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Abstract
Despite its enormous empirical success, the formalismof quantum theory still raises fundamental
questions: why is nature described in terms of complexHilbert spaces, andwhatmodifications of it
couldwe reasonably expect tofind in some regimes of physics?Here we address these questions by
studying how compatibility with thermodynamics constrains the structure of quantum theory.We
employ two postulates that any probabilistic theorywith reasonable thermodynamic behaviour
should arguably satisfy. In the framework of generalised probabilistic theories, we show that these
postulates already imply important aspects of quantum theory, like self-duality and analogues of
projectivemeasurements, subspaces and eigenvalues. However, theymay still admit a class of theories
beyond quantummechanics. Using a thought experiment by vonNeumann, we show that these
theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for
projectivemeasurements andmixing procedures. Furthermore, we study additional entropy-like
quantities based onmeasurement probabilities and convex decomposition probabilities, and uncover
a relation between one of these quantities and Sorkin’s notion of higher-order interference.

1. Introduction

Quantummechanics has existed for about 100 years now, but despite its enormous success in experiment and
application, themeaning and origin of its counterintuitive formalism is still widely considered to be difficult to
grasp.Many attempts to put quantummechanics on amore intuitive footing have beenmade over the decades,
which includes the development of a variety of interpretations of quantumphysics (such as themany-worlds
interpretation [1], Bohmianmechanics [2], QBism [3], andmany others [4]), and a thorough analysis of its
departure from classical physics (as in Bell’s theorem [5] or in careful definitions of notions of contextuality [6]).
Inmore recent years, researchers,mostly coming from and inspired by the field of quantum information
processing (early examples include [21, 22, 51]), have taken as a starting point the set of all probabilistic theories.
Quantum theory is one of them and can be uniquely determined by specifying some of its characteristic
properties [53] (as in e.g. [19, 43, 51, 54, 55, 57–61]).

While the origins of this framework date back at least to the 1960s [15, 16, 18], it was the development of
quantum information theorywith its emphasis on simple operational setups that led to a newwave of interest in
‘generalised probabilistic theories’ (GPTs) [51, 52]. This framework turned out to be very fruitful for
fundamental investigations of quantum theory’s information-theoretic and operational properties. For
example, GPTsmake it possible to contrast quantum information theorywith other possible theories of
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information processing, and in this way to gain a deeper understanding of its characteristic properties in terms of
computation or communication.

In a complementary approach, there has been awave of attempts tofind simple physical principles that
single out quantum correlations from the set of all non-signalling correlations in the device-independent
formalism [70]. These include non-trivial communication complexity [71], macroscopic locality [72], or
information causality [73]. However, none of these principles so far turns out to yield the set of quantum
correlations exactly. This led to the discovery of ‘almost quantum correlations’ [75]which aremore general than
those allowed by quantum theory, but satisfy all the aforementioned principles. Almost quantum correlations
seem to appear naturally in the context of quantum gravity [77].

A relation to other fields of physics can also be drawn from information causality, which can be understood
as the requirement that a notion of entropy [66–69] exists which has some natural properties like the data-
processing inequality [74]. These emergent connections to entropy and quantumgravity are particularly
interesting since they point to an area of physics wheremodifications of quantum theory are well-motivated:
Jacobson’s results [78] and holographic duality [79] relate thermodynamics, entanglement, and (quantum)
gravity, andmodifying quantum theory has been discussed as ameans to overcome apparent paradoxes in black-
hole physics [80].

While GPTs provide away to generalise quantum theory and to studymore general correlations and physical
theories, they still leave open the question as towhich principles should guide us in applying theGPT formalism
for this purpose. The considerations above suggest taking, as a guideline for suchmodifications, the principle
that they support awell-behaved notion of thermodynamics. As A Einstein [32] put it,

‘A theory is themore impressive the greater the simplicity of its premises, themore different kinds of things it
relates, and themore extended its area of applicability. Therefore the deep impression that classical thermodynamics
made uponme. It is the only physical theory of universal content which I am convincedwill never be overthrown,
within the framework of applicability of its basic concepts.’

Along similar lines, A Eddington [33] argued that ‘The law that entropy always increases holds, I think, the
supreme position among the laws ofNature. If someone points out to you that your pet theory of theUniverse is in
disagreement withMaxwell’s equations—then somuch the worse forMaxwell’s equations. If it is found to be
contradicted by observation—well, these experimentalists do bungle things sometimes. But if your theory is found to be
against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.’

Herewe take this point of view seriously.We investigate what kinds of probabilistic theories, including but
not limited to quantum theory, could peacefully coexist with thermodynamics.We present two postulates that
formalise important physical properties which can be expected to hold in any such theory. On the one hand,
these two postulates allow for a class of theoriesmore general than quantumor classical theory, which thus
describes potential alternative physics consistent with important parts of thermodynamics aswe know it.
Indeed, by considering a thought experiment originally conceived by vonNeumann, we show that these theories
all give rise to a unique, consistent formof thermodynamical entropy. Furthermore, we show that this entropy
satisfies several other important properties, including two instances of the second law.On the other hand, we
show that these postulates already implymany structural properties which are also present in quantum theory,
for example self-duality and the existence of analogues of projectivemeasurements, observables, eigenvalues
and eigenspaces.

In summary, our analysis shows that important structural aspects of quantumand classical theory are
already implied by these aspects of thermodynamics, but on the other hand it suggests that there is still some
‘elbow room’ formodificationwithin these limits dictated by thermodynamics.

Thermodynamics inGPTs has been considered in some earlier works. In [35, 36], the authors introduced a
notion of (Rényi-2-)entanglement entropy, and studied the phenomenon of thermalisation by entanglement
[37–39] and the black-hole information problem (in particular the Page curve [40]) in generalisations of
quantum theory. Hänggi andWehner [46] have related the uncertainty principle to the second law in the
framework ofGPTs. Chiribella and Scandolo ([45, 47], see also [48]) have considered the notion of
diagonalization andmajorization in general theories, leading to a resource-theoretic approach to
thermodynamics inGPTs. There are various connections between their results and ours, but there are essential
differences. In particular, they assume the purification postulate (which is arguably a strong assumption that in
particular excludes classical thermodynamics), whereas we are notmaking any assumption on composition of
systemswhatsoever, and in this sensework in amore general framework. Furthermore, while Chiribella and
Scandolo take a resource-theoretic approachmotivated by quantum information theory, our analysis relies on a
more traditional thermodynamical thought experiment (namely vonNeumann’s).We presented results related
to some of those in the present paper in the conference proceedings [31]; here we use different assumptions and
obtain additional results.
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Our paper is organised as follows.We start with an overview of the framework ofGPTs. Thenwe present von
Neumann’s thought experiment on thermodynamic entropy, and amodification of it due to Petz [42]. Although
it relies on verymild assumptions, it already rules out all theories that admit a state space known as the gbit or
squit (a square-shaped state space that can be used to describe one of the two local subsytems of a composite
systemknown as the PR-box [83], exhibiting stronger-than-quantum correlations). Thenwe present our two
postulates, and show that they implymany structural features of quantum theory.We show that theories that
satisfy both postulates behave consistently in vonNeumann’s thought experiment and admit a notion of
thermodynamic entropywhich satisfies versions of the second law.

Because entropies are an important bridge between information theory and thermodynamics, in the final
sectionwe investigate the consequences of our postulates for generalisations of quantities of known significance
in quantum thermodynamics [30], defined by applying Rényi entropies to probabilities in convex
decompositions of a state, or ofmeasurementsmade on a state. In particular, we show a relation betweenmax-
entropy and Sorkin’s notion of higher-order interference [76]: equality of the preparation andmeasurement
basedmax-entropies implies the absence of higher-order interference.Most proofs are deferred to the appendix.
Several results of this paper have been announced in theMaster Thesis of one of the authors [34].

2. Themathematical framework

Our results are obtained in the framework ofGPTs [51, 52, 55, 85, 88]. The goal of this framework is to capture
all probabilistic theories, i.e. all theories that use states tomake predictions for probabilities ofmeasurement
outcomes. Although the framework is based on veryweak andnatural assumptions, we can only provide a short
introduction of themain notions and results here. Formore detailed explanations of the framework, see e.g.
[34, 51, 52, 55, 86, 87]. The framework contains quantum theory and also the application of probability theory to
classical physics, often referred to as classical probability theory, as special cases. It also contains theories which
differ substantially from classical or quantumprobability theory, for example boxworld [52], which allows
superstrong nonlocality, and theories that allow higher-order interference [76].

A central notion is that of the state and the set of states, the state space AW . A state contains all information
necessary to calculate all probabilities for all outcomes of all possiblemeasurements. One possible and
convenient representationwould be to simply list the probabilities of a set of ‘fiducial’measurement outcomes
which is sufficient to calculate all outcome probabilities for allmeasurements [51, 52]. An example is given in
figure 1.

It is possible to create statisticalmixtures of states: let us assume a black box device randomly prepares a state

1w with probability p1 and a state 2w with probability p2. In agreementwith the representation of states as lists of
probabilities and the law of total probability, the appropriate state to describe the resultingmeasurement
statistics is p p1 1 2 2w w w= + . Thismeans that the state space AW is convex and is embedded into a real vector
spaceA (to be described below). Due to the interpretation of states as lists of probabilities (which are between 0
and 1)wedemand that AW is bounded. Any state that cannot bewritten as a convex decomposition of other

Figure 1.An example state space,A, modelling a so-called ‘gbit’ [52]which is often used to describe one half of a PR-box. The
operational setup is depicted on the left, and themathematical formulation is sketched on the right. An agent (‘Alice’) holds a black
boxω intowhich she can input one bit, a 0, 1Î { }, and obtains one output, x 1, 2Î { }. The box is described by a conditional
probability p x a( ∣ ). In theGPT framework,ω becomes an actual state, i.e. an element of some state spaceΩ. Concretely,

p p1, 1 0 , 1 1 3w = Î( ( ∣ ) ( ∣ )) , where the first entry 1 is used to describe the normalisation, p p p p1 0 2 0 1 1 2 1+ = +( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ). In
this case, all probabilities are allowed by definition, so that the state spaceΩ becomes the square, i.e. the points s t1, ,( ) with

s t0 , 1  . Alice’s input a is interpreted as a ‘choice ofmeasurement’, and the twomeasurements are e e,x
a

x
a

1
0

2
0

=
=

=
=( ) ( ) resp.

e e,x
a

x
a

1
1

2
1

=
=

=
=( ) ( ) such that e 1x x

a
1

2 wå == ( )( ) for all states w Î W. If we describe effects by vectors by using the standard inner product, we
have, for example, e 0, 1, 0x

a
1

0 ==
= ( )( ) , since e P 1 0 0, 1, 0x

a
1

0 w w= ==
= ( ) ( ∣ ) ( ) ·( ) . There are four pure states, labelled , ,1 4w w¼ . Every

pure state iw is perfectly distinguishable from every other pure state jw for j i¹ , but nomore than two of them are jointly
distinguishable in a singlemeasurement.More generally, every state on one side of the square is perfectly distinguishable from every
state on the opposite side. The unit effect is u 1, 0, 0A = ( ).
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states is called a pure state. As pure states cannot be interpreted as statisticalmixtures of other states, they are also
called states ofmaximal knowledge. Furthermore, there is no physical distinction between states that can be
prepared exactly, and states that can be prepared to arbitrary accuracy. Thus, we also assume that AW is
topologically closed. In order to not obscure the physics by themathematical technicalities introduced by
infinite dimensions, wewill assume thatA is finite-dimensional. Thus AW is compact. Consequently, every state
can be obtained as a statisticalmixture of finitelymany pure states [89].

Furthermore, it turns out to be convenient to introduce unnormalised statesω, defined as the non-negative
multiples of normalised states. They form a closed convex cone A A0 W+ ≔ · . For simplicity of description,
we choose the vector space containing the cone of states to be ofminimal dimension, i.e. A Aspan =+( ) .

We introduce the normalisation functional u A:A  which attains the value one on all normalised states,
i.e. u 1A w =( ) for all Aw Î W . It is linear, non-negative on thewhole cone, zero only for the origin, and Aw Î +

is an element of AW if and only if u 1A w =( ) . The normalisation uA w( ) can be interpreted as the probability of
success of the preparation procedure. For states with u 1A w <( ) , the preparation succeedswith probability
uA w( ). The states with normalisation 1> do not have a physical interpretation, but adding them allows us to take
full advantage of the notion of cones from convex geometry.

