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Abstract

Despite its enormous empirical success, the formalism of quantum theory still raises fundamental
questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it
could we reasonably expect to find in some regimes of physics? Here we address these questions by
studying how compatibility with thermodynamics constrains the structure of quantum theory. We
employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour
should arguably satisfy. In the framework of generalised probabilistic theories, we show that these
postulates already imply important aspects of quantum theory, like self-duality and analogues of
projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories
beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these
theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for
projective measurements and mixing procedures. Furthermore, we study additional entropy-like
quantities based on measurement probabilities and convex decomposition probabilities, and uncover
arelation between one of these quantities and Sorkin’s notion of higher-order interference.

1. Introduction

Quantum mechanics has existed for about 100 years now, but despite its enormous success in experiment and
application, the meaning and origin of its counterintuitive formalism is still widely considered to be difficult to
grasp. Many attempts to put quantum mechanics on a more intuitive footing have been made over the decades,
which includes the development of a variety of interpretations of quantum physics (such as the many-worlds
interpretation [1], Bohmian mechanics [2], QBism [3], and many others [4]), and a thorough analysis of its
departure from classical physics (as in Bell’s theorem [5] or in careful definitions of notions of contextuality [6]).
In more recent years, researchers, mostly coming from and inspired by the field of quantum information
processing (early examples include [21, 22, 51]), have taken as a starting point the set of all probabilistic theories.
Quantum theory is one of them and can be uniquely determined by specifying some of its characteristic
properties [53] (asine.g.[19,43, 51, 54, 55, 57-61]).

While the origins of this framework date back at least to the 1960s [ 15, 16, 18], it was the development of
quantum information theory with its emphasis on simple operational setups that led to a new wave of interest in
‘generalised probabilistic theories’ (GPTs) [51, 52]. This framework turned out to be very fruitful for
fundamental investigations of quantum theory’s information-theoretic and operational properties. For
example, GPTs make it possible to contrast quantum information theory with other possible theories of
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information processing, and in this way to gain a deeper understanding of its characteristic properties in terms of
computation or communication.

In a complementary approach, there has been a wave of attempts to find simple physical principles that
single out quantum correlations from the set of all non-signalling correlations in the device-independent
formalism [70]. These include non-trivial communication complexity [71], macroscopic locality [72], or
information causality [73]. However, none of these principles so far turns out to yield the set of quantum
correlations exactly. This led to the discovery of ‘almost quantum correlations’ [75] which are more general than
those allowed by quantum theory, but satisfy all the aforementioned principles. Almost quantum correlations
seem to appear naturally in the context of quantum gravity [77].

A relation to other fields of physics can also be drawn from information causality, which can be understood
as the requirement that a notion of entropy [66—69] exists which has some natural properties like the data-
processing inequality [74]. These emergent connections to entropy and quantum gravity are particularly
interesting since they point to an area of physics where modifications of quantum theory are well-motivated:
Jacobson’s results [78] and holographic duality [79] relate thermodynamics, entanglement, and (quantum)
gravity, and modifying quantum theory has been discussed as a means to overcome apparent paradoxes in black-
hole physics [80].

While GPTs provide a way to generalise quantum theory and to study more general correlations and physical
theories, they still leave open the question as to which principles should guide us in applying the GPT formalism
for this purpose. The considerations above suggest taking, as a guideline for such modifications, the principle
that they support a well-behaved notion of thermodynamics. As A Einstein [32] putit,

‘A theory is the more impressive the greater the simplicity of its premises, the more different kinds of things it
relates, and the more extended its area of applicability. Therefore the deep impression that classical thermodynamics
made upon me. It is the only physical theory of universal content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts.”

Along similar lines, A Eddington [33] argued that ‘The law that entropy always increases holds, I think, the
supreme position among the laws of Nature. If someone points out to you that your pet theory of the Universe is in
disagreement with Maxwell’s equations—then so much the worse for Maxwell’s equations. If it is found to be
contradicted by observation—well, these experimentalists do bungle things sometimes. But if your theory is found to be
against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.’

Here we take this point of view seriously. We investigate what kinds of probabilistic theories, including but
not limited to quantum theory, could peacefully coexist with thermodynamics. We present two postulates that
formalise important physical properties which can be expected to hold in any such theory. On the one hand,
these two postulates allow for a class of theories more general than quantum or classical theory, which thus
describes potential alternative physics consistent with important parts of thermodynamics as we know it.
Indeed, by considering a thought experiment originally conceived by von Neumann, we show that these theories
all give rise to a unique, consistent form of thermodynamical entropy. Furthermore, we show that this entropy
satisfies several other important properties, including two instances of the second law. On the other hand, we
show that these postulates already imply many structural properties which are also present in quantum theory,
for example self-duality and the existence of analogues of projective measurements, observables, eigenvalues
and eigenspaces.

In summary, our analysis shows that important structural aspects of quantum and classical theory are
already implied by these aspects of thermodynamics, but on the other hand it suggests that there is still some
‘elbow room’ for modification within these limits dictated by thermodynamics.

Thermodynamics in GPTs has been considered in some earlier works. In [35, 36], the authors introduced a
notion of (Rényi-2-)entanglement entropy, and studied the phenomenon of thermalisation by entanglement
[37-39] and the black-hole information problem (in particular the Page curve [40]) in generalisations of
quantum theory. Hinggi and Wehner [46] have related the uncertainty principle to the second law in the
framework of GPTs. Chiribella and Scandolo ([45, 47], see also [48]) have considered the notion of
diagonalization and majorization in general theories, leading to a resource-theoretic approach to
thermodynamics in GPTs. There are various connections between their results and ours, but there are essential
differences. In particular, they assume the purification postulate (which is arguably a strong assumption that in
particular excludes classical thermodynamics), whereas we are not making any assumption on composition of
systems whatsoever, and in this sense work in a more general framework. Furthermore, while Chiribella and
Scandolo take a resource-theoretic approach motivated by quantum information theory, our analysis relies on a
more traditional thermodynamical thought experiment (namely von Neumann’s). We presented results related
to some of those in the present paper in the conference proceedings [31]; here we use different assumptions and
obtain additional results.
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Figure 1. An example state space, A, modelling a so-called ‘gbit’ [52] which is often used to describe one half of a PR-box. The
operational setup is depicted on the left, and the mathematical formulation is sketched on the right. An agent (‘Alice’) holds a black
box winto which she can input one bit, a € {0, 1}, and obtains one output, x € {1, 2}. The box is described by a conditional
probability p (x|a). In the GPT framework, wbecomes an actual state, i.e. an element of some state space €2. Concretely,

w = (1, p(1]0), p(1]1)) € R? where the firstentry 1 is used to describe the normalisation, p(1|0) + p(2]0) = p(1|1) + p(2|1).In
this case, all probabilities are allowed by definition, so that the state space {2 becomes the square, i.e. the points (1, s, #) with

0 < s, t < 1. Alice’s input a s interpreted as a ‘choice of measurement’, and the two measurements are e{*5%, e resp.

e, 95V suchthat Y22 el (w) = 1forallstates w € Q. Ifwe describe effects by vectors by using the standard inner product, we

have, for example, ei“::l(» = (0, 1, 0), since e,(c”::lo) (w) = P(1|0) = (0, 1, 0) - w. There are four pure states, labelled wy, ...,wy. Every
pure state w; is perfectly distinguishable from every other pure state w; for j = i, but no more than two of them are jointly
distinguishable in a single measurement. More generally, every state on one side of the square is perfectly distinguishable from every

state on the opposite side. The unit effectis uy = (1, 0, 0).

Our paper is organised as follows. We start with an overview of the framework of GPTs. Then we present von
Neumann’s thought experiment on thermodynamic entropy, and a modification of it due to Petz [42]. Although
it relies on very mild assumptions, it already rules out all theories that admit a state space known as the gbit or
squit (a square-shaped state space that can be used to describe one of the two local subsytems of a composite
system known as the PR-box [83], exhibiting stronger-than-quantum correlations). Then we present our two
postulates, and show that they imply many structural features of quantum theory. We show that theories that
satisfy both postulates behave consistently in von Neumann’s thought experiment and admit a notion of
thermodynamic entropy which satisfies versions of the second law.

Because entropies are an important bridge between information theory and thermodynamics, in the final
section we investigate the consequences of our postulates for generalisations of quantities of known significance
in quantum thermodynamics [30], defined by applying Rényi entropies to probabilities in convex
decompositions of a state, or of measurements made on a state. In particular, we show a relation between max-
entropy and Sorkin’s notion of higher-order interference [76]: equality of the preparation and measurement
based max-entropies implies the absence of higher-order interference. Most proofs are deferred to the appendix.
Several results of this paper have been announced in the Master Thesis of one of the authors [34].

2. The mathematical framework

Our results are obtained in the framework of GPTs [51, 52, 55, 85, 88]. The goal of this framework is to capture
all probabilistic theories, i.e. all theories that use states to make predictions for probabilities of measurement
outcomes. Although the framework is based on very weak and natural assumptions, we can only provide a short
introduction of the main notions and results here. For more detailed explanations of the framework, see e.g.
[34,51,52,55, 86, 87]. The framework contains quantum theory and also the application of probability theory to
classical physics, often referred to as classical probability theory, as special cases. It also contains theories which
differ substantially from classical or quantum probability theory, for example boxworld [52], which allows
superstrong nonlocality, and theories that allow higher-order interference [76].

A central notion is that of the state and the set of states, the state space €)4. A state contains all information
necessary to calculate all probabilities for all outcomes of all possible measurements. One possible and
convenient representation would be to simply list the probabilities of a set of ‘fiducial’ measurement outcomes
which is sufficient to calculate all outcome probabilities for all measurements [51, 52]. An example is given in
figure 1.

Itis possible to create statistical mixtures of states: let us assume a black box device randomly prepares a state
w; with probability p; and a state w, with probability p,. In agreement with the representation of states as lists of
probabilities and the law of total probability, the appropriate state to describe the resulting measurement
statisticsis w = p,w; + p,w,. This means that the state space ()4 is convex and is embedded into a real vector
space A (to be described below). Due to the interpretation of states as lists of probabilities (which are between 0
and 1) we demand that €4 is bounded. Any state that cannot be written as a convex decomposition of other
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states is called a pure state. As pure states cannot be interpreted as statistical mixtures of other states, they are also
called states of maximal knowledge. Furthermore, there is no physical distinction between states that can be
prepared exactly, and states that can be prepared to arbitrary accuracy. Thus, we also assume that €4 is
topologically closed. In order to not obscure the physics by the mathematical technicalities introduced by
infinite dimensions, we will assume that A is finite-dimensional. Thus €4 is compact. Consequently, every state
can be obtained as a statistical mixture of finitely many pure states [89].

Furthermore, it turns out to be convenient to introduce unnormalised states w, defined as the non-negative
multiples of normalised states. They form a closed convex cone A := R, - 4. For simplicity of description,
we choose the vector space containing the cone of states to be of minimal dimension, i.e. span(A,) = A.

