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Summary. Applying thermodynamics consistently and in conjunction with other general
principles (especially conservation laws and transformation properties) is shown in this
review to lead to useful insights and unambiguous results in macroscopic electromagnetism.
First, the static Maxwell equations are shown to be equilibrium conditions, expressing that
entropy is maximal with respect to variations of the electric and magnetic fields. Then,
the full dynamic Maxwell equations, including dissipative fields, are derived from locality,
charge conservation, and the second law of thermodynamics.

The Maxwell stress is obtained in a similar fashion, first by considering the energy
change when a polarized or magnetized medium is compressed and sheared, then rederived
by taking it as the flux of the conserved total momentum (that includes both material and
field contributions). Only the second method yields off-equilibrium, dissipative contribu-
tions from the fields. All known electromagnetic forces (including the Lorentz force, the
Kelvin force, the rotational torque M ×H) are shown to be included in the Maxwell stress.
The derived expressions remain valid for polydisperse ferrofluids, and are well capable of
accounting for magneto-viscous effects.

When the larger magnetic particles cluster, or form chains, the relaxation time τ of the
associated magnetization M 1 becomes large, and may easily exceed the inverse frequency
or shear rate, τ & 1/ω, 1/γ̇, in typical experiments. Then M 1 needs to be included as an
independent variable. An equation of motion and the associated modifications of the stress
tensor and the energy flux are derived. The enlarged set of equations is shown to account
for shear-thinning, the fact that the magnetically enhanced shear viscosity is strongly
diminished in the high-shear limit, γ̇τ ≫ 1. There is no doubt that it would account for
other high-frequency and high-shear effects as well.

1 Introduction

The microscopic Maxwell theory, being the epitome of simplicity and stringency, strikes
some as the mathematical equivalent of the divine ordinance: “Let there be light.” The
macroscopic version of the Maxwell theory is not held in similar esteem, and far less
physicists are willing to accept it as an equally important pillar of modern physics. At the
start of his lectures on electrodynamics, a colleague of mine routinely asserts, only half
in jest, that the fields D and H were invented by experimentalists, with the mischievous
intent to annoy theorists. He then goes on with his lectures, without ever mentioning these
two letters again.

Even if this is an extreme position, his obvious vexation is more widely shared. Both
to novices and some seasoned physicists, the macroscopic Maxwell theory seems quietly
obscure, only precariously grasped. When it is my turn to teach electromagnetism, this
whole muddle occasionally surfaces, keeping me awake at nights, before lectures in which
alert and vocal students demand coherent reasoning and consistent rules.

Colleagues more moderate than the previous one maintain, in a similar vein, that of
the four macroscopic fields, only E, B are fundamental, as these are the spatially averaged
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microscopic fields, E = 〈e〉, B = 〈b〉. Containing information about the polarization P
and magnetization M , the fields D ≡ E + P , H ≡ B − M are part of the condensed
system, and hence rather more complex quantities. As this view stems directly from the
textbook method to derive the macroscopic Maxwell equations from spatially averaging
(or coarse-graining) the microscopic ones, it is subscribed to by many. Yet, as we shall see
in section 2.1, this view implies some rather disturbing ramifications. For now, we only
observe that it is hardly obvious why the apparently basic difference between D and E
seems to be of so little consequences macroscopically. For instance, it is (something as
humdrum as) the orientation of the system’s surface with respect to the external field that
decides which of the internal fields, D or E, is to assume the value of the external one.

The characteristic distinction between micro- and macroscopic theories, as we detail
in section 2, is the time-inversion symmetry. The arguments are briefly summarized here:
Microscopically, the system may go forward or backward in time, and the equations of
motion are invariant under time-inversion. Macroscopic systems break this time-inversion
invariance,3 it approaches equilibrium in the forward-direction of time, and the backward
direction is forbidden. This fact is expressed in the equations by the dissipative terms.
Consider for instance the macroscopic Maxwell equation, Ḃ = −c∇ × (E + ED), where
ED ∼ Ḋ (similar to the second term in the pendulum equation, ẍ+βẋ+ω2

0x = 0) breaks
the time-inversion symmetry of the equation. Without ED, this Maxwell equation would
be time-inversion invariant and hence deficient. We shall call ED ∼ Ḋ the dissipative
electric, and similarly, HD ∼ Ḃ the dissipative magnetic, field. The basic difficulty with
the textbook method of deriving the macroscopic Maxwell equation is, E = 〈e〉 could not
possibly contain a term ∼ Ḋ, because starting from the microscopic Maxwell equations
that are invariant under time-inversion, it is impossible to produce symmetry-breaking
HD and ED by spatial averaging.

After all the course work is done, even a good student must have the impression that
electrodynamics and thermodynamics, two areas of classical physics, are completely sepa-
rate subjects. (The word entropy does not appear once in the hundreds of pages of Jackson’s
classics on electrodynamics [1].) Yet, based on concepts as primary as overwhelming prob-
ability, thermodynamic considerations are the bedrock of macroscopic physics, so general
there can be little doubt that they must also hold for charges, currents and fields. The
success London, Ginzburg and Landau enjoyed in understanding superconductivity is one
proof that this is true. As we shall see, thermodynamic considerations are indeed useful
for understanding macroscopic electrodynamics, some of which could easily be taught in
introductory courses, and would usefully be part of the common knowledge shared by all
physicists.

In section 2, the usual derivation of macroscopic electrodynamics employing coarse-
graining is first discussed, clarifying its basic ideas and pinpointing its difficulties. Then
the thermodynamic approach is introduced, making some simple, useful, and possibly
surprising points: • It is the introduction of fields that renders electromagnetism a local
description. • The static Maxwell equations are an expression of the entropy being maximal
in equilibrium. • The structure of the temporal Maxwell equations,4

Ḋ = c∇ × (H + HD), Ḃ = −c∇ × (E + ED), (1)

follows from charge conservation alone. (The electric current will be included in the main
text.) The dissipative fields are given as

HD = αdtB, ED = βdtD. (2)

3 Some equations in particle physics are only CPT-invariant – this symmetry is then what
the associated macro-equations, should they ever be needed, will break.

4 Approaching electrodynamics from a purely thermodynamic point of view [2], these
dissipative fields were first introduced in 1993, see [3, 4]. Later, they were applied to
magnetic fluids [5, 6, 7] and ferro-nematics [8], also understood as the low-frequency
limit of dynamics that includes the polarization [9] or magnetization [10] as independent
variables, and shown to give rise to effects such as shear-excited sound waves [11, 12].
Part of the introduction and section 2 are similar in content to a popular article in
German, which appeared in the Dec/2002 issue of Physik Journal.



Thermodynamics, Electrodynamics and Ferrofluid-Dynamics 3

Confining our considerations in section 2 to the rest frame, dt simply denotes partial
temporal derivative, dt → ∂

∂t
. In section 5, these expressions are generalized to arbitrary

frames, in which the medium’s velocity v and rotational velocity Ω ≡ 1
2
∇ × v are finite,

then
dt ≡ ( ∂

∂t
+ v · ∇ − Ω×). (3)

Including HD has the additional consequence that the total field H + HD is no longer
necessarily along B: In isotropic liquids, the equilibrium field is H = B/(1 + χ) for linear
constitutive relation, and remains along B also nonlinearly. The dissipative field takes the
form HD = −αΩ×B for a rotating medium exposed to a stationary, uniform field, and is
perpendicular to B. As we shall see, this is why the magnetic torque is finite, and magneto-
viscous effects [13, 14] may be accounted for without having to include the relaxation of
the magnetization.

The transport coefficient α, β are functions of thermodynamic variables such as tem-
perature, density and field. In section 7.1, considering a polydisperse ferrofluid with differ-
ent magnetizations Mq, each relaxing with τq, and assuming linear constitutive relations,
Mq = χqH, we estimate α as

∑

τqχq/(1 +
∑

χq).
Starting from the proposition that the sum of material and field momentum is (in

the absence of gravitation) a conserved quantity, and its density obeys the conservation
law, ġi + ∇jΠij = 0, we identify this flux as the Maxwell stress. (Conservation of total
momentum is a consequence of empty space being uniform, see more details in section 5.1.)
Because −∇jΠij is the quantity responsible for the acceleration ġi, we may identify it as
the robust and locally valid expression for the force density including electromagnetic
contributions. So Fi = −

∫

∇jΠij d3r = −
∮

Πij dAj , integrated either over an arbitrary
volume V , or over the associated surface Ai, is the force this volume develops.

In section 3, we derive the Maxwell stress Πij thermodynamically, by considering the
energy associated with deforming a polarizable or magnetizable body, by δri at the surface.
Since Πij dAj is the surface force density, the energy is δU = −

∮

Πij dAjδri. (Note that
a constant δri translates the body, and does not deform it. We consider a constant δri

that is finite only for part of the surface enclosing a volume.) If δri is along the surface
normal, δri‖dAj , the volume is compressed, if δri is perpendicular to the surface normal,
δri ⊥ dAj , it is sheared, and the shape is changed. Without field and in equilibrium, the
Maxwell stress reduces to a uniform pressure, Πij → Pδij , implying • shape changes do
not cost any energy, and • we may take Pδij out of the integral in δU = −

∮

Πij dAjδri,
reducing it to the usual thermodynamic relation, δU = −P

∮

dAjδri = −PdV . In the
presence of fields (that may remain nonuniform even in equilibrium), the field-dependent
Maxwell stress Πij is the thermodynamic quantity to deal with.

In section 3.2, the derived Maxwell stress is shown to reduce to

∇kΠik = s∇iT + ρ∇iµ

− 1
c

∂
∂t

(D × B) − (ρǫE + 1
c
jǫ × B)i. (4)

Containing (part of) the Abraham force and the macroscopic Lorentz force (where ρǫ, jǫ

denote the electric charge and current density), the second line vanishes for neutral sys-
tems and stationary fields. The first line is, remarkably, also a quickly vanishing quan-
tity. Generally speaking, the temperature T and chemical potential µ are functions of
the entropy s , density ρ and field. Without field, both are constant in equilibrium, and
fbulk = s∇iT +ρ∇iµ = 0. Applying a nonuniform field leads to non-uniform T and µ, but
(in liquids) a very slight change of the density suffices to eliminate fbulk again. As this
occurs with the speed of sound, the task of detecting any bulk electromagnetic forces fbulk

directly is rather difficult – though one may of course measure it indirectly, via the density
profile as a response to the applied field, or in the case of ferrofluid, via the concentration
profile, see section 4.1.

In section 3.4, fbulk is (adhering to conventions, see [15]) written as

s∇iT + ρ∇iµ = −∇P (ρ, T ) + fP (5)

fP ≡ Mi∇Hi + ∇
∫

(ρ ∂
∂ρ

− 1)MidHi. (6)

The idea is to divide the vanishing bulk force into a field-independent “zero-field pressure”
and a field-dependent “ponderomotive force.” As discussed there, this step has some prob-
lems. (The electric field is assumed absent. It leads to completely analogous expressions.)



4 Mario Liu and Klaus Stierstadt

First, the zero-field pressure, defined as the pressure that remains when the applied field is
switched off, depends on how it is switched off. For instance, doing this adiabatically or at
constant temperature lead to zero-field pressures that differ by the term

∫

s ∂
∂s

MidBi, com-
parable to the terms in fP. [Eq (5) is appropriate for constant temperature and density.]
Second, assuming M ∼ ρ, or equivalently (ρ ∂

∂ρ
− 1)Mi = 0, seemingly yields the Kelvin

force, fP = Mi∇Hi, but does not generally, as an equivalent calculation in section 3.4 leads
to fP = Mi∇Bi+∇

∫

(ρ ∂
∂ρ

−1)MidBi and the analogous conclusion, fP = Mi∇Bi. Closer
scrutiny shows assuming M ∼ ρ is only consistent if the susceptibility is small, χ ≪ 1, and
terms ∼ χ2 may be neglected. In this case, of course, both forces are equivalent, as they
differ by 1

2
∇M2. Possibly, the reason this kind of faulty deductions were never refuted

is because the sum fbulk = −∇P (ρ, T ) + fP, as mentioned, vanishes quickly. And the
explicit form of fP is only reflected in a hard-to-measure weakly-varying density, without
any further consequences. In ferrofluids, however, if one waits long enough, an inhomoge-
neous field leads to a much more strongly varying concentration profile, see section 4.1.
This should be a worthwhile experiment.

Density, entropy and fields are discontinuous quantities at a system’s boundary. Being
a function of them, the Maxwell stress Πij is also discontinuous there. On the other hand,
the force −∇jΠij vanishes quickly only where Πij varies smoothly. Consider a magnetized
system (denoted as in), surrounded by a differently magnetized fluid (denoted as ex). One
example is a ferrofluid vessel surrounded by air, another is an aluminum object submerged
in ferrofluid. Applying the same consideration as above, only taking the integration volume
to be the narrow region on both sides of the boundary, we find the total force to be a
difference of two surface integrals, Fi =

∮

Πin
ij dAj −

∮

Πex
ij dAj ≡ △

∮

ΠijdAj . This force
does not vanish in equilibrium, and its magnetic part is shown in section 3.3 to assume
the form

F
mag = △

∮

[
∫

MkdHk + 1
2
M2

n] dA. (7)

It is equivalent to three known formulas, first to
∮

(HiBj − δij

∫

BkdHk) dAj , (8)

where the integration is along a surface enclosing the internal object but located in the
external fluid [15]. If the external magnetization vanishes, Eq (7) is also equivalent to

∫

Mi∇Hid
3r (9)

(where Hi = Bi is the external field in the absence of the body [15]), and to
∮

1
2
M2

n dA +

∫

Mk∇Hkd3r, (10)

where the integration is over the volume of the internal object and its surface. The last
expression is typically derived [16] as the sum of the Kelvin force Mk∇Hk and a surface
couple 1

2
M2

n. However, given the bona fide force density of −∇jΠij , all forces of Eqs (7,
8, 9, 10) are located at the surface. And neither Mk∇Hk nor Mi∇Hi are true densities,
as their respective force expressions hold only after integration.