Effects are functionals thatmap (sub)normalised states to probabilities, i.e. into 0, 1[ ]. To eachmeasurement
outcomewe assign an effect that calculates the outcome probability for any state. Effects have to be linear for
consistencywith the statisticalmixture interpretation of convex combinations of states. Ameasurement (with n
outcomes) is a collection of effects e e, , n1 ¼ such that e e un A1 + ¼ + = . Its interpretation is that performing
themeasurement on some state Aw Î W yields outcome iwith probability ei w( ).

A set of states , , n1w w¼ is called perfectly distinguishable if there exists ameasurement e e, , n1 ¼ such that
ei j ijw d=( ) , that is, 1 if i=j and 0 otherwise. A collection of n perfectly distinguishable pure states is called an n-
frame, and a frame is calledmaximal if it has themaximal number n of elements possible in the given state space.
In quantum theory, for example, themaximal frames are exactly the orthonormal bases ofHilbert space. In
more detail, a frame on anN-dimensional quantum system is given by , , N N1 1 1w y y y y= ñá ¼ ñá∣ ∣ ∣ ∣, where

, , N1y yñ ¼ ñ∣ ∣ are orthonormal basis vectors.
Transformations aremapsT A A:  thatmap states to states, i.e.T A AÍ+ +( ) . Similarly as effects, they

also have to be linear in order to preserve statisticalmixtures. They cannot increase the total probability, but are
allowed to decrease it (as is the case, for example, for a filter), thus u T uA Aw w◦ ( ) ( ) for all Aw Î +.

Instruments9 [84] are collections of transformationsTj such that u T uj A j Aå =◦ . If an instrument is applied

to a stateω, one obtains outcome j (and post-measurement stateT pj jw( ) )with probability p u Tj A j w≔ ( ( )).
Each instrument corresponds to ameasurement given by the effects u TA j◦ .Wewill say it ‘induces’ this
measurement.

The framework ofGPTs does not assume a priori that allmathematically well-defined states,
transformations andmeasurements can actually be physically implemented.Here, wewill assume that a
measurement constructed fromphysically allowed effects is also physically allowed.Moreover, we assume that
the set of allowed effects has the same dimension as A+, because otherwise therewould be distinct states that
could not be distinguished by anymeasurement.

3. vonNeumann’s thought experiment

The following thought experiment has been applied by vonNeumann [41] tofind a notion of thermodynamic
entropy for quantum states ρ. The result turns out to equal vonNeumann entropy, H tr logr r r= -( ) ( ).We
apply the thought experiment to awider class of probabilistic theories.

We adopt the physical picture used by vonNeumann [41] to describe the thought experiment10; wewill
comment on some idealisations used in thismodel at the end of this section.We consider aGPT ensemble
S S, , N1 ¼[ ], where Si denotes the ith physical system, andNj of the systems are in state jw , where j= 1,K,n and

N Nj jå = . This ensemble is described by the state pj
n

j j1w w= å = , where p N Nj j= , which describes the

effective state of a system that is drawn uniformly at random from the ensemble.

9
Some authors have recently begun referring to instruments as operations, but long-standing convention in quantum information theory

(including [50]) uses the term ‘operation’ for the quantum case of what we are calling transformations (which are completely positivemaps).
Also, Davies and Lewis [84] define instrumentmore generally, to allow for continuously-indexed transformations, wherewe only consider
finite collectionsTj.
10

Our thought experiment is identical to vonNeumann’s, up to two differences: first, we translate all quantumnotions tomore general GPT
notions; second, while vonNeumann implements the transition from (5) to (6) infigure 2 via sequences of projections, we implement this
transition directly via reversible transformations.
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We introduceN small, indistinguishable, hollow boxes11, andwe put each ensemble system Sj into one of the
boxes such that the system is completely isolated from the outside. Furthermore, we assume that the boxes form
an ideal gas, whichwill allow us to use the ideal gas laws in the following derivation. This gas will be called theω-
gas.Wewill denote the total thermodynamic entropy of a systembyH, with a subscript whichmay indicate
whether it is the total entropy of a gas, which potentially depends both on the states of theGPT systems in the
boxes and on the classical degrees of freedom (positions,momenta) of the boxes, or just the entropy of theGPT
or of the classical degrees of freedom.

Atfirst we need to investigate how the entropy of the gas and of the ensemble are related to each other
because later on, wewill only consider the gas. Sowe consider also a secondGPT ensemble S S, , N1¢ ¼ ¢[ ] (described
by Aw¢ Î W ) implanted into a gas the sameway. At temperatureT=0, themovement of the boxes freezes out
andwe are left with theGPT ensembles. In this case, the thermodynamic entropies of the gases and theGPT
ensemblesmust satisfy: H H H Hgas gas ensemble ensemble- = -w w w w¢ ¢‐ ‐ ‐ ‐ . Remember that the heat capacity is
C Q Tdd= , and as the gases only differ in their internal systems, which are isolated,C is the same for both
gases.With H Q Td d= we thusfind that H Hgas gas-w w¢‐ ‐ is constant inT, i.e.
H H H Hgas gas ensemble ensemble- = -w w w w¢ ¢‐ ‐ ‐ ‐ for all temperatures.

The central tool for the thought experiment is a semi-permeablemembrane.Whenever a box reaches the
membrane, themembrane opens that box andmeasures the internal system.Depending on the result, a window
is opened to let the box pass, or thewindow remains closed. It is crucial to note that thismembranewill not cause
problems in the style ofMaxwell’s demon, as was already discussed by vonNeumannhimself, because the
membrane does not distinguish between its two sides.

Nowwe beginwith the experiment itself; see figure 2.We consider a state pj
n

j j1w w= å = where jw are

perfectly distinguishable pure states, and p N Nj j= , whereNj boxes contain a system in the state jw .We

assume that theω-gas is confined in a container of volumeV. Let there be a second container which is identical to
thefirst one, but empty. The containers aremerged together, thewall of the non-empty container separating the
containers replaced by a semi-permeablemembranewhich lets only 1w pass. At the opposite wall of the non-
empty container we insert a semi-permeablemembranewhich only blocks 1w . The solidwall in themiddle and
the outer semi-permeablemembrane aremoved at constant distance until the solid wall hits the other end.

Once this is accomplished, i.e. in stage (4) infigure 2, one container has all 1w -boxes and the other one
contains all the rest. Note that this procedure is possible without performing anywork as can be seen viaDalton’s
Law [90]: thework needed to push the semi-permeablemembrane against the 1w -gas can be recollected at the
other side from themoving solid wall, which is pushed by the 1w -gas into empty space. Thuswe have separated
the 1w -boxes from the rest.We repeat a similar procedure until all the jw -gases are separated into separate
containers of volumeV.

Next we compress the containers isothermally to the volumes p Vj , respectively. Denoting the pressure by P,

and using the ideal gas law, we obtain the requiredwork

P V N k T V V p Nk T pd d log ,
V

p V

V

p V

j B j B j

j j

ò ò= =

where log denotes the natural logarithm. As the temperature and thus the internal energy remain constant, we
extract heat Nk T p plogB j j jå .

At this point, we have achieved that every container contains a pure state jw .We now transform every jw to
another pure state w¢whichwe choose to be the same for all containers. This is achieved by opening the boxes
and applying a reversible transformationTj in every container jwhich satisfiesTj jw w= ¢. These transformations
exist due to postulate 1. Since the same transformationTj is applied to all small boxes in any given container j
(without conditioning on the content of the small box), this operation is thermodynamically reversible.

Nowwemerge the containers, endingwith a pure w¢-gas in the same condition as the initialω-gas. This
merging is reversible, because the density is not changed and because all states are the same, so one can just put in
thewalls again. The only step that caused an entropy difference was the isothermal compression. Thus, the
difference of the entropies between theω-gas and the w¢-gas (which are equal to the entropies of the respective
GPT ensembles) is Nk p plogB j j jå . Therefore H H Nk p plogB j j jensemble ensemble= - åw w¢‐ ‐ . If we assume that

pure states have entropy zero, we thus end upwith

H Nk p plog 1B
j

j jensemble å= -w ( )‐

11
For amore detailed discussion of the physical properties of these small boxes, we refer the reader to vonNeumann‘s original work [41].
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andwith the following entropy per systemof the ensemble:

H
N

H k p p
1

log . 2B
j

j jensemble åw = -w( ) ≔ ( )‐

In summary, we havemade the following assumptions to arrive at this notion of thermodynamic entropy:

Assumptions 1.

(a) Every (mixed) state can be prepared as an ensemble/statistical mixture of perfectly distinguishable pure
states.

(b) A measurement that perfectly distinguishes those pure states can be implemented as a semi-permeable
membrane, which in particular does not disturb the pure states that it distinguishes.

(c) All pure states can be reversibly transformed into each other.

(d) Thermodynamical entropy H is continuous in the state. (Since ensembles must have rational coefficients
p N Nj j= , we need this to approximate arbitrary states in the thought experiment.)

Figure 2.This figure shows vonNeumann’s thought experiment, as described in themain text. Stages (1)–(5) also feature in Petz’
version.
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(e) All pure states have entropy zero.

A generalised version of the thought experiment presented by Petz [42] is applicable tomore general
decompositions: suppose that , , n A1w w¼ Î W are perfectly distinguishable, but not necessarily pure. Let
p p, , n1 ¼ be a probability distribution. Then Petz’ thought experiment implies that

H p p H k p plog . 3
j

j j
j

j j B
j

j jå å åw w= -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )

Themain idea is that steps (1)–(5) of vonNeumann’s thought experiment can be run even if the perfectly
distinguishable states , , n1w w¼ aremixed and not pure (as long as themembranewill still keep them
undisturbed). Then the entropy of the state in (5) can be computed bymaking an additional extensivity
assumption: denote theGPT entropy of anω-ensemble ofN particles in a volumeV by H N V,ensemblew ( )‐ , then
this assumption is that

H N V H N V, ,ensemble ensemblel l l=w w( ) ( )‐ ‐

for 0l . Assuming in addition that the entropy of the n containers adds up, the total entropy of the
configuration in step (5) is N p Hj j jwå ( ), fromwhich Petz obtains(3).While this approach needs this additional
extensivity assumption, it does not need to postulate that all pure states can be reversibly transformed into each
other (in contrast to vonNeumann’s version). Under the assumption that all pure states have entropy zero, it
reproduces equation (2) as a special case.

We conclude this sectionwith a few comments on the idealisations used in the thought experiments above.
The use of gases inwhich the exact numbers of particles with each internal state is known parallels von
Neumann’s argument in [41].We rarely if ever have such precise knowledge of particle numbers in real physical
gases, so our argument involves a strong idealisation, but one that is common in thermodynamics and that has
also beenmade by vonNeumann12.

Although fluctuations inwork are significant for small particle numbers, in the thermodynamic limit of
large numbers of particles there is concentration about the expected value given, in vonNeumann’s protocol, by
the vonNeumann entropy, and therefore our arguments (and vonNeumann’s) have themost physical relevance
in this large-N situation. This is of course true for classical thermodynamics as well—indeed, the usemade of the
ideal gas law andDalton’s law in vonNeumann’s argument are additional places where largeN is needed if one
wantsfluctuations to be negligible.We expect finer-grained considerations to be required for a thorough study
offluctuations infinite systems, which is one reason for interest in the additional entropicmeasures studied in
section 5.6, but vonNeumann’s argument does not concern thesefiner-grained aspects of the thermodynamics
offinite systems.

4.Why the ‘gbit’ is ruled out

In section 2, we have introduced the ‘gbit’, a system forwhich the state spaceΩ is a square. Gbits are particularly
interesting because they correspond to ‘one half’ of a Popescu–Rohrlich box [83]which exhibits correlations
that are stronger than those allowed by quantum theory [70]. Onemight wonder whether the thought
experiments of section 3 allow us to define a notion of thermodynamic entropy for the gbit.Wewill now show
that this is not the case, which can be seen as a thermodynamical argument forwhywe do not see superstrong
correlations of the Popescu–Rohrlich type in our universe.

Since not all states of a gbit can bewritten as amixture of perfectly distinguishable pure states, von
Neumann’s original thought experiment cannot be of direct use here.However, wemay resort to Petz’ version:
everymixed stateω of a gbit can bewritten as amixture of perfectly distinguishablemixed states, as illustrated in
figure 3. Furthermore, the other crucial assumption on the state space is satisfied, too: for every pair of perfectly
distinguishablemixed states, there is an instrument (a ‘membrane’) that distinguishes those states without
disturbing them.We even have that all pure states can be reversibly transformed into each other (namely by a
rotation of the square).