We introduce the normalisation functional u4 : A — R which attains the value one on all normalised states,
i.e. uy(w) = lforall w € Q. Itislinear, non-negative on the whole cone, zero only for the origin,and w € A
is an element of {34 ifand only if u4 (w) = 1. The normalisation u4 (w) can be interpreted as the probability of
success of the preparation procedure. For states with u, (w) < 1, the preparation succeeds with probability
s (w). The states with normalisation > 1 do not have a physical interpretation, but adding them allows us to take
full advantage of the notion of cones from convex geometry.

Effects are functionals that map (sub)normalised states to probabilities, i.e. into [0, 1]. To each measurement
outcome we assign an effect that calculates the outcome probability for any state. Effects have to be linear for
consistency with the statistical mixture interpretation of convex combinations of states. A measurement (with n
outcomes) is a collection of effects ey, ..., e, such that e; + ... + e, = uu. Its interpretation is that performing
the measurement on some state w € ), yields outcome i with probability e; (w).

A set of states wy, ..., w, is called perfectly distinguishable if there exists a measurement ey, ..., e, such that
ei(w;) = 0, thatis, 1ifi = jand 0 otherwise. A collection of n perfectly distinguishable pure states is called an 1-
frame, and a frame is called maximal if it has the maximal number # of elements possible in the given state space.
In quantum theory, for example, the maximal frames are exactly the orthonormal bases of Hilbert space. In
more detail, a frame on an N-dimensional quantum system is given by w; = |¢1) (¢1], ..., |¥n) (¥n], where
[11), ..., |[thn) are orthonormal basis vectors.

Transformations aremaps T : A — A that map states to states, i.e. T (A) C A.. Similarly as effects, they
also have to be linear in order to preserve statistical mixtures. They cannot increase the total probability, but are
allowed to decrease it (as is the case, for example, for a filter), thus 14 o T (w) < uy(w)forallw € A,.

Instruments’ [84] are collections of transformations Tjsuchthat 3 a0l = uy. Ifan instrument is applied
to a state w, one obtains outcome j (and post-measurement state T; (w) / pj) with probability p;=up (T; (w)).
Each instrument corresponds to a measurement given by the effects 1, o Tj. We will say it ‘induces’ this
measurement.

The framework of GPTs does not assume a priori that all mathematically well-defined states,
transformations and measurements can actually be physically implemented. Here, we will assume that a
measurement constructed from physically allowed effects is also physically allowed. Moreover, we assume that
the set of allowed effects has the same dimension as A ;, because otherwise there would be distinct states that
could not be distinguished by any measurement.

3.von Neumann’s thought experiment

The following thought experiment has been applied by von Neumann [41] to find a notion of thermodynamic
entropy for quantum states p. The result turns out to equal von Neumann entropy, H (p) = —tr(p log p). We
apply the thought experiment to a wider class of probabilistic theories.

We adopt the physical picture used by von Neumann [41] to describe the thought experiment'’; we will
comment on some idealisations used in this model at the end of this section. We consider a GPT ensemble
[Si> .-, Sn], where S; denotes the ith physical system, and Nj of the systems are in state wj, where j = 1,...,nand
Zj N;=N. This ensemble is described by the state w = Z;’: 1 P;w)s where p = N; /N ,which describes the
effective state of a system that is drawn uniformly at random from the ensemble.

? Some authors have recently begun referring to instruments as operations, but long-standing convention in quantum information theory
(including [50]) uses the term ‘operation’ for the quantum case of what we are calling transformations (which are completely positive maps).
Also, Davies and Lewis [84] define instrument more generally, to allow for continuously-indexed transformations, where we only consider
finite collections Tj.

190ur thought experiment is identical to von Neumann’s, up to two differences: first, we translate all quantum notions to more general GPT
notions; second, while von Neumann implements the transition from (5) to (6) in figure 2 via sequences of projections, we implement this
transition directly via reversible transformations.
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We introduce N small, indistinguishable, hollow boxes'', and we put each ensemble system Sjinto one of the
boxes such that the system is completely isolated from the outside. Furthermore, we assume that the boxes form
an ideal gas, which will allow us to use the ideal gas laws in the following derivation. This gas will be called the w-
gas. We will denote the total thermodynamic entropy of a system by H, with a subscript which may indicate
whether it is the total entropy of a gas, which potentially depends both on the states of the GPT systems in the
boxes and on the classical degrees of freedom (positions, momenta) of the boxes, or just the entropy of the GPT
or of the classical degrees of freedom.

At first we need to investigate how the entropy of the gas and of the ensemble are related to each other
because later on, we will only consider the gas. So we consider also a second GPT ensemble [Sl', o SI’\,] (described
by w’ € Q) implanted into a gas the same way. At temperature T = 0, the movement of the boxes freezes out
and we are left with the GPT ensembles. In this case, the thermodynamic entropies of the gases and the GPT
ensembles must satisfy: H,.gos — Ho/-gas = Hoensemble — Ho/-ensemble- Remember that the heat capacity is
C = 6Q/dT,and as the gases only differ in their internal systems, which are isolated, Cis the same for both
gases. With dH = 6Q/T wethus find that H,.g,; — H.s_g, is constantin T, i.e.

Hw—gas - Hw’—gas = Hyensemble — Ho/-ensemble for all temperatures.

The central tool for the thought experiment is a semi-permeable membrane. Whenever a box reaches the
membrane, the membrane opens that box and measures the internal system. Depending on the result, a window
is opened to let the box pass, or the window remains closed. It is crucial to note that this membrane will not cause
problems in the style of Maxwell’s demon, as was already discussed by von Neumann himself, because the
membrane does not distinguish between its two sides.

Now we begin with the experiment itself; see figure 2. We consider astate w = 37%_; p,w; where wj are
perfectly distinguishable pure states, and p, = Nj /N, where Njboxes contain a system in the state w;. We
assume that the w-gas is confined in a container of volume V. Let there be a second container which is identical to
the first one, but empty. The containers are merged together, the wall of the non-empty container separating the
containers replaced by a semi-permeable membrane which lets only w pass. At the opposite wall of the non-
empty container we insert a semi-permeable membrane which only blocks w;. The solid wall in the middle and
the outer semi-permeable membrane are moved at constant distance until the solid wall hits the other end.

Once this is accomplished, i.e. in stage (4) in figure 2, one container has all w;-boxes and the other one
contains all the rest. Note that this procedure is possible without performing any work as can be seen via Dalton’s
Law [90]: the work needed to push the semi-permeable membrane against the w;-gas can be recollected at the
other side from the moving solid wall, which is pushed by the w;-gas into empty space. Thus we have separated
the w;-boxes from the rest. We repeat a similar procedure until all the w;-gases are separated into separate
containers of volume V.

Next we compress the containers isothermally to the volumes p; V', respectively. Denoting the pressure by P,
and using the ideal gas law, we obtain the required work

fvpjv Pdv = j‘:p’v NiksT/V dV = p.Nks T logp;,
where log denotes the natural logarithm. As the temperature and thus the internal energy remain constant, we
extractheat Nkg T3 p; log p;-

At this point, we have achieved that every container contains a pure state wj. We now transform every w; to
another pure state w’ which we choose to be the same for all containers. This is achieved by opening the boxes
and applying a reversible transformation T;in every container j which satisfies Tjw; = w'. These transformations
exist due to postulate 1. Since the same transformation Tjis applied to all small boxes in any given container j
(without conditioning on the content of the small box), this operation is thermodynamically reversible.

Now we merge the containers, ending with a pure w’-gas in the same condition as the initial w-gas. This
merging is reversible, because the density is not changed and because all states are the same, so one can just putin
the walls again. The only step that caused an entropy difference was the isothermal compression. Thus, the
difference of the entropies between the w-gas and the w’-gas (which are equal to the entropies of the respective
GPT ensembles) is Nkg>" i log p;- Therefore H,,_cnsemble = Hy/-ensemble — INkB ijj log p; If we assume that
pure states have entropy zero, we thus end up with

Hw—ensemble = _NkB ZP] Ing] (1)
j

11 . . . . . P ..
For a more detailed discussion of the physical properties of these small boxes, we refer the reader to von Neumann's original work [41].
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Figure 2. This figure shows von Neumann’s thought experiment, as described in the main text. Stages (1)—(5) also feature in Petz’
version.

and with the following entropy per system of the ensemble:

1
HWw) = NHw—ensemble = —kg ZP] IOgPJ
j

In summary, we have made the following assumptions to arrive at this notion of thermodynamic entropy:

Assumptions 1.

@)

(a) Every (mixed) state can be prepared as an ensemble/statistical mixture of perfectly distinguishable pure

states.

(b) A measurement that perfectly distinguishes those pure states can be implemented as a semi-permeable

membrane, which in particular does not disturb the pure states that it distinguishes.

(¢) All pure states can be reversibly transformed into each other.

(d) Thermodynamical entropy H is continuous in the state. (Since ensembles must have rational coefficients

p; = Nj/N,we need this to approximate arbitrary states in the thought experiment.)

6
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(e) All pure states have entropy zero.

A generalised version of the thought experiment presented by Petz [42] is applicable to more general
decompositions: suppose that wy, ..., w, € ) are perfectly distinguishable, but not necessarily pure. Let
Pys ---»p, bea probability distribution. Then Petz’ thought experiment implies that

H ijwj = ijH(wj) — kg Zp] logpj. 3)
j j j

The main idea is that steps (1)—(5) of von Neumann’s thought experiment can be run even if the perfectly
distinguishable states wy, ..., w, are mixed and not pure (as long as the membrane will still keep them
undisturbed). Then the entropy of the state in (5) can be computed by making an additional extensivity
assumption: denote the GPT entropy of an w-ensemble of N particles in a volume Vby H,,_ensemple (N, V'), then
this assumption is that

H,-ensemble (>\N) )\V) = A H, - ensemble (N, V)

for A > 0. Assuming in addition that the entropy of the n containers adds up, the total entropy of the
configuration in step (5) is N > pH (wj), from which Petz obtains (3). While this approach needs this additional
extensivity assumption, it does not need to postulate that all pure states can be reversibly transformed into each
other (in contrast to von Neumann’s version). Under the assumption that all pure states have entropy zero, it
reproduces equation (2) as a special case.

We conclude this section with a few comments on the idealisations used in the thought experiments above.
The use of gases in which the exact numbers of particles with each internal state is known parallels von
Neumann’s argument in [41]. We rarely if ever have such precise knowledge of particle numbers in real physical
gases, so our argument involves a strong idealisation, but one that is common in thermodynamics and that has
also been made by von Neumann'~,

Although fluctuations in work are significant for small particle numbers, in the thermodynamic limit of
large numbers of particles there is concentration about the expected value given, in von Neumann’s protocol, by
the von Neumann entropy, and therefore our arguments (and von Neumann’s) have the most physical relevance
in this large-N'situation. This is of course true for classical thermodynamics as well—indeed, the use made of the
ideal gas law and Dalton’s law in von Neumann’s argument are additional places where large N is needed if one
wants fluctuations to be negligible. We expect finer-grained considerations to be required for a thorough study
of fluctuations in finite systems, which is one reason for interest in the additional entropic measures studied in
section 5.6, but von Neumann’s argument does not concern these finer-grained aspects of the thermodynamics
of finite systems.