In section 5, the consideration includes dissipation and deviations from equilibrium.
Starting from general principles including thermodynamics and conservation laws, the full
hydrodynamic Maxwell theory with fields and the conserved densities (of energy, mass, mo-
mentum) as variables, is derived. The result is a dynamic theory for the low-frequency be-
havior of dense, strongly polarizable and magnetizable fluids. We have especially obtained
the explicit form for the momentum and energy flux, the Maxwell stress and Poynting
vector, which include dissipative contributions and corrections from the medium’s motion.
The off-equilibrium Maxwell stress contains especially the following additional terms,

∇jΠij = ... − 1
2
[∇ × (B × HD + D × ED)]i (11)

+HD
k ∇iBk + ED

k ∇iDk.

The first line denotes the stress contribution when the dissipative fields are not along the
equilibrium ones. Since B ×HD = B × (H +HD) = M × (H +HD), this is the Shliomis
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torque [13]. The second line denotes contributions that arise when the magnetization is
along B but does not have the equilibrium magnitude.

In section 6, a number of key ferrofluid experiments including “rotational field de-
flection,” “field-enhanced viscosity” and “magnetic pump” are considered employing the
hydrodynamic Maxwell theory, showing it is indeed possible to account for theses exper-
iments without introducing the magnetization as an independent variable. In section 7,
a macroscopic theory for describing polydisperse, chain-forming ferrofluids is introduced.
Section 8 summarizes the results on ferronematics and ferrogels, also on the difference
when polarization (instead of magnetization) is considered as an independent variable.

Given the long and tortuous history to come to terms with macroscopic electromag-
netism, time and again forcing us to back up from blind alleys, any attempt by us on a com-
prehensive citation would bear historic rather than scientific interests. Since the thermo-
dynamic treatment sketched above and applied by Landau/Lifshitz [15], Rosensweig [16],
de Groot/Mazur [17] and others (cf the review by Byrne [18]), is our method of choice,
we take them as our starting point, and consequently, only subject them to scrutiny and
criticisms here.

This paper is denoted in the SI units throughout, though with a little twist to render
the display and manipulation of the formulas simple. We define and employ the fields,
sources and conductivity σ,

H ≡ Ĥ
√

µ0, B ≡ B̂/
√

µ0, ̺e ≡ ˆ̺e/
√

εo,

E ≡ Ê
√

εo, D ≡ D̂/
√

εo, σ ≡ σ̂/εo, (12)

P ≡ D − E ≡ P̂ /
√

εo, M ≡ B − H ≡ M̂
√

µ0,

where the quantities with hats are the usual ones, in MKSA. All new fields have the
dimension

√

J/m3, and sensibly, H = B and D = E in vacuum, while ρǫ and σ are

counted in units of
√

J/m5 and s−1, respectively. Written in these new quantities, all
formulas are rid of the ubiquitous ε0, µ0.

2 Thermodynamic Derivation of

the Maxwell Equations

2.1 Coarse-Graining Revisited

It was Lorentz who first differentiated between two versions of the Maxwell equations: The
microscopic ones with two fields and the macroscopic ones with four. He also showed how
to obtain the latter from the former, a derivation that is conceptually helpful to be divided
into two steps: The first consists only of algebraic manipulations, the second, crossing the
Rubicon to macroscopics and irreversibility, is the conceptually subtle one. Starting from
the microscopic equations,

∇ · e = ρe, ∇ · b = 0, (13)

ė = c∇ × b − je, ḃ = −c∇ × e, (14)

we divide the charge and current into two parts, ρe = ρ1+ρ2, je = j1+j2 (typically taking
1 as free and 2 as bound, though this is irrelevant at the moment). Next, to eliminate ρ2, j2,
the fields p, m are introduced: ρ2 = −∇ · p, j2 = −(ṗ + c∇ × m). Although not unique,
this step is always possible if ρ2 is conserved – the fields’ definitions imply ρ̇2 +∇ · j2 = 0.
Finally, defining h ≡ b−m, d ≡ e + p eliminates p, m and effectuates the “macroscopic”
appearance:

∇ · d = ρ1, ∇ · b = 0, (15)

ḋ = c∇ × h − j1, ḃ = −c∇ × e. (16)

Although seemingly more complicated, Eqs (15, 16) are equivalent to (13, 14) and not at
all macroscopic. This ends the first of the two steps.

Next, we coarse-grain these linear equations, spatially averaging them over a small
volume – call it grain – repeating the process grain for grain till the grains fill the volume.
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Denoting the coarse-grained fields as EM ≡ 〈e〉, D ≡ 〈d〉, B ≡ 〈b〉, HM ≡ 〈h〉, P ≡ 〈p〉,
M ≡ 〈m〉, ρǫ ≡ 〈ρ1〉, jǫ ≡ 〈j1〉, the seemingly obvious result is the macroscopic Maxwell
equations,

∇ · D = ρǫ, ∇ · B = 0, (17)

Ḋ = c∇ × HM − jǫ, Ḃ = −c∇ × EM . (18)

[The superscript M may appear whimsical here, but will be seen as sensible soon. It denotes
the two fields appearing here, in the temporal Maxwell equations (18).] The sketched
derivation leads directly to the conclusion that EM , B are the averaged microscopic fields,
while D, HM are complicated by P , M . Identifying the latter two (in leading orders)
with the electric and magnetic dipole densities, respectively, and employing linear response
theory imply a host of consequences, of which the presently relevant one is: D, HM are
functions of EM , B – pairwise proportional for weak fields, with a “temporally nonlocal
dependence.” In other words, D depends also on the values of EM a while back, and
HM on B. This is easily expressed in Fourier space, D̃ = ε(ω)ẼM , H̃M = B̃/µm(ω),
where ε, µm are5 complex functions of the frequency ω. [A field with tilde denotes the
respective Fourier component, eg. D(t) =

∫

dωD̃(ω)e−iωt/2π.] One cannot overestimate
the importance of these two constitutive relations: They determine D, HM in terms of
EM = 〈e〉, B = 〈b〉, dispense with the above mentioned non-uniqueness, close the set of
equations for given sources, and introduce dissipation. (Still, remember the constitutive
relations are an additional input and not the result of coarse-graining.)

General considerations show the real part of ε is an even function of ω, and the imag-
inary part an odd one. Focusing on slow processes in dielectrics, we expand ε in the
frequency ω to linear order, writing D̃ = ε̄(1 + iωβε̄)ẼM , where ε̄, β are real, frequency-
independent material parameters. Transformed back into temporal space, the constitutive
relation reads

D = ε̄(EM − βε̄Ė
M

). (19)

This is a succinct formula: The temporal non-locality is reduced to the dependence on ĖM ;
and we intuitively understand that this term (imaginary in Fourier space) is dissipative,
as it resembles the damping term ∼ ẋ in the pendulum equation, in which the restoring
force is ∼ x. (Stability requires ε̄ > 0, and β is positive if electromagnetic waves are to be
damped.)

The microscopic Maxwell equations (13, 14) are invariant under time reversal: If
e(t), b(t) are a solution, so are e(−t), −b(−t). (All microscopic variables possess a “time
reversal parity.” If even, the variable stays unchanged under time reversal, if odd, it re-
verses its sign. A particle’s coordinate is even, its velocity odd. Similarly, as electric fields
e account for charge distributions, and magnetic ones b for currents, e is even, and b odd.
Stipulating e as even and b as odd, the invariance of the Maxwell equations is obvious,
as each of Eqs (13, 14) contains only terms with the same parity, eg. the first of Eqs (14)
contains only the odd terms: ė, ∇ × b, and je.) Macroscopic theories are not invariant
under time reversal, and a solution running forward in time does not remain one when
the time is reversed. This is achieved by mixing odd and even terms. In the case of the
macroscopic Maxwell equations, we may take the variable EM = 〈e〉 as even, and B = 〈b〉
as odd, because averaging only reduces a strongly varying field to its envelope, with the
parity remaining intact. D, on the other hand, given by Eq (19), is a mixture of terms with
different parities. When inserted into the Maxwell equations, it destroys the reversibility.

This seems to settle the form of the macroscopic Maxwell equations, but does not:
Eq (19) cannot be right, because it contains the unphysical, exploding solution: D(t) = D0

and
EM (t) = EM

0 exp(t/βε̄) ≡ EM
0 exp(t/τ), (20)

for the initial conditions D = D0, E
M = EM

0 at t = 0. This may be avoided by inverting the
constitutive relation, ẼM = D̃/ε(ω), which upon expansion becomes ẼM = (1/ε̄− iωβ)D̃,
or back in temporal space,

EM = D/ε̄ + βḊ. (21)

5 The permeability µm is given a superscript, because we need the bare µ to denote the
chemical potential, a quantity we shall often consider.
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Now EM depends on D, Ḋ, and although there is still a solution D ∼ exp(−t/τ), it
relaxes toward zero and is benign. The above frequency expansion confines the validity
of Eqs (19, 21) to coarse temporal resolutions, for which a relaxing mode vanishes, but
not an exploding one. Only Eq (21) can be correct. Because of an analogous instability,
HM ∼ et/µ̄mα, the proper magnetic constitutive relation is

HM = B/µ̄m + αḂ. (22)

Given Eq (21,22), the fields D, B appear the simple, and EM , HM the composite, quantities
– and presumably D is even, B odd, while EM , HM lack a unique parity. In fact, the reason
for taking D as even is just as persuasive as taking EM , because neither the algebraic
manipulations (defining d from e, ρ2), nor the ensuing spatial averaging could possibly
have altered D’s parity: Eqs (15, 16) are as reversible as Eqs (13, 14).

There is nothing wrong with rewriting the microscopic Maxwell equations as Eqs (15,
16) and averaging them to obtain Eqs (17, 18). But being reversible, these are not yet
the macroscopic Maxwell equations. In fact, the actual reason dissipative terms appear is
because the constitutive relations, D̃ = ε(ω)ẼM and H̃M = B̃/µm(ω), close the Maxwell
equations, rendering the dynamics of P, M implicit. Eliminating fast dynamic variables to
consider the low-frequency regime is a consequential step, which breaks the connections
EM = 〈e〉, D = 〈e + p〉, B = 〈b〉 . . . , established by coarse-graining. Being a consequence
of locality and charge conservation (see below), the macroscopic Maxwell equations are
always valid, hence necessarily devoid of specifics. One may conceivably arrive at them
with varying constitutive relations, implying differently defined fields. However, the proper
fields are the ones that also enter the Poynting vector, the Maxwell stress tensor, and the
macroscopic Lorentz force,

fML = ρǫE
M + jǫ × B. (23)

On a more basic level, one needs to be aware that the whole idea of averaging micro-
scopic equations of motion to obtain irreversible, macroscopic ones is flawed [19]. The two
concepts, • entropy as given by the number of available microstates and • paths in phase
space connecting these microstates in a temporal order determined by equations of motion
are quite orthogonal. Asking how many microstates there are for given energy, irrespective
of how these states are arrived at, obviously implies the irrelevance of paths, hence of
equations of motion. One reason for this is the fact that tiny perturbations suffice for the
system to switch paths which – in any realistic, chaotic system – deviate exponentially
from each other. Frequently, the fact that macro- and microdynamics are disconnected is
obvious. For instance, irrespective of how energy is being transferred microscopically, and
by which particles – classical or quantum mechanical, charged or neutral – temperature
always satisfies a diffusion equation (assuming no spontaneously broken gauge symmetry
such as in superfluid helium is present). Although the micro- and macro-electrodynamics
appear connected, their shared structure is the result of locality and charge conservation,
not an indication that one is the average of the other.

Turning now to macroscopic electromagnetic forces, it is tempting to write it as 〈fL〉 =
〈ρee + je × b〉. Yet this formula is of little practical value, as we do not usually have the
detailed information that the microscopically accurate fields ρe, je, e, b represent. The
macroscopic Lorentz force of Eq (23) is obviously different from 〈fL〉, even if one assumes
that one may indeed identify 〈e〉, 〈b〉 with EM, B, as 〈ρee〉 6= 〈ρe〉〈e〉 (similarly for 〈je×b〉).
This difference is frequently taken to be Pi∇EM

i in the electric, and Mi∇HM
i in the

magnetic case. (Summation over repeated indices is always implied.) Both are referred to
as the Kelvin force, with a derivation that presumes the dilute limit of small polarization:
First, one calculates the force exerted by an electric field e on a single dipole. Next, one
assumes that the dipoles in the medium are too far apart to interact and feed back to the
field, so the total force density is simply the sum of the forces exerted on all the dipoles in
a unit volume, or pi∇ei. Without any feedback, the microscopic field is both the applied
and the average field, ei = EM

i . And the Kelvin force is: 〈pi∇EM
i 〉 = 〈pi〉∇EM

i ≡ Pi∇EM
i

– though one should keep in mind that Pi∇EM
i ≈ Pi∇Di = Pi∇(EM

i +Pi), as Pi is small
in a dilute system.

Facing all these difficulties with averaging microscopic quantities, it is a relief to remem-
ber that thermodynamics works exclusively on the macroscopic level, deriving expressions
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and equations from general principles, without reference to the microscopic ones. This is
what we shall consider from now on.

2.2 The Key Role of Locality

Locality, a key concept of physics, is similarly relevant to subjects far beyond: Market
economy and evolution theory use local rules among individuals – contracts or the fight for
survival – to create socio-economic and biological patterns. Conversely, planned economy
and creationism rely on distant actions.