Thus, we can analyse the behaviour of a gbit state space in Petz’ version of the thought experiment. Any
continuous notion of thermodynamic entropyH consistent with this thought experiment would thus have to

12
Here, vonNeumann’s thought experiment is formulated in terms of a frequentist view on probabilities, which is standard inmost

treatments on thermodynamics. A treatment involving a finite ensemble where the frequencies (and perhaps the total particle number) are
stochasticmight seemmore suitable from aBayesian point of view; it would likely raise issues aboutwhether the amount of work extracted
from afinite system is subject tofluctuations. For systems that are finite or out of equilibrium,measures such as Shannon’s are knownnot to
be thewhole story (see [30] and references therein). But even forfinite systemswith amore realistic treatment of uncertainty about particle
numbers, the vonNeumann entropy still gives the expectedwork in the protocol he considers.We defer these issues to futurework, although
we note that [30] suggests the operational entropies discussed in section 5.6 are among the relevant tools for tackling them.
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satisfy(3). However, wewill now show that the gbit does not admit any notion of entropy that satisfies(3).
Consider different decompositions of the state a b

1

2

1

2
w w w= + in the centre of the square, where

p p1a 1 2w w w= + -( ) as well as p p1b 3 4w w w= + -( ) . It is geometrically clear that every choice of
p0 1< < corresponds to a valid decomposition.Wefind (applying equation (3) toω for thefirst equality, and

to aw and bw for the second):

H H H k p H p H

p H p H k p p k p p k

1

2

1

2
2

1

2
log

1

2

1

2

1

2
1

1

2

1

2
1 log 1 log 1 log 2.

a b B

B B B

1 2

3 4

w w w w w

w w

= + - = + -

+ + - - - - - +

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

This expression can never be constant in p, nomatter what value of entropy of the four pure states H iw( )we
assume. Thus, the entropy H w( ) of the centre stateω is not well-defined, since it depends on the choice of
decomposition.

In other words, the structure of the gbit state space enforces that anymeaningful notion of thermodynamic
entropyHwill not only be a function of the state, but a function of the ensemble that represents the state. If a state
ω is represented by different ensembles, then this will in general give different values of entropy.

Sowhat goes wrong for the gbit? Clearly, all we can saywith certainty is that the combination of assumptions
made in vonNeumann’s thought experiment turns out not to yield a unique notion of entropy, while a deeper
physical interpretation seems only possible under further assumptions on the interplay between the gbit and the
thermodynamic operations. However, a comparisonwith quantum theorymotivates at least one further
speculative attempt at interpretation. In the example above, we have decomposed a stateω into two perfectly
distinguishable states aw and bw , which can themselves be decomposed into pairs of perfectly distinguishable
states 1w and 2w , or 3w and 4w respectively. In quantum theory, this would only be possible if aw and bw are
orthogonal, whichwould then imply that all four states , ,1 4w w¼ are pairwise orthogonal. This would enforce
that there exists a unique projectivemeasurement (a ‘membrane’) that distinguishes all these four states jointly.
Thismembrane could feature in vonNeumann’s thought experiment (or other similar thermodynamical
settings), yielding a unique notion of thermodynamic entropy.

On the other hand, in the gbit, the four pure states , ,1 4w w¼ are not jointly perfectly distinguishable. Hence
there is no canonical choice of ‘membrane’ that could be used in the thought experiment to define a unique
natural notion of entropy for the gbit states. Entropywill be ‘contextual’, depending on the choice ofmembrane
resp. ensemble decomposition that is used in any given specific thermodynamical setting. Therefore, the
implication ‘pairwise distinguishabilityjoint distinguishability’, which is true for quantum theory, has
thermodynamic relevance. This implication, if suitably interpreted, leads to the ‘exclusivity principle’ [7, 8, 91],
namely that the sumof the probabilities of pairwise exclusive propositions cannot exceed 1 (in this case these
propositions correspond to the outcomes of the jointly distinguishingmeasurement). This suggests that the
exclusivity principle, which has so far been considered only in the realmof contextuality,may be
thermodynamically relevant. This observation is also closely related to the notion of ‘dimensionmismatch’
described in [82], and to orthomodularity in quantum logic (see for example [23]).

5. A class of theorieswith consistent thermodynamic behaviour

5.1. The two postulates
In this sectionwe introduce the two postulates that express key operational concepts from thermodynamics. The
first postulate ismotivated by the universality of thermodynamics and the distinction betweenmicroscopic and

Figure 3. In an attempt to define a notion of thermodynamic entropy for the gbit, we can decompose any state into perfectly
distinguishable states. This is done in two steps, as explained in themain text.
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macroscopic behaviour. Atfirst we consider the universality of thermodynamics, in the sense that
thermodynamics is a very general theory whose basic principles can be applied tomany possible
implementations, as already noticed byNCarnot [44]:

‘In order to consider in themost general way the principle of the production ofmotion by heat, it must be
considered independently of anymechanism or any particular agent. It is necessary to establish principles applicable
not only to steam engines but to all imaginable heat-engines, whatever the working substance andwhatever the
method bywhich it is operated.’

Recalling vonNeumann’s thought experiment in the case of quantum theory, we can think of
thermodynamical protocols (whichwill ultimately also include heat engines) as acting on a given ensemble,
defined as a probabilisticmixture of pure states chosen from afixed basis. If we interpret ensembles with
different choices of basis as different ‘working substances’, thenCarnot’s principle should apply: protocols that
can be implemented on one ensemble (say, ensemble 1) can also be implemented on the other (say, ensemble
2)13. In quantum theory, this universality is ensured by the existence of unitary transformations: all orthonormal
bases can be translated into each other by a unitary and therefore reversiblemap. In this sense, the state of
ensemble 1 can in principle be transferred to ensemble 2, then the thermodynamic protocol of ensemble 2 can be
performed (if we have also transformed the projectors describing themembranes accordingly), and then one can
transformback. Even if this cannot always be achieved in practice, the corresponding unitary symmetry of the
quantum state space (considered as passive transformations between different descriptions) enforces the
aforementioned universality14.

This universality of implementation, as well as independence of the choice of labels and descriptions, should
continue to hold in all generalised theories that we consider. An orthonormal basis fromquantum theory is
nothing else than a set of perfectly distinguishable pure states, i.e. an n-frame. Therefore, in our generalised
theories, we expect that this universality of implementation is achieved by the existence of reversible
transformations that, in analogy to unitarymaps, transform any given n-frame into any other:

Postulate 1. For each n Î , all sets of n perfectly distinguishable pure states are equivalent. That is, if
, , n1w w¼{ }and , , n1j j¼{ }are two such sets, then there exists a reversible transformationTwithT j jw j= for

all j.

Furthermore, postulate 1 expresses a physical property that is crucial for thermodynamics: that of
microscopic reversibility.Many characteristic properties of thermodynamics arise from limited experimental
access to themicroscopic degrees of freedom,which by themselves undergo reversible time evolution. This
reversibility, for example, forbids evolving twomicrostates into one, which is at the heart of the non-decrease of
entropy. If the experimenter had full access to themicroscopic degrees of freedom, then he or she could convert
any state ofmaximal knowledge to any other one as long as he or she preserved distinguishability. Postulate 1
formalises thismicroscopic basis of thermodynamics by demanding the existence of ‘enough’ distinguishability-
preserving,microscopic transformationsT, which can be understood as reversible time evolutions.

Postulate 1 has substantial information-theoretical justifications and consequences. The basic concepts of
both thermodynamics and information processing are independent of the choice of implementation. For
information processing this is formalised by the Turingmachinewhich admits amultitude of physical
realisations. Perfectly distinguishable pure states can be taken as bits, and postulate 1 expresses that all bits (or
their higher-dimensional analogues) are equivalent. It is for this reason that postulate 1was called generalised bit
symmetry in [34], and its restriction to pairs of distinguishable states was called bit symmetry in [64]. Startingwith
Landauer’s principle, ‘thermodynamics of computation’ [92] has become a fruitful paradigm that relates the two
apparently disjoint fields. The two complementary interpretations of postulate 1 are one instance of this.

Nowwe turn to our second postulate.We are looking for theories very similar to the thermodynamics we are
used to; thus it is essential that we can adopt basic notions of standard thermodynamics unchanged orwith only
very small alterations. Two such notions of great importance are (Shannon) entropy S k p plogB j j j= - å and

majorization theory. In classical and quantum thermodynamics, these notions operate on the coefficients in a
decomposition of a state into perfectly distinguishable pure states (in quantum theory, the eigenvalues). In order
to not change thermodynamic theory toomuch, wewould also like this to be possible in ourmore general state
spaces. Thus, we demand that every state has a convex decomposition into perfectly distinguishable pure states.

13
Herewe only consider ensembles of identical Hilbert space dimensions. If the dimensions are different (say, 2 versus 3), then one can

implement different sets of protocols on the ensembles (say, ones involving semipermeablemembranes that distinguish 3 alternatives in the
latter, but not the former case). One could then still discuss a notion of universality in Carnot’s spirit, by referring to the equivalence of, say, a
state spacewithN=3 alternatives to a subspace of a state spacewith N 2 2= ´ alternatives, but wewill not discuss this further here.
14

In classical thermodynamics, the analogue of a choice of basis is the labelling of the distinguishable configurations. Clearly, the availability
of thermodynamic protocols does not change under relabelling.
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Note that this was indeed one of our assumptions in vonNeumann’s thought experiment in section 3. There,
it allowed us to realise any stateω as a ‘quasiclassical ensemble’, i.e. as an ensemble of states that behave like
classical labels. This gives us a further justification of our second postulate: thermodynamic (thought)
experiments require that states have an ensemble interpretation. An unambiguous notion of ‘counting of
microstates’ demands that the ensembles consist of perfectly distinguishable, pure states.Without this,
obtaining a phenomenological thermodynamics for which the theory is the underlyingmicroscopic theory
seems problematic. Thus, our second postulate is

Postulate 2.Every state Aw Î W has a convex decomposition pj j jw w= å into perfectly distinguishable pure

states jw .

It is tempting to interpret the two postulates as reflecting themicroscopic and themacroscopic aspects of
thermodynamics, respectively: while postulate 1 describesmicroscopic reversibility of the pure states thatmay
describe single particles in thermodynamics, postulate 2 ensures thatmixed states can be interpreted
macroscopically as descriptions of quasiclassical ensembles, composed of a large number of particles that are
separately in unknown but distinguishablemicrostates.

Wewill not introduce any further postulates. In particular, wewill notmake any assumptions on the
composition of systems. All our results are therefore independent fromnotions like tomographic locality [51]
(which is arguably dispensable inmany important situations [81]) or purification [56] (which is a rather strong
assumption); we do not assume either of the two.

5.2. Some consequences of postulates 1 and 2
Postulates 1 and 2 have been analysed in [43], but in a different context: instead of investigating
thermodynamics, the goal in [43]was to obtain a reconstruction of quantum theory, by supplementing
postulates 1 and 2with further postulates. Some of the insights from [43]will be important here, and are
therefore briefly discussed below. Starting with section 5.4, wewill also obtain new results that are interesting in a
thermodynamic context.

In contrast toHilbert space, there is no apriori notion of inner product forGPTs.However, as shown in [64],
we get a natural inner product ,á ñ· · as a consequence of postulates 1 and 2: it satisfies T T, ,w j w já ñ = á ñ for all
reversible transformationsT, and 0 , 1 w já ñ for all states , Aw j Î W . Furthermore, , 1w wá ñ = for all
pure Aw Î W and , 1j já ñ < for allmixed Aj Î W , and , 0w já ñ = if , Aw j Î W are perfectly distinguishable.
Thus, all perfectly distinguishable states are orthogonal, as in quantum theory.

Moreover, the cone of unnormalized states becomes self-dualwith this choice of inner product. In
particular, every effect e can be taken as a vector in A+, such that e e,w w= á ñ( ) . In standard quantum theory,
this is theHilbert Schmidt inner product on the real vector space ofHermitianmatrices: X Y XY, trá ñ = ( ) for
X X= †, Y Y= †.

Quantum theory hasmore structure: the convex set of densitymatrices AW has faces15, and these faces are in
one-to-one correspondence to subspaces ofHilbert space (namely, a face F contains all densitymatrices that
have support on the correspondingHilbert subspace). To every face F, we can associate a number F∣ ∣which is the
dimension of the correspondingHilbert subspace, and F G implies F G<∣ ∣ ∣ ∣. Every face F is generated by F∣ ∣
pure and perfectly distinguishable states in F (an F∣ ∣-frame in F), and every (smaller) frame that is a subset of F
can be completed, or extended, to a framewhich has F∣ ∣elements and thus generates F.