4. Why the ‘gbit’ is ruled out

In section 2, we have introduced the ‘gbit’, a system for which the state space {2 is a square. Gbits are particularly
interesting because they correspond to ‘one half’ of a Popescu—Rohrlich box [83] which exhibits correlations
that are stronger than those allowed by quantum theory [70]. One might wonder whether the thought
experiments of section 3 allow us to define a notion of thermodynamic entropy for the gbit. We will now show
that this is not the case, which can be seen as a thermodynamical argument for why we do not see superstrong
correlations of the Popescu—Rohrlich type in our universe.

Since not all states of a gbit can be written as a mixture of perfectly distinguishable pure states, von
Neumann’s original thought experiment cannot be of direct use here. However, we may resort to Petz’ version:
every mixed state w of a gbit can be written as a mixture of perfectly distinguishable mixed states, as illustrated in
figure 3. Furthermore, the other crucial assumption on the state space is satisfied, too: for every pair of perfectly
distinguishable mixed states, there is an instrument (a ‘membrane’) that distinguishes those states without
disturbing them. We even have that all pure states can be reversibly transformed into each other (namely by a
rotation of the square).

Thus, we can analyse the behaviour of a gbit state space in Petz’ version of the thought experiment. Any
continuous notion of thermodynamic entropy H consistent with this thought experiment would thus have to

12 Here, von Neumann’s thought experiment is formulated in terms of a frequentist view on probabilities, which is standard in most
treatments on thermodynamics. A treatment involving a finite ensemble where the frequencies (and perhaps the total particle number) are
stochastic might seem more suitable from a Bayesian point of view; it would likely raise issues about whether the amount of work extracted
from a finite system is subject to fluctuations. For systems that are finite or out of equilibrium, measures such as Shannon’s are known not to
be the whole story (see [30] and references therein). But even for finite systems with a more realistic treatment of uncertainty about particle
numbers, the von Neumann entropy still gives the expected work in the protocol he considers. We defer these issues to future work, although
we note that [30] suggests the operational entropies discussed in section 5.6 are among the relevant tools for tackling them.
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w1 La w2

W4 wh w3
Figure 3. In an attempt to define a notion of thermodynamic entropy for the gbit, we can decompose any state into perfectly
distinguishable states. This is done in two steps, as explained in the main text.

satisfy (3). However, we will now show that the gbit does not admit any notion of entropy that satisfies (3).
Consider different decompositions of the state w = %wa + %wb in the centre of the square, where

w, = pw; + (1 — p)wyaswellas wy = pws + (1 — p)wy. Itis geometrically clear that every choice of

0 < p < 1corresponds to a valid decomposition. We find (applying equation (3) to w for the first equality, and
to w, and wy, for the second):

1 1 1. 1 1 1
H(w)= EH(wa) + EH(UJb) - ZkBEIOgE = Ep H(w) + 5(1 — p)H (wy)

1 1
+ Ep H(ws3) + E(l — p)H (wg) — kpplogp — kg(1 — p)log(1 — p) + kglog?2.

This expression can never be constant in p, no matter what value of entropy of the four pure states H (w;) we
assume. Thus, the entropy H (w) of the centre state w is not well-defined, since it depends on the choice of
decomposition.

In other words, the structure of the gbit state space enforces that any meaningful notion of thermodynamic
entropy Hwill not only be a function of the state, but a function of the ensemble that represents the state. If a state
wis represented by different ensembles, then this will in general give different values of entropy.

So what goes wrong for the gbit? Clearly, all we can say with certainty is that the combination of assumptions
made in von Neumann’s thought experiment turns out not to yield a unique notion of entropy, while a deeper
physical interpretation seems only possible under further assumptions on the interplay between the gbit and the
thermodynamic operations. However, a comparison with quantum theory motivates at least one further
speculative attempt at interpretation. In the example above, we have decomposed a state w into two perfectly
distinguishable states w, and wj, which can themselves be decomposed into pairs of perfectly distinguishable
states w; and wy, or wj and wy respectively. In quantum theory, this would only be possible if w, and w;, are
orthogonal, which would then imply that all four states wy, ..., wy are pairwise orthogonal. This would enforce
that there exists a unique projective measurement (a ‘membrane’) that distinguishes all these four states jointly.
This membrane could feature in von Neumann’s thought experiment (or other similar thermodynamical
settings), yielding a unique notion of thermodynamic entropy.

On the other hand, in the gbit, the four pure states wy, ..., wy are not jointly perfectly distinguishable. Hence
there is no canonical choice of ‘membrane’ that could be used in the thought experiment to define a unique
natural notion of entropy for the gbit states. Entropy will be ‘contextual’, depending on the choice of membrane
resp. ensemble decomposition that is used in any given specific thermodynamical setting. Therefore, the
implication ‘pairwise distinguishability =joint distinguishability’, which is true for quantum theory, has
thermodynamic relevance. This implication, if suitably interpreted, leads to the ‘exclusivity principle’ [7, 8, 91],
namely that the sum of the probabilities of pairwise exclusive propositions cannot exceed 1 (in this case these
propositions correspond to the outcomes of the jointly distinguishing measurement). This suggests that the
exclusivity principle, which has so far been considered only in the realm of contextuality, may be
thermodynamically relevant. This observation is also closely related to the notion of ‘dimension mismatch’
described in [82], and to orthomodularity in quantum logic (see for example [23]).

5. A class of theories with consistent thermodynamic behaviour

5.1. The two postulates
In this section we introduce the two postulates that express key operational concepts from thermodynamics. The
first postulate is motivated by the universality of thermodynamics and the distinction between microscopic and
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macroscopic behaviour. At first we consider the universality of thermodynamics, in the sense that
thermodynamics is a very general theory whose basic principles can be applied to many possible
implementations, as already noticed by N Carnot [44]:

‘In order to consider in the most general way the principle of the production of motion by heat, it must be
considered independently of any mechanism or any particular agent. It is necessary to establish principles applicable
not only to steam engines but to all imaginable heat-engines, whatever the working substance and whatever the
method by which it is operated.’

Recalling von Neumann’s thought experiment in the case of quantum theory, we can think of
thermodynamical protocols (which will ultimately also include heat engines) as acting on a given ensemble,
defined as a probabilistic mixture of pure states chosen from a fixed basis. If we interpret ensembles with
different choices of basis as different ‘working substances’, then Carnot’s principle should apply: protocols that
can be implemented on one ensemble (say, ensemble 1) can also be implemented on the other (say, ensemble
2)"”. In quantum theory, this universality is ensured by the existence of unitary transformations: all orthonormal
bases can be translated into each other by a unitary and therefore reversible map. In this sense, the state of
ensemble 1 can in principle be transferred to ensemble 2, then the thermodynamic protocol of ensemble 2 can be
performed (if we have also transformed the projectors describing the membranes accordingly), and then one can
transform back. Even if this cannot always be achieved in practice, the corresponding unitary symmetry of the
quantum state space (considered as passive transformations between different descriptions) enforces the
aforementioned universality'*.

This universality of implementation, as well as independence of the choice of labels and descriptions, should
continue to hold in all generalised theories that we consider. An orthonormal basis from quantum theory is
nothing else than a set of perfectly distinguishable pure states, i.e. an n-frame. Therefore, in our generalised
theories, we expect that this universality of implementation is achieved by the existence of reversible
transformations that, in analogy to unitary maps, transform any given n-frame into any other:

Postulate 1. For each n € N, all sets of n perfectly distinguishable pure states are equivalent. That is, if
{wiy ..., wpYand { @, ..., ¢, } are two such sets, then there exists a reversible transformation T with Tw; = o for
allj.

Furthermore, postulate 1 expresses a physical property that is crucial for thermodynamics: that of
microscopic reversibility. Many characteristic properties of thermodynamics arise from limited experimental
access to the microscopic degrees of freedom, which by themselves undergo reversible time evolution. This
reversibility, for example, forbids evolving two microstates into one, which is at the heart of the non-decrease of
entropy. If the experimenter had full access to the microscopic degrees of freedom, then he or she could convert
any state of maximal knowledge to any other one as long as he or she preserved distinguishability. Postulate 1
formalises this microscopic basis of thermodynamics by demanding the existence of ‘enough’ distinguishability-
preserving, microscopic transformations T, which can be understood as reversible time evolutions.

Postulate 1 has substantial information-theoretical justifications and consequences. The basic concepts of
both thermodynamics and information processing are independent of the choice of implementation. For
information processing this is formalised by the Turing machine which admits a multitude of physical
realisations. Perfectly distinguishable pure states can be taken as bits, and postulate 1 expresses that all bits (or
their higher-dimensional analogues) are equivalent. It is for this reason that postulate 1 was called generalised bit
symmetryin [34], and its restriction to pairs of distinguishable states was called bit symmetry in [64]. Starting with
Landauer’s principle, ‘thermodynamics of computation’ [92] has become a fruitful paradigm that relates the two
apparently disjoint fields. The two complementary interpretations of postulate 1 are one instance of this.

Now we turn to our second postulate. We are looking for theories very similar to the thermodynamics we are
used to; thus it is essential that we can adopt basic notions of standard thermodynamics unchanged or with only
very small alterations. Two such notions of great importance are (Shannon) entropy § = —kg3_; p; log p; and
majorization theory. In classical and quantum thermodynamics, these notions operate on the coefficientsin a
decomposition of a state into perfectly distinguishable pure states (in quantum theory, the eigenvalues). In order
to not change thermodynamic theory too much, we would also like this to be possible in our more general state
spaces. Thus, we demand that every state has a convex decomposition into perfectly distinguishable pure states.

1% Here we only consider ensembles of identical Hilbert space dimensions. If the dimensions are different (say, 2 versus 3), then one can
implement different sets of protocols on the ensembles (say, ones involving semipermeable membranes that distinguish 3 alternatives in the
latter, but not the former case). One could then still discuss a notion of universality in Carnot’s spirit, by referring to the equivalence of, say, a
state space with N = 3 alternatives to a subspace of a state space with N = 2 X 2 alternatives, but we will not discuss this further here.

' In classical thermodynamics, the analogue of a choice of basis is the labelling of the distinguishable configurations. Clearly, the availability
of thermodynamic protocols does not change under relabelling.
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Note that this was indeed one of our assumptions in von Neumann’s thought experiment in section 3. There,
itallowed us to realise any state was a ‘quasiclassical ensemble’, i.e. as an ensemble of states that behave like
classical labels. This gives us a further justification of our second postulate: thermodynamic (thought)
experiments require that states have an ensemble interpretation. An unambiguous notion of ‘counting of
microstates’ demands that the ensembles consist of perfectly distinguishable, pure states. Without this,
obtaining a phenomenological thermodynamics for which the theory is the underlying microscopic theory
seems problematic. Thus, our second postulate is

Postulate 2. Every state w € {2, hasa convex decomposition w = 3, p.wj into perfectly distinguishable pure
states wj.

Itis tempting to interpret the two postulates as reflecting the microscopic and the macroscopic aspects of
thermodynamics, respectively: while postulate 1 describes microscopic reversibility of the pure states that may
describe single particles in thermodynamics, postulate 2 ensures that mixed states can be interpreted
macroscopically as descriptions of quasiclassical ensembles, composed of a large number of particles that are
separately in unknown but distinguishable microstates.