At the heart of the Maxwell equations lies locality. To understand this, one needs to
realize that the Maxwell equations may be seen as part of the hydrodynamic theory of
condensed systems. If the system is a neutral fluid, three locally conserved densities serve
as variables: energy, mass and momentum. If charges are present, it may appear obvious
that this conserved quantity is to be included as an additional variable, yet exactly this
would violate locality – hence the need to introduce fields. Consider first the microscopic
case.

Taking the charge density ρe(r, t) as a variable, the change in field energy density
is φ dρe, with the Coulomb potential φ depending not only on the local ρe, but on ρe

everywhere. Hence, the associated energy φ dρe is not localizable, and ρe not a variable
of a local theory. Taking instead the electric field e(r, t) as variable, the energy density is
1
2
e2, an unambiguously local expression. (A preference for one of the two energy densities

does not preclude the equality of their spatial integrals.) The Coulomb force, with ρe as
its variable, acts from the distance; the Lorentz force, expressed in e (and b), is local and
retarded. Conspicuously, e remains partially indetermined for ρe = ∇ · e given. Yet this
is what enables e(r, t) to travel in a wave packet – even while the charge ρe(r, t) (the
acceleration of which in the past created the wave packet) is stationary again. A local
description clearly exacts the price of more variables.

Introducing the magnetic b-field, via ∇ · b = 0, ensures local conservation of energy
and momentum in vacuum: The field energy, 1

2
(e2 + b2), satisfies a continuity equation.

The associated current is the Poynting vector c e × b which, being the density of field
momentum, is itself conserved. If an electron is present, field energy and momentum are
no longer conserved, but the total energy and momentum of field and electron are, with
the Lorentz force expressing the momentum’s rate of exchange between them. With ρe as
variable, it is not possible to uphold local conservation of energy and momentum: Giving
electromagnetism its local description is arguably the actual achievement of Maxwell’s
creative genius.

This understanding not only remains valid for the macroscopic case, it is indispens-
able. Starting with ρǫ, the conserved, slowly varying charge density, we define a native
macroscopic field D via ∇ · D ≡ ρǫ, which is (same as ρǫ) even under time reversal. The
relation between D and ρǫ is the same as that between e and ρe – only with D as variable
is it possible to construct a local theory. A further field variable, now odd, is introduced
via ∇ ·B = 0. This exhausts locality as input, and the next task is to derive the equations
of motion for D and B, or the temporal Maxwell equations (18).

2.3 Electro- and Magnetostatics

We denote the locally conserved total energy density as u, taking as its variables the
entropy density s, mass density ρ and the fields D, B,

du = Tds + µdρ + E · dD + H · dB. (24)

The conjugate fields E ≡ ∂u/∂D, H ≡ ∂u/∂B are defined in exact analogy to the
temperature T ≡ ∂u/∂s, or the chemical potential µ ≡ ∂u/∂ρ. As T and µ, the fields
E, H are real functions of s, ρ, D, B. We do not assume that E, H are necessarily equal
to the Maxwell fields, EM , HM of Eq (18). In equilibrium, the entropy

∫

s d3r is maximal.
And its variation with respect to D, B, u, ρ vanishes,

∫

d3r{δs − [α δu − βδρ − Aδ∇·B
+φδ(∇·D − ρǫ)]} = 0. (25)
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The two constants α, β and the two functions A(r), φ(r) are Lagrange multipliers. The
former ensure conservation of energy and mass, δ

∫

u d3r, δ
∫

ρ d3r = 0; the latter the va-
lidity of Eqs (17). Inserting Eq (24) for δs, this expression breaks down into a sum of four
terms, each vanishing independently. The first two are

∫

d3r(T−1 − α)δu = 0,
∫

d3r(µ/T − β)δρ = 0.

As δu, δρ are arbitrary, the temperature T = 1/α and the chemical potential µ = β/α are
constants. After a partial integration, with all fields vanishing at infinity, the third term
in the sum reads

∫

d3r [−H + ∇·A(r)] · δB = 0,

or ∇ × H = 0. With δρǫ = 0, the fourth term is

∫

d3r [E + ∇φ(r)] · δD = 0,

implying ∇ × E = 0. Summarizing, the conditions for equilibrium are

∇T = 0, ∇µ = 0, ∇ × E = 0, ∇ × H = 0. (26)

Comparing the last two equations to (18), we see that in equilibrium,6

HM = H , EM = E. (27)

This demonstrates that the static Maxwell equations have the same physical origin as the
constancy of temperature or chemical potential – they result from the entropy being maxi-
mal in equilibrium. Note that once Eqs (26) are given, the associated boundary conditions
ensure that the four thermodynamically introduced fields D, B, E, H may be measured
in an adjacent vacuum.

If the system under consideration is a conductor, the local density is not constant,
δρǫ 6= 0, though the total charge is, δ

∫

ρǫ d3r = 0. This implies φ(r) is constant, hence
E = −∇φ = 0. In other words, the entropy may be further increased by redistributing
the charge and becomes maximal for E = 0.

A linear medium is given by expanding u to second order in the fields,

u = u0 + 1
2
(D2/ε̄ + B2/µ̄m), (28)

implying the constitutive relations, E ≡ ∂u/∂D = D/ε̄, H ≡ ∂u/∂B = B/µ̄m. (Terms
linear in D, B vanish in Eq (28), because u − u0 is positive definit).

This eye-popping, purely macroscopic approach to electrodynamics, convincingly prov-
ing that electro- and magnetostatics are part of thermodynamics, is fundamentally differ-
ent from the usual coarse-graining procedure. It can be found in § 18 of [15], though the
sections’s title is so ill-chosen, that it actually serves to hide the subject. The authors
express some reservations there, cautioning that the calculation may be questioned, as
non-physical fields (∇ × E, ∇ × H 6= 0) were used to vary the entropy. We believe that
this objection is quite unfounded: Off equilibrium, for Ḃ, Ḋ 6= 0, the quantities ∇ × E,
∇ × H are indeed finite, und healthily physical.

6 We have ∇×H = 0 in Eq (26), instead of ∇×H = jǫ/c, because electric currents are
dissipative and vanish in equilibrium. Only for superconductors, capable of sustaining
currents in equilibrium, is the latter the proper condition. To derive it, more variables
are needed than have been included in Eq (24). A frame-independent version of this
“superfluid thermodynamics” was derived recently and employed to consider the London
moment [20, 21]: If a superconductor rotates with Ω, it maintains the field B = 2mcΩ/e
in the bulk, instead of expelling it. Notably, m is the bare mass of the electron and e its
charge. This is a rare instance in physics that the ratio of two macroscopic quantities,
B/Ω, is given by fundamental constants.
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2.4 Electrodynamics and Dissipation

Off equilibrium, the fields D, B vary with time. Remarkably, the structure of the temporal
Maxwell equations is completely determined by charge conservation: With ∂

∂t
∇ · B =

∇ · Ḃ = 0, the field Ḃ must be given as the curl of another field. Call it −cEM and we
have Ḃ = −c∇×EM . Analogously, with ∇ · Ḋ = ρ̇ǫ = −∇ · jǫ, the field Ḋ + jǫ may also
be written as the curl of something, or Ḋ + jǫ = c∇ × HM . With Eq (27) in mind, we
write

EM = E + ED, HM = H + HD, (29)

where ED, HD = 0 in equilibrium. Deriving the explicit expressions for ED, HD needs
to invoke the Onsager force-flux relation, and will be given in section 5. Here, we present
a simple, intuitive argument, excluding conductors: Since equilibrium is defined by the
vanishing of ∇×E, ∇×H , cf. Eqs (26), the dissipative fields ED and HD will depend on
these two vectors such that all four vanish simultaneously. Assuming an isotropic medium,
the two pairs of axial and polar vectors will to lowest order be proportional to each other,

ED = βc∇ × H , HD = −αc∇ × E. (30)

Together with (24, 29), Eqs (30) are the nonlinearly valid, irreversible constitutive relations.
Assuming weak fields and neglecting magnetic dissipation, ie. Eq (28) and α = 0, they
reduce to E = D/ε̄ and ED = βḊ. Conversely, we have H = B/µ̄m and HD = αḂ for
β = 0, both the same as Eqs (21, 22).

We consider the relaxation of the magnetization Ṁ = −(M − Meq)/τ to estimate
the size of the coefficient α. In Fourier space, we have (1 − iωτ)M = Meq, or for small
frequencies, M = (1 + iωτ)Meq. This implies M = Meq − τṀeq = Meq − τ(∂Meq/∂B)Ḃ.
Inserting this into HM = B − M = B − Meq + τ(dMeq/dB)Ḃ, and identifying B − Meq

as H, we find
α = τ(∂Meq/∂B) → τχ/(1 + χ), (31)

and analogously, β = τ(∂P eq/∂D). The sign → holds for linear constitutive relation, where
χ = M/H is the magnetic susceptibility.

3 The Maxwell Stress and Electromagnetic Forces

While the material momentum ρv is no longer conserved in the presence of electromag-
netic fields, the sum of material and field momentum is. This has been mentioned in the
introduction and will be dwelt on in great details in chapter 5. Denoting this conserved,
total momentum density as gi, we take its continuity equation ġi + ∇jΠij = 0 to define
the associated stress tensor Πij , and write the force density within a continuous medium
as

fbulk
i ≡ ġi = −∇jΠij . (32)

We refer to Πij as the Maxwell stress – although this name is frequently used for its
electromagnetic part only. Our reason is, although gi and Πij are well-defined quantities,
dividing them into material and electromagnetic contributions, as we shall see below, is
a highly ambiguous operation. We believe only the unique Πij is worthy of Maxwell as
a label. Since all macroscopic electromagnetic forces, including the Lorentz and Kelvin
force, are contained in Πij , we shall consider it carefully, starting from the notion that the
total force on an arbitrary, simply connected volume is Fi =

∫

fbulk
i dV = −

∫

∇jΠijdV =
−

∮

ΠijdAj , where the Gauss law is employed to convert the volume integral to one over
the surface, with the surface element dAj pointing outwards.

After the system reverts to stationarity and equilibrium, the force gi = −∇jΠij van-
ishes. The stress Πij itself, however, same as the pressure P , remains finite. (The Maxwell
stress reduces to the pressure in the field-free limit of a stationary system, Πij → Pδij .)
Being a function of densities and fields, the stress is discontinuous at the system’s bound-
ary if these are. Such a discontinuity represents a surface force that is operative even in
equilibrium,

Fi =

∮

(Πin
ij − Πex

ij )dAj ≡
∮

△ΠijdAj , (33)
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where in and ex denote interior and external, respectively. To derive this expression, we
broaden the surface of discontinuity to a thin region enclosed by two parallel surfaces, and
flatten the discontinuity △Πij into a large but finite ∇jΠij between these surfaces. Then
we integrate −∇jΠij over an arbitrary portion of this region, and again employ the Gauss
law to convert the volume integral into one over the total surface. Now contracting the
region’s width, only the two large, adjacent surfaces remain. (With dAj pointing outwards,
there is an extra minus sign in front of Πin

ij .) Defining nj as the surface normal along dAj ,
the surface force density is

f surf
i = nj(Π

in
ij − Πex

ij ) ≡ nj△Πij . (34)

We shall next derive the explicit expression for the stress Πij , and use it to consider
circumstances involving the force densities, fbulk and f surf .

3.1 Derivation of the Stress

Generally speaking, the stress Πij contains contributions from dissipation and flow of the
medium, expressed by terms containing quantities such as the dissipative fields HD, ED

of Eq (30), and the velocity v. These will be disregarded for the moment and considered
in chapter 5.

Before deriving the explicit form of Πij , let us first understand how the expression for
the pressure is thermodynamically derived. Changing the volume V of a uniform, closed
system, the change in energy is dU = −P dV . As we keep the total entropy and mass
constant, d(sV ) = d(ρV ) = 0, the energy density du = Tds + µdρ may be written as
du = −(Ts + µρ)dV/V . Inserting this in dU = d(uV ) = V du + udV = (u − Ts − µρ)dV ,
we obtain P = −u + Ts + µρ. Clearly, the pressure is known if u(s, ρ) is, and it may be
calculated as

P ≡ − ∂(uV )

∂V

∣

∣

∣

∣

sV, ρV

= −u + ρ
∂u

∂ρ
+ s

∂u

∂s
. (35)

This method is easily generalized to include fields – all we need is to find a similar geometry
in which all variables, including the fields, are constant, and in which the external Maxwell
stress Πex

ij vanishes identically. Then the change in energy, employing Eq (34) with Πij ≡
Πin

ij , and Aj = Anj for a flat surface, is

dU = −f surf
i Adri = −ΠijAjdri. (36)

[For Πin
ij = Pδij , the formula dU = −PδijAjdri = −PdV is reproduced. If Πij or dri

were non-uniform, and Πex
ij finite, the energy change is

∮

δri(Π
ex
ik − Πik)dAk.]

We proceed as outlined above, though heeding the fact that dU also depends on the
change in form, not only in volume. So we take Ak and δri each to successively point in all
three directions, evaluating ΠikAkδri for nine different configurations, obtaining enough
information for all nine components of Πik. Generalizing the energy density of Eq (24) to
include more than one conserved densities ρα, α = 1, 2 . . . ,

du = Tds + µαdρα + E ·dD + H ·dB, (37)

implying a summation over α, the Maxwell stress will be shown to be

Πik = Πki = −EiDk − HiBk

+(Ts + µαρα + E ·D + H ·B − u)δik, (38)

again an expression given in terms of u, its variables, and the derivatives with respect to
these variables.

