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The thermodynamics and electrodynamics of the superradiant phase are analyzed on the 
basis of the Emeljanov·Klimontovich model by means of a mean field approach and random 
phase approximation. The model considers infinite modes of radiation field. The superradiant 
phase is characterized by a static and homogeneous Bose condensation of the transverse 
collective mode with zero wave vector. The thermodynamic Quantities and the dispersion 
relations for the collective mode are obtained in closed forms. While the thermodynamic 
properties of the present model are the same as those of the Dicke model, the electrodynamics 
differs in form from the latter. A softening of the lower branch of the collective mode behaves 
as (T- Te)l/2 for T> Te, whereas for T< Te it obeys a law Te- T or (Tc- T)I/2 according to 
the different regions of temperature and the polarizations. A light velocity is renormalized with 
an anisotropic constant. 

§ 1. Introduction 

437 

Properties of a system of n identical atoms with two levels interacting with 
a radiation field are now widely investigated. In the most of the works a 
simplification that takes account of only a single rotating field has been made. 
Within this simplified model it is shown that a mean field treatment is sufficient 
to obtain the equilibrium properties, which is shown to be exact in the limit of large 
n. I)~6) It was predicted that if the coupling between the two subsystems- the 
atoms and the radiation field-is sufficiently strong, the system exhibits a phase 
transition to an ordered state called a superradiant phase. 

In spite of this success, however, up to the present time a natural problem of 
infinite number of modes of the radiation field and without trancation to a single 
rotating field has been remained less clear. Emeljanov and Klimontovich 8

) 

(referred to as E. K. hereafter) studied briefly this problem on the basis of a model 
which is a generalization of the Dicke model. They derived a set of operator 
equations for the field and the atomic polarization. By linearizing them with 
respect to fluctuations they obtained a critical behaviour of collective modes 
which suggests a phase transition to a superradiant phase at a critical temperature 
analogous to that of the Dicke model. Recently, the superradiant ground state of 
the E. K. model is discussed by the author within a framework of a mean field 
theory.l0) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/65/2/437/1929085 by guest on 21 August 2022



438 M. Kimura 

The purpose of the present paper is to work out the analysis about 
thermodynamic and electromagnetic properties of the E. K. model. S

) Following 
the idea that the superradiant state is characterized by the presence of the static 
and uniform Bose condensation of a collective mode,5).G) we introduce anomalous 
quasi-averages of an electric field and off-diagonal atomic polarizations, which 
play the role of the order parameter of the new phase. 

In § 2 the Hamiltonian of the E. K. model is introduced. In order to make 
easy the analysis in subsequent sections Fermi operators are used to represent the 
atomic system. In such a representation the present model can be thought of as 
a member of a family of the Lee models, II) as well. 

In § 3 a collective mode- transverse polariton - in the normal phase is 
examined in a random phase approximation (RP A). It is shown that the lower 
branch of the mode becomes soft as w_oc( T- Te)1/2 as a temperature is lowered. 
This form of temperature behaviour of the softening differs from that of the 
single rotating wave where the softening law as w_oc T- Te is obtained. This 
softening brings out the instability of the normal phase below a certain crititical 
temperature and predicts a phase transition accompanied with the condensation of 
the unstable collective mode. It is pointed out that the mode with k=O is most 
unstable. This is important to take the property of the low temperature phase to 
be characterized by a homogeneous condensation as a natural consequence. This 
was assumed by E. K. S

) without proof. 
In § 4 the thermodynamic properties are discussed on the basis of an effective 

Hamiltonian which is constructed by a mean field treatment suitable for the 
superradiant phase. The presence of the condensation field gives rise to the 
Stark shift of the atomic energjl levels, which brings out a net free energy gain of 
the superradiant phase at an expence of energy of the static electric field as 
compared with the normal phase. The transition is of the second kind as in the 
case of the Dicke model. I) 

As is well known,12) the time development of a Bose condensation field is 
governed by its chemical potential f1 as eil't. In considering that the chemical 
potential of a photon is zero the condensation field in the present case is 
anticipated to be static in time. In § 5 it is shown that this is indeed the case by 
examining equations of motion of the condensation fields. IO

) 

In § 6 the collective mode in the superradiant phase is obtained. They are 
anisotropic because of the broken rotational symmetry. The lower branch of 
them is gapless and linear in k for small k with renormalized anisotropic light 
velocity. This is the Goldstone mode accompanying in the new phase and 
becomes soft as (Tc- T)1/2 near Te. 
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§ 2. Model Hamiltonian 

Now, the Hamiltonian of the E. K. modeIS)-lO) is introduced as follows. Let 

akA and at be the operators for the electromagnetic field with a wave vector k 

and a polarization It, bis and his for an i -th a tom at a level s = 1 or 2 located at R i. 
The splitting of the levels 1 and 2 is denoted by co. The transverse electric 
induction DkA is written as 