In all theories that satisfy postulates 1 and 2, all these properties hold in complete analogy [43]. However,
since faces do not anymore correspond toHilbert spaces, the numbers F∣ ∣do not have an interpretation as the
dimension of a subspace. Instead, we call F∣ ∣ the rank of F. If vonNeumann’s thought experiment is supposed to
make sense for these theories, we need away to formalise theworking of a semipermeablemembrane, which in
quantum theory is done via projectivemeasurements.

Sincewe are dealingwith unnormalized states, the corresponding analogue inGPTswill be formulated in
terms of the set of unnormalized states A+. As one can see in the case of the gbit, it is not automatic thatwe have
any notion of ‘projectivemeasurements’ for any given state space.However, postulates 1 and 2 turn out to
ensure that projectivemeasurements exist. For any face F of A+ (the non-negativemultiples of the
corresponding face of AW ), consider the orthogonal projectorPF onto the span of F. One can show thatPF is
positive, i.e.maps (unnormalized) states to (unnormalized) states [43].Moreover, PF does not disturb the states
in the face F.

Thus, to a given set ofmutually orthogonal faces F F, , m1 ¼ such that F F Nm A1 + ¼ + =∣ ∣ ∣ ∣ , we can
associate an instrument with transformationsT Pi Fi

≔ , which describes a projectivemeasurement, as in a

15
A face of a convex setC is a convex subset F CÍ with the property that x y F1l l+ - Î( ) with 0 1l< < and x y C, Î implies

x y F, Î [89].We say that F is generated by , , n1w w¼ if F is the smallest face that contains , , n1w w¼ .
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semipermeablemembrane. TransformationTi leaves the states in face Fiunperturbed, but fully blocks out states
in the other faces, i.e.T 0iw = for Fjw Î , i j¹ . In standard quantum theory, these transformations are
PF i ii

r p rp= , where ip is the orthogonalHilbert space projector onto the ithHilbert subspace. The rank
condition becomes Ntr tr m A1p p+ ¼ + =( ) ( ) (the totalHilbert space dimension), andmutual orthogonality is

i j ij ip p d p= .Wewill show in section 5.4 that themutually orthogonal faces replace the eigenspaces from
quantum theory and that the projectivemeasurement described here can be interpreted asmeasuring an
observable.

TheHilbert space projector ip therefore also has an interpretation as an effect in standard quantum theory: it
yields the probability of outcome i in the projectivemeasurement on a state ρ, namely tr ip r( ). The analogous
effect in aGPT that satisfies postulates 1 and 2, corresponding to a face F, is

u P uF F A≔

(identifying the effect uAwith a vector via the inner product). The effect uF is sometimes called the ‘projective
unit’ of F. In quantum theory, we canwrite i j j jp y y= å ñá∣ ∣, where the jy ñ∣ are an orthonormal basis of the
correspondingHilbert subspace. The same turns out to be true in ourGPTs: we have

u , 4F
j

F

i
1

åw=
=

( )
∣ ∣

where , , F1w w¼ ∣ ∣ is any frame that generates F. Therefore, the probability to obtain outcome i in the projective
measurement above on stateω is u u P, ,F A Fi i

w wá ñ = á ñ.

5.3. State spaces satisfying postulates 1 and 2
It is easy to see that both quantum and classical state spaces satisfy postulates 1 and 2. By a ‘classical state space’,
wemean a state space that consists of discrete probability distributions. Concretely, for any number N Î of
mutually exclusive alternatives, consider the state space

p p p p, , 0, 1 .N i
i

i1  åW ¼ =≔ {( )∣ }

Any pure state is given by a deterministic probability vector, i.e. 0, , 0, 1, 0, , 0iw = ¼ ¼( ) (where 1 is on the ith
place). If we have two equally sized sets of such vectors (as in postulate 1), then there is always a permutation that
maps one set to the other. In fact, the reversible transformations correspond to the permutations of the entries.
Postulate 2 is then simply the statement that

p p p p p, , .N N N1 1 1 2 2w w w¼ = + + ¼ +( )

Which state spaces are there, in addition to standard complex quantum theory and classical probability theory,
that satisfy postulates 1 and 2?We think that this question is very difficult to answer. Thus, we formulate the
following

Openproblem1.Classify all state spaces that satisfy postulates 1 and 2.

From the results in [43], we knowwhich state spaces satisfy postulates 1 and 2 and one additional property:
the absence of third-order interference. The notion of higher-order interference has been introduced by Sorkin
[76], and has since been the subject of intense theoretical [93, 95, 96] and experimental [97–102] interest.

For themain idea, think of threemutually exclusive alternatives in quantum theory (such as three slits in a
triple-slit experiment), described by orthogonal projectors , ,1 2 3p p p . The event that alternative 1 or alternative 2
takes place is described by the projector ;12 1 2p p p= + similarly, we have 13p , 23p and 123p . Their actions on
densitymatrices are described by superoperators

P12 12 12r r p rp ( ) ≔

(and similarly for the other projectors). As a consequence, we obtain that P P P12 1 2¹ + , which expresses the
phenomenon of interference. However, it is easy to check that

P P P P P P P , 5123 12 13 23 1 2 3= + + - - - ( )

whichmeans that interference over three alternatives can be reduced to contributions from interferences of pairs
of alternatives. Similar identities hold for an arbitrary number n 4 of alternatives: quantum theory admits only
pairwise interference, and no ‘third-order interference’whichwould be characterised by a violation of this
equality.

In the context of postulates 1 and 2, we have an analogous notion of orthogonal projectors, and thuswe can
consider(5) and its generalisation to n 4 alternatives on a state space with N n perfectly distinguishable
states. Postulating this ‘absence of third-order interference’ in addition to postulates 1 and 2 gives us the
following:
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Theorem2 (Lemma33 in [43]). The possible state spaces which satisfy postulates 1 and 2 andwhich do not admit
third-order interference, in addition to classical state spaces, are the following. First, for N 4 perfectly
distinguishable states, there are only three possibilities:

• Standard complex quantum theory.

• Quantum theory over the real numbers. That is, only real entries are allowed in the N N´ densitymatrices.

• Quantum theory over the quaternions. The state spaces are the self-adjoint N N´ quaternionicmatrices of unit
trace.

For N 3= perfectly distinguishable states, all of the above and one exceptional solution are possible, namely
quantum theory over the octonions (but only for the case of 3 3´ unit trace densitymatrices).

For N 2= (the ‘bit’ case), we have the d-dimensional Bloch ball state spaces r r r1, , 1d
T d W Î  ≔ {( ) ∣ }

with d 2 . They are analogous to the standard Bloch ball 3W of quantum theory, with very similar descriptions of
effects etc. Their group of reversible transformations may either be dSO( ) (which corresponds to PU 2( ) for d 3= ), or
some subgroup of dO( )which is transitive on the sphere (such as SU 2( ) for d 4= ).

Mathematically, these examples correspond to the state spaces of thefinite-dimensional irreducible formally
real Jordan algebras [24, 43].We do not knowwhether there are theories that satisfy postulates 1 and 2 but admit
higher-order interference and therefore do not appear on this list. In theorem12, wewill show that the question
whether a theory has third-order interference is related to the properties of its Rényi entropies.

5.4.Observables anddiagonalization
A central part of physics are observables and how they can bemeasured. In standard quantum theory, we can
introduce observables in two different ways, which both equivalently lead to the prescription that observables are
described byHermitian operators/matrices.

First, infinite dimensions, we can characterise observables as those objects that linearly assign real expectation
values to states. In the case of quantum theory it follows that observables are represented bymatricesX, and
Hermiticity X X= † implies that expectation values Xtr r( ) are always real. Linearity is enforced by the statistical
interpretation of states, for the same reason that effects inGPTs are linear.

Second, we can introduce observables by saying that there is a projectivemeasurement , , n1p p¼ that
measures this observable, andwhich has outcomes x x, , n1 ¼ Î . This leads to theHermitian operator
X xi

n
i i1 p= å = . Since everyHermitian operator can be diagonalized, these two definitions are equivalent.

Our two postulates provide the structure to introduce observables in a completely analogousway. First,
using the inner product, we can define observables as linearmaps of the form

x,w wá ñ

and thus identify themwith elements x AÎ of the vector space that carries the states (as in quantum theory,
where this vector space is the space ofHermitianmatrices). As noticed in [62], every such vector has a
representation of the form

x x u , 6
i

i iå= ( )

where the ui are projective units corresponding tomutually orthogonal faces Fi, xi Î , and x xi j¹ for i j¹ .

The analogywith quantum theory goes even further: due to(4), we have x xi i j i
jw= å å ( ), whenever

, ,i i
F1 iw w¼( ) (∣ ∣) is a frame on Fi. This corresponds to the identity X xi i j i

j
i

jy y= å å ñá∣ ∣( ) ( ) in standard quantum
theory. In analogy to quantum theorywewill call the Fi eigenfaces and the xi eigenvalues. To further justify this
terminology, note that the xi are eigenvalues of themap x Pi i iå , where Pi are the orthogonal projectors onto the
spans of the faces Fi.

Theorem3. If postulates 1 and 2 hold, then every element x AÎ has a representation of the form x x uj
n

j j1= å =
where xj Î are pairwise different and the uj are the projective units of pairwise orthogonal faces Fj such that

u uj j Aå = . This decomposition x x uj
n

j j1= å = is unique up to relabelling. In analogy to quantum theory, we will
call the xj eigenvalues and the Fj eigenfaces.

Furthermore, for every real function f with suitable domain of definition, we can define

f x f x u 7
j

n

j j
1

å
=

( ) ≔ ( ) ( )

as in spectral calculus.
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If Pj is the orthogonal projector onto the span of Fj, then P P, , n1 ¼( ) is a well-defined instrument with induced
measurement u u, , n1 ¼( )which leaves the elements of Fspan j( ) invariant:

P Ffor all .j jk kw d w w= Î( ) ·

In analogy to quantum theory, we will call this instrument the projectivemeasurement of the observable x.

Wewill give a proof in the appendix16. Equation (7) allows us to define a notion of entropy, in full analogy to
quantummechanics.

Definition 4 (Spectral entropy). IfA is a state space that satisfies postulates 1 and 2, we define the
spectral entropy for any state Aw Î W as

S p plog ,
i

i iåw -( ) ≔

where pi i iw w= å is any convex decomposition ofω into pure and perfectly distinguishable states iw ,
and 0 log 0 0≔ .

Theorem 3 tells us that this definition is independent of the choice of decomposition: it is easy to check that

S , log ,w w w= -á ñ( )

where logw is understood in the sense of spectral calculus as in(7). The right-hand side ismanifestly
independent of the decomposition. It can also bewritten S uAw h w=( ) ( ( )), where x x xlogh = -( ) for x 0>
and 0 0h =( ) . In particular,

Sis a pure state 0. 8w w =( ) ( )

To see this, note that any pure state 1w w= can be extended to a set of perfectly distinguishable pure states
, , , N1 2 A

w w w¼ such that 1 0 0 N1 2 A
w w w w= + + ¼ +· · · . Conversely, if S 0w =( ) , then any decomposi-

tion ofωmust have coefficients 1, 0, , 0¼( ).

5.5. Thermodynamics in the context of postulates 1 and 2
If a state space satisfies postulates 1 and 2, then it also satisfies all the assumptions that we havemade in von
Neumann’s thought experiment. It is easy to check all items in assumptions 1: (a) is simply postulate 2, and (c) is
a consequence of postulate 1. Aswe have seen in the previous section, our two postulates imply thatwe have
orthogonal projectors sharing important properties with those of standard quantum theory. If wemake the
physical assumption thatwe can actually implement thembymeans of semipermeablemembranes (as in
quantum theory), we obtain (b). Item (e) is the same as(8). Note that assumption (d) is not amathematical
assumption about the state space, but a physical assumption about thermodynamic entropy. This shows part of
the following (the full proof will be given in the appendix):

Observation 5. vonNeumann’s thought experiment, as explained in section 3, can be run for every state space
that satisfies postulates 1 and 2. The notion of thermodynamic entropy H that one obtains from that thought
experiment turns out to equal spectral entropy S as given in definition 4,

H S for all states .w w w=( ) ( )

This is consistent with assumptions 1. Furthermore, it is also consistent with Petz’ version of the thought
experiment, because spectral entropy satisfies

S p S p plog 9
j

j j
j

j jå åw w= -( ) ( ) ( )

for every convex decomposition pj j jw w= å ofω into perfectly distinguishable, not necessarily pure states jw .