Electric Contributions

Consider a parallel-plate capacitor filled with a dielectric medium. Denoting its three linear
dimensions as x, y, z, with x ≪ y, z, the six surfaces S±

x , S±
y , S±

z (with the outward
pointing normal ±êx, ±êy, ±êz) have the areas Ax = yz, Ay = xz, Az = xy, and the
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Fig. 1. Two metal plates at S+
x and S−

x with a dielectric medium between them. Displacing
S+

x by δx and δz respectively compresses and shears the system.

volume V = xyz. Taking the two metal plates as S±
x , the electric fields E, D are along êx,

see Fig 1. The capacitor is placed in vacuum, so there is neither field nor material outside,
with Πex

ij ≡ 0. (The small stray fields at the edges are neglected, because we may place
an identical capacitor there, executing the same compression and shear motion.) We now
successively displace each of the three surfaces S+

x , S+
y , S+

z , in each of the three directions,
δri = δx, δy, δz, while holding constant the quantities: entropy sV , masses ραV of the
dielectrics, and the electric charges ±q = ±DAx on the two plates. (The last equality
holds because q =

∫

ρǫdV =
∮

D ·dA.) Displacing the surface S+
x by δx, we obtain

δV = Axδx, δs/s = δρα/ρα = −δx/x, δD = 0; (39)

and we have δV , δs, δρα, δD = 0 if the displacement is δy or δz – implying a shear motion
of S+

x . [There is no summation over α in Eq (39).] Inserting all three into Eqs (36, 37), we
have

Πxxδx = (Ts + µαρα − u)δx, Πyx = Πzx = 0. (40)

If the surface is S+
z and the displacement δz, we have δV = Azδz and δs/s, δρα/ρα,

δD/D = −δz/z. If the displacement is δx or δy, we have δV , δs, δρα, δD = 0. Hence

Πzzδz = (Ts + µαρα + ExDx − u)δz, (41)

and Πxz = Πyz = 0. Since the directions êy and êz are equivalent, we know without
repeating the calculation that a displacement of S+

y yields Πzz = Πyy and Πxy = Πzy = 0.
(The term ExDx is a result of the metal plates being squeezed, compressing the surface
charges, δq/q = δD/D = −δz/z. The compressibility of the metal – though not that of
the dielectric fluid – is taken to be infinite. Otherwise, it would contribute an elastic term
in the stress tensor.)

These considerations have yielded all nine components of Πik for a special coordinate
system. Because the stress of Eq (38), for D, E‖êx and B = 0, produces exactly these
components, it is the correct, coordinate-independent expression. This conclusion may
appear glib, but is in fact quite solid: If two tensors are equal in one coordinate system,
they remain equal in any other. And we have seen that the two are equal in the frame,
in which E, D are along x̂. In other words, the only way to construct a tensor with
two parallel vectors, such that Πzz, Πyy = ExDx, and Πik = 0 otherwise, is to write
Πik = δikEjDj −EiDk. [There seems to be an ambiguity in the off-diagonal part, as both
EiDk and EkDi yields the same nine components derived here; but there is none, because
E‖D for B, v = 0, therefore EiDk = EkDi, cf discussion leading to Eq (164).]

Although this concludes the thermodynamic derivation of the electric part of the
Maxwell stress, it is instructive to understand that we could have done it differently, say
taking the same capacitor held at a constant voltage φ. Considering this modified system
must lead to the same stress tensor, because the stress is a local expression which must
not depend on whether there is a faraway battery maintaining the voltage. The calculation
is similar: One replaces u in Eq (36) with the potential ũ ≡ u − E · D, as the system is
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no longer electrically isolated7. E is now the field variable, with the constraint Ex = φ
(which replaces DAx = q). Connecting the capacitor to a heat bath changes the potential
to F̃ = u − Ts − E · D, and the constraint changes from constant sV to δT = 0. (F̃
is the potential used in [15].) For the explicit calculation see the magnetic case below,
implementing B → D, H → E in Eqs (42, 43, 44, 45, 46).

If the dielectric medium were simply a vacuum, Πxx = − 1
2
E2 contracts along êx, and

Πzz = 1
2
E2 expands along êz. This reflects the tendency for the differently charged plates

to come closer, and the charge in each plate to expand.

Magnetic Contributions

To obtain the magnetic part of the stress tensor, consider a rod along êx, of square cross
section, made of a magnetizable material and placed in a vacuum. The surfaces S±

y , S±
z are

covered with a sheet of wire-winding that carries a current J ⊥ êx. With Ax ≪ Ay, Az,
the magnetic field will be essentially along êx and confined to the interior of the rod, see
Fig 2. So again, there is neither field nor material outside, with Πex

ij ≡ 0. If the system is

Fig. 2. A magnetic system with constant current J ⊥ x̂, fed by a battery, not shown.
Again, it is deformed by displacing S+

x , S+
z along x̂ or ẑ.

isolated, the metal needs to be superconducting to sustain the current, and the constraint
on the variable B during a deformation is constant flux, BAx = Φ. (Compare this to the
isolated electric case with DAx = q.) If the current J is held constant by a battery, the
attendant potential is (see appendix A) ũ ≡ u − H · B, and the constraint is Hx = J/c,
from J =

∫

j ·dA = c
∮

H ·ds. (Compare Hx = J/c to Ex = φ.)
The calculation of the isolated magnetic case repeats the isolated electric one, with

all above equations remaining valid taking the replacements D → B, E → H . We now
consider deformation of the rod at constant current and temperature, so the energy needed
to deform the system is

δ(F̃ V ) = F̃ δV + V δF̃ = −AkΠikδri, (42)

δF̃ = −sδT + µαδρα − B · δH . (43)

We again successively displace the three surfaces S+
x , S+

y , S+
z , in all three directions, δri =

δx, δy, δz, while holding constant the quantities: temperature, mass and the current, ie

7 See appendix A on Legendre transformations of field variables.
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under the conditions, δT = 0, δ(ραV ) = 0 and δ(Hx) = 0. The first surface to be displaced
is S+

x . When the displacement is δx, we have

δV = Axδx, δH/H = δρα/ρα = −δx/x; (44)

and we have δV , δρα, δH = 0 if the displacement is δy or δz (implying a shear motion of
S+

x ). Inserting these into Eqs (42, 43), we obtain

Πxxδx = (Ts + µαρα − u)δx, Πyx = Πzx = 0. (45)

If the surface is S+
z and the displacement δz, we have δV = Azδz, δH = 0, and δρα/ρα =

−δx/x. If the displacement is δx or δy, we have δV , δρα, δH = 0. Hence

Πzzδz = (Ts + µαρα + HxBx − u)δz, (46)

and Πxz = Πyz = 0. Since the directions êy and êz are equivalent, we have Πzz = Πyy

and Πxy = Πzy = 0. This consideration again yields all nine components of Πik. Because
the stress of Eq (38) produces the same components for B, H‖êx and D = 0, it is the
correct, coordinate-independent expression.

Conclusions and Comparisons

The above considerations yield the macroscopic Maxwell stress Πik in equilibrium, for
stationary systems v ≡ 0, with either the electric or the magnetic field present. As we
shall see in chapter 5, this expression remains intact with both fields present at the same
time – though there are additional off-equilibrium, dissipative terms, and corrections ∼ v
to account for a moving medium.

Similar derivations exist in the literature, see Landau and Lifshitz [15] for the electric
case, and Rosensweig [16] for the magnetic one. We felt the need for a re-derivation, because
the present proof is easier to follow and avoids some inconsistencies: Of the six surfaces
enclosing the considered volume, only the capacitor plate is displaced in [15], implying
that the surface normal n‖A is kept parallel to the E-field throughout, and (although a
footnote asserts otherwise) only the components Πxx, Πyx and Πzx have been evaluated.
Second, the magnetic terms are obtained in § 35 of [15] by the replacement E → H ,
D → B. The result is correct, as we know, but we also see that the geometry is quite
different and the analogy hardly obvious. In § 4 of his book on ferrofluids [16], Rosensweig
aims to fill this gap. Unfortunately, he starts from the invalid assumption that a certain
winding of the wires he specifies gives rise to a field that is uniform and oblique 8, though
it is not difficult to convince oneself that the field is in fact non-uniform and predominantly
parallel to êx.

8 Rosensweig’s geometry is a slab with Ay, Ax ≪ Az and current-carrying wires along
the surfaces S±

y , S±
z , see his Fig 4.1. The winding of the wires is oblique, the currents

flow along ±êy in the two larger plates S±
z , but has a component along ±êx in the two

narrow side walls S±
y – take them to be along ±m̂, a vector in the xz-plane. Rosensweig

maintains that the resultant field is uniform and perpendicular to the surface given by
the winding, ie by êy and m̂. We do not agree. First the qualitative idea: If the two
much larger plates S±

z were infinite, the field would be strictly parallel to êx. This basic
configuration should not change much if the plates are made finite, and supplemented
with the two narrow side walls S±

y – irrespective of the currents’ direction there. This
argument is born out by a calculation to superpose the fields from various portions of
the currents. First, divide all currents along ±m̂ into two components, along ±êz and
±êx. Next, combine the first with the currents along ±êy, such that the four sections
of the four surfaces form a closed loop at the same x-coordinate. The resultant field of
all loops is clearly the main one, and strictly along êx. The leftover currents are those
at S±

y along ±êx and their effect is a small dipole field.
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3.2 Bulk Force Density and Equilibria

We now employ the expression for the stress, Eq (38), to calculate the bulk force density,
−∇kΠik, cf Eq (32). Introducing the Gibbs potential,

G(T, µα, Hi, Ei) = u − Ts − µαρα − HiBi − EiDi, (47)

∇kG = −s∇kT − ρα∇kµα − Bi∇kHi − Di∇kEi (48)

(which in the notation of 3.1 should have been G̃), we write the stress as

Πik = −(Gδik + HiBk + EiDk), (49)

and its gradient as

∇kΠik = s∇iT + ρα∇iµα − ρeEi

+Bk(∇iHk −∇kHi) + Dk(∇iEk −∇kEi)

= s∇iT + ρα∇iµα − 1
c

∂
∂t

(D × B)

−(ρǫE + 1
c
jǫ × B)i. (50)

(Remember that terms ∼ HD, ED are generally neglected in this chapter.) This result may
first of all be seen as a rigorous derivation of the macroscopic Lorentz force, ρǫE+ 1

c
jǫ×B.

But there are clearly also additional terms: For neutral systems with stationary fields, the
bulk force −∇kΠik reduces to

fbulk ≡ −(s∇T + ρα∇µα). (51)

Note fbulk is field-dependent, because T ≡ ∂u(s, ρα, D, B)/∂s, and similarly µα, are
functions of the fields. As we shall see in section 3.4, the Kelvin force is contained in fbulk.
[The discussion of the force, 1

c
∂
∂t

(D×B), tiny in the context of condensed matter physics,
is postponed to Eq (172) and the footnote there.]

The remarkable point about fbulk, however, is that it vanishes quickly – on the order of
the inverse acoustic frequencies, as long as mechanical equilibrium reigns. Inhomogeneities
in temperature, concentration and field are easily and quickly compensated by an appro-
priate and small inhomogeneity in the density.

To better understand this, we shall examine various equilibrium conditions below.
But we must first specify the chemical potentials. For a two-component system such as
a solution, with ρ1, ρ2 denoting the solute and solvent density, one may take ρ1 and ρ2,
or equivalently, ρ1 and ρ ≡ ρ1 + ρ2 as the independent variables. The same holds for
ferrofluids, suspensions of magnetic particles, where ρ1 denotes the average density of
magnetic particles and ρ2 that of the fluid matrix. (Variation of ρ1 arises primarily from
increasing the number of the particles in a unit volume, not from compressing each particle
individually.) In what follows, we shall always take the total density ρ as one of the
variables, hence

µαdρα ≡ µdρ + µ1dρ1. (52)

Besides, we shall no longer display the electric terms explicitly from now on, because these
follow from identical considerations in all the ensuing formulas, and are simply given by
the replacements

B → D, H → E, M → P . (53)

For linear constitutive relations (lcr), M = χmH, P = χeE, the replacements imply
µ̄m = 1 + χm → ε̄ = 1 + χe. Note that the magnetic force is generally speaking up to five
orders of magnitude stronger than the electric one. This is connected to the fact that their
respective, easily attainable field values are similar in SI units: Ê ≈ 107V/m, Ĥ ≈ 107A/m,
ie E ≈ 30

√

J/m3, H ≈ 104
√

J/m3. Also, both susceptibilities are similar in ferrofluids,

and do not usually exceed 104, hence we have µm
0 Ĥ2 = H2 ≈ ε0Ê

2 × 105 = E2 × 105. In
addition to the greater ease and safety of handling, this frequently makes magnetic fields
the preferred ones when applying electromagnetic forces.
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True Equilibrium

Temperature and chemical potentials are constant in equilibrium,

∇T = 0, ∇µ = 0, ∇µ1 = 0, (54)

so fbulk ≡ 0, cf Eq (51). Constant chemical potentials µ, µ1 (as functions of T, ρ, ρ1, B)
imply that a non-uniform B field needs to be compensated by varying densities ρ, ρ1, if
T is kept constant. In a one-component liquid, the field inhomogeneity works against the
liquid’s compressibility, κT ≡ −∂ρ−1/∂µ, hence the density change is a small effect. This
is different in two-component systems such as ferrofluids, because concentration may vary
without compression, and the field only works against the osmotic compressibility κos.