(2'1) 

and the transverse component of the electric dipole Pi of an i-th atom is as 

(2'2) 

where d. = ef CPt *( e.' r )c/hdr is a matrix element of an atomic dipole in the direction 
e.. The Hamiltonian is decomposed into three parts,S)-lO) 

where 

H=Ho+H'+H" , 

H'= ~ 2:, Dk?Pie'kRi , 
kAl 

H" = 27[(1 ~ (3) 2:, PiPje'k(Ri- R j ) • 

k?lj 

(2'3) 

(2'4) 

(2'5) 

(2'6) 

H' is a part of an interaction with transverse electric induction. H" embodies 
the remaining part of the interaction with the transverse field and the interaction 
with longitudinal field. The latter comes from the direct dipole-dipole interaction, 
which is written at present in the form proportional to a local field constant /3. 
The detailed discussion for this simplification is given in the text. 13) As was 
shown there, the parameter /3 depends on k, but we take it as a constant (of order 
1) because we are interested in the behaviour of the system at the uniform 
equilibrium state and the fluctuations about it with long wave length. 

Now, we define operators 

(2'7) 
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By the same reason mentioned just above, we can replace the summation over i 
in (2'7) by integral as ~i···~J dR···. Then, the inverse of (2'7) becomes 

bi = ~ ~ bk exp( ikR;) 
v n k 

and the commutation relations 

(2'8) 

(2,9) 

The (k, ,1 )-component of the total transverse atomic dipole is defined as 

P 1M = ~ d;,Pi exp( - ikRi) 
i 

(2·10) 

By using definitions (2' 7) ~ (2 '10) the Hamiltonians (2' 2) ~ (2' 4) are rewritten as 

(2'11) 

(2'12) 

(2·13) 

The kinetic energy of the translational motion of the atoms is not explicitly 
written, because we assume that T< Eo. If this term cannot be ignored, the 
second term of (2'11) must be replaced by 

(2'14) 

If we let /3 = 1 and take account of only a single rotating wave, the present 
Hamiltonian (2'11)~(2'13) reduces to that of the Dicke model. 

§ 3. Collective mode in normal phase 

Before proceeding to study a superradiant phase let us examine the instability 
in the system at the normal phase by showing the catastrophic behaviour of the 
collective mode. Let the propagator of the transverse electromagnetic field 6

) 

(3.1) 
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the equation for which is given by 

where 

FjO)(k, Wm)= -4Jr(ck)2{Wm2+(ck)2}-I, 

Wm = 2 mJri/ T . 

n is the polarization part defined by 

The equation for n is written as 

or by solving it 

(3'2) 

(3'3) 

(3'4) 

(3'5) 

(3'6) 

The second term of the r. h. s. of Eq. (3'5) arises due to the interaction H" (2' 
13). Substituting Eq. (3'6) into Eq. (3'2), we have 

In the lowest order approximation n(O) is calculated from 

2 1 

njO)(k, Wm)=d;. Od;.+d;.O d;. 

1 2 

= Td/'J.:,{G2(P, Vn)Gl(p-k, lIn-Wm) 
pl/n 

where Gs(p, lin) is a propagator of free atoms at the level s = 1, 2, 

1 
Gs(p,lIn)=' + /2' 

llln co 

lin = 2Jrl'( n + ~ ) / T . 

+= for s={~, 

After summing over p and lin we obtain 

(3' 7) 

(3'8) 

(3'9) 
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(3'10) 

Substituting Eq. (3'10) into Eq. (3.7), we obtain 

(3'11) 

where 

Z - 2 2 h Eo 
2 - Wm + Eo - VAEo t 2 T (3'12) 

After analytical continuation of the Matsubara frequency lWm---> W In Eq. 
(3·11) we find the dispersion relation for the collective mode 

(3'13) 

where 

(3'14) 

So long as the coupling is weak; v A < Eo, the spectrum given by Eq. (3' 3) displays 
a usual polariton form at any temperature. However, if the coupling is 
sufficiently strong; VA> Eo, it behaves in a very different way: the lower branch 
WkA becomes soft as the temperature is lowered and tends to zero at the 
temperature Tc which is given by 

~th~=1 
Eo 2 Tc ' 

(3'15) 

just as the case of the Dicke model. 6
) Near Tc( T;c Tc) the spectrum behaves as 

(3·16) 

where 

(3'17) 
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At T< Tc , CtJ_
2 is negative, so that the system becomes unstable. 