Thus, spectral entropy S givesmeaningful and consistent physical predictions in situations like von
Neumann’s and Petz’ thought experiments. However, we clearly do not knowwhether S is a consistent notion of
physical entropy in all thermodynamical situations.

It turns out that there are further properties of S that encourage its physical interpretation as a
thermodynamical entropy. In particular, wewill now show that the second lawholds in two important situations.
We start by considering projectivemeasurements P P, , n1 ¼ . Projectivemeasurements canmodel semipermeable
membranes as in vonNeumann’s thought experiment, or they describe themeasurement of an observable as

16
This can also also obtained by combining the fact that postulates 1 and 2 imply the state space is projective (first part of theorem17 in [43])

and self-dual (proposition 3 in [43])with results such as theorem 8.64 in [24].
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explained in section 5.4. Consider the action of thismeasurement on a given stateω.With probabilities
u PA j w( ◦ )( ), thismeasurement yields the outcome jwith post-measurement state P u Pj j A jw w w≔ ( ◦ ( )).
Performing thismeasurement on every particle of an ensemble (without learning the outcomes) yields a new
ensemble, described by the post-measurement state

u P P .
j u P

A j j
j

j
: 0A j

å åw w w w¢ = =
w ¹

( ◦ )( ) ·
◦ ( )

Projectivemeasurements do not decrease the entropy of the ensemble:

Theorem6. Suppose postulates 1 and 2 are satisfied. Let P P, , n1 ¼ be orthogonal projectors which form a valid
instrument. Then the inducedmeasurement with post-measurement ensemble state P wj jw¢ = å does not decrease

entropy: S Sw w¢( ) ( ).

The proof will be given in the appendix. As in standard quantum theory, projectors Pj form a valid
instrument if and only if they aremutually orthogonal, i.e. P P Pi j ij id= , and complete: u P ui A i Aå =◦ .

Another importantmanifestation of the second law is inmixing procedures as infigure 4. Consider tanks
that are separated bywalls. Similarly to vonNeumann’s thought experiment, let the jth tank contain anNj

-particle gas that represents an jw -ensemble. Furthermore, assume that all the gases are at the same pressure and
density. Identifying thermodynamic entropyHwith spectral entropy S (as suggested by observation 5), the
entropy of theGPT-ensemble in tank j is N Sj jw( ), where S is the entropy per system. Thus the total GPT-entropy
is N Sj j jwå ( ).We remove thewalls and let the gasesmix. Thenwe put thewalls back in.Now all the tanks

contain gases hosting j
N

N j
jwå ensembles at the same conditions as before, where N Nj j= å . The total GPT-

entropy in the end is given by N S NSj j k
N

N k k
N

N k
k kw wå å = å( ) ( ). As the gases in the tanks have the same density,

volume, temperature and pressure as before, the only difference in entropy is due to theGPT-ensembles. The

second law requires that the entropy does not decrease in this process, i.e. that N S NSj j j j
N

N j
jw wå å( )( ) and

thus S Sj
N

N j j
N

N j
j jw wå å( )( ) . The following theorem shows that our two postulates guarantee that this is true:

Figure 4.Aprocessmixing gases by removing a separating wall. Theorem7 ensures that this process does not decrease entropy, i.e.
H 0D , if thermodynamic entropyH is identifiedwith spectral entropy S as suggested by vonNeumann’s thought experiment.
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Theorem7.Assume postulates 1 and 2. Then entropy is concave, i.e. for , , n A1w w¼ Î W and p p, , n1 ¼ a probability
distribution, we have

S p w p S w . 10
j

j j
j

j jå å
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )

Thus, the second law automatically holds formixing processes. Oneway to prove(10) is to see that S equals
‘measurement entropy’ aswewill show in section 5.6, proven to be concave in [66, 67]. However, there is a
simpler proof that uses a notion of relative entropy, which is an important notion in its own right.

Definition 8. For state spacesA that satisfy postulates 1 and 2, we define the relative entropy of two states
, Aw j Î W as

S S , log .w j w w j- - á ñ( ) ≔ ( )

Here, for qj j jj j= å any decomposition into amaximal frame, qlog logj j jj j= å ( ) according to theorem3.

(As in quantum theory, this can be infinite if there are qj= 0 such that , 0jw já ñ ¹ ).

A notion of relative entropy inGPTs has also been defined in Scandolo’sMaster Thesis [48], but under
different assumptions, as discussed in the introduction. Relative entropy continues to satisfyKlein’s inequality, a
fact that is useful in proving theorem7. The proof is similar to that within standard quantum theory and
deferred to the appendix.

Theorem9 (Klein’s inequality). For all , Aw j Î W ,

S 0.w j( )

Klein’s inequality can be used to give a simple proof of theorem 7:

p S p p S p p p S S p0 , log .
j

j j
k

k k
j

j j
j

j j
k

k k
j

j j
k

k k å å å å å å åw w w w w w w= - - = - +
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

Given all the calculations in this subsection in terms of orthogonal projections, itmay seem at first sight as if
every statement or calculation in quantum theory can be analogouslymade in themore general state spaces that
satisfy postulates 1 and 2.However, thismay not quite be true, as the fact that the following is an open problem
shows:

Openproblem2. For state spaces satisfying postulates 1 and 2, ifω is a pure state, and P an orthogonal
projection, then is Pw also (up to normalisation) a pure state?

In classical and quantum state spaces, the answer is ‘yes’, but we do not know if a positive answer follows
frompostulates 1 and 2 alone.Wewill return to this problem in theorem 12.

Note that Chiribella and Scandolo have applied similar techniques and found beautiful results, including
somewhich are comparable to some of ours, in [45, section 7] (see also [48]). They derive diagonalizability of
states from a very different set of postulates.

5.6. Information-theoretic entropies and their relation to physics
So farwe have considered entropy froma thermodynamic perspective. But entropies also arise in information
theory, and as theGPT framework ismostly studied in quantum information theory, indeed there have been
many results on entropy froma information-theoretic perspective. Our expositionwillmainly follow [66], but
has also been given in a slightly different formalism in [67].

Let e e e, , n1= ¼( ) and f f f, , m1= ¼( ) be twomeasurements such that there exists amap
M n m: 1, , 1, ,¼  ¼{ } { }with

e f k m1, , .
j M j k

j kå = = ¼
=

( )
{ ∣ ( ) }

IfM is bijective, then themeasurement f is simply a re-labelling of e. If there exists a kwith M j k j¹ "( ) , then
because of the normalisation of the e-measurement, fk= 0, i.e. fk corresponds to a trivial outcome that never
happens. IfM is not injective, then f is a coarse-graining of e (or vice versa, e a refinement of f ) in the sense that f is
obtained from e by collecting several outcomes of e and giving them a commonnewoutcome label (and by
possibly adding the 0-effect a few times), see figure 5. In this sense, we do not care aboutwhich of the ej triggered
the new effect.
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However, there exist trivial refinements/coarse-grainings: for those, e f jj M jµ "( ) .Wewrite e p fj j M j= ( ).

Then such ameasurement can be obtained by performing f, and if outcome k is triggered, we activate a classical
randomnumber generator which generates thefinal outcome j among those jwith M j k=( ) with probability

p

p
.

j

a M a k aå ={ ∣ ( ) }

Thus, a trivial refinement does not yield any additional information about theGPT-system.We call a
measurement fine-grained if it does not have any non-trivial refinements. The set offine-grainedmeasurements
on any state spaceA is denoted A* .

Nowwe consider the Rényi entropies [65], which are defined for probability distributions p pp , , n1= ¼( ) as

H pp
1

1
log ,

j
jåa

=
-

a
a

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

where 0, 1a Î ¥( )⧹{ }. Furthermore,

H Hp p plim log supp0
0

=
a

a


( ) ≔ ( ) ∣ ( )∣

with p ppsupp 0j j= >( ) { ∣ } is called themax-entropy, and

H H pp plim log max
j

j= -
a

a¥
¥

( ) ≔ ( )

is called themin-entropy. Also,

H H p p Hp p plim log
j

j j1
1

å= - =
a

a


( ) ≔ ( ) ( )

is just the regular Shannon entropyH.
For 0,a Î ¥[ ]andGPTs satisfying postulates 1 and 2, we generalise the classical Rényi entropies:

S H p ,wa a( ) ≔ ( )

where p wj j jw = å is any decomposition into perfectly distinguishable pure states. According to theorem3, the
result is independent of the choice of decomposition.We have S S1 = , the spectral entropy of definition 4.

Following [66], for every 0,a Î ¥[ ]and Aw Î W , we define the order-αRényimeasurement entropy as

S H e einf , , ,
e

1 2
A*

w w w= ¼a a
Î

 ( ) ( ( ) ( ) )

whereHα on the right-hand side denotes the classical Rényi entropy. The order-αRényi decomposition entropy is
defined as

S H qinf , 11
q

j j j

w
å

a
w j

a
=

 ( ) ≔ ( ) ( )

where the infimum is over all convex decompositions ofω into pure states j Aj Î W .
The idea ofmeasurement entropy is to characterise the state before ameasurement. For example, in

quantum theory, particles prepared in a state yñ∣ which all give the same result in energymeasurements would be
said to be in an energy eigenstate. If insteadwe performed a positionmeasurement, the resulting distribution of
positionswould have non-zero entropy.However, this entropywould arguably not come from the initial state,
but from themeasurement process itself due to the uncertainty principle.

Supposewewould like to prepare a stateω by using states ofmaximal knowledge (i.e. pure states) jj , and a
randomnumber generator which gives output jwith probability pj. Then the decomposition entropy quantifies
the smallest information content (entropy) of a randomnumber generator thatwould be necessary to build such
a device. Formore detailed operational interpretations ofmeasurement and decomposition entropy, in
particular for 1a = , see [66, 67]Note that in quantum theory,measurement, decomposition and spectral Rényi
entropies all coincide, with the 1a = case giving vonNeumann entropy, S tr logw w w= -( ) ( ).

Figure 5.A coarse-graining of ameasurement is created by having severalmeasurement results trigger the same output.
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Our first result is that the spectral andmeasurement definitions of the entropies agree:

Theorem10.Consider any state space A which satisfies postulates 1 and 2. Then the Rényi entropies Sa and the
Rényimeasurement entropies Sa coincide, and upper-bound the Rényi decomposition entropy Sa , i.e.

S S S for all , 0, .Aw w w w a= Î W Î ¥a a a ( ) ( ) ( ) [ ]

In particular, for 1a = , themeasurement entropy S is the same as the spectral entropy S from definition 4, whichwe
have identifiedwith thermodynamical entropy H in observation 5.

The inequality S Sa a is easy to see: for a decomposition pi i iw w= å into perfectly distinguishable pure
states iw , the states iw can also be seen as afine-grainedmeasurement, yielding outcome probabilities Pi. So
taking the infimumover all decompositions gives atmost H Sp w=a a( ) ( ). The equality between Sα and Sa is
shown in the appendix.

We do not know in general whether postulates 1 and 2 imply that S S=a a for allα. Interestingly, we know it
for 2a = and a = ¥:

Theorem11. If a state space satisfies postulates 1 and 2, then S S2 2w w= ( ) ( ) and S Sw w=¥ ¥ ( ) ( ) for all statesω.

Proof.To give the reader an idea of the kind of arguments involved, we present the proof for S2, but defer the
proof for S¥ to the appendix. If pj j jw w= å is any convex decomposition into amaximal set of perfectly

distinguishable pure states (without loss of generality p p1 2  ¼), and qj j jw j= å any (other) convex
decomposition into pure states jj (alsowith q q1 2  ¼,) then

p q q q q, ,j j j j j k j k j k j j
2 2 2w w j jå = á ñ = å + å á ñ å¹ since , 0j k j já ñ . Thus, we have

S p q H qlog log ,
j

j
j

j2
2 2

2å åw = - - =( ) ( )

and since S2 w ( ) is defined as the infimumover the right-hand side, we obtain that S S ;2 2w w ( ) ( ) we find the
converse inequality in theorem10. ,

Wedo not knowwhether the same identity holds for themost interesting case 1a = , the case of standard
thermodynamic entropy S S1= . In themax-entropy case 0a = , however, we have a surprising relation to
higher-order interference:

Theorem12.Consider a state space satisfying postulates 1 and 2. Then the following statements are all equivalent:

(i) The state space does not have third-order interference.