In this context, it is important to realize that in suspensions such as ferrofluids in-
compressibility does not mean δρ, ∇ ·v = 0. Here, incompressibility implies the constancy
of the two microscopic densities, ρM of the magnetic particles and ρF of the fluid matrix
(where ρ1 = 〈ρM 〉, ρ2 = 〈ρF〉, with the averaging taken over a volume element containing
many particles). Because the particles are typically denser than the fluid: ρM ≈ 5ρF, a
variation of the particle concentration changes the total density, ρ ≡ ρ1 + ρ2, without any
compression taking place. Since ρ1/ρM is the fraction of volume occupied by the particles,
and ρ2/ρF that occupied by the fluid, we have ρ1/ρM+ ρ2/ρF = 1. Taking ρM and ρF as
constant, this implies

dρ = γdρ1, γ = 1 − ρF/ρM . (55)

If the concentration changes, so does ∇ · v ∼ ρ̇ ∼ ρ̇1 6= 0 . Inserting Eq (55) into µαdρα =
µtedρ = µte

1 dρ1, there is only one independent chemical potential, either

µte = µ + µ1/γ, (56)

or µte
1 = γµ+µ1. (te stands for true equilibrium.) And the equilibrium conditions are ∇T =

0, ∇µte = 0. In other words, an incompressible two-component system is formally identical
to a compressible one-component system, with the usual compressibility substituted by the
osmotic one (larger by 6 orders of magnitude, see 4.1),

κos ≡ −∂ρ−1
1 /∂µte

1 = −∂ρ−1/∂µte. (57)

Note that since our starting equation remains Eq (37), in which µαdρα = µdρ+µ1dρ1

is replaced by µtedρ, all ensuing results remain valid, especially the stress Πij and the bulk
force fbulk.

Quasi-Equilibrium

Establishing equilibrium with respect to ρ1, the density of suspended particles, is frequently
a slow process. Depending on the field gradient, the geometry of the experiment and the
particle size, it may take days to weeks [22, 23]. For a rough estimate, equate the Stokes
with the Kelvin force to calculate the velocity v with which a magnetic particle moves:
6πηRv = (4πR3/3)· χµm

0 ∇Ĥ2/2. Taking the particle radius as R = 10nm, the viscosity as
η = 10−3kg/ms, the susceptibility as χ ≈1, the field as B̂ = 0.1T, and the field gradient
∇B̂ as 1T/mm, the velocity is around 10−3mm/s, and the time the particles need to
achieve equilibrium at a distance of 100mm is τ ≈ 100mm/v ≈ 105s – though particles
102 times larger (R = 1µ) are 104 times faster, with τ ≈ 101s.

After a ferrofluid with both ρ and ρ1 uniform is brought into contact with an inhomo-
geneous magnetic field, the establishment of heat and mechanical equilibria are compara-
tively fast processes: The condition fbulk = −(s∇T +ρ∇µqe) = 0 is as mentioned satisfied
within the inverse acoustic frequency. Constant temperature takes somewhat longer, it is
established after heat had enough time to diffuse through the system. For time scales
much smaller than the above τ , only the concentration c ≡ ρ1/ρ remains unchanged.
With dρ1 = c dρ dependent, the thermodynamics is accounted for by only one chemical
potential, µαdρα = µqedρ, and the quasi-equilibrium conditions are given as

∇T = 0, ∇µqe ≡ ∇(µ + cµ1) = 0. (58)



Thermodynamics, Electrodynamics and Ferrofluid-Dynamics 17

Again, all formulas including the stress and the bulk force remain valid if we replace µ with
µqe. Being essentially incompressible, the two-component ferrofluid in quasi-equilibrium
usually maintains homogeneous densities, ∇ρ1 = c∇ρ ≈ 0. (Only a slight spatial variation
of ρ is necessary to compensate for the presence of an inhomogeneous field.) For the rest of
this chapter, we shall confine our formulas to that of a one-component fluid, µαdρα → µdρ,
but employ

µ → µte, µ → µqe (59)

to produce results appropriate for true or quasi-equilibrium, respectively.

Gravitation

It is not always possible to neglect gravitation when considering electromagnetic forces.
Including it in the energy, utot = u+ρφ, with φ = gz, yields dutot = Tds+(µ+φ)dρ+ · · · ,
so maximal entropy now implies constant µ + φ, or

∇µ = −∇φ = −gêz, (60)

or ∇µqe = −∇φ, or ∇µte = −∇φ. Inserting Eq (60) in Eq (51), the bulk force density
fbulk is seen to reduce to the gravitational force.

3.3 The Surface Force Density

Since the non-gravitative part of the bulk force density fbulk vanishes quickly, only the
surface force, f surf of Eq (34), remains operative for typical experimental situations. This
force is what we shall consider now.

Stress in Equilibrium

The expression for the surface force may be considerably simplified. With the equilibrium
conditions given as in Eqs (54), (58) or (60), the Gibbs potential G is nonuniform only due
to the inhomogeneities in the electromagnetic fields and the gravitational potential φ, cf
Eq (48). G may be separated into its zero-field and electromagnetic contributions, which
respectively account for its value in the absence of fields and the modification when a field
is turned on,

G(T, µ, H) = G(0) + Gem, (61)

Gem(T, µ, H) = −
∫

B · dH |T,µ. (62)

As indicated, the integral is to be taken for given T, µ. Without gravitation, G(0) = −K
is a spatial constant: G(0) is a function of T, µ, both uniform. With gravitation but no
field, −∇kΠik = ∇iG(0) = ρ∇iφ, cf Eqs (48, 50, 60). Hence

G(0) = g
∫

ρ(0) dz − K, (63)

where ρ(0) is the density without field, the one that prevails when the field is turned off
at given T, µ. (Note

∫

ρ(0) dz ≈ ρ(0)z for quasi-equilibrium, but not the true equilibrium.)
Inserting Eq (61) into Eq (49) yields

Πij = [−G(0) +
∫

BidHi|T,µ]δij − HiBj , (64)

stating that we may calculate Πij for an arbitrary point of the medium, if we know it at
one point (fixing the value of K) and the field everywhere.

In true and quasi-equilibrium, the field integral
∫

BidHi|µ is respectively taken at given
µte and µqe, cf Eqs (56, 58). It is instructive to compare both integrals, as they lead to
rather different Gem. The magnetization is usually measured varying a uniform external
field in an enclosed system with a thermal contact, such that ρ, ρ1, T stay constant. So
the measured quantity is Mi(T, ρ, Hi). To evaluate Gem = −( 1

2
H2 +

∫

MidHi|µ), we need
Mi(T, µ, Hi) instead, a quantity to be measured in an open system, one connected to a
particle reservoir, which itself is not subject to a field, so its chemical potential µ remains
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constant. Increasing the field in the subsystem, magnetic particles from the reservoir will
enter it, resulting in a larger susceptibility than in a closed one. Of course, instead of
measuring ∂M/∂H|µ directly, we may also measure ∂M/∂H|ρ, and calculate the difference
between the two susceptibilities,

∂M

∂H

∣

∣

∣

∣

µ

=
∂M

∂H

∣

∣

∣

∣

ρ

+
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∂ρ

∣

∣

∣

∣

2

H

∂ρ

∂µ

∣

∣

∣

∣

H

. (65)

(Hold T constant throughout, and assume M‖H , with M, H denoting the magnitudes.)
Eq (65) is derived by combining an identity with a Maxwell relation,
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, (66)
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∣
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H

. (67)

For quasi-equilibrium, ∂ρ/∂µqe = ρ2κT , with κT denoting the smallish isothermal com-
pressibility. So the difference between the two ∂M/∂H is negligible,

∫

B · dH |µqe ≈
∫

B · dH |ρ. (68)

This is easy to understand, because the open system does not have time to bring the
magnetic particle into the field region, so there can be no great difference to a closed system.
For the compressible true equilibrium, circumstances are different, ∂ρ/∂µte = ρ2κos, with
the inverse osmotic compressibility κos larger by around 106, see 4.1). So the difference
between these two susceptibilities is significant. For lcr, Eq (65) reduces to

χm(µte) = χm(ρ) + (ρ∂χm/∂ρ)2κosH
2, (69)

showing that the difference between the two susceptibilities is of second order in the field,
and may be neglected if one strictly adheres to lcr. On the other hand, this calculation
also shows when the second term may no longer be neglected: Estimating ρ(∂χm/∂ρ) ≈ χm

≈ 1, and κ−1
os ≈ 103 Pa (see 4.1 below), we find κosH

2 ≈ 1 for Ĥ ≈ 3 × 104 A/m.

Boundary Conditions

Assuming absence of surface currents, the field boundary conditions are △Bn = 0, △Ht =
0, where

△A ≡ Ain − Aex (70)

is defined as in Eq (34), and the subscripts n and t denote the components normal or
tangential to the interface: Ht ≡ H · t, Bn ≡ B · n. (n, t are the normal and tangential
unit vectors.) Inserting them into the stress, Eq (38), we find that the off-diagonal part of
the surface force density △Πij vanishes identically, △Πtn ≡ △(Πiktink) = −△(HtBn) =
−Bn△Ht− Ht△Bn = 0. The diagonal part, △Πnn ≡ △(Πiknink), does not vanish and
contributes to the surface force. Starting from Eqs (64), Πnn = −G(0)+ 1

2
H2 +

∫

MidHi−
HnBn, we employ 1

2
△(H2

t + H2
n − 2HnBn) = 1

2
△(M2

n + H2
t − B2

n) = 1
2
△M2

n to obtain

△Πnn = △[−G(0) +
∫

MidHi|T,µ + 1
2
M2

n]. (71)

At a free surface, because △Πnn and the surface tension are the only operative forces,
the force equilibrium,

△Πnn = α(R−1
1 + R−1

2 ) (72)

with α > 0 denoting the surface tension and R1, R2 the principle radii of curvature, is
the proper boundary condition. If one side of the interface is air, we have M ≡ 0 and
−G(0) = Patm − g

∫

ρair(0)dz ≈ Patm being the atmospheric pressure. Then the boundary
condition [employing Eq (63)] is

K − g
∫

ρ(0)dz +
∫

MidHi|T,µ + 1
2
M2

n

= Patm + α(R−1
1 + R−1

2 ). (73)
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The Total Surface Force

We evaluate the force on a magnetizable body, submerged in a fluid that is differently
magnetized. Because dAj = njdA, △Πtn ≡ 0, and △Πij = δik△Πkj = (nink + t1i t

1
k +

t2i t
2
k)△Πkj , Eq (33) takes the form

F =

∮

△ΠnndA. (74)

We insert Eqs (63, 71), note that the surface integral over any constant vanishes,
∮

△KdAi = 0, and separate F = F
mag + F

grav into a magnetic and a gravitational
part, to obtain

F
mag = △

∮

[
∫

MkdHk|T,µ + 1
2
M2

n] dA (75)

= △
∮

[
∫

MtdHt|T,µ +
∫

MndBn|T,µ] dA, (76)

F
grav = −gêzV △ρ(0). (77)

Eq (77), with V the volume of the body and êz the unit vector pointing upward, may be
somewhat of a surprise, as ρ(0) is the zero-field density, and not the actual one, as effected
by magnetic field gradients. Clearly, the difference is hidden in the magnetic part of the
force, see Eq (79) below.

Note taking ∇T = 0, we have ∇
∫

BidHi ≡ −∇Gem(µ, T, Hi) = (−∂Gem/∂µ)
∇µ + Bi∇Hi. Furthermore, with −∂Gem/∂µ = ρ − ρ(0), ∇µ = −gêz, and ∇

∫

MidHi =
∇

∫

BidHi − Hi∇Hi, we have

∇
∫

MidHi = Mi∇Hi − [ρ − ρ(0)]gêz. (78)

Using it to consider a magnetizable body in vacuum, we may first eliminate the △ in
Eq (75), and then employ the Gauss law to formerly write

F
mag =

∮

1
2
M2

n dA +

∫

Mk∇Hkd3r − [ρ − ρ(0)]gêzV. (79)

This is sometimes construed as proof that Mk∇Hk is the bulk Kelvin, and 1
2
M2

n a surface,
force density [16]. This is incorrect: All forces are located at the surface.

Although it is sometimes difficult to discern non-locality in a static context, this is an
easy task in a dynamic one: The appropriate question is always, which volume element
is going to be accelerated if force balance suddenly fails. As long as we adhere to the
definition of Eq (32), we are sure that the force is where the accelerated volume element
resides. This connection gets lost only after the force density is integrated over, especially
when the Gauss law has been employed.

If the magnetizable body is a plate, with the field gradient normal to its surface,
refer to Eq (76) to realize that if the field is either predominantly tangential or normal
to its surface, the respective magnetic force is

∫

Mk∇Hkd3r or
∫

Mk∇Bkd3r, see [24].
Conversely, the force on a non-magnetic body submerged in ferrofluid of magnetization M
is

F
mag = −

∮

[
∫

MtdHt|T,µ +
∫

MndBn|T,µ] dA. (80)

Two different force expressions are found in the book by Landau and Lifshitz [15].
(The calculations are in electric quantities and assume linear constitutive relation, see
§16. They are converted to magnetic quantities and generalized to nonlinear constitutive
relation here.) The first is

Fmag
i =

∮

dAj(HiBj − δij

∫

BkdHk|T,µ). (81)

It is easily derived if gravitation is neglected: First eliminate Πin
ij in Eq (34), because

∮

Πin
ij dAj =

∫

∇jΠ
in
ij d3r vanishes in mechanical equilibrium. Then insert Eq (64) into

Πex
ij to obtain the above expression. Note the integral may be taken rather far away from

the enclosed body, as long as the external medium is in mechanical equilibrium, because
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the integral over any closed surface within the external medium
∮

dAjΠ
ex
ij vanishes. The

second force expression is only valid in vacuum, or any other non-magnetizable medium,

F
mag =

∫

Mi∇Hid
3r, (82)

where Hi = Bi is the external field in the absence of the body. The proof in [15], of the
equivalence between Eq (81) and (82), is quite protracted, spread over many sections. The
essence is: One starts from the energy Eq (37) to deduce the form of the Maxwell stress,
from which Eq (81) is deduced. And one may employ this force to calculate the energy
change associated with the displacement of the magnetized body, δU = Fmag

i δri. Equiv-
alently, δU may be calculated employing Eq (37) directly, integrating it over the whole
space for the two positions, before and after the displacement, of the magnetized body.
And the difference in energy is δU , same as above. Moreover, as shown in [15], instead of
employing Eq (37), one may calculate δU by using δU =

∫

M ·δH d3r, which conveniently
prescribes an integration over the magnetizable body only. Since δH = (δri∇i)H with δri

constant for a solid-body displacement, we have δU = δri

∫

Mk∇iHk d3r = Fmag
i δri, or

Eq (82). (Fmag =
∫

Mi∇iH d3r is also valid since ∇ × H = 0.)