It should be noted that within the above argument the critical temperature Tc 
depends only on il through dA, but not on k. To speak more realistically, however, 
effects other than we have considered would have caused some dependence on k. 
Indeed, we can show that the kinetic energy of the atoms which have been ignored 
gives rise to a term proportional to k 2

, thus in place of Eq. (16) 

(3'18) 

As a consequence, one can see that the mode with k = ° is made to be the most 
unstable, implying the new phase below Tc to be characterized by spacially 
uniform condensate. 

§ 4. Thermodynamic properties of superradiant phase 

Along the line of ideas mentioned in the previous sections we introduce for the 
superradiant phase the Bose condensation field of the collective mode with k=O, 
which is taken as uniform and static. They are expressed as nonzero averages 
of 

- i lim /2J[ck<akA,> = a and <POAs> = P , 
k-O 

( 4·1) 

where an arbitrariness of the direction il is removed by fixing il =ils. As will be 
shown later, the self·consistently determined a and P differ from each other only 
by a constant factor, so that either a or P can be regarded as the order parameter 
of the superradiant phase. 

Now, the mean field treatment of the original Hamiltonian (2'11) ~ (2 '13) 
under the prescription (4'1) leas to a new effective Hamiltonian 

Heff=jQf-2J[(1-(3)P2+~ "(b+ b, - b+ b ) 2 2 -;- 2p 2p Ip Ip 

(4·2) 

where 

L1 = 4{Rea + 2(1- (3)P}. (4'3) 

The quadratic Hamiltonian (4'2) is diagonalized by the global canonical 
transformation 10) 
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/3zp = sin 8blp - cos 8bzp , (4·4) 

where 

cos28=co/c and sin28=L1/c (4·5) 

with 

(4·6) 

Thereby the Hamiltonian (4·2) is transformed as 

(4·7) 

The other solution where cos 8 = 1, sin 8 = 0 which corresponds to a and P = 0 is 
also allowed. However, this is a trivial solution which corresponds to a normal 
phase and is energetically unstable below Te. 

The free energy of the system with Hamiltonian (4·7) is 

The order parameter a is determined by making the free energy minimum: JF/ Ja 
= 0, leading to 

By the definition (4·1) and Eq. (4·9) one obtains for P 

/ 
L1 c P= -a 2n= -nd-th ~ 
c 2T' 

(4·10) 

thus, for the "gap parameter" (4·3) 

(4·11) 

The value of P given by Eq. (4 ·10) also makes the free energy minimum with 
respect to P. Eliminating a from Eqs. (4·9) and (4·11), one obtains the "gap 
equation" 

c c 
--v=th 2T ' (4·12) 

where 

J) = Sn/3d2 n , 
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Equation (4·12) has a real unique, solution for c only if 

co< v). . (4·13) 

Now, by making use of Eqs. (4·10) and (3·12) the free energy becomes 

.::1 2 

F=4"V- Tn In(2 cosh c/ 2 T). (4·14) 

From this the entropy is calculated as 

nc2 c 
S = - 2 Tv th 2 T + n In (2 cosh c/ 2 T), (4·15) 

and the specific heat as 

nc2 sech2 c/ 2 T 
C= 4r 

1 - 2 ~ sech2 c/ 2 T 
(4·16) 

It must be compared with the specific heat of the normal phase 

2 

Cn = ;~2 sech2 co/2T, (4·17) 

which is obtained from Eq. (4·14) by making .::1=0. Therefore, the specific heat 
is discontinuous at T= Te with a jump 

C _ ( V h2 co )-1 
Cn - 1 - 2 Te sec 2 Te > 1 , (4·18) 

whereas the entropy is continuous at T = Te. The free energy (4 ·14) is always 
lower than that of the normal phase as long as T< Te . 

At the ground statelO
) (T=O) the gap equation (4·12) reduces to 

(4·19) 

After a little manipulation one obtains the condensation energy of the 
superradiant ground state as 

(4·20) 

Near Te we can expand the free energy (4·14) with respect to.::1. The result 
is the Landau free energy, well approximated by 
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Fo = - Ten In(2 cosh Eo/ 2 Te), 

n h2 Eo 
a = S Te 2 sec "2 Tc ' 

/3 n (h Eo Eo h2 Eo ) = SEo 3 t 2 Te - 2 Te sec 2 Tc . 

Consequently, the gap LI varies with temperature as 

for T:S Tc . 