We will not introduce any further postulates. In particular, we will not make any assumptions on the
composition of systems. All our results are therefore independent from notions like tormographic locality [51]
(which is arguably dispensable in many important situations [81]) or purification [56] (which is a rather strong
assumption); we do not assume either of the two.

5.2. Some consequences of postulates 1 and 2

Postulates 1 and 2 have been analysed in [43], but in a different context: instead of investigating
thermodynamics, the goal in [43] was to obtain a reconstruction of quantum theory, by supplementing
postulates 1 and 2 with further postulates. Some of the insights from [43] will be important here, and are
therefore briefly discussed below. Starting with section 5.4, we will also obtain new results that are interesting in a
thermodynamic context.

In contrast to Hilbert space, there is no apriori notion of inner product for GPTs. However, as shown in [64],
we get a natural inner product (-, -) as a consequence of postulates 1 and 2: it satisfies (Tw, Ty) = (w, ¢) forall
reversible transformations T,and 0 < (w, ¢) < lforallstates w, ¢ € 4. Furthermore, (w, w) = 1forall
pure w € Q4 and (¢, ¢) < lforallmixed p € Y,and{(w, @) = 0if w, @ € Qy are perfectly distinguishable.
Thus, all perfectly distinguishable states are orthogonal, as in quantum theory.

Moreover, the cone of unnormalized states becomes self-dual with this choice of inner product. In
particular, every effect e can be taken asa vectorin A, such that e (w) = (e, w). In standard quantum theory,
this is the Hilbert Schmidt inner product on the real vector space of Hermitian matrices: (X, Y) = tr(XY) for
X=X,y=Y"

Quantum theory has more structure: the convex set of density matrices {4 has faces'”, and these faces are in
one-to-one correspondence to subspaces of Hilbert space (namely, a face F contains all density matrices that
have support on the corresponding Hilbert subspace). To every face F, we can associate a number |F| which is the
dimension of the corresponding Hilbert subspace, and F C G implies |F| < |G|. Every face Fis generated by |F|
pure and perfectly distinguishable states in F (an | F|-frame in F), and every (smaller) frame that is a subset of F
can be completed, or extended, to a frame which has |F| elements and thus generates F.

In all theories that satisfy postulates 1 and 2, all these properties hold in complete analogy [43]. However,
since faces do not any more correspond to Hilbert spaces, the numbers |F| do not have an interpretation as the
dimension of a subspace. Instead, we call |F| the rank of F. If von Neumann’s thought experiment is supposed to
make sense for these theories, we need a way to formalise the working of a semipermeable membrane, which in
quantum theory is done via projective measurements.

Since we are dealing with unnormalized states, the corresponding analogue in GPTs will be formulated in
terms of the set of unnormalized states A . As one can see in the case of the gbit, it is not automatic that we have
any notion of ‘projective measurements’ for any given state space. However, postulates 1 and 2 turn out to
ensure that projective measurements exist. For any face F of A (the non-negative multiples of the
corresponding face of €24), consider the orthogonal projector Pronto the span of F. One can show that Pris
positive, i.e. maps (unnormalized) states to (unnormalized) states [43]. Moreover, Prdoes not disturb the states
in the face F.

Thus, to a given set of mutually orthogonal faces Fi, ..., F, such that |F)| + ... + |E,| = Ny, wecan
associate an instrument with transformations T; :== P, which describes a projective measurement, asina

1 A face of a convex set Cisa convex subset F C C with the property that Ax + (1 — M)y € Fwith0 < A < land x, y € C implies
x, y € F[89]. Wesay that Fis generated by w, ..., w, if Fis the smallest face that contains w, ..., w,.
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semipermeable membrane. Transformation T;leaves the states in face F; unperturbed, but fully blocks out states
in the other faces, i.e. T;w = 0for w € F,i=j.In standard quantum theory, these transformations are
Py p = m pm;, where T is the orthogonal Hilbert space projector onto the ith Hilbert subspace. The rank
condition becomes tr(m)+ ... + tr(m,) = Ny (the total Hilbert space dimension), and mutual orthogonality is
mm; = 6;m. Wewill show in section 5.4 that the mutually orthogonal faces replace the eigenspaces from
quantum theory and that the projective measurement described here can be interpreted as measuring an
observable.

The Hilbert space projector 7; therefore also has an interpretation as an effect in standard quantum theory: it
yields the probability of outcome i in the projective measurement on a state p, namely tr(7; p). The analogous
effectin a GPT that satisfies postulates 1 and 2, corresponding to a face F, is

ur = Pruy

(identifying the effect 1, with a vector via the inner product). The effect uris sometimes called the ‘projective
unit’ of F. In quantum theory, we can write m; = Zjh/}j} (4], where the [1);) are an orthonormal basis of the
corresponding Hilbert subspace. The same turns out to be true in our GPTs: we have

|F|

up = Y wi (4)
=1

where wy, ..., wp is any frame that generates F. Therefore, the probability to obtain outcome 7 in the projective
measurement above on state wis (ug, w) = (ua, Prw).

5.3. State spaces satisfying postulates 1 and 2

Itis easy to see that both quantum and classical state spaces satisfy postulates 1 and 2. By a ‘classical state space’,
we mean a state space that consists of discrete probability distributions. Concretely, for any number N € N of
mutually exclusive alternatives, consider the state space

Q= (i) £ 2 00 3p = 1),

Any pure state is given by a deterministic probability vector, i.e. w; = (0,...,0, 1, 0, ...,0) (where 1 is on the ith
place). If we have two equally sized sets of such vectors (as in postulate 1), then there is always a permutation that
maps one set to the other. In fact, the reversible transformations correspond to the permutations of the entries.
Postulate 2 is then simply the statement that

(pl,...,pN) =pwi + p,wr + ... + pywN.

Which state spaces are there, in addition to standard complex quantum theory and classical probability theory,
that satisfy postulates 1 and 2?2 We think that this question is very difficult to answer. Thus, we formulate the
following

Open problem 1. Classify all state spaces that satisfy postulates 1 and 2.

From the results in [43], we know which state spaces satisfy postulates 1 and 2 and one additional property:
the absence of third-order interference. The notion of higher-order interference has been introduced by Sorkin
[76], and has since been the subject of intense theoretical [93, 95, 96] and experimental [97—102] interest.

For the main idea, think of three mutually exclusive alternatives in quantum theory (such as threesslits in a
triple-slit experiment), described by orthogonal projectors 7, 7, 7. The event that alternative 1 or alternative 2
takes place is described by the projector 7, = 7 + m; similarly, we have 73, 73 and 7,3. Their actions on
density matrices are described by superoperators

p — Pra(p) = mapm

(and similarly for the other projectors). As a consequence, we obtain that P;, = P; + P,, which expresses the
phenomenon of interference. However, it is easy to check that

Piy3 = Piy + P13 + Py3 — Py — P, — Ps, (5)

which means that interference over three alternatives can be reduced to contributions from interferences of pairs
of alternatives. Similar identities hold for an arbitrary number n > 4 of alternatives: quantum theory admits only
pairwise interference, and no ‘third-order interference’ which would be characterised by a violation of this
equality.

In the context of postulates 1 and 2, we have an analogous notion of orthogonal projectors, and thus we can
consider (5) and its generalisation to n > 4 alternatives on a state space with N > n perfectly distinguishable
states. Postulating this ‘absence of third-order interference’ in addition to postulates 1 and 2 gives us the
following:
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Theorem 2 (Lemma 33 in [43]). The possible state spaces which satisfy postulates 1 and 2 and which do not admit
third-order interference, in addition to classical state spaces, are the following. First, for N > 4 perfectly
distinguishable states, there are only three possibilities:

« Standard complex quantum theory.
* Quantum theory over the real numbers. That is, only real entries are allowed in the N x N density matrices.

* Quantum theory over the quaternions. The state spaces are the self-adjoint N x N quaternionic matrices of unit
trace.

For N = 3 perfectly distinguishable states, all of the above and one exceptional solution are possible, namely
quantum theory over the octonions (but only for the case of 3 x 3 unit trace density matrices).

For N = 2 (the ‘bit’ case), we have the d-dimensional Bloch ball state spaces Qg := { (1, r)T|r € R?, ||| < 1}
with d > 2. They are analogous to the standard Bloch ball (23 of quantum theory, with very similar descriptions of
effects etc. Their group of reversible transformations may either be SO (d) (which corresponds to PU(2) for d = 3), or
some subgroup of O(d) which is transitive on the sphere (such as SU(2) ford = 4).

Mathematically, these examples correspond to the state spaces of the finite-dimensional irreducible formally
real Jordan algebras [24, 43]. We do not know whether there are theories that satisfy postulates 1 and 2 but admit
higher-order interference and therefore do not appear on this list. In theorem 12, we will show that the question
whether a theory has third-order interference is related to the properties of its Rényi entropies.

5.4. Observables and diagonalization

A central part of physics are observables and how they can be measured. In standard quantum theory, we can
introduce observables in two different ways, which both equivalently lead to the prescription that observables are
described by Hermitian operators/matrices.

First, in finite dimensions, we can characterise observables as those objects that linearly assign real expectation
values to states. In the case of quantum theory it follows that observables are represented by matrices X, and
Hermiticity X = X implies that expectation values tr(pX) are always real. Linearity is enforced by the statistical
interpretation of states, for the same reason that effects in GPTs are linear.

Second, we can introduce observables by saying that there is a projective measurement 7, ..., 7, that
measures this observable, and which has outcomes xj, ...,x, € R. Thisleads to the Hermitian operator
X = I | x;m. Since every Hermitian operator can be diagonalized, these two definitions are equivalent.

Our two postulates provide the structure to introduce observables in a completely analogous way. First,
using the inner product, we can define observables as linear maps of the form

w— (x, w)

and thus identify them with elements x € A of the vector space that carries the states (as in quantum theory,
where this vector space is the space of Hermitian matrices). As noticed in [62], every such vector has a
representation of the form

X =) Xill, (6)

where the ; are projective units corresponding to mutually orthogonal faces F;, x; € R,and x; = x; fori = j.
The analogy with quantum theory goes even further: due to (4), wehave x = 37, x;3; w\?, whenever

WiV, ..., D is a frame on F;. This corresponds to the identity X = Y, xizj|1/}§j)> (14?|in standard quantum
theory. In analogy to quantum theory we will call the F; eigenfaces and the x; eigenvalues. To further justify this
terminology, note that the x; are eigenvalues of the map >, x; P,, where P; are the orthogonal projectors onto the
spans of the faces F;.

n

Theorem 3. If postulates I and 2 hold, then every element x € A has a representation of the form x = 37%_,
where x; € R are pairwise different and the u; are the projective units of pairwise orthogonal faces F; such that
> uj = us. This decomposition x = Z?zl x;u; is unique up to relabelling. In analogy to quantum theory, we will
call the x; eigenvalues and the F; eigenfaces.

Furthermore, for every real function f with suitable domain of definition, we can define

f@) = f(xpuj (7)

j=1

Xjuj

as in spectral calculus.