Fig. 3. force on a magnetizable body

Given this long-winding reasoning, there has been some misunderstanding in the lit-
erature [25, 26], and it is useful to provide a direct proof [27] of the equivalence between
Eq (81) and (82): Writing H ≡ H + h and B ≡ B + b defines the additional fields h, b
which arise due to the presence of the magnetizable body, represented as the shaded area
(marked “int” for internal) in Fig 3. With ∇ ·B = 0, ∇×H = 0 and ∇ ·B = 0, ∇×H = 0,
we also have ∇ · b = 0, ∇ × h = 0. Besides, H ≡ B hold generally, and H ≡ B, h = b
hold outside the magnetized body (in the region marked “ext” for external). This is why
we may write the magnetic force, Eq (81), as

∮

ext
dAj(HiBj − 1

2
H2δij). (The subscript ext

notes that we are to take the values of the discontinuous field on the external side of the
body.) Dividing the fields as defined, the force is

Fmag
i =

∮

ext

(HiBj − 1
2
H2δij + hibj − 1

2
h2δij (83)

+Hkhk δij −Hibj − hiBj)dAj .

With Bi,Hi continuous, we may employ the Gauss law to show that the first two terms
cancel:

∫

d3r∇j(HiBj − 1
2
H2δij) =

∫

d3r(Bj − Hj)∇jHi = 0. The next two terms
also vanish, as the surface of integration may be displaced into infinity:

∮

ext
dAj(hibj −

1
2
h2δij) =

∮

R→∞
dAj(hibj − 1

2
h2δij) +

∫

ext
d3r(hj − bj)∇jhi. The first term falls off as

R−3R−3R2 = R−4, because its longest reaching contribution is dipolar; the second term
is zero because hj = bj . The last three terms are continuous and may be written as
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∮

int
dAj(Hkhk δij −Hibj − hiBj) =

∫

int
d3r[(Bj −Hj)∇jhi + (bj − hj)∇jHi] which, with

Bj = Hj and Mi = Bi − Hi = bi − hi, is the proof of Fmag
i =

∫

d3rMi∇jHi. (These
three terms are continuous because, with dAj‖nj , nj being the normal vector, they may
be written as (Htht + Hnhn)ni −Hibn − hiHn, where the subscripts t and n refer to the
normal and tangential components, respectively. This vector is given by two components:
Htht +Hnhn −Hnbn − hnHn = Htht −Hnbn along n, and −Htbn − htHn perpendicular
to it. It is continuous because Hi = Bi, ht, and bn are all continuous.)

Summarizing, we note that all the above formulas account for the same force, strictly
located at the surface. Mk∇Hk and Mi∇Hi are valid only after a volume integration,
they should not be interpreted as body force densities.

3.4 Zero-Field Pressure and the Kelvin Force

In this section, we shall consider two ambiguous quantities which are nevertheless fre-
quently employed: the zero-field pressure and the Kelvin force. Their introduction is based
on a seemingly self-evident premise, that one can divide the Maxwell stress, Πij , into a
field-independent part, called zero-field pressure, Pδij , and a field-dependent one, given
less obviously by the Kelvin force, Mj∇iHj . Accepting this, the momentum balance,
ġi + ∇jΠij = 0, is frequently written as [28]

ġi + ∇iP − Mj∇iHj = 0. (84)

(There is also a third term, 1
2
∇ × (M × B), deemed to enter the equation only when

the fluid contains the degree of freedom of “internal rotation.” We shall discuss it with
other off-equilibrium terms, in next chapter.) Eq (84) and the premise leading to it are
fallacious on three accounts: • First, however one defines the zero-field pressure, it is never
a universally field-independent quantity, and some field effects are always contained in P .
• Even neglecting the first point, writing ∇jΠij as ∇iP −Mj∇iHj requires preconditions
far more severe than is usually acknowledged. As a consequence, they are frequently vio-
lated when the Kelvin force is applied. • Finally, as we discussed in section 3.2, the bulk
force density fbulk = −∇jΠij vanishes quickly, within the inverse acoustic frequency. So
whatever the field-dependent part of the stress is, Mj∇iHj or not, it does not account
for any electromagnetic action at longer time spans. (The following consideration neglects
gravitation and again treats true and quasi-equilibrium simultaneously, with µ → µqe, µte

where appropriate.)

Different Zero-Field Pressures

As with the Gibbs energy, Eq (61), one may also divide the free energy densities F ≡ u−Ts
and F̃ ≡ F − H · B into a field-free and field-induced part,

F = F (0) + Fem, Fem =
∫

H · dB|T,ρ, (85)

F̃ = F̃ (0) + F̃em, F̃em = −
∫

B · dH |T,ρ, (86)

with F (0) = F̃ (0) a function of T, ρ and the integrals taken at given T, ρ. With −G(0)
given as −u(0) + Ts(0) + µρ(0), cf Eq (61), it appears quite natural to refer to it as the
zero-field pressure P (0). In a similar vein, one may take (ρ ∂

∂ρ
− 1)F (0) ≡ ρµ(0) − F (0) as

P (0). Unfortunately, these two pressures are different. P (µ) ≡ −G(0) is the pressure that
remains turning off the field at given µ, T , while P (ρ) ≡ (ρ ∂

∂ρ
− 1)F (0) is the pressure

at given ρ, T . Because the chemical potential µ changes turning off the field at given
density, and vice versa, the density changes at given µ, these two pressures differ by a
field-dependent quantity. [If the field is turned off adiabatically, rather than isothermally,
the result is yet another zero-field pressure: P (s, ρ) ≡ (ρ ∂

∂ρ
+ s ∂

∂s
− 1)u(0).] Generally

speaking, when choosing an appropriate set of variables, it is useful to keep in mind that
ρ is the variable that remains unchanged when a field is turned on in a closed system.
Therefore, F (0) is frequently a temporal constant, in contrast to G(0), a spatial constant.

Writing G, either in terms of F , F̃ , or directly, we have
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− G = (ρ ∂
∂ρ

− 1)F − H · B = P (ρ) + (87)

+ 1
2
H2 − 1

2
M2 +

∫

dB · (1 − ρ ∂
∂ρ

)M |ρ,

−G = (ρ ∂
∂ρ

− 1)F̃ = P (ρ) + (88)

+ 1
2
H2 +

∫

dH · (1 − ρ ∂
∂ρ

)M |ρ,

−G = P (µ) + 1
2
H2 +

∫

dH · M |µ, (89)

where the density derivatives are taken at constant B in Eq (87), and at constant H in (88).
Equating Eq(88) with (89), we find

P (µ) = P (ρ) −
∫

(ρ ∂
∂ρ

M ) · dH |ρ + △, (90)

△ ≡
∫

dH · M |ρ −
∫

dH · M |µ (91)

where △ is negligible only for quasi-equilibrium, µ = µqe, see Eq (68).
There are in fact two basic problems with the notion of a zero-field pressure. First,

there are simply no universally field-independent quantities: Choosing one set of inde-
pendent thermodynamic variables, the dependent ones are field-dependent. Second, while
temperature and chemical potential are well-defined in the presence of field, cf Eq (37), the
pressure is not. The usual notion of pressure, P ≡ −∂

∫

ud3r/∂V, is ill-defined, because
ponderable systems in the presence of field are anisotropic, and the energy depends not
only on volume changes, δV , as implied by this definition, but also on variations of the
shape, cf section 3.1. And the appropriate quantity to deal with is the Maxwell stress.

In isotropic liquids, the pressure is directly measurable, and it encompasses many con-
cepts that we find convenient, even intuitive: as the surface force density, as the momentum
current, and as a quantity that is continuous across interfaces. Hence there is widespread
reluctance to abandon the pressure at finite fields. Unfortunately, though there are numer-
ous ways to generalize the pressure that will preserve some of these properties, none covers
all. So one may either define many different pressures – an approach [16] we eschew as it
requires great care and tend to confuse – or face up to the Maxwell stress, as we do here.

There is a second pitfall worthy of attention. In dilute systems, the magnetization is
usually proportional to the density, or M = ρ(∂M/∂ρ). Inserting this into Eqs (87) and
(88) respectively, we find

− G = P (ρ) + 1
2
(H2 − M2), −G = P (ρ) + 1

2
H2, (92)

a clear contradiction. It arises because M = ρ(∂M/∂ρ) at given B or H are mathematically
inequivalent. Physically, when we assume M ∼ ρ, this is meant as an approximation
for dilute systems, implying that higher order terms ∼ ρ2, ρ3 · · · may be neglected. But
consistency dictates that we must neglect all higher order terms, including M2 ∼ ρ2. This
implies that M is also to be treated as a small quantity, M ≪ H and χm ≪ 1. Then the
difference of 1

2
M2 is quadratically small, and the contradiction evaporates. Inserting the

second of Eq (92) in Πik = −[Gδik +HiBk], we find a popular form for the Maxwell stress
tensor, Πik = (P + 1

2
H2)δik − HiBk. Clearly, it is to be taken with a large grain of salt,

as it is valid only for dilute systems, and vanishing magnetizations, M ≪ H.

Different Kelvin Forces

Although we know that the bulk force density, fbulk = −∇jΠij = −s∇T − ρ∇µ, is
a quantity that vanishes quickly, we may nevertheless (taking the temperature as con-
stant), divide the term ρ∇µ into the gradient of the zero-field pressure and a field-induced
“ponderomotive force” fP. The fact that their sum vanishes is then accepted as force
equilibrium. Employing ρ, T as variables, we write

fbulk = −ρ∇[µ(0) + µem] = −∇P (ρ) + fP, (93)

−fP/ρ ≡ ∇[∂Fem/∂ρ]B = ∇[∂F̃em/∂ρ]H . (94)

Because ∇Fem = (∂Fem/∂ρ)∇ρ + Hi∇Bi, we may also write fP as ∇[Fem − ρ∂Fem/∂ρ]
−Hi∇Bi, or similarly, as ∇[F̃em − ρ∂F̃em/∂ρ] +Bi∇Hi, implying
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fP = Mi∇Hi + ∇
∫

(ρ ∂
∂ρ

− 1)MidHi, (95)

= Mi∇Bi + ∇
∫

(ρ ∂
∂ρ

− 1)MidBi, (96)

which are equivalent expressions for the Helmholtz force. For lcr, M = χmH = χmB/(1+
χm), both reduce to fP = ∇( 1

2
H2ρα∂χm/∂ρα) − 1

2
H2

∇χm. Assuming ρ∂M/∂ρ = M ,
for either given H or B, the respective Kelvin force is

fP = Mi∇Hi, fP = Mi∇Bi. (97)

Again, as discussed below Eq (92), ρ∂M/∂ρ ≈ M is a physically sensible approximation
only for M ≪ H, B. But then of course Mi∇Hi ≈ Mi∇Bi.

This point is not widely appreciated. Many authors take Mi∇Hi to be valid also for
M ≈ H, while the expression Mi∇Bi is usually spurned for no good reasons [29, 30].
Similarly, Pi∇Ei is preferred over Pi∇Di. (One source of confusion may be Eq (79),
which seemingly states that the bulk force density is Mi∇Hi, irrespective how large Mi

is in comparison to Hi. But as discussed there, this is a seriously flawed interpretation.)

The Magnetic Bernoulli Equation

The magnetic Bernoulli equation (MBE) by Rosensweig [16],

ρgz + P (ρ) − ρ ∂
∂ρ

∫

MidHi = constant, (98)

is a useful, extensively employed relation. It is contained in Eq (63), or g
∫

ρ(0)dz−G(0) =
K. The connection is given by Eqs (89, 90), showing

g
∫

ρ(0)dz + P (ρ) −
∫

(ρ ∂
∂ρ

Mi)dHi|ρ + △ = K. (99)

For quasi-equilibrium, ρ(0) ≈ ρ is a constant, and △ ≈ 0, see Eq (91). So the equation’s
left side reduces to the MBE. For true equilibrium, MBE needs to be taken as given by
Eq (99). [The velocity dependent terms in the original MBE are not included here, because
considerations of mass currents in ferrofluids need to include viscosities. Besides, some of
the velocity dependent terms in the stress tensor are missing in [16], cf Eq (158).]

This section ends here. No summary is given, though the reader is advised to revisit the
introduction, which should now provide a rather clear overview of all the derived results.

4 Static Experiments

Four experiments are collected here which either have been, or are well suited for being,
carried out in ferrofluids. They serve the purpose of illustrating the expressions derived
above, for both the bulk, and the surface, force density.

