Neighborhood of the Critical Point	255
10.2	2 Divergence and Stability	261
10.3	3 Order Parameters and Critical Exponents	263
10.4	4 Classical Theory in the Critical Region; Landau Theory	265
10.5	5 Roots of the Critical Point Problem	270
10.6	5 Scaling and Universality	272
11	THE NERNST POSTULATE	277
11.1	1 Nernst's Postulate, and the Principle of Thomsen	
	and Bertholot	277
11.2	2 Heat Capacities and Other Derivatives at Low Temperatures	280
11.3	3 The "Unattainability" of Zero Temperature	281
12	SUMMARY OF PRINCIPLES	
	FOR GENERAL SYSTEMS	283
12.	5	283
12.2	2 The Postulates	283

12.3	The Intensive Parameters	284
12.4	Legendre Transforms	285
12.5	Maxwell Relations	285
12.6	Stability and Phase Transitions	286
12.7	Critical Phenomena	287
12.8	Properties at Zero Temperature	287
13 P	ROPERTIES OF MATERIALS	289
13.1	The General Ideal Gas	289
13.2	Chemical Reactions in Ideal Gases	292
13.3	Small Deviations from "Ideality"—The Virial Expansion	297
13.4	The "Law of Corresponding States" for Gases	299
13.5	Dilute Solutions: Osmotic Pressure and Vapor Pressure	302
13.6	Solid Systems	305
14 I	RREVERSIBLE THERMODYNAMICS	307
14.1	General Remarks	307
14.2	Affinities and Fluxes	308
14.3	Purely-Resistive and Linear Systems	312
14.4	The Theoretical Basis of the Onsager Reciprocity	314
14.5	Thermoelectric Effects	316
14.6	The Conductivities	319
14.7	The Seebeck Effect and the Thermoelectric Power	320
14.8	The Peltier Effect	323
14.9	The Thomsen Effect	324

PART II STATISTICAL MECHANICS

xiv

Contents

	ATISTICAL MECHANICS IN THE NTROPY REPRESENTATION:	
	E MICROCANONICAL FORMALISM	329
15.1	Physical Significance of the Entropy for Closed Systems	329
15.2	The Einstein Model of a Crystalline Solid	333
15.3	The Two-State System	337
15.4	A Polymer Model—The Rubber Band Revisited	339
15.5	Counting Techniques and their Circumvention;	
	High Dimensionality	343
16 THE CANONICAL FORMALISM; STATISTICAL		
MECHANICS IN HELMHOLTZ REPRESENTATION 349		
16.1	The Probability Distribution	349
16.2	Additive Energies and Factorizability of the Partition Sum	353

16.3	Internal Modes in a Gas	355
16.4	Probabilities in Factorizable Systems	358
16.5	Statistical Mechanics of Small Systems: Ensembles	360
16.6	Density of States and Density-of-Orbital States	362
16.7	The Debye Model of Non-metallic Crystals	364
16.8	Electromagnetic Radiation	368
16.9	The Classical Density of States	370
16.10	The Classical Ideal Gas	372
16.11	High Temperature Properties—The Equipartition Theorem	375
17 E	NTROPY AND DISORDER; GENERALIZED	
C	ANONICAL FORMULATIONS	379
17.1	Entropy as a Measure of Disorder	379
17.2	Distributions of Maximal Disorder	382
17.3	The Grand Canonical Formalism	385
18 Q	UANTUM FLUIDS	393
18.1	Quantum Particles; A "Fermion Pre-Gas Model"	393
18.2	The Ideal Fermi Fluid	399
18.3	The Classical Limit and the Quantum Criteria	402
18.4	The Strong Quantum Regime; Electrons in a Metal	405
18.5	The Ideal Bose Fluid	410
18.6	Non-Conserved Ideal Bose Fluids; Electromagnetic	
10 7	Radiation Revisited	412
18.7	Bose Condensation	413
19 FI	LUCTUATIONS	423
19.1	The Probability Distribution of Fluctuations	423
19.2	Moments and The Energy Fluctuations	424
19.3	General Moments and Correlation Moments	426
	ARIATIONAL PROPERTIES, PERTURBATION	
	XPANSIONS, AND MEAN FIELD THEORY	433
20.1	The Bogoliubov Variational Theorem	433
20.2	Mean Field Theory	440
20.3	Mean Field Theory in Generalized Representation;	
	the Binary Alloy	449

PART III FOUNDATIONS

21	POSTLUDE: SYMMETRY AND THE CONCEPTUAL	
	FOUNDATIONS OF THERMOSTATISTICS	455
21.1	1 Statistics	455

xvi Contents

21.2	Symmetry	458
21.3	Noether's Theorem	460
21.4	Energy, Momentum and Angular Momentum; the Generalized	
	"First Law" of Thermodynamics	461
21.5	Broken Symmetry and Goldstone's Theorem	462
21.6	Other Broken Symmetry Coordinates-Electric and	
	Magnetic Moments	465
21.7	Mole Numbers and Gauge Symmetry	466
21.8	Time Reversal, the Equal Probability of Microstates,	
	and the Entropy Principle	467
21.9	Symmetry and Completeness	469
	NDIX A E RELATIONS INVOLVING	
	TIAL DERIVATIVES	473
A.1	Partial Derivatives	473
A.2	Taylor's Expansion	474
A.3	Differentials	475

A.4	Composite Functions		475
A.5	Implicit Functions		476

APPENDIX B MAGNETIC SYSTEMS	479
GENERAL REFERENCES	485
INDEX	487