12



10P Publishing

NewJ. Phys. 19 (2017) 043025 M Krumm et al

If P; is the orthogonal projector onto the span of F, then (Py, ..., P,) is a well-defined instrument with induced
measurement (u, ..., u,) which leaves the elements of span (F)) invariant:

Pi(w) = 6 - w forallw € Fy.

In analogy to quantum theory, we will call this instrument the projective measurement of the observable x.

We will give a proof in the appendix'°. Equation (7) allows us to define a notion of entropy, in full analogy to
quantum mechanics.

Definition 4 (Spectral entropy). If A is a state space that satisfies postulates 1 and 2, we define the
spectral entropy for any state w € )y as

S(w) ==Y p;logp;,

where w = 7, p.w; is any convex decomposition of w into pure and perfectly distinguishable states w;,
and 0log0 := 0.

Theorem 3 tells us that this definition is independent of the choice of decomposition: it is easy to check that
S(w) = —{w, logw),

where log w is understood in the sense of spectral calculus as in (7). The right-hand side is manifestly
independent of the decomposition. It can also be written S (w) = uy (17 (w)), where n7(x) = —x logx for x > 0
and 77 (0) = 0. In particular,

w is a pure state < S(w) = 0. (8)

To see this, note that any pure state w; = w can be extended to a set of perfectly distinguishable pure states
Wy, Wy, ..., wy,suchthatw =1-w; + 0wy, + ... + 0 - wy,. Conversely, if S (w) = 0, then any decomposi-
tion of wmust have coefficients (1, 0, ...,0).

5.5. Thermodynamics in the context of postulates 1 and 2

If a state space satisfies postulates 1 and 2, then it also satisfies all the assumptions that we have made in von
Neumann’s thought experiment. It is easy to check all items in assumptions 1: (a) is simply postulate 2, and (c) is
aconsequence of postulate 1. As we have seen in the previous section, our two postulates imply that we have
orthogonal projectors sharing important properties with those of standard quantum theory. If we make the
physical assumption that we can actually implement them by means of semipermeable membranes (as in
quantum theory), we obtain (b). Item (e) is the same as (8). Note that assumption (d) is not a mathematical
assumption about the state space, but a physical assumption about thermodynamic entropy. This shows part of
the following (the full proof will be given in the appendix):

Observation 5. von Neumann’s thought experiment, as explained in section 3, can be run for every state space
that satisfies postulates 1 and 2. The notion of thermodynamic entropy H that one obtains from that thought
experiment turns out to equal spectral entropy S as given in definition 4,

H(w) =SWw) for all states w.

This is consistent with assumptions 1. Furthermore, it is also consistent with Petz’ version of the thought
experiment, because spectral entropy satisfies

Sw) = ijS(wj) — Zp] logp, ©)
j j
for every convex decomposition w = 3=, pw of winto perfectly distinguishable, not necessarily pure states w;.

Thus, spectral entropy S gives meaningful and consistent physical predictions in situations like von
Neumann’s and Petz’ thought experiments. However, we clearly do not know whether Sis a consistent notion of
physical entropy in all thermodynamical situations.

It turns out that there are further properties of S that encourage its physical interpretation as a
thermodynamical entropy. In particular, we will now show that the second law holds in two important situations.
We start by considering projective measurements Py, ..., B,. Projective measurements can model semipermeable
membranes as in von Neumann’s thought experiment, or they describe the measurement of an observable as

' This can also also obtained by combining the fact that postulates 1 and 2 imply the state space is projective (first part of theorem 17 in [43])
and self-dual (proposition 3 in [43]) with results such as theorem 8.64 in [24].
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Figure 4. A process mixing gases by removing a separating wall. Theorem 7 ensures that this process does not decrease entropy, i.e.
AH > 0,ifthermodynamic entropy H is identified with spectral entropy S as suggested by von Neumann’s thought experiment.

explained in section 5.4. Consider the action of this measurement on a given state w. With probabilities

(ua oP;) (w), this measurement yields the outcome j with post-measurement state wj := Piw/(uy oP; (w)).
Performing this measurement on every particle of an ensemble (without learning the outcomes) yields a new
ensemble, described by the post-measurement state

w' = Z (uaoP)(w) - w; = ZPJQJ
]

j: ugoP; (w)=0

Projective measurements do not decrease the entropy of the ensemble:

Theorem 6. Suppose postulates 1 and 2 are satisfied. Let Py, ..., P, be orthogonal projectors which form a valid
instrument. Then the induced measurement with post-measurement ensemble state w' = 3=, P;w does not decrease
entropy: S(W') = S(w).

The proof will be given in the appendix. As in standard quantum theory, projectors P;form a valid
instrument if and only if they are mutually orthogonal, i.e. P,P; = §;; P;,and complete: 3, uy oF; = u,.

Another important manifestation of the second law is in mixing procedures as in figure 4. Consider tanks
that are separated by walls. Similarly to von Neumann’s thought experiment, let the jth tank contain an N;
-particle gas that represents an wj-ensemble. Furthermore, assume that all the gases are at the same pressure and
density. Identifying thermodynamic entropy H with spectral entropy S (as suggested by observation 5), the
entropy of the GPT-ensemble in tank jis N;S (w;), where Sis the entropy per system. Thus the total GPT-entropy
is Zj N;S (w;). We remove the walls and let the gases mix. Then we put the walls back in. Now all the tanks

. . N .
contain gases hosting >~ F)wf ensembles at the same conditions as before, where N = =, N;. The total GPT-

entropy in the end is given by Zj N;S (Zk%wk) = NS (Zk%wk). As the gases in the tanks have the same density,
volume, temperature and pressure as before, the only difference in entropy is due to the GPT-ensembles. The

second law requires that the entropy does not decrease in this process, i.e. that 3, N;S (w;) < NS (Z j%wj) and

N N . ..
thus > NJS (W) < S (Zjﬁwj). The following theorem shows that our two postulates guarantee that this is true:
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Theorem 7. Assume postulates 1 and 2. Then entropy is concave, i.e. for wy, ...,w, € Q4 and p,, ..., p, a probability
distribution, we have

S[ijw]—] > pSw). (10)
j

J

Thus, the second law automatically holds for mixing processes. One way to prove (10) is to see that S equals
‘measurement entropy’ as we will show in section 5.6, proven to be concave in [66, 67]. However, there is a
simpler proof that uses a notion of relative entropy, which is an important notion in its own right.

Definition 8. For state spaces A that satisfy postulates 1 and 2, we define the relative entropy of two states
w, p € Y as

SWllp) = =S(w) — (w, logp).

Here, for p = 22 ;¢ any decomposition into a maximal frame, log o = 3=; log(qj) ¢; according to theorem 3.
(As in quantum theory, this can be infinite if there are g; = 0 such that (w, g0j> = 0).

A notion of relative entropy in GPT's has also been defined in Scandolo’s Master Thesis [48], but under
different assumptions, as discussed in the introduction. Relative entropy continues to satisfy Klein’s inequality, a
fact thatis useful in proving theorem 7. The proof is similar to that within standard quantum theory and
deferred to the appendix.

Theorem 9 (Klein’s inequality). Forall w, ¢ € (U,
S(wllp) > 0.

Klein’s inequality can be used to give a simple proof of theorem 7:
0<>pS (wj IIZpkwk) == pSW) — < > pwj, log (Zpkwk) > =2 pSW)+S§ (Zpkwk]-
j k j j k j k

Given all the calculations in this subsection in terms of orthogonal projections, it may seem at first sight as if
every statement or calculation in quantum theory can be analogously made in the more general state spaces that
satisfy postulates 1 and 2. However, this may not quite be true, as the fact that the following is an open problem
shows:

Open problem 2. For state spaces satisfying postulates 1 and 2, if wis a pure state, and P an orthogonal
projection, then is Pw also (up to normalisation) a pure state?

In classical and quantum state spaces, the answer is ‘yes’, but we do not know if a positive answer follows
from postulates 1 and 2 alone. We will return to this problem in theorem 12.

Note that Chiribella and Scandolo have applied similar techniques and found beautiful results, including
some which are comparable to some of ours, in [45, section 7] (see also [48]). They derive diagonalizability of
states from a very different set of postulates.

5.6. Information-theoretic entropies and their relation to physics

So far we have considered entropy from a thermodynamic perspective. But entropies also arise in information
theory, and as the GPT framework is mostly studied in quantum information theory, indeed there have been
many results on entropy from a information-theoretic perspective. Our exposition will mainly follow [66], but
has also been given in a slightly different formalism in [67].

Lete = (e,...,ey) and f = (f,...,f,,) be two measurements such that there exists a map
M:{1,...,n} — {1,...,m}with

Z Ejsz (k=1,...,m).

{jIM (j)=k}

If M is bijective, then the measurement fis simply a re-labelling of e. If there exists a k with M (j) = k Vj, then
because of the normalisation of the e-measurement, f; = 0, i.e. f; corresponds to a trivial outcome that never
happens. If M is not injective, then fis a coarse-graining of e (or vice versa, e a refinement of f) in the sense that fis
obtained from eby collecting several outcomes of e and giving them a common new outcome label (and by
possibly adding the 0-effect a few times), see figure 5. In this sense, we do not care about which of the ¢; triggered
the new effect.
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Figure 5. A coarse-graining of a measurement is created by having several measurement results trigger the same output.

However, there exist trivial reﬁnerr.lents /coarse- gra.tinings: folr those, ¢; o fu G Vj.We wri.te ¢ =p, fM Gy
Then such a measurement can be obtained by performing f, and if outcome k is triggered, we activate a classical

random number generator which generates the final outcome j among those jwith M (j) = k with probability
b
> alM @)=ky P

Thus, a trivial refinement does not yield any additional information about the GPT-system. We call a
measurement fine-grained if it does not have any non-trivial refinements. The set of fine-grained measurements
on any state space A is denoted £%.

Now we consider the Rényi entropies [65], which are defined for probability distributions p = (p,,...,p,) as

1
Ho(p) = T—log [pr ]
j

1 _
where a € (0, 00)\ {1}. Furthermore,
Hy(p) := lim H, (p) = loglsupp(p)|

with supp(p) = {p; | p; > 0} is called the max-entropy, and
Hy(p) = lim H,(p) = —log maxp,

is called the min-entropy. Also,
H(p) := limlHa,(p) =-> p;logp. = H(p)
a— j

is just the regular Shannon entropy H.
For a € [0, co]and GPTs satisfying postulates 1 and 2, we generalise the classical Rényi entropies:

Sa (W) = Ha (P);

where w = 37, p;wjisany decomposition into perfectly distinguishable pure states. According to theorem 3, the
result is independent of the choice of decomposition. We have §; = S, the spectral entropy of definition 4.
Following [66], for every a € [0, co]and w € 4, we define the order-a Rényi measurement entropy as

Se(W) = inf H,(e1(w), &2(w), -..),
ecEX

where H,, on the right-hand side denotes the classical Rényi entropy. The order-a Rényi decomposition entropy is
defined as

Sa(w) = inf H,(q), an
W=D, 4%
where the infimum is over all convex decompositions of w into pure states @ € Q.