(ii) Themeasurement and decomposition versions ofmax-entropy coincide, i.e. S S0 0w w= ( ) ( ) for all statesω.

(iii) The state space is either classical, or one on the list of theorem 2.

(iv) Ifω is a pure state and PF any orthogonal projection onto any face F , then PFw is amultiple of a pure state.

(v) The ‘atomic covering property’ of quantum logic holds.

The equivalences i iii iv v  ( ) ( ) ( ) ( ) are shown in [43]; our new result is the equivalence to (ii), which
is shown in the appendix.

Absence of third-order interference ismeant in the sense of equation (5), as introduced originally by Sorkin
[76]: only pairs ofmutually exclusive alternatives can possibly interfere. It is interesting that this is related to an
information-theoretic property ofmax-entropy S0, as given in (ii).We do not currently knowwhether S0 (or, in
particular, the identity of S0

 and S0) has any thermodynamic relevance in the class of theories that we are
considering, but it certainly does within quantum theory, where it attains operationalmeaning in single-shot
thermodynamics [28, 29].

As (iii) shows, this theorem is closely related to open problem 1: it gives properties of conceivable state spaces
that satisfy postulates 1 and 2, but are not on the list of known examples (namely, they do not satisfy any of
i v( )–( )). Similarly, (iv) shows the relation of higher-order interference to open problem 2, and (v) relates all these
items to quantum logic. In fact, one can show that postulates 1 and 2 imply that the set of faces of the state space
has the structure of an orthomodular lattice, which is often seen as the definition of quantum logic. For readers
who are familiar with the terminology of quantum logic, we give some additional remarks in sectionA.3 in the
appendix.
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6. Conclusions

As discussed in the introduction,manyworks (dating back at least to the 1950s) have considered quantum
theory as just one particular example of a probabilistic theory: a single point in a large space of theories that
contains classical probability theory, as well asmany other possibilities that are non-quantum and non-classical.
More recent works have focused on the information-theoretic properties of quantum theory, for example
deriving quantum theory as the unique structure that satisfies a number of information-theoretic postulates.

Rather than attempt a derivation of quantum theory frompostulates, this paper has examined the
thermodynamic properties of quantum theory and of those theories that are similar enough to quantum theory
to admit a good definition of thermodynamic entropy, and of some version of the second law. Postulate 1 states
that there is a reversible transformation between any two sets of n distinguishable pure states. This can be
thought of as an expression of the universality of the representation of information, in particular that a choice of
basis is arbitrary, and also allows for reversiblemicroscopic dynamics, as is crucial for thermodynamics.
Postulate 2 states that every state can bewritten as a convexmixture of perfectly distinguishable pure states. This
ensures that amixed state describing an ensemble ofmany particles can be treated as if each particle has an
unknownmicrostate, drawn froma set of distinguishable possibilities.

Much follows frompostulates 1 and 2, without needing to assume any other aspects of the standard
formalismof quantum theory. In order to derive thermodynamic conclusions, we considered the argument
originally employed by vonNeumann in his derivation of themathematical expression for the thermodynamic
entropy of a quantum state. The argument involves a thought experiment with a gas of quantumparticles in a
box, and semi-permeablemembranes that allow a particle to pass or not depending on the outcome of a
quantummeasurement. By applying the same thought experiment, we showed that given any theory satisfying
postulates 1 and 2, there is a unique expression for the the thermodynamic entropy, equal to both the spectral
entropy and themeasurement entropy. Byway of contrast, a fictitious systemdefined by a square state space,
which arises as Alice’s local systemof an entangled pair producing stronger-than-quantum ‘PRbox’
correlations, does not satisfy either Postulate. This system—the gbit—does not admit a sensible notion of
thermodynamic entropy, at least not one that is given to it by the vonNeumann or Petz arguments.Whilemany
works have discussed the inability of quantum theory to produce arbitrarily strong nonlocal correlations, this
connectionwith thermodynamics deserves further investigation. It would be very interesting, for example, if
Tsirelson’s bound on the strength of quantumnonlocal correlations could be derived from a thermodynamic
argument.

There aremany other consequences of postulates 1 and 2 for both thermodynamic and information-
theoretic entropies. For example, a formof the second law holds in that neither projectivemeasurements nor
mixing procedures can decrease the thermodynamic entropy. The spectral andmeasurement order-αRenyi
entropies coincide for anyα. The spectral and decomposition order-αRenyi entropies coincide for 2a = or
¥. An open question is whether any theory satisfying postulates 1 and 2 is completely satisfactory from the
thermodynamic point of view.While the vonNeumann and Petz arguments can be runwith no trouble in the
presence of postulates 1 and 2 aswe have shown, there could still be a different physical scenario, inwhich
theories would fail to exhibit sensible behaviour unless they have evenmore of the structure of quantum theory.

Finally, anothermajor open question is whether quantum-like theories exist, satisfying postulates 1 and 2,
that are distinct fromquantum theory in that they admit higher-order interference. Roughly speaking, this
means that three ormore possibilities can interfere in order to produce an overall amplitude, unlike in quantum
theory, where different possibilities only interfere in pairs.We extend the results of [43], where it was shown that
in the context of postulates 1 and 2 the existence of higher-order interference is equivalent to each of three other
statements.We provide an equivalent entropic condition: there is higher-order interference if and only if the
measurement and decomposition versions of themax entropy do not coincide.

Our understanding of quantum theorywould be greatly improved if higher-order interference could be
ruled out by simple information-theoretic, thermodynamic, or other physical arguments. On the other hand, if
theories with higher-order interference exist and are eminently sensible, an immediate question is whether an
experimental test could be performed to distinguish such a theory fromquantum theory.While previous
experiments [97–102] only tested for a zero versus non-zero value of higher-order interference, sensible higher-
order theories that satisfy postulates 1 and 2 (if they exist) could help to inform future experiments by supplying
concretemodels that can be tested against standard quantum theory.

Acknowledgments

Wewould like to thankMatt Leifer formany useful discussions, andwe are grateful to the participants of the
‘Foundations of Physics working group’ atWesternUniversity for helpful feedback.Wewould also like to thank

18

New J. Phys. 19 (2017) 043025 MKrumm et al



Giulio Chiribella andCarloMaria Scandolo for coordinating the arXiv posting of their workwith us. This
researchwas supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is
supported by theGovernment of Canada through theDepartment of Innovation, Science and Economic
Development Canada and by the Province ofOntario through theMinistry of Research, Innovation and Science.
This researchwas undertaken, in part, thanks to funding from theCanadaResearchChairs programme. This
researchwas supported by the FQXi LargeGrant ‘Thermodynamic versus information theoretic entropies in
probabilistic theories’. HB thanks theRiemannCenter forGeometry and Physics at the Institute for Theoretical
Physics, LeibnizUniversityHannover, for support as a visiting fellow during part of the time this paper was in
preparation.

Appendix

A.1. Proofs
A.1.1. Proof that observables are well-defined. In this appendix, a decomposition of a state into perfectly
distinguishable pure states (which always exists due to postulate 2)will be called a ‘classical decomposition’.

Lemma13.Assume postulates 1 and 2. Let F 0¹ { }be a face of A+ and FA Çw Î W . Then there exists a classical
decomposition pj j jw w= å with Fjw Î for all j.

Proof. Let pj j jw w= å be a classical decompositionwith p 0j ¹ . As Fw Î and F a face, Fjw Î for all j. ,

Proof of theorem3. Let x AÎ be arbitrary. By lemma 5.46 from [62] there exists a frame jw{ }and xj ¢ Î such

that x xj j jw= å ¢ .We extend jw{ } to amaximal frame by adding x 0j¢ ≔ for the new indices j. Nowwe group

together the jwith the same xj¢ value, and by relabellingwe find that x xk
n

k i k i1 ;w= å å= where the xk are

pairwise different values of the xj¢ and the k i;w are the jw that belong to this xj¢ value. For any given k, the k i;w
generate a face Fkwith projective unit uk i k i;w= å .

Therefore wefind a decomposition x x uk
n

k k1= å = with xk pairwise different real numbers and uk order
units of faces Fk and u uk

n
k A1å == .

Nowwe show that the faces Fk aremutually orthogonal:
Let Fkw Î be an arbitrary normalised state. By lemma 13 it has a classical decomposition pj j j

kw w= å ( )

which uses only pure states Fj
k

kw Î( ) .W.l.o.g. we assume that these pure states form a generating frame of Fk, by

extending the frame and adding pj= 0 to the decomposition. Consider another face Fm, i.e. m k¹ . Likewise to
ω, let Fmw¢ Î be an arbitrary normalised state and qj j j

mw w¢ = å ( ) be a classical decompositionwith j
mw( ) a

generating frame for Fm. For the other faces define j
i

i j;w w≔( ) . Then ui j j
iw= å ( ) and in total

u uA i i i j j
iw= å = å å ( ). As , 1n ná ñ = for all pure states An Î W , this implies that the j

iw( ) aremutually
orthogonal:

u1 , 1 ,A h
g

i j
j
i

h
g

i j g h
j
i

h
g

, ,
åå åw w w w w= = á ñ = + á ñ

¹

( )( ) ( ) ( )

( ) ( )

( ) ( )

and therefore , 0j
i

h
g w wá ñ( ) ( ) implies , 0j

i
h
gw wá ñ =( ) ( ) for all i j g h, ,¹( ) ( ). Thuswefind

p q, , 0j b j b j
k

b
mw w w wá ¢ñ = å å á ñ =( ) ( ) because m k¹ . As Fkw Î and Fmw¢ Î were arbitrary (normalised)

states, this implies that Fk and Fm are orthogonal. As k m¹ were arbitrary, all the faces aremutually orthogonal.
Nowwewill show that the decomposition x x uj j j= å is unique. So assume there are two decompositions

x a u b uj
n

j j
a

j
n

j j
b

1 1
a b= å = å= =

( ) ( ) with aj Î pairwise different and projective units uj
a( ) that add up to the order

unit (analogously for b) and belong to pairwise orthogonal faces Fj
a( ).W.l.o.g. we assume that the aj and bj are

ordered by size, i.e. a a a... n1 2 a
< < < .Wewant to show a b1 1= . The uj

a( ) generate the faces Fj
a( ). Let j i

a
;w( ) be a

generating frame for the face Fj
a( ), especially ui j i

a
j
a

;wå =( ) ( ). As the faces aremutually orthogonal and the

projective units add up to uA, the j i
a
;w( ) form amaximal frame; in particular they add up to uA (likewise for b).

Therefore:

a x b b b u b, , , .j
a

k i
k j

a
k i
b

k i
j

a
k i
b

A j
a

1 1;
,

1; ;
,

1 1; ; 1 1; 1å åw w w w w w= á ñ = á ñ á ñ = =( )( ) ( ) ( ) ( ) ( ) ( )

Analogously show b a1 1 , i.e. b a1 1= in total.

19

New J. Phys. 19 (2017) 043025 MKrumm et al



Now suppose therewas a k 1> and an iwith , 0j
a

k i
b

1; ;w wá ñ ¹( ) ( ) , i.e. , 0j
a

k i
b

1; ;w wá ñ >( ) ( ) . Then

a x b a b a

a a a u a

, , , , ,

, , .

j
a

k i
k j

a
k i
b

i
j

a
i

b

k i
k j

a
k i
b

i
j

a
i

b

k i
j

a
k i
b

k i
j

a
k i
b

A j
a

1 1;
,

1; ; 1 1; 1;
1,

1; ; 1 1; 1;

1,
1 1; ; 1

,
1; ; 1 1; 1

å å å å

å å

w w w w w w w w w

w w w w w

=á ñ = á ñ = á ñ + á ñ > á ñ

+ á ñ = á ñ = =
>

>

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

This is a contradiction. Thus , 0j
a

k i
b

1; ;w wá ñ =( ) ( ) for all k 1> and i. Thereforewe find u ,b
i

a
j j

b
1 1; 1;w w= å á( )( ) ( ) ( )

,i
a

j k k j
b

1; , ,w wñ = å á( ) ( ) u 1i
a

A i
a

1; 1;w wñ = =( )( ) ( ) and analogously u 1a
i

b
1 1;w =( )( ) ( ) . By proposition 5.29 from [62], we

have F u 1A A FÇ w wW = Î W ={ ∣ ( ) }. Therefore a generating frame of F a
1
( ) is contained in F b

1
( ) and vice versa.