§ 5. Electrodynamics of superradiant phase 

(4·21) 

(4'22) 

(4'23) 

(4·24) 

(4·25) 

As was anticipated in § 1 the condensation fields a and P must be static in 
time. To verify this statement we return to the original Hamiltonian (2'11)~ 
(2'13) and examine the Heisenberg equation of motion for akA and PhA. First, one 
obtains 

(5'1) 

On multiplying both sides of EQ. (5'1) by /2J[ck and taking the limit k --> 0 for its 
average, we obtain 

ia=ck(a+2J[P). (5'2) 

By virtue of EQ. (4'10) the terms in the bracket of the r.h.s. of EQ. (5'2) are 
cancelled out to zero. In the same way, we obtain for Po). 

iPo). = [Po)., H] = - Eodo~( bipb jp - btpb2p ) 
p 

(5·3) 

In the average the r.h.s. of EQ. (5' 3) also vaninshes since there is no term diagonal 
in /3, hence, P = O. Therefore, in the superradiant phase we have not only the 
homogeneous but also static electric induction and electric polarization. The 
equilibrium value of them are given by 
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L1 c 
D=2a=4JrndoE th 2T=-4JrP. (5'4) 

The electric field itself vanishes E = D - 4JrP = 0 by virtue of D = 2 a and Eq. 
(3'10), as it should be. The features derived above are well interpreted as a 
ferroelectricity.7) 

Now, we examine the behaviour of the new collective mode in the 
superradiant phase in the same way as in § 3. To this end it is usefull to rewrite 
the Hamiltonian (2'11)~(2'13) in terms of p'-operators by Eq. (4'4): 

(5'5) 

In H' (2·12) and (2'13), Ph). is replaced by 

The polarization part is now calculated with this new form of Hamiltonian to give 

+dA2( ~rT~{Gl(p, !In)Gl(p-k, !In-Wm) 

+G2(P, !In)G2(p-k, !In-Wm)}. (5'7) 

Here Gi is the propagator of a P'i-particle, Gi = 1/ (!In + d 2), i = 1,2. The second 
term of Eq. (5'7) vanishes except for the frequency Wm = O. Aside from this OWm.o 

contribution6
) we obtain from Eq. (5'7) 

(5'8) 

The photon propagator is now given by the same form as Eq. (3'11) but now Zl 
and Z2 are replaced by 

- _ 2 co 2 

Z2 -1 - cos () 2 + 2 
Wm c 

(5·9) 
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where fJ is the angle between d and d).. Thus, we find the new spectrum as 

(5'10) 

where 

The spectrum (5'10) is anisotropic through its dependence on fJ. For a region 
of small k< Eo it has the form 

(5'12) 

where a renormalization constant for the light velocity Z is given by 

(5'13) 

At temperature near Te, Z is expanded with respect to LI and is estimated as 

(5'14) 

where Eq. (4'35) was used. Substituting Eq. (5'14) into Eq. (5'12), one finds 

that the law for the softening of OJ!.? displays a crossover as 

(5'15) 

A little manipulation shows that our result (5 '10) is just the same as that of 
E. K.8) derived by another way. 

Finally, let us sketch the behaviour of the transverse susceptibility6) which is 
defined by 

(5'16) 

The equation for it is obtained as 

X(k,OJm)=O+~+~ 
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(5·17) 

Thus, we have 

(5·18) 

Comparing this with Eq. (3·7), we know that X must have the same poles as F;.(k, 
Q)m), as given by Eq. (3·13) for T> Te and Eq. (5·10) for T< Te. 

§ 6. Conclusions 

The foregoing analysis shows that the superradiant phase transition is not a 
special feature of the Dicke model but also present in a natural generalization of 
models, i.e. the atoms interacting with an infinite number of modes of radiation 
field. With respect to the spectrum of the collective mode our results support the 
previous ones8

) which were derived by a different method. 
Within our crude approximation our results about the thermodynamic 

properties of the E. K. model coincide with those of the Dicke model,I) while the 
electrodynamic collective motion for our case behaves in a different way. The 
point comes about from the truncation to a rotating field in the Dicke model. 

Althogh the Dicke model can be solved exactly at arbitrary temperature in the 
limit of a large number n asymptotically at least, our model allows us to carry out 
an analysis at most only approximately. In particular, we note that the present 
mean field treatment dose not apply to a critical region near Te. 

Finally, we briefly examine the implication of the strong coupling condition (3 
·13) for the equilibrium superradiance to be realized. If we suppose the 
separation of the atomic levels to be of an electronic origin, we have co ~ e2 

/ aB and 
d ~ eaB as an order of magnitude, where aB is the atomic Bohr radius. The local 
field parameter ,6' ~ 0[1] (= 4n/ 3 for an isotropic medium). Therefore, Eq. (3·l3) 
means that 

(6·1) 

i. e., the atomic density should be of the order of a condensed phase. Here, we 
note that the experiments I4) thus far reported have been performed at gas phases 
with lower densities rather than required by Eq. (5·1) where they have 
concentrated their attention to the non-equilibrium superradiance as originally 
proposed by Dicke. I5) We think that one of candidates for observation of an 
equilibrium superradiance may be molecular crystals with a comparably large 
polarizability in a low frequency region. 
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