The idea of measurement entropy is to characterise the state before a measurement. For example, in
quantum theory, particles prepared in a state |¢») which all give the same result in energy measurements would be
said to be in an energy eigenstate. If instead we performed a position measurement, the resulting distribution of
positions would have non-zero entropy. However, this entropy would arguably not come from the initial state,
but from the measurement process itself due to the uncertainty principle.

Suppose we would like to prepare a state w by using states of maximal knowledge (i.e. pure states) ¢, and a
random number generator which gives output j with probability p;. Then the decomposition entropy quantifies
the smallest information content (entropy) of a random number generator that would be necessary to build such
adevice. For more detailed operational interpretations of measurement and decomposition entropy, in
particular for « = 1, see [66, 67] Note that in quantum theory, measurement, decomposition and spectral Rényi
entropies all coincide, with the o = 1 case giving von Neumann entropy, S (w) = —tr(w logw).
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Our first result is that the spectral and measurement definitions of the entropies agree:

Theorem 10. Consider any state space A which satisfies postulates 1 and 2. Then the Rényi entropies So  and the
Rényi measurement entropies Sy, coincide, and upper-bound the Rényi decomposition entropy S,, i.e.

S0 (W) < Sp(w) = Sy (w) forall w € Qu, a € [0, ool.

In particular, for o = 1, the measurement entropy S is the same as the spectral entropy S from definition 4, which we
have identified with thermodynamical entropy H in observation 5.

The inequality S, < S, is easy to see: for a decomposition w = Y, p,w; into perfectly distinguishable pure
states wj, the states w; can also be seen as a fine-grained measurement, yielding outcome probabilities P;. So
taking the infimum over all decompositions gives at most H, (p) = S, (w). The equality between S,, and S, is
shown in the appendix.

We do not know in general whether postulates 1 and 2 imply that S, = S, for all . Interestingly, we know it
fora = 2and o = oc:

Theorem 11. Ifa state space satisfies postulates | and 2, then S, (w) = S,(w) and S, (w) = S (w) for all states w.

Proof. To give the reader an idea of the kind of arguments involved, we present the proof for S,, but defer the
prooffor S to theappendix. If w = 37 pw is any convex decomposition into a maximal set of perfectly
distinguishable pure states (without loss of generality p1 p, 2. )andw =73, q;¢p; any (other) convex
decomposition into pure states ¢, (alsowith g, > ...,y then

P = (w w) =547 + i g (9 i) 2 quj since (g, @) = 0.Thus, we have
$(w) = —log > p? < ~log ) g’ = Hr(q),
j j

and since S, (w) is defined as the infimum over the right-hand side, we obtain that S, (w) > S, (w); we find the
converse inequality in theorem 10. O

We do not know whether the same identity holds for the most interesting case o« = 1, the case of standard
thermodynamic entropy S = §;. In the max-entropy case « = 0, however, we have a surprising relation to
higher-order interference:

Theorem 12. Consider a state space satisfying postulates 1 and 2. Then the following statements are all equivalent:

(i) The state space does not have third-order interference.

(ii) The measurement and decomposition versions of max-entropy coincide, i.e. So(w) = Sy (w) for all states w.
(iii) The state space is either classical, or one on the list of theorem 2.
(iv) Ifwisa purestate and Pr any orthogonal projection onto any face F, then Prw is a multiple of a pure state.

(v) The ‘atomic covering property’ of quantum logic holds.

The equivalences (i) < (iii) < (iv) < (v) are shown in [43]; our new result is the equivalence to (ii), which
is shown in the appendix.

Absence of third-order interference is meant in the sense of equation (5), as introduced originally by Sorkin
[76]: only pairs of mutually exclusive alternatives can possibly interfere. It is interesting that this is related to an
information-theoretic property of max-entropy Sy, as given in (ii). We do not currently know whether S, (or, in
particular, the identity of Sy and S,) has any thermodynamic relevance in the class of theories that we are
considering, but it certainly does within quantum theory, where it attains operational meaning in single-shot
thermodynamics [28, 29].

As (iii) shows, this theorem is closely related to open problem 1: it gives properties of conceivable state spaces
that satisfy postulates 1 and 2, but are not on the list of known examples (namely, they do not satisfy any of
(i)—(v)). Similarly, (iv) shows the relation of higher-order interference to open problem 2, and (v) relates all these
items to quantum logic. In fact, one can show that postulates 1 and 2 imply that the set of faces of the state space
has the structure of an orthomodular lattice, which is often seen as the definition of quantum logic. For readers
who are familiar with the terminology of quantum logic, we give some additional remarks in section A.3 in the
appendix.
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6. Conclusions

As discussed in the introduction, many works (dating back at least to the 1950s) have considered quantum
theory as just one particular example of a probabilistic theory: a single point in a large space of theories that
contains classical probability theory, as well as many other possibilities that are non-quantum and non-classical.
More recent works have focused on the information-theoretic properties of quantum theory, for example
deriving quantum theory as the unique structure that satisfies a number of information-theoretic postulates.

Rather than attempt a derivation of quantum theory from postulates, this paper has examined the
thermodynamic properties of quantum theory and of those theories that are similar enough to quantum theory
to admit a good definition of thermodynamic entropy, and of some version of the second law. Postulate 1 states
that there is a reversible transformation between any two sets of n distinguishable pure states. This can be
thought of as an expression of the universality of the representation of information, in particular thata choice of
basis is arbitrary, and also allows for reversible microscopic dynamics, as is crucial for thermodynamics.
Postulate 2 states that every state can be written as a convex mixture of perfectly distinguishable pure states. This
ensures that a mixed state describing an ensemble of many particles can be treated as if each particle has an
unknown microstate, drawn from a set of distinguishable possibilities.

Much follows from postulates 1 and 2, without needing to assume any other aspects of the standard
formalism of quantum theory. In order to derive thermodynamic conclusions, we considered the argument
originally employed by von Neumann in his derivation of the mathematical expression for the thermodynamic
entropy of a quantum state. The argument involves a thought experiment with a gas of quantum particlesina
box, and semi-permeable membranes that allow a particle to pass or not depending on the outcome of a
quantum measurement. By applying the same thought experiment, we showed that given any theory satisfying
postulates 1 and 2, there is a unique expression for the the thermodynamic entropy, equal to both the spectral
entropy and the measurement entropy. By way of contrast, a fictitious system defined by a square state space,
which arises as Alice’s local system of an entangled pair producing stronger-than-quantum ‘PR box’
correlations, does not satisfy either Postulate. This system—the gbit—does not admit a sensible notion of
thermodynamic entropy, at least not one that is given to it by the von Neumann or Petz arguments. While many
works have discussed the inability of quantum theory to produce arbitrarily strong nonlocal correlations, this
connection with thermodynamics deserves further investigation. It would be very interesting, for example, if
Tsirelson’s bound on the strength of quantum nonlocal correlations could be derived from a thermodynamic
argument.

There are many other consequences of postulates 1 and 2 for both thermodynamic and information-
theoretic entropies. For example, a form of the second law holds in that neither projective measurements nor
mixing procedures can decrease the thermodynamic entropy. The spectral and measurement order-a Renyi
entropies coincide for any . The spectral and decomposition order-a Renyi entropies coincide for « = 2 or
00. An open question is whether any theory satisfying postulates 1 and 2 is completely satisfactory from the
thermodynamic point of view. While the von Neumann and Petz arguments can be run with no trouble in the
presence of postulates 1 and 2 as we have shown, there could still be a different physical scenario, in which
theories would fail to exhibit sensible behaviour unless they have even more of the structure of quantum theory.

Finally, another major open question is whether quantum-like theories exist, satisfying postulates 1 and 2,
that are distinct from quantum theory in that they admit higher-order interference. Roughly speaking, this
means that three or more possibilities can interfere in order to produce an overall amplitude, unlike in quantum
theory, where different possibilities only interfere in pairs. We extend the results of [43], where it was shown that
in the context of postulates 1 and 2 the existence of higher-order interference is equivalent to each of three other
statements. We provide an equivalent entropic condition: there is higher-order interference if and only if the
measurement and decomposition versions of the max entropy do not coincide.

Our understanding of quantum theory would be greatly improved if higher-order interference could be
ruled out by simple information-theoretic, thermodynamic, or other physical arguments. On the other hand, if
theories with higher-order interference exist and are eminently sensible, an immediate question is whether an
experimental test could be performed to distinguish such a theory from quantum theory. While previous
experiments [97-102] only tested for a zero versus non-zero value of higher-order interference, sensible higher-
order theories that satisfy postulates 1 and 2 (if they exist) could help to inform future experiments by supplying
concrete models that can be tested against standard quantum theory.
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Appendix

A.1.Proofs
A.1.1. Proofthat observables are well-defined.  In this appendix, a decomposition of a state into perfectly
distinguishable pure states (which always exists due to postulate 2) will be called a ‘classical decomposition’.

Lemma 13. Assume postulates 1 and 2. Let F = {0} bea face of AL and w € Q4 M F. Then there exists a classical
decomposition w = Yipw with w; € F forallj.

Proof. Let w = 37, p.wj bea classical decomposition with p, = 0. As w € F and Faface, w; € F forall;. 0

Proof of theorem 3. Let x € A be arbitrary. By lemma 5.46 from [62] there exists a frame {w;} and x]-’ € Rsuch
thatx = ) jx; wj. We extend {w;} to a maximal frame by adding xj/ := 0 for the new indices j. Now we group
together the j with the same x]{ value, and by relabelling we find that x = >~} _, x4 >, wy,; where the x; are

pairwise different values of the xj’ and the wy,; are the wj that belong to this x]{ value. For any given k, the wy;
generate a face F with projective unit u = _; wy;.

Therefore we find a decomposition x = Y} _, xy u; with x; pairwise different real numbers and 1y order
units of faces Fyand > _ | uy = uga.