Thuswefind F Fa b
1 1=( ) ( ) and u ua b

1 1=( ) ( ).
For the remaining indices, we construct an inductive proof: choose L Î large enough such that

a L a bmax ,n n1 a b
+ > { }, and define x x L u a

1¢ +≔ · ( ), i.e. x a Lj
n

j j1 ,1
a d¢ = å += ( · )

u b L uj
a

j
n

j j j
b

1 ,1
b d= å += ( · )( ) ( ). Furthermore defining a a1 2¢ ≔ , a a2 3¢ ≔ ,K, a a Ln 1a

¢ +≔ , u ua a
1 2

¢ ≔( ) ( ),

u ua a
2 3

¢ ≔( ) ( ),K, u un
a a

1a

¢ ≔( ) ( ) and likewise for bj¢, wefind x a u b uj
n

j j
a

j
n

j j
b

1 1
a b¢ = å ¢ = å ¢=

¢
=

¢( ) ( ) with

a a a... n1 2 a
¢ < ¢ < < ¢ and b b b... n1 2 b

¢ < ¢ < < ¢ . Repeating the exact same procedure as before, we obtain a b1 1¢ = ¢

and u ua b
1 1=¢ ¢( ) ( ), i.e. a b2 2= and u ua b

2 2=( ) ( ).We iterate tofind aj=bj and u uj
a

j
b=( ) ( ) for all j. Note that as all

maximal frames have the same size and as the projective units add up touA, necessarily na=nb.
At last we construct the projectivemeasurement that corresponds tomeasuring the observable x: for Fk, let

Pk be the orthogonal projector onto the span of Fk (in particular, P A F: spank k ( ) surjective).We know that
these projectors are positive and linear and satisfy u P uA k k=◦ . Furthermore u u P u0 k A k A = ◦ and

u P u uk A k k k Aå = å =◦ , i.e. we obtain awell-definedmeasurement; therefore the Pk form awell-defined
instrument. As they are projectors, the Pk leave the elements of Fk unchanged. ,

A.1.2. Proof of observation 5. In order to show that H Sw w=( ) ( ) is consistent with assumptions 1, we only
have to show that Sw w ( ) is continuous, to complywith assumption (d). According to theorem 10 (whichwe
will prove below), the spectral entropy S w( ) equalsmeasurement entropy S w ( ). But it is well-known [67] and
easy to see from its definition that S is continuous.

It remains to show equation (9). So let pj j jw w= å be any decomposition ofω into perfectly distinguishable,

not necessarily pure states iw . Decompose all the iw into perfectly distinguishable pure states j
iw( ), i.e.

qj i j
i

j
iw w= å ( ) ( ). Perfectly distinguishable states live in orthogonal faces, thus , 0i jw wá ñ = for i j¹ (note that

this is a conclusion that follows frompostulates 1 and 2, but could not be drawn frombit symmetry alone in
[64]). Thus, we also have , 0i

j
k
lw wá ñ =( ) ( ) for i k¹ or j l¹ , and so p qij j j

i
j
iw w= å ( ) ( ) is a decomposition ofω

into perfectly distinguishable pure states. Define the real function : 0, 1 h [ ] via x x xlogh -( ) ≔ for x 0>
and 0 0h =( ) . Due to theorem3 and xy xy x xy ylog logh = - -( ) , we have

p q p q p p q qlog log ,
ij

j j
i

j
i

ij
j j

i
j j

i

ij
j j

i
j
i

j
iå å åh w h w w w= = - -( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

and therefore

S u p q p p q q p p p q qlog log log logA
ij

j j
i

j
ij

j j
i

j
i

j
j j

j
j

i
j
i

j
i

S j

å å å å åw h w= = - - = - + -

w
  

⎛
⎝⎜

⎞
⎠⎟( ) ( ( )) ( ) ( ) ( ) ( ) ( )

( )

This completes the proof of observation 5. ,

A.1.3. Proof of the second half of theorem 11. Use the notation of the first half of the proof.We claim that
pmax , 1w já ñ =jÎW . The inequality ‘’ is trivial (consider the special case 1j w= ). To see the inequality ‘’,

note that p, j j jw j lá ñ = å , where , 0, 1j jl w já ñ Î≔ [ ] satisfies u, , 1j j j jl w j jå = áå ñ = á ñ = , and so

p, 1w já ñ for allj. Thus

S p q q q H qlog log max , log , log , log .
j

j j1 1 1
2

1 1 

åw w j w j j j= - = - á ñ - á ñ = - + á ñ - =

j
¥

ÎW
¥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

Similarly as in thefirst part of the proof, we obtain S Sw w¥ ¥ ( ) ( ). The converse inequality from theorem10
for a = ¥ concludes the proof. ,

A.1.4. Proof of Klein’s inequality and the second law for projectivemeasurements. We consider an ensemble of
systems described by an arbitrary state Aw Î W . To all systems of this ensemble we apply a projective
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measurement described by orthogonal projectorsPawhich form an instrument, resulting in a new ensemble
state w¢. ThePaproject onto the linear span of faces Fa that replace the eigenspaces fromquantum theory.We
want to show that themeasurement cannot decrease the entropy of the ensemble, i.e.

S S .w w¢( ) ( )

Wedecompose the proof into several steps. Our basic idea follows the proof of a similar statement for quantum
theory in [50]: we reduce the proof of the second law toKlein’s inequality. But aswe do not have access to an
underlying pure stateHilbert space, wewill need to use a different argument forwhyKlein’s inequality implies
the second law for projectivemeasurements.

So atfirst we proveKlein’s inequality, adapting the proof of [50].We note that a similar proof has also been
found by Scandolo [48], albeit under different assumptions.

Proof of theorem9.Weconsider two arbitrary states ,w n with classical decompositions pj j jw w= å ,

qk k kn n= å , wherew.l.o.g. the jw and the kn formmaximal frames.We define thematrix P ,jk j kw ná ñ≔ . All its
components are non-negative, i.e. P 0jk  , because the scalar product itself is non-negative for all states. As all
maximal frames have the same size, thematrix is a squarematrix; asmaximal frames sum to uA, the rows and
columns sum to one: P P 1j jk k jkå = å = . Thus, we get

S S p p p q p p P q, log log log , log log .
j

j j
jk

j k j k
j

j j
k

jk kå å å åw n w w n w n= - - á ñ = - á ñ = -
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Wedefine r P qj k jk kå≔ . Note that the rj form a probability distribution: r 0j  and
r P q q 1j j k j jk k k kå = å å = å = . Using the strict concavity of the logarithm,we find:

r P q P qlog log log .j
k

jk k
k

jk kå å=
⎛
⎝⎜

⎞
⎠⎟

Thereforewe get

S p p P q p p r p
p

r
log log log log log .

j
j j

k
jk k

j
j j j

j
j

j

j

å å å åw n = - - =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

We recognise the last expression as the classical relative entropy of the probability distributions pj and rj. This
classical relative entropy has the important property that it is never negative. Thus:

S 0.w n( )

,

In order to get themain proof less convoluted, wewill state some technical parts as lemmas.

Lemma14.Assume postulate 1 and 2. Consider orthogonal projectors Pj which form an instrument. Then the Pj are
mutually orthogonal:

P P P .k j jk jd=

Proof.Weprove P P 0k jw = for all Aw Î , j k¹ . If P 0jw = this is trivial, so fromnowon assume P 0jw ¹ . As
the cone is generating (i.e. A ASpan =+( ) ) and the projectors linear, it is sufficient to show P P 0k jw = for all
w AÎ +. AsPj is positive, P 0jw ¹ implies that u P 0A j w >( ◦ )( ) because only the zero-state is normalised to 0.
Using u u P u PA A j j j A j= å = å◦( ) ◦ and P P Pj j j= :

u
P

u P
u P

P

u P
u

P P

u P
u

P P

u P

u
P

u P
u

P P

u P
u

P P

u P
u P P

1

0 .

A
j

A j
A

k
k

j

A j
A

j j

A j
A

k k j k j

A j

A
j

A j
A

k k j k j

A j
A

k k j k j

A j k k j
A k j

å
å

å å
å

w
w

w
w

w
w

w

w

w
w

w

w

w

w
w

= = = +

= +  = =

¹

¹ ¹

¹

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ◦ )( )
◦

( ◦ )( ) ( ◦ )( ) ( ◦ )( )

( ◦ )( ) ( ◦ )( ) ( ◦ )( )
( )

∣

∣ ∣

∣

As the projectors are positive and only the zero-state is normalised to 0, this shows P P 0k jw = for k j¹ . ,

Lemma15.Assume postulates 1 and 2. Consider an orthogonal projector P which projects onto the linear span of a
face F of A+. Then for all states Aw Î +we find P Fw Î .

Proof. Frombasic convex geometry (see e.g. proposition 2.10 in [63]), we know that F F Aspan Ç= +( ) . Since
P is positive, we have P A ;w Î + furthermore, since P projects onto F, we have P Fspanw Î ( ), thus P Fw Î . ,
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Proof of theorem6.Weknow that S S , log 0w w w w w¢ = - - á ¢ñ( ) ( ) . As in theorem11.9 from [50] , we
claim S, logw w w-á ¢ñ = ¢( ) and therefore S S 0w w- + ¢( ) ( ) . Thuswe only have to prove

S, logw w w-á ¢ñ = ¢( ). But aswe do not have access to an underlying pure stateHilbert space, our proof is
different from [50].

By lemma 14, the Pa aremutually orthogonal, i.e. P P Pa b ab bd= . By symmetry of the Pa also the Paw are
mutually orthogonal: P P P P, , 0a b a bw w w wá ñ = á ñ = for a b¹ . This also shows that the Fa aremutually
orthogonal. If P 0aw = we use the decomposition P u P r wa A a k ak akw w= å( ) with rak akd= andwak an arbitrary

generating frame of Fa. If P 0aw ¹ , then FP

u P a A
a

A a
ÇÎ Ww

w( )
and by lemma 13, there is a classical decomposition

rP

u P k ak ak
a

A a
w= åw

w( )
with Fak aw Î .We complete the akw to generating frames of the Fa by adding termswith

r 0ak = . Aswe are using classical decompositions/frames, we know ,aj ak jkw w dá ñ = . Furthermore, as the Fa are
mutually orthogonal, we know , 0aj bkw wá ñ = for a b¹ .

We note that the thewaj form amaximal frame:

u u P u .A
a

A a
a

F
a j

ajaå å ååw= = =◦

For a b¹ we have P P P 0b aj b a ajw w= = , sowe have a classical decomposition

P u P r
a

a
a j

A a aj ajå ååw w w w¢ = = ( )

with ajw amaximal frame that satisfies Pa bj ab bjw d w= . Note thatwe do not need to normalise w¢ as the
measurement itself is required to be normalised. Using

P u P r P u P rlog log log log
a

a
bj

A b bj
a

a bj
bj

A b bj bjå å å åw w w w w w¢ = = = ¢( ( ) ) ( ( ) )

and

S u P r u P rlog , log 12
bj

A b bj A b bjåw w w w w- ¢ = - = á ¢ ¢ñ( ) ( ( ) ) ( ( ) ) ( )

aswell as the symmetry of the Pawefinallyfind:

S P P, log , log , log , log . 13
a

a
a

aå åw w w w w w w w w- ¢ = á ¢ ¢ñ = ¢ = ¢ = á ¢ñ( ) ( )

,

A.1.5. Proof thatmeasurement and spectral entropies are identical. In themain text we encountered different
ways to define the entropy. One of them is to adapt classical entropy definitions by using the coefficients of a
classical decomposition. Another is to adapt classical entropy definitions by usingmeasurement probabilities
andminimising over allfine-grainedmeasurements. Herewewill show that in the context of postulates 1 and 2,
these two concepts yield the sameRényi entropies.

To prove this, wewillfirst analyse fine-grainedmeasurements in further detail. The results will allow us to
reproduce the quantumproof found in [66] for ourGPTs.

Lemma16.Assume postulates 1 and 2. Consider an arbitrary fine-grainedmeasurement e e, , n1 ¼( ). Then for all j
there exist some c 0, 1j Î [ ]and a pure state j Aw Î W such that e c ,j j jw= á ñ· .