4.1 Field Induced Variations in Densities

Density variation of a magnetizable liquid in the presence of field inhomogeneity is referred
to as electro- or magnetostriction. It is frequently calculated with the Kelvin force, Mi∇Hi,
assuming it balances the gradient of the zero-field pressure, arising from a density variation.
As discussed above, this force expression is not valid for large magnetization. Besides, it
is quite easy to use the generally valid equilibrium conditions (60) instead. For a one-
component liquid, taking the chemical potential µ as a function of ρ, T, H, we have ∇µ =
[∂µ/∂ρ]∇ρ+ [∂µ/∂H]∇H = −∇φ. With ∂µ/∂ρ = 1/(ρ2κT ) and ∂µ/∂H = −∂B/∂ρ, this
implies the density gradient

∇ρ = ρ2κT

(

∂B

∂ρ

∣

∣

∣

∣

H

∇H − ∇φ

)

. (100)

This differential relation may be integrated to ∆ρ = ρ2κT ∆( 1
2
H2∂χm/∂ρ − gz) for lcr,

with ∆ denoting the difference of any quantity behind it at two points in the liquid, if κT

and ρ may be taken as essentially constant (ie, ∆ρ ≪ ρ).
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In a two-component fluid, not much changes for quasi-equilibrium, but circumstances
are quite different in true equilibrium. Although the calculation remains formally un-
changed, the much larger κos replaces κT in Eq (100).

To our knowledge, field-induced density variation has only been measured in one-
component liquids [31], not in any two-component ones. This is unfortunate, because the
variation of solute or particle density is so much more pronounced. To estimate its magni-
tude in ferrofluids, we write the linearized version of Eq (100) as ∆ρ1/ρ1 = κos(ρ1∂χm/∂ρ1)
∆(µm

0
1
2
Ĥ2). Approximating (ρ1∂χm/∂ρ1) ≈ 1, κos ≈ 10−3/Pa, we find ∆ρ1/ρ1 ≈ 0.1 for

B̂ = 10−2T. And with Eq (55), a similar size effect in the total density, ∆ρ/ρ ≈ 0.1.
Contrast this with the tiny change in the total density, ∆ρ/ρ = 5 · 10−8 at the same field
– a result of the small compressibility, κT = 5 ·10−10/Pa. [The value for κos is obtained by
considering a ferrofluid with 10% of its volume occupied by magnetic particles of the ra-
dius r = 10nm, so the particle density is n1 = 0.1/(4πr3/3). Assuming ideal gas behavior,
the inverse osmotic compressibility κ−1

os is equal to the osmotic pressure, Pos = n1kBT , so
κos = 10−3/Pa if T = 300K.]

4.2 Current Carrying Vertical Wire

We consider a vertical wire that goes through a dish filled with ferrofluid. Feeding the wire
with an electric current J will drag the ferrofluid toward the wire (at r = 0 and along ez,
in cylindrical coordinates). The ferrofluid surface is given by z(r), with z(r → ∞) ≡ 0.
We find K = Patm evaluating the boundary condition Eq (73) for z = 0, because the
magnetization vanishes with the field, and the curvature radii diverge. The boundary
condition at z(r), with Mn ≡ 0, yields

∫

MidHi|µ = α(R−1
1 + R−1

2 ) + g
∫

ρ(0)dz, (101)

a display of force balance between gravitation, magnetic surface force and surface tension.
Neglecting α and assuming quasi-equilibrium, ρ − ρ(0) ≪ ρ(0),

∫

MidHi|µ ≈
∫

MidHi|ρ,
see Eq (68), this equation is the same as the associated result in [16]. Especially for lcr,
Mi = χmHi, the left side reduces to 1

2
χmH2, with H = J/(2πr). And we have a hyperbolic

profile of the interface, 8π2ρgz = J2χm/r2.
The effect of α is more important for weak currents, J small. It may be neglected in

any case for z → 0, where both curvature radii are large enough to be ignored. For z large
and r small, one curvature radius is r, and the other ∞. So this part of the ferrofluid
column is accounted for by g

∫

ρ(0)dz + α/r = J2χm/(8π2r2), with the term ∼ r−2 being
asymptotically (r → 0) the dominant one. In between, where the actual bend from the
horizontal to the vertical takes place, both curvature radii (of different signs) are finite
and should be included.

4.3 Hydrostatics in the Presence of Fields

In a system of two connected tubes, with only the second subject to a magnetic field,
we expect the ferrofluid column to be higher in this tube, as ferrofluid is attracted to
the region of stronger fields, see Fig 4. To calculate the level difference, we employ the
boundary condition Eq (73) for the (flat) liquid-air interface in both tubes. Since the field
vanishes in the first, the boundary condition states Patm = K−g

∫ z1

0
ρ(0)dz. Inserting this

into the boundary condition for tube 2, we obtain

g
∫ z2

z1
ρ(0)dz =

∫

MidHi|µ + 1
2
M2

n, (102)

again a display of force balance. If the field is predominantly tangential (Hn, Bn ≈ 0) or
normal (Ht, Bt ≈ 0) to the liquid surface, the right side is respectively given as

∫

MidHi

and
∫

MidBi, or 1
2
H2χm and 1

2
H2χm(1 + χm) for lcr.

Next we consider the quantity that a pressure gauge measures in a ferrofluid. Char-
acterized by a stress tensor, field-exposed ferrofluids do not possess a unique pressure,
yet a pressure gauge will still give some reading, and the question is what this is. Think
of the gauge as an enclosed volume of air, at the pressure Patm, see Fig 5. One side of
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Fig. 4. A U-tube filled with ferrofluid, with only the left arm exposed to a field.

this volume is an elastic membrane, which is displaced if the external stress tensor devi-
ates from the internal one. A finite displacement d stores up the elastic energy kd2/2 per
unit area of the membrane. (Take the membrane to be stiff, ie k large and d small, then
we need not worry about the pressure change inside.) The elastic energy implies a force
density kd, rendering the boundary condition across the membrane as △Πnn = kd, or
K − Patm +

∫

MidHi|µ + 1
2
M2

n − g
∫

ρ(0)dz = kd, see Eq (73). (d is taken to be positive
when the membrane protrudes into the gauge.) We have d = 0 in the atmosphere down to
the liquid surface of tube 2, and also just below the surface – take this as point 2. Moving
further down the liquid column, to an arbitrary point 3, d becomes finite to maintain
force equilibrium. Employing the above boundary condition for both point 2 and 3, and
subtracting one from the other, we find

kd = ∆(
∫

MidHi|µ + 1
2
M2

n − g
∫

ρ(0)dz), (103)

with ∆A ≡ A(3)−A(2). Note ∆M2
n ≡ M2

n(3)−M2
n(2), where Mn(3) is the magnetization

at point 3 normal to the pressure gauge membrane, and Mn(2) the magnetization at point
2 normal to the liquid surface – both components are not necessarily parallel. If the field
is uniform, if the membrane of the gauge is parallel to the liquid surface, and if quasi-
equilibrium holds, Eq (103) reduce to the zero-field hydrostatic relation, gρ(z2 − z3) = kd;
otherwise, field contributions abound – even if the pressure gauge is simply rotated at
point 3 in the presence of a uniform field. (All fields are the actual ones, distorted by the
gauge’s presence.)

Fig. 5. A vessel filled with ferrofluid is subject to a field. The pressure inside the ferrofluid,
as measured by the membrane displacement of a pressure gauge, changes with height,
orientation and the field strength.
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4.4 Magnetic O-Rings and Scrap Separation

In this section, we address the physics of some technical applications: magnetic O-rings,
self-levitation and scrap separation. Consider scrap separation first. An inhomogeneous
magnetic field which becomes weaker with increasing height may lift non-magnetizable
bodies submerged in ferrofluids off the ground, and hold them at specific heights which
depend on the shape and density of the bodies. Balancing the gravitational and magnetic
force, F

mag + F
grav = 0, we have F

grav given by Eq (77), and F
mag by (80).

Because scrap separation is an equilibrium phenomenon, we may also consider energy
instead of force. Take first the fact that ferrofluid is attracted to regions of higher magnetic
field. If the field B is given, the field energy is B2/2 in air, and B2/(2µ̄m) in ferrofluids.
With µ̄m > 1, the second expression is always smaller. So given the choice, a volume
element of ferrofluid will occupy the region with the highest possible field. Conversely, a
non-magnetizable object submerged in ferrofluid will tend to occupy the region of lowest
field strength. If a difference in height is involved, all these happen only as long as the
gain in field energy is larger than the loss in gravitational energy. (If instead H is given,
F̃em ≡ Fem−HB is larger in vacuum then in the ferrofluid: −H2/2 > −µ̄mH2/2.) Similarly,

Fig. 6. Self-levitation in ferrofluid of a magnetizing body.

a permanently magnetized body submerged in ferrofluid tends to collect as much liquid
in the region of its field as possible – even at the price of levitating itself off the bottom,
a phenomenon that is sometime referred to as “self-levitation” [16]. if the magnetic body
consists of a periodic array of north and south poles, with periodicity λ, the field extends
one or two λ into the ferrofluid. Levitated approximately that far from the bottom, the
body will usually have reached its equilibrium position, as no further gain in field energy
may be achieved levitating itself yet higher, see Fig 6.

Magnetic O-rings may be found in most computer hard disk drives and are perhaps
the most widely deployed ferrofluid device. In these, some ferrofluid is positioned as an
O-ring between a highly permeable rotating shaft and the pole of a permanent magnet,
see Fig 7. Serving as a pressure seal, it enables the rotary component to work in vacuum.
Note that we are dealing with a metastable state here, as it is always energetically more
favorable to remove the ferrofluid seal first, have the pressure equalized, and then return
the seal to its original place at the poles. So the quantity of interest is the lowest energy
barrier that must be overcome, which in any realistic problems is notoriously difficult to
find. The correct force balance, on the other hand, is



Thermodynamics, Electrodynamics and Ferrofluid-Dynamics 27

A∆Patm = ∆

∫

( 1
2
M2

n +
∫

MkdHk|µ)dA, (104)

between the difference in the magnetic surface force, Eq (75), and the difference in external
pressure. [Clearly, the appropriate replacement is given by µ → µte, cf Eq (59).] The field
is strongest in the middle of the O-ring and decays towards both ends. If ∆Patm were
zero, the force F

mag would be the same on both surfaces, and the ferrofluid stays in the
middle of the O-ring. Increasing the pressure on the left (surface 1) pushes the ferrofluid
towards right, such that surface 1 is in the region of higher, and surface 2 is in the region of
weaker, fields. Equilibrium is achieved when the difference in F

mag balances ∆Patm. The
strongest pressure difference maintainable is when one surface is at the field maximum and
the other is field-free. Assuming for simplicity that the magnetic field is predominantly
tangential, and that lcr holds, we have ∆P = 1

2
χmH2. With χm ≈ 1, H2 = µm

0 Ĥ2, and

taking Ĥ as of order 105A/m, this pressure difference is about 105N/m2, approximately
the atmospheric pressure.

Fig. 7. Magnetic pressure seal: (a) principle and (b) enlarged view of the ferrofluid plug.

5 Electrodynamics Including Dissipation

Turning now to dynamics and off-equilibrium phenomena, we first note that there are two
types of theories: the high-resolution theory for a low density system, with at most one
particle per infinitesimal volume element (or per grain, as in photographs); and the low
resolution theory for a high density system, with many particles per grain. The micro-
scopic Maxwell equations and the Newtonian equation of motion (including the Lorentz
force) belong to the first type. There are no hidden charges, polarization or magnetization
here, and we know the whereabouts of every single particle. The second type includes the
macroscopic Maxwell equations, or any thermodynamic and hydrodynamic theories. The
problems about dissipation and the coarse-grained electromagnetic force arise here.

We shall consider three systems with increasing densities, to be accounted for by the-
ories of decreasing resolution and growing complexities: The first system (section 5.1) is
a dilute gas of charged particles, well accounted for by the Newtonian equation of mo-
tion and the microscopic Maxwell equations. The next system (section 5.2) is a slightly
dissociated liquid of particles possessing negligible electric and magnetic dipole moments.
So there are many neutral particles, but at most one charge carrier, per grain. The ap-
propriate theory here is of a mixed type, a combination of the hydrodynamic theory and
the microscopic Maxwell equations. The first accounts for all particles, the latter for the
spatially slowly varying field, produced by the charge carriers that are few and far apart.
Finally, in section 5.3, we consider a dense system possessing dipole moments and hidden
sources, which needs to be accounted for by the genuinely low-resolution, hydrodynamic-
type Maxwell theory that is our goal to derive and consider in details. The advantage of
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this successive approach is, finding the more complicated expressions in the dense medium
is rendered very much simpler and transparent by the considerations of the previous two
dilute systems – but we do not, even loosely, derive one from the other.

5.1 Rarefied Plasmas

The microscopic Maxwell equations (13, 14) account for the time evolution of the finely
resolved fields e and b for given sources, the electric charge density and its current; while
the feedback of the fields on the motion of the sources is given by the Newtonian equation
of motion,

mαv̇α = qα(e + vα × b/c), (105)

one for each particle α. Eqs (13, 14, 105) represent a closed theory, frequently rather too
detailed but conceptually simple. However, it does contain a notational inconsistency: The
Maxwell equations are an Euler type theory, accounting for the time evolution of fields
at a given point in space, while the Newtonian equation is of the Lagrange type, which
concentrates on a given particle. (So the term je = ρev in Eq (14) denotes the electric
current at a space point, while vα in Eq (105) is the velocity of particle α.) As only the
Euler formulation lends itself to a reduction of the resolution, we shall first find the Euler
version of Eq (105), with a resolution high enough that each grain contains at most one
particle. (This theory is meant as a starting point, to clarify a few concepts important
for the more complex theories of the following chapters. So we shall simply discard the
possibility that even in a rarefied gas, two particles will occasionally come close to each
other.)