Now we show that the faces F; are mutually orthogonal:

Letw € Fi beanarbitrary normalised state. By lemma 13 it has a classical decomposition w = 3, p; wgk)

which uses only pure states wg»k) € F..W.l.o.g. we assume that these pure states form a generating frame of Fy, by

extending the frame and adding p; = 0 to the decomposition. Consider another face F,,,,i.e. m = k. Likewise to
w,letw" € E, beanarbitrary normalised stateand v’ = 3=, q; wg-’”) be a classical decomposition with wgm) a

generating frame for F,,,. For the other faces define wgi) = wij. Then u; = 3 y ng) and in total
ug = YU =305 wg»i). As (v, v) = 1forall purestates v € y, this implies that the ng) are mutually
orthogonal:

1—“A(w(g)>—ZZ 0 (g) =1+ z (1)

(i,))=(g,h)

and therefore (wgi), w(g)> > 0 implies (wg»i), w%g )> = Oforall (i, j) = (g, h). Thus we find

(w, W) =323, Py (w §k), w™) = Obecause m = k.Asw € Frand ' € E, were arbitrary (normalised)

states, this implies that F; and F,,, are orthogonal. As k = m were arbitrary, all the faces are mutually orthogonal.
Now we will show that the decomposition x = Y j Xjjis unique. So assume there are two decompositions

x =i a5u ] Z"l’ bj u(b with a; € R pairwise different and projective units u}”) thatadd up to the order
unit (analogously for b) and belong to pairwise orthogonal faces F; @ W.l.o.g. we assume that the ajand bjare
ordered bysize,i.e. ¢y < a; < ... < a,,. Wewant toshow a; = b;. The u ) generate the faces F(“) Let w(“) bea
generating frame for the face F (“), especially >°, w(“) = u(“) As the faces are mutually orthogonal and the

projective units add up to uy, the wg“l) forma max1mal frame, in particular they add up to u, (likewise for b).
Therefore:

b
a = ‘UU) X) Zbk wf“J), wgﬂ) > Zb wg"]), wkl = bluA(w1 )) = b,

Analogously show by > aj,i.e. by = a;intotal.
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Now suppose therewasa k > 1and aniwith <w§“]), w}cbl)> = 0,ie (w i“]), wg’l) ) > 0.Then

b b b b
a = wg"]), X Zb wf“}, wgﬂ) =aq Z wi”}, W) + 3 b wg”‘]), wgu) > Z wi”‘]), wi?)
] k>1,i
b b
+ > w}“]), wil) =a Z wi“]), wgﬂ) = auy (wg‘;‘j)) = a.
k>1,i

This is a contradiction. Thus (wi“’), w}f”} = Oforall k > 1andi. Therefore we find ul(b)(w(“)) = ¥i{w ﬁbj) ,
w?) = > k<w§<b]) wi®) = uy (w(“)) = land analogously ul”)(w(b)) = 1. By proposition 5.29 from [62], wi
have Q4 N F = {w € O | up(w) = 1}. Therefore a generating frame of F{* is contained in F{*) and vice versa.
Thus we find £ = F” and u{®” = 1.

For the remaining indices, we construct an inductive proof' choose L € R large enough such that
a + L > max{a,, b, },anddefine x’ := x + L - u@ie x' = Z” (aj + 61+ L)

u]-(“) =20 (b + b L)u;b). Furthermore defining a := ay, a, = as,..., a, = a + L, w ) = uf®,

wl® =y, u,ﬁfl) := 1 and likewise for bj/,we find x" = 3 a]'u](“) =3 \bju ](b)wrch

al <aj <. < a, ! and bl <b)<..< b’ Repeating the exact same procedure as before, we obtain a, = b/
and u, @) — u(b ) ie.ay = byand Uy (“) = uf b) . Weiterate tofind a; = bjand u(“) = u(b) for allj. Note that as all
maximal frames have the same size and as the projective units add up to uy, necessarﬂy n, = M.

At last we construct the projective measurement that corresponds to measuring the observable x: for Fy, let
Py be the orthogonal projector onto the span of Fy (in particular, Py : A — span(Fy) surjective). We know that
these projectors are positive and linear and satisfy uy oPy = u;. Furthermore 0 < uy = uyoPy < uyand
Sk uaoPp = >, . = uy,i.e. we obtain a well-defined measurement; therefore the Py form a well-defined
instrument. As they are projectors, the Py leave the elements of F; unchanged. O

A.1.2. Proof of observation 5. In order to show that H (w) = S(w) is consistent with assumptions 1, we only
have to show that w — S (w) is continuous, to comply with assumption (d). According to theorem 10 (which we
will prove below), the spectral entropy S (w) equals measurement entropy S (). But it is well-known [67] and
easy to see from its definition that S is continuous.

It remains to show equation (9). Solet w = >~ j Dwj be any decomposition of w into perfectly distinguishable,
not necessarily pure states w;. Decompose all the wj into perfectly distinguishable pure states wg ) ie.
wj =3, qj(’) wg-’). Perfectly distinguishable states live in orthogonal faces, thus (w;, w;) = 0fori = j (note that

this is a conclusion that follows from postulates 1 and 2, but could not be drawn from bit symmetry alone in
[64]). Thus, we also have (w f]), w(l)> = 0fori = korj = l,andsow =Y i 0;; (1) (1) is a decomposition of w

into perfectly distinguishable pure states. Define the real function 7: [0, 1] — R vian(x) = —xlogxforx > 0
and 77(0) = 0. Due to theorem 3 and 7 (xy) = —xy logx — xy logy, we have

n(w) =3 n(pa)e = =3 palogpw = 3 pq)” loggwy,
ij ij ij
and therefore

SW) = ua(w)) = =Y p:alogp; — 3 p,q”logq” =~ p.logp, + > p, [—Zq]@ log q}“)
j j j i ;

S(wj)

This completes the proof of observation 5. O

A.1.3. Proof of the second half of theorem 11.  Use the notation of the first half of the proof. We claim that
max,co(w, ¢) = p,. Theinequality >’ is trivial (consider the special case ¢ = wy). To see the inequality ‘<
note that (w, ) = 33, p;Aj, where \; := (w;, ¢) € [0, 1]satisfies 3°; A; = (35, wj, ) = (1, ¢) = 1,andso
(w, ) < p,forall . Thus
Sw(w) = —logp, = —log meagw ¢) < —log(w, ¢) = —log (ql +2.q;(#p %)] < —logq, = Hw (@)
P j=2
Similarly as in the first part of the proof, we obtain S, (w) > S, (w). The converse inequality from theorem 10

for a = o0 concludes the proof. O

A.1.4. Proof of Klein’s inequality and the second law for projective measurements. 'We consider an ensemble of
systems described by an arbitrary state w € 4. To all systems of this ensemble we apply a projective
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measurement described by orthogonal projectors P, which form an instrument, resulting in a new ensemble
state w’. The P, project onto the linear span of faces F, that replace the eigenspaces from quantum theory. We
want to show that the measurement cannot decrease the entropy of the ensemble, i.e.

S(W') = S(w).

We decompose the proof into several steps. Our basic idea follows the proof of a similar statement for quantum
theory in [50]: we reduce the proof of the second law to Klein’s inequality. But as we do not have access to an
underlying pure state Hilbert space, we will need to use a different argument for why Klein’s inequality implies
the second law for projective measurements.

So at first we prove Klein’s inequality, adapting the proof of [50]. We note that a similar proof has also been
found by Scandolo [48], albeit under different assumptions.

Proof of theorem 9. We consider two arbitrary states w, v with classical decompositions w = 3=, p.wj,

v = > 4,V where w.Lo.g. the wj and the v form maximal frames. We define the matrix Py == (wj, v4). Allits
components are non-negative, i.e. Py > 0, because the scalar product itself is non-negative for all states. As all
maximal frames have the same size, the matrix is a square matrix; as maximal frames sum to u,, the rows and
columns sum to one: Pk =k Px=1 Thus, we get

SWwlv) = =S(w) — (w, logv) = Zp] logp, — Zp] log g, (wj, vx) = Zp] (logpj - Zijloqu).
j Jk j k

We define r; == >°; Piq,. Note that the r;form a probability distribution: r; > 0 and
321 = 2425 Prqy = Xk 4, = 1. Using the strict concavity of the logarithm, we find:

logr; = log [Zijqk) > > Pilogg,.
% %

Therefore we get

p,
Sw|v) = Zp] (logpj — > Pik loqu) > ij(logpj — logr) = Zp] log(f).
j k j j

J

We recognise the last expression as the classical relative entropy of the probability distributions p;and r;. This
classical relative entropy has the important property that it is never negative. Thus:

Sw|lv) = 0.

In order to get the main proofless convoluted, we will state some technical parts as lemmas.

Lemma 14. Assume postulate 1 and 2. Consider orthogonal projectors P; which form an instrument. Then the P, are
mutually orthogonal:

PPy = 8jiP;.
Proof. We prove Py P;,w = Oforall w € A, j = k.If Pw = 0 thisis trivial, so from now on assume P,w = 0. As
the cone is generating (i.e. Span(A) = A)and the projectors linear, it is sufficient to show Py P;w = 0 forall

w € A,. As P;is positive, P,w = 0 implies that (u4 oP;)(w) > 0 because only the zero-state is normalised to 0.
Using uy = uro(3; B) = 3 uaob, and PP, = P;:

Pw Pw P.Pw > e PrPiw
- ) Mo 5P ) N D s L BN e g
”A((quPj)w)] (”A 2 k)((quPj)(w)) ”"[(quPp(w)) ”A[ (0P (@)

B Piw Zklkszkpjw B Zk|k¢jpkpfw B
=y | —l | oy | == = 0=u| ————|= > ua(PPw).
(upoPp)(w) (up0P))(w) (g 0Pp)(w) K=
As the projectors are positive and only the zero-state is normalised to 0, this shows Py Pjw = 0 for k = j. O

Lemma 15. Assume postulates 1 and 2. Consider an orthogonal projector P which projects onto the linear span of a
face F of A.. Then for all states w € A, wefind Pw € F.

Proof. From basic convex geometry (see e.g. proposition 2.10in [63]), we know that F = span(F) M A... Since
Pispositive, we have Pw € A, ; furthermore, since P projects onto F, we have Pw € span(F),thus Pw € F. [
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Proof of theorem 6. We know that S (w||w’) = —S(w) — (w, logw’) > 0. Asintheorem 11.9 from [50], we
claim —(w, logw’) = S(w’) and therefore —S (w) + S(w’) > 0. Thus we only have to prove
—(w, logw’) = S(w'). Butas we do not have access to an underlying pure state Hilbert space, our proofis
different from [50].

Bylemma 14, the P, are mutually orthogonal, i.e. P, P, = 0, Pp. By symmetry of the P, also the P,w are
mutually orthogonal: (P,w, Pyw) = (w, P,Pyw) = 0for a = b. This also shows that the F,, are mutually
orthogonal. If P,w = 0 we use the decomposition B,w = uy (P,w)> " fuk Wk With 7 = 6, and w, an arbitrary

generating frame of F,,. If B,w = 0, then - l:upw - € E, N Q4 and bylemma 13, there is a classical decomposition
AW
- ?P“Jw) = > TakWak With wyr € E,. We complete the wy to generating frames of the F,, by adding terms with
‘ALg

rax = 0. As we are using classical decompositions /frames, we know (w,j, wa) = Oj. Furthermore, as the F, are
mutually orthogonal, we know (wsj, wi) = 0fora = b.
We note that the the w,; form a maximal frame:

Uy = ZuA oP, = Zup“ = ZZwaj.
a a a j

For a = bwehave P,w,; = PyP,w,j = 0,50 we havea classical decomposition

W= ZPLIW = ZZ”A (Paw)rajwaj
a a j

with w,j a maximal frame that satisfies P,wj; = &u,wp;. Note that we do not need to normalise w’ as the
measurement itself is required to be normalised. Using

ZPa logw’ = Zlog(uA (wa)rbj)ZPawbj = Zlog(uA (Pyw)ryj)wyj = logw’
a bj a bj
and
—S(W') = = (up (Ppw) ry)log(ua (Pyw)ry) = (W', logw’) 12)
bj

as well as the symmetry of the P, we finally find:

=S = (W', logw') = <2Paw, 10gw’> = <w, ZPalogw’> = (w, logw'). (13)

A.1.5. Proof that measurement and spectral entropies are identical.  In the main text we encountered different
ways to define the entropy. One of them is to adapt classical entropy definitions by using the coefficients of a
classical decomposition. Another is to adapt classical entropy definitions by using measurement probabilities
and minimising over all fine-grained measurements. Here we will show that in the context of postulates 1 and 2,
these two concepts yield the same Rényi entropies.