Proof. If ej= 0, we can just take cj= 0 and any pure state jw . So fromnowon assume e 0j ¹ .
Because of self-duality there exists some Aw¢ Î + such that e, jwá ¢ ñ =· . As e 0j ¹ also 0w¢ ¹ and therefore

u 0A w¢ ¹( ) .With A A0= W+ · and c u 0j A w¢ >≔ ( ) there exists an Aw Î W such that cjw w¢ = · .Wewant

to prove thatω is pure, so assume it was not pure. Then it has a classical decomposition pk
N

k k0w w= å = with

p 0k > and N 1 . By relabellingwe can assume j=n, i.e. we consider e c p ,n j k
N

k k0 w= å á ñ= · . Define a
measurement e e, , n N1¢ ¼ ¢+( ) by e ek k¢ ≔ for all k n1, 2, , 1= ¼ - and e c p ,n i j i iw¢ á ñ+ ≔ · for all i N0, 1, ,= ¼ .

Because of c p e0 ,j i i n i wá ñ = ¢+· and e e c p e u,k
n N

k k
n

k i
N

j i i k
n

k A1 1
1

0 1wå ¢ = å + å á ñ = å ==
+

=
-

= =· this is a well-
definedmeasurement.

Nowdefine M n N n: 1, , 1, ,¼ +  ¼{ } { }by M i i( ) ≔ for all i n1, , 1= ¼ - and M i n( ) ≔ for all
i n n N, ,= ¼ + . Thenwe get

e e i n e e e i nfor for .
a M a i

a i
a M a i

a
a n

n N

i nå å å¢ = < ¢ = ¢ = =
= = =

+

{ ∣ ( ) } { ∣ ( ) }
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Thus themeasurement e e, , n N1¢ ¼ ¢+( ) is a refinement of e e, , n1 ¼( ).With e c p en j n0 0 0w w¢ = =( ) ( ) and
e e0n n1 1w w¢ = ¹( ) ( )wefind that en¢ is not proportional to en, thus the fine-graining is non-trivial. This is in
contradiction to our assumptions. Thusω has to be pure. Furthermore u e c c1 ,A j j jw w w w= = á ñ =( ) ( ) .

So in total we have found that e c ,j j w= á ñ· with Aw Î W pure and c 0, 1j Î [ ]. ,

Lemma17.Assume postulates 1 and 2. Let Aw Î W and pj
d

j j1w w= å = be a decomposition into amaximal frame.

Then themeasurement that perfectly distinguishes the jw (i.e. ek j jkw d=( ) ) can be chosen to be fine-grained.

Proof.Define e ,j jwá ñ≔ · . Asmaximal frames add up to the order unit, this is a well-definedmeasurement and it
satisfies ej k jkw d=( ) . It remains to show that thismeasurement isfine-grained.

Consider a fine-graining ek¢with e ei j M j i j= å ¢={ ∣ ( ) } . By self-duality, there exist c 0j  and j Aw¢ Î W such

that e c ,j j jw¢ = á ¢ ñ· and therefore cj M j k j j kw wå ¢ =={ ∣ ( ) } . As u c u c1 A k j M j k j A j j M j k jw w= = å ¢ = å= =( ) ( ){ ∣ ( ) } { ∣ ( ) }

wefind that cj M j k j j kw wå ¢ =={ ∣ ( ) } is a convex decomposition of a pure state. This requires cj= 0 or j kw w¢ = . In

both cases e c c e,j j k j kw¢ = á ñ =· holds true for all jwith M j k=( ) . Therefore, the fine-graining is trivial. ,

Lemma18.Assume postulates 1 and 2. Consider a fine-grainedmeasurement e ee , , N1 *= ¼ Î( ) . Then the
maximal number of perfectly distinguishable states d (often denoted as NA) satisfies d N .

Furthermore, consider a state Aw Î W with classical decomposition pj
d

j j1w w= å = into amaximal frame.Define

the vector eq j j N1 w≔ ( ( )) of outcome probabilities and the N -component vector p pp , , , 0, , 0d
N

1 = ¼ ¼ Î( ) .
Then q p , i.e. there exists a bistochastic N N´ -matrix M with Mq p= .

Proof.By lemma 16 there exist c 0, 1j Î [ ] and pure j Aw¢ Î W such that e c ,j j jw= á ¢ ñ· . Define
q e c ,l l l lw w w= á ¢ ñ≔ ( ) . Using e uj

N
j A1å == and uj

d
j A1nå == for an arbitrarymaximal frame , , d1n n¼( )we

find:

c c u u c u u u u d1 .
j

N

j
j

N

j A j A
j

N

j j A A A
j

d

j
j

d

A j
j

d

1 1 1 1 1 1
å å å å å åw w n n= ¢ = ¢ = = = = =
= = = = = =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

As c 0, 1j Î [ ], c dj
N

j1å == shows d N .
Set q el j l jw≔ ( )∣ , introduce theN-component vector p pp , , , 0, , 0d1 ¼ ¼≔ ( ) and use thatmeasurement

effects and states ofmaximal frames add up to the order unit:

q p e p e q q e c c u c

q e u

, , ,

1.

j

d

l j j
j

d

l j j l l
j

d

l j
j

d

l j l
j

d

l j l A l l

l

N

l j
l

N

l j A j

1 1 1 1 1

1 1

å å å å å

å å

w w w w w w

w w

= = = = = á ¢ ñ = ¢ =

= = =

= = = = =

= =

( ) ( ) ( ) ( )

( ) ( )

∣ ∣

∣

For j d wedefine M ql j l j, ≔ ∣ . If d N< we also define Ml j
c

N d,
1 l-
-

≔ for N j d > .M is anN×N-matrix

and it is bistochastic:first of all, M 0l j,  for all l j, . Furthermore:

M q j d

M
c

N d

N d

N d
j d

M q N d
c

N d
c c

1 for ,

1
1 for ,

1
1 1.

l

N

l j
l

N

l j

l

N

l j
l

N
l

j

N

l j
j

d

l j
l

l l

1
,

1

1
,

1

1
,

1

å å

å å

å å

= =

=
-
-

=
-
-

= >

= + -
-
-

= + - =

= =

= =

= =

( ) ·

∣

∣

This bistochasticmatrixmaps p to q, i.e. M p q=· :

M p q p q .
j

N

l j j
j

d

l j j l
1

,
1

å å= =
= =

∣

,

Nowwe come to the proof of the theorem:

Proof of theorem10.Consider an arbitrary fine-grainedmeasurement e e, , N1 ¼( ) and an arbitrary state Aw Î W
with classical decomposition pj

d
j j1w w= å = into amaximal frame. Define q el l w≔ ( ) and theN-component

vector p pp , , , 0, , 0d1= ¼ ¼( ). LetM be the bistochasticmatrix from lemma 18with Mq p= · . By Birkhoff’s
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theorem, it is a convex combination of permutationmatrices, i.e. M a PSN
= ås s sÎ for a probability distribution

aσ and permutationmatricesPσ.W.l.o.g. we only consider the Shannon entropy; the proof for the Rényi
entropies works exactly the sameway. As the Shannon entropy is Schur-concave and invariant under
permutations:

H a H P a H H Sq p p p .
S SN N

 å å w= = =
s

s s
s

s
Î Î

( ) ( · ) ( ) ( ) ( )

Furthermore H p p Sp logj
d

j j1 w= -å ==( ) ( ) is the entropy of ameasurement that perfectly distinguishes the

jw , i.e. ej k jkw d=( ) . Because of lemma 17, such ameasurement can be chosen to befinegrained. Thereforewe
find:

H H H Se pinf .
e *

w w w= = =
Î

 ( ) ( ( )) ( ) ( )

,

A.1.6. Proof of theorem 12. Asmentioned in themain text, the equivalences i iii iv v  ( ) ( ) ( ) ( ) are
shown in [43].Wewill nowprove the equivalence ii v( ) ( ), which proves theorem12. Taking into account
theorem10, and formulating the atomic covering property in the context of theories that satisfy postulates 1 and
2, it remains to show the equivalence of the following two statements:

(ii′) For all states Aw Î W , we have S S0 0w w ( ) ( ).

(v′) If F is any face of A+, andω is any pure state, then the smallest faceG that contains both F andω has rank
G F 1 +∣ ∣ ∣ ∣ . (Note that this is trivial if Fw^ .)

Wewillfirst prove that ii v¢  ¢( ) ( ), which is equivalent to v ii ¢   ¢( ) ( ). So suppose that there exists
some face F of A+ and a pure stateω such that the faceG generated by both has rank G F 2 +∣ ∣ ∣ ∣ . Let

, , F1w w¼ ∣ ∣be a frame that generates the face F. Then F is also generated by
F j

F
j

1
1n wå =≔

∣ ∣
∣ ∣ , i.e. the normalised

projective unit of F. This is because every face containing ν also contains all the jw (and vice versa), and F is the
smallest face with this property.

Now consider the state 1

2

1

2
w n+ . The smallest face that contains this statemust beG. If this state had a

decomposition into F 1+∣ ∣ or fewer perfectly distinguishable pure states, then thesewould also generateG, and
so G F 1 +∣ ∣ ∣ ∣ , in contradiction to our assumption. Thus any decomposition of 1

2

1

2
w n+ into perfectly

distinguishable pure states uses at least F 2+∣ ∣ states with non-zero coefficients, i.e.

S Flog 20
1

2

1

2
w n+ +( ) (∣ ∣ ). But

F j
F

j
1

2

1

2

1

2 1
1

2
w n w w+ = å +=∣ ∣

∣ ∣ is a convex decomposition into F 1+∣ ∣
pure states, thus

S F F S
1

2

1

2
log 1 log 2

1

2

1

2
.0 0 w n w n+ + < + + ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠(∣ ∣ ) (∣ ∣ )

It remains to show that v ii¢  ¢( ) ( ). So suppose that (v′) holds, but that there is a state Aw Î W with
S S ;0 0w w< ( ) ( ) wewill show that this leads to a contradiction. By definition of S0

 , if this is the case, then there
exist pure states , , n1w w¼ with n Sexp 0 w= ( ( )) and p p, , 0n1 ¼ , p 1i iå = , such that pi

n
i i1w w= å = . Using

property (v′), and recursively looking at the faces generated by 1w , generated by ,1 2w w , generated by , ,1 2 3w w w
and so forth, shows that the rank of the faceG generated by , , n1w w¼ can be atmost n. Since Gw Î , this shows
thatω can be decomposed into n or fewer pure perfectly distinguishable states. Therefore
S n Slog0 0w w= ( ) ( ). ,

A.3. Some additional remarks on theorem12 andquantum logic
TheGPT framework has a close relation to quantum logic. This is not surprising, sincemuch of the terminology
ofGPTs has appearedmuch earlier, inwork on quantum logic and beyond. The approach via convex sets of
states and observables can be traced back toMackey [18] (who immediatelymade connections to quantum
logic), andwas developed further through the 1960s and beyond. A partial list of references includes [14, 20, 88],
the last two ofwhich offer axiomatic characterisations of quantum theory. Interactionwith the quantum logic
tradition continued, with the orthomodularity of the lattice of faces of the state and/or effect spaces often
providing a point of contact, especially in Ludwig’s work [20]. Also closely related to the convex sets approach
was thework of Foulis andRandall [10–13]who, for example, studiedways of combining probabilistic systems.

Since postulates 1 and 2 imply that the state cone A+ is self-dual (so coincides with the effect cone), and that
each face of this cone is the intersection of the conewith the image of a filter (equivalently given self-duality, a
compresssion in the sense of [24]), we have from these postulates alone, via e.g. [24], theorem8.10, that the face
lattice is orthomodular. The notion of orthomodular partially ordered set, or its special case, the notion of
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orthomodular lattice, is often taken to define the notion of quantum logic, sowe can say that postulates 1 and 2
imply that the face lattice of the cone of states, (equivalently of the cone of effects, or of the set of normalised
states) is a quantum logic.

The covering property, in itsmost common variant the atomic covering property, states that for any element x
of the lattice and any atom anot below or equal to x, a x covers x17.The equivalence of (iv) and (v), in a setting
more general than postulates 1 and 2, is proposition 9.7 of [24] (first appearing in proposition 4.2 in [25] and the
discussion preceding it). Alongwith orthomodularity, the covering lawwas one of the assumptions of Piron’s
famous lattice-theoretic characterisation ([94]; also [17] and see the discussion in [27] or formore detail and
proofs, [26 pp 18–38, 114–122]) of a class of lattices close to, although larger than, that of real, complex, and
quaternionic quantum theory. A generalisation of the covering lawwas also used in Ludwig’s axiomatization
(see e.g. [20]18) of quantum theorywithin the convex sets framework, inwhich the relevant lattice is a lattice of
faces of the state space (equivalent to a lattice of extremal effects in his context), and the result characterised real,
complex, and quaternionic quantum theory19.
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