To prove this, we will first analyse fine-grained measurements in further detail. The results will allow us to
reproduce the quantum proof found in [66] for our GPTs.

Lemma 16. Assume postulates 1 and 2. Consider an arbitrary fine-grained measurement (ey, ..., e,). Then for all j
there exist some ¢; € [0, 1] and a purestate wj € Qy such that e; = ¢j (wj, -).

Proof. If ¢; = 0, we can just take ¢; = 0 and any pure state wj. So from now on assume e; = 0.

Because of self-duality there exists some w’ € A suchthat (W, -) = ej. Ase; = Oalso w’ = 0and therefore
usg (W) = 0.With A, = Rog - Qqand ¢; == uy (') > Othereexistsan w € € suchthat ' = ¢j - w. We want
to prove that wis pure, so assume it was not pure. Then it has a classical decomposition w = 3¢, Prwi with
P, > 0and N > 1. Byrelabelling we can assume j = n, i.e. we consider e, = cjz,ljzopk (w, +). Definea
measurement (e[, ...,e,, n) by el i= ey forallk = 1, 2,...,n — lande,_; == ¢ip;(wi -) foralli = 0, 1,...,N.
Because of 0 < ¢;p, (wj, -) = er and i N gl =0 le + N ¢ip;(wis ) = Yop_, ex = uga thisisawell-
defined measurement.

Nowdefine M: {1,...,n + N} — {1,...,n}by M (i) :==iforalli = 1,...,n — land M (i) := nforall
i =n,...,n + N.Thenwe get

n+N

el =e¢; fori<n el = el =e, for i = n.
Z a a 1

{a|M (a)=i} {a|M (a)=i} a=n
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Thus the measurement (e|, ..., e, , y) isa refinement of (ej, ..., e,). With e, (wp) = cjpy = en(wp)and

e, (wy) = 0 = e, (w;) we find that e, is not proportional to e,, thus the fine-graining is non-trivial. This is in
contradiction to our assumptions. Thus w has to be pure. Furthermore 1 = u (w) > ¢j(w) = ¢j{w, w) = ¢j.
So in total we have found that e; = ¢; (w, -ywith w € Q pureand ¢ € [0, 1]. O

Lemma 17. Assume postulates 1 and 2. Let w € Qy and w = Z;’:l pwj be a decomposition into a maximal frame.
Then the measurement that perfectly distinguishes the wj (i.e. ex (wj) = Ojx) can be chosen to be fine-grained.

Proof. Define ¢; := (wj, -). As maximal frames add up to the order unit, this is a well-defined measurement and it
satisfies ej (wi) = Oj. It remains to show that this measurement is fine-grained.

Consider a fine-graining ¢/ with e; = >4 M =i} e By self-duality, there exist ¢; > 0 and w € Yy such
that e/ = ¢j (w’, ) and therefore SiM (= GW: = Wi As1 =y (wp) = D2 iIM =k i Ha (Wh) = M G)=k) G
we find that 35,/ 5k, 6 W' j = wgisaconvex decomposition of a pure state. This requires ¢; = 0 or w;- = wi.In
both cases ej/ = ¢j{wk -) = ¢jexholdstrue forall jwith M (j) = k. Therefore, the fine-graining is trivial. ]

Lemma 18. Assume postulates 1 and 2. Consider a fine-grained measurement e = (e, ...,ex) € E*. Then the
maximal number of perfectly distinguishable states d (often denoted as Ny ) satisfies d < N
Furthermore, consider a state w € Sy with classical decomposition w = Z‘;: | pwjintoa maximal frame. Define

thevector q == (ej(w) )1 <j<n of outcome probabilities and the N -componentvector p = (py, ..., 0,...,0) € RY.
Then q < p, i.e. there exists a bistochastic N x N -matrix M with q = Mp.

Proof. By lemma 16 there exist ¢; € [0, 1]and pure w € Qysuchthate; = ¢;{w ( , ). Define

g=eaWw)=q {w}, w). Using Zj:l ej = uyand Z]-ZI vj = uy foran arb1trarymax1mal frame (v, ..., 1) we
find:

N N N d d d
ch = chuA(w;-) = Uy [chw'j] = up(up) = uy (Zl/j] = Z“A ) = Zl =d.
j=1 j=1 j=1 j=1 j=1

j=1
As¢ € [0, 1], Z 16 = dshows d <

Setqy; = e (w]), introduce the N- component vector p := (py,...,p;» 0,...,0) and use that measurement
effects and states of maximal frames add up to the order unit:

d d d d d
> _ayp =D _e(pw) = ew) = a5 > _dy; = D_erw) = a ) _(wh, wj) = qua(wy) = ¢,
=1 j=1 j=1 j=1 j=1

N N
qul]’ = Zez(w]—) = us(wj) = 1.
=1 I=1

For j < d wedefine My ; := ¢ ;. If d < N wealso define M}; := —— " Jfor N> j > d.Misan N x N-matrix
and it is bistochastic: first of all, M ; > 0forall , j. Furthermore:

N N
ZMZJ = unj =1 forj < d,
ZM,]_Z —a _NZd_ sy

— (]
=qg+1—-—¢g=1
—d

N
ZMZ»J Z
j=1

j=1
This bistochastic matrix maps pto q,i.e. M - p = q:

N d
ZMl,ij = Zq”jpj =4q
=1

j=1
Now we come to the proof of the theorem:
Proof of theorem 10. Consider an arbitrary fine-grained measurement (e, ..., ey) and an arbitrary state w €

with classical decomposition w = Z‘j: 1 Pwj into a maximal frame. Define g, := ¢;(w) and the N-component
vector p = (p>.-.»p> 05 ...,0). Let M be the bistochastic matrix from lemma 18 with ¢ = M - p. By Birkhoff’s
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theorem, itis a convex combination of permutation matrices, i.e. M = 3 s a, F, foraprobability distribution
a, and permutation matrices P,. W.l.o.g. we only consider the Shannon entropy; the proof for the Rényi
entropies works exactly the same way. As the Shannon entropy is Schur-concave and invariant under
permutations:

H(q > Y a,H(E -p)= > a,H(p) = H(p) = S(w).

oESN gESN

Furthermore H (p) = —Z’;: b, log p = S (w) is the entropy of a measurement that perfectly distinguishes the

wj,i.e. €j(wk) = Oj. Because oflemma 17, such a measurement can be chosen to be finegrained. Therefore we
find:

Hw) = ingf H(e(w)) = H(p) = S(w).
ec&*

A.1.6. Proof of theorem 12.  As mentioned in the main text, the equivalences (i) < (iii) < (iv) < (v)are
shown in [43]. We will now prove the equivalence (ii) <> (v), which proves theorem 12. Taking into account
theorem 10, and formulating the atomic covering property in the context of theories that satisfy postulates 1 and
2, it remains to show the equivalence of the following two statements:

(ii’) Forall states w € Qy, we have Sp(w) > So(w).

(v") IfFisany face of A, and wisany pure state, then the smallest face G that contains both Fand whas rank
|G| < |F| 4+ 1. (Note that this s trivial if w L F.)

We will first prove that (ii") = (v/), which is equivalentto —(v') = — (ii’). So suppose that there exists
some face Fof A and a pure state w such that the face G generated by both has rank |G| > |F| + 2. Let
Wy, ..., w p be a frame that generates the face F. Then Fis also generated by v := I_llflzlfil | wj, i.e. the normalised
projective unit of F. This is because every face containing v also contains all the wj (and vice versa), and Fis the
smallest face with this property.

Now consider the state %w + %V. The smallest face that contains this state must be G. If this state had a
decomposition into |F| + 1 or fewer perfectly distinguishable pure states, then these would also generate G, and
so |G| < |F| + 1,in contradiction to our assumption. Thus any decomposition of %w + %y into perfectly
distinguishable pure states uses at least |F| + 2 states with non-zero coefficients, i.e.

So (%w + %1/) > log(|F| + 2).But %w + %u = #ﬂzljﬂl w; + %w is a convex decomposition into |F| + 1
pure states, thus

SO(%w + %1/) < log(JF| + 1) < log(|F| + 2) < SO(%w + %1/)

It remains to show that (v/) = (ii’). So suppose that (v/) holds, but that there is a state w € €4 with

So(w) < So(w); we will show that this leads to a contradiction. By definition of Sy, if this is the case, then there
exist pure states wy, ..., w, with n = exp (So(w))and PP, = 0,22 p; = 1suchthat w = 377 | p;w;. Using
property (v'), and recursively looking at the faces generated by wy, generated by wy, ws, generated by wy, ws, ws
and so forth, shows that the rank of the face G generated by wy, ..., w, can be at most . Since w € G, this shows
that w can be decomposed into # or fewer pure perfectly distinguishable states. Therefore

So(w) < logn = So(w). O

A.3.Some additional remarks on theorem 12 and quantum logic
The GPT framework has a close relation to quantum logic. This is not surprising, since much of the terminology
of GPTs has appeared much earlier, in work on quantum logic and beyond. The approach via convex sets of
states and observables can be traced back to Mackey [18] (who immediately made connections to quantum
logic), and was developed further through the 1960s and beyond. A partial list of references includes [14, 20, 88],
the last two of which offer axiomatic characterisations of quantum theory. Interaction with the quantum logic
tradition continued, with the orthomodularity of the lattice of faces of the state and/or effect spaces often
providing a point of contact, especially in Ludwig’s work [20]. Also closely related to the convex sets approach
was the work of Foulis and Randall [ 10-13] who, for example, studied ways of combining probabilistic systems.
Since postulates 1 and 2 imply that the state cone A is self-dual (so coincides with the effect cone), and that
each face of this cone is the intersection of the cone with the image of a filter (equivalently given self-duality, a
compresssion in the sense of [24]), we have from these postulates alone, via e.g. [24], theorem 8.10, that the face
lattice is orthomodular. The notion of orthomodular partially ordered set, or its special case, the notion of
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orthomodular lattice, is often taken to define the notion of quantum logic, so we can say that postulates 1 and 2
imply that the face lattice of the cone of states, (equivalently of the cone of effects, or of the set of normalised
states) is a quantum logic.

The covering property, in its most common variant the atomic covering property, states that for any element x
of the lattice and any atom a not below or equal to x, a VV x covers x'’.The equivalence of (iv) and (v), in a setting
more general than postulates 1 and 2, is proposition 9.7 of [24] (first appearing in proposition 4.2 in [25] and the
discussion preceding it). Along with orthomodularity, the covering law was one of the assumptions of Piron’s
famous lattice-theoretic characterisation ([94]; also [17] and see the discussion in [27] or for more detail and
proofs, [26 pp 18-38, 114-122]) of a class of lattices close to, although larger than, that of real, complex, and
quaternionic quantum theory. A generalisation of the covering law was also used in Ludwig’s axiomatization
(see e.g. [20]"") of quantum theory within the convex sets framework, in which the relevant lattice is a lattice of
faces of the state space (equivalent to a lattice of extremal effects in his context), and the result characterised real,
complex, and quaternionic quantum theory'”.
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