The Eulerian Newtonian Equation

Taking the volume of the grain as VG, we may identify its velocity, mass and charge
with that of the particle occupying it at a given instance, and take all three to be zero
if there is no particle: vα → v(r, t), mα/VG → ρ(r, t), qα/VG → ρe(r, t), defining three
highly discontinuous fields. After some very moderate coarse-graining rendering these fields
differentiable, the many Newtonian equations of motion reduce to one field equation,

ρ d
dt

v ≡ ρ[v̇ + (v · ∇)v] = ρe(e + v × b/c). (106)

It is now essential to include the continuity equation,

ρ̇ + ∇ · (ρv) = 0, (107)

which in the Lagrange version is implicit, nearly incidentally contained in the fact that
one does not loose any of the many equations (105). The energy and momentum density
are respectively,

uM = ρ(c2 + v2/2), gM = ρv, (108)

where the energy comprises of the rest energy and the (non-relativistic) kinetic energy.
Employing Eqs (106, 107), we find

u̇M + ∇ · QM = je · e, (109)

ġM
i + ∇k ΠM

ik = (ρee + je × b/c)i, (110)

QM = uMv, ΠM
ik = gM

i vk. (111)

The Field Contributions

The field contribution to the energy and momentum density are

uF = 1
2
(e2 + b2), gF = e × b/c. (112)

From the Maxwell equations (13, 14) we deduce
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u̇F + ∇ · QF = −je · e, QF = c e × b, (113)

ġF
i + ∇kΠF

ik = −(ρee + je × b/c)i, (114)

ΠF
ik = (e2 + b2 − uF)δik − eiek − bibk. (115)

Note the relationship gF = QF/c2. This is far from accidental and derives from the sym-
metry of the relativistic energy-momentum 4-tensor, ΠF

αβ = ΠF
βα, because cgF

k = ΠF
k4,

QF
k/c = ΠF

4k. Less formally, gF = QF/c2 may also be seen as field angular momen-
tum conservation for ρe → 0. The angular momentum density ℓF ≡ r × gF is a lo-
cally conserved quantity in neutral systems. Rewriting Eq (114) (with ρe → 0) as
∂ℓFi /∂t + ∇m(εijkrjΠ

F
km) = εijkΠF

kj , we observe that the angular momentum ℓFi satis-
fies a continuity equation only if the stress tensor is symmetric. Although this argument
seems to require merely the symmetry of the momentum 3-tensor, ΠF

ik = ΠF
ki, a nonvan-

ishing ΠF
k4 −ΠF

4k in one inertial system will foul up the symmetry of the 3-tensor in other
systems, as the antisymmetric parts of any 4-tensors mix in a Lorentz transformation. Yet
angular momentum is conserved in every inertial system.

Since this reasoning is so general, it also holds for the material part, gM = QM/c2.
Hence the expression for the momentum density is in fact gM = ρv[1 + v2/(2c2)], cf
Eqs (108, 111) – though we are quite justified to neglect the second term in the nonrel-
ativistic limit. Later, when we have no prior knowledge of the form of the momentum
density, we shall deduce it from that of the energy flux, as angular momentum is also
conserved in dense systems.

We register the fact that while the expression for the energy density uF = 1
2
(e2 + b2) is

a genuine input – independent of and in addition to, the Maxwell equations, the formula
gF = e × b/c is not, since QF is given once uF is. Moreover, since Eq (114) then follows
from the Maxwell equations, and because total momentum is conserved, the Lorentz force
is a result as well.

Energy and Momentum Conservation

The preceding two sections allow the simple and noteworthy conclusion that our starting
equations imply local conservation of total energy, momentum and angular momentum in
the presence of charge, ρe 6= 0. Taking u ≡ uF + uM and g ≡ gF + gM , we find

u̇ + ∇ · Q = 0, ġi + ∇kΠik = 0, (116)

Πik = Πki = ΠF
ik + ΠM

ik , Q = QF + QM , (117)

Q/c2 = g ≈ ρv + e × b/c. (118)

These results have been collected here because local conservation of these quantities is
always true, independent of the above derivation tailored to a dilute and finely resolved
system. So we may use them as input next.

5.2 Weakly Dissociated Liquids

Now we consider a dense macroscopic system in its hydrodynamic regime: To the above
gas of dilute charge carriers we add a dense system of neutral particles with vanishing
electric and magnetic dipole moments. This is still a comparatively simple system, as the
highly resolving, vacuum Maxwell equations (13, 14) remain valid – and with them all
the equations under the title “The Field Contributions,” including the expressions on field
energy and field momentum. The other equations concerning the material contributions,
under the title “The Eulerian Newtonian Equation”, must be modified. These are now
accounted for by three smooth and slowly varying hydrodynamic variables: the coarse-
grained densities of mass, energy and momentum 〈ρ〉, 〈uM 〉, 〈gM 〉, while the entropy
density s, being a function of these variables, is not independent. (The coarse-graining
brackets are dropped below to keep the notation simple.)
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The Material Contributions

We first consider the hydrodynamic theory of a neutral, isotropic liquid. It consists of
continuity equations for the densities of mass, energy, momentum: ρ, uM , gM , and a balance
equation for the entropy s, with a source term RD/T ,

ρ̇ + ∇ ·j = 0, ṡ + ∇ ·f = RD/T, (119)

u̇M + ∇·QM = 0, ġM
i + ∇k ΠM

ik = 0. (120)

The fluxes j, f , QM , ΠM
ik and the entropy production RD are not yet specified and need to

be determined. As we retrace how they are derived [32], we learn to use the same method
to set up the equations for our third system, to derive the hydrodynamic Maxwell theory.

The present theory is in two points fundamentally different from the previous one. First,
dissipative terms appear in the equations of motion, breaking their time-reversal symmetry.
These will be marked by a superscript D. Second is our ignorance of the explicit form of uM ,
the material energy. Nevertheless, gM = ρv remains an excellent approximation, because
the energy flux QM is still dominated by the term c2ρv, accounting for the transport of
rest energy, cf Eqs (108, 111). In nonrelativistic physics, it is not customary to include the
rest energy in uM . This represents a shift to a different set of conserved quantities: from
uM , ρ to ūM = uM − ρc2, ρ, implying Q̄

M
= QM − c2ρv. This changes the link between

the momentum density and the energy flux to gM = Q̄
M

/c2 + ρv ≈ ρv. We follow this
convention, but drop the bar, from here on.

To compensate for our ignorance of uM , we resort to thermodynamics. Assuming that
the energy is a function of s and ρ in the rest frame of the liquid (denoted by the sub-
script 0), we write

duM
0 =

∂uM
0

∂s
ds +

∂uM
0

∂ρ
dρ ≡ Tds + µ0dρ. (121)

In a liquid with a finite velocity v, we have uM = uM
0 +(gM )2/2ρ. Because d[(gM )2/2ρ] =

v · dgM − 1
2
v2dρ, Eq (121) is generalized to

duM = Tds + µdρ + v · dgM , (122)

where µ = µ0 − 1
2
v2 is the lab-frame chemical potential.

Taking the time derivative of Eq (122), u̇M = T ṡ +µρ̇ + v · ġM , we have a relation
which Eqs (119, 120) must identically satisfy – irrespective how uM (and T, µ, v) depend on
s, ρ, gM . This is therefore a strong constraint, enough to unambiguously determine all the
fluxes. (This approach is sometimes referred to as the “standard procedure,” see [17, 32]. It
was first applied to electromagnetism in [2, 3] to derive the dissipative terms.) A remarkable
result is that the fluxes are given in terms only of the variables and the conjugate variables
appearing in Eq (122). Without an explicit expression for uM , the equations clearly must
be written in these general quantities, and we may take this observation as an indication
that hydrodynamic theories contain only conservation laws and thermodynamics as input
– the reason for its general validity.

Defined as the energy change if the volume changes at constant entropy and mass, the
pressure P is related to the variables and conjugate variables of uM via the Duhem-Gibbs
(or Euler) relation, cf Eq (35),

P ≡ −∂(
∫

uM
0 d3r)/∂V = −uM

0 + Ts + µ0ρ

= −uM + Ts + µρ + v · gM . (123)

Specifying that one term in the momentum flux of Eq (120) is the pressure, ΠM
ij = Pδij +

πij (there is no loss of generality, as πij must now be determined), we combine Eqs (122,
123) to obtain ∇P = s∇T + ρ∇µ + gM

k ∇vk, and write u̇M = T ṡ + µρ̇ + v · ġM as

∇·QM = ∇i(µji + Tfi + vkπik) − (ji − ρvi)∇iµ (124)

−RD − (fi − svi)∇iT − (πik − vkgi)vik,

where vik ≡ 1
2
(∇ivk + ∇kvi). Postponing the question of uniqueness for a moment, we

identify QM
i = µji + Tfi + vkπik, set fD

i ≡ svi − fi, ΠD
ik ≡ vkgi − πik, and ji − ρvi = 0,
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to obtain RD = fD
i ∇iT + ΠD

ikvik. (The dissipative mass current, jD
i ≡ ji − ρvi, is a

relativistically small quantity that we shall neglect, see [33] and the footnote in section 5.2.)
Identifying fD

i , ΠD
ik as the dissipative fluxes, ∇iT , vik as the thermodynamic forces, we

follow the Onsager prescription to take them as pairwise proportional [34], yielding heat
conduction and the viscous stress,

fD
i = κ∇T, ΠD

ik = 2η1v
0
ik + η2vℓℓδik, (125)

where v0
ij ≡ vij − 1

3
δijvℓℓ. Clearly, all fluxes have now been determined, especially fi =

svi − fD
i and ΠM

ik = Pδik + vkgi − ΠD
ik. Without the dissipative terms, the energy and

momentum flux are QM
i = (uM + P )vi, ΠM

ik = gM
i vk + Pδik, and the only difference to

Eqs (111) is the pressure P . This and the dissipative terms are the indicators for a dense
and interacting system.

The question remains whether the conclusion we draw from Eq (124) is unique. The
answer is yes, because all terms must be written such that they can be assigned to one of
two groups. Either it is the divergence of something, then it belongs to the energy flux QM ;
or it vanishes in equilibrium, like ∇iT , vij , then it is part of RD. For instance, the term
T ṡ = −T∇ifi + · · · must be written as fi∇iT −∇i(Tfi), with the first term contributing
to RD, and the second to QM . All terms in Eq (124) clearly belong to one of the two
groups, and there is no possibility to change them such that this feature is maintained.

The Field-Dependent Contributions

Next, we consider finite electric charges and currents. Collecting all terms derived above,
and adding the ones that become finite with ρe, je, we have

ρ̇ + ∇·(ρv) = 0, ṡ + ∇ ·(sv − fD) = RD/T, (126)

u̇M + ∇i[(u
M + P )vi − TfD

i − vkΠD
ik] = je · e, (127)

ġM
i + ∇k (Pδik + gM

i vk − ΠD
ik) = (ρee + je × b/c)i, (128)

RD = fD
i ∇iT + ΠD

ikvik + (je − ρev) · e0. (129)

The right sides of Eqs (127, 128) have the given form because the source terms of Eqs (113,
114) remain unchanged, and summing up the respective right sides must yield nil, as in
Eqs (116), such that total energy and momentum remain conserved. The third term in RD

of Eq (129) goes beyond the sum of microscopic Maxwell equations and the hydrodynamics
of neutral fluids. It needs to be derived. The reason for this term is, je is no longer given by
ρev as in section 5.1, because v is now the velocity of a volume element containing many
particles. Given a finite electric field, e0 = e + v × b/c, in the rest frame of the volume
element, electric charge carriers will move with respect to this volume. This is indeed what
we obtain starting from Eq (129), identifying je − ρev as the rest-frame current, e0 as the
thermodynamic force, and taking them as proportional,

(je − ρev)i ≡ (jD
e )i = σij(e + v × b/c)j , (130)

where σij = σ‖bibj + σ⊥(δij − bibj) + σHεijkbk, with σ‖, σ⊥ being the conductivity along
and perpendicular to b, and σH accounting for the Hall effect.

Now, we derive the third term in RD, Eq (129), by taking the temporal derivative of
Eq (122), u̇M = T ṡ + µρ̇ + v · ġM , finding ∇iQ

M
i = −RD + e · je − v · (ρee + je×b/c) · · · ,

where the second term is from u̇M , the third from ġM , and the dots denote terms not
containing e or b. Combing them as je(e − b × v/c) −e · ρev = (je − ρev)e0, because
e · v = e0 · v, we obtain ∇iQ

M
i = −RD · · · + (je − ρev)e0. Because e0 = 0 in equilibrium,

the last term is part of RD, concluding the proof.
Inserting ∇P = s∇T + ρ∇µ + gM

j ∇vj and the first of Eq (126) into (128), we obtain
an equation that will prove useful for later comparison,

ρ d
dt

vi + s∇iT + ρ∇iµ + gM
k ∇ivk (131)

= ∇kΠD
ik + (ρee + je × b/c)i.

Adding the Maxwell equations (13, 14), the system of equation is closed and the de-
scription complete. With ρe given by ∇ ·e, and uM by Eq (122), the independent variables



32 Mario Liu and Klaus Stierstadt

are ρ, s, gM , e, b. Referred to as magneto-hydrodynamics, these are realistic equations,
used for describing plasma at low frequencies [15]. Usually, σ‖, σ⊥ are large, hence ρe,
e0 = e + v × b/c negligibly small.

The 2-field Theory

In the low-resolution theory of the next chapter, we shall be dealing with dense systems
containing hidden charges and dipole moments. The obvious consequence is the appearance
of four fields (E, D, B, H) – replacing (e, b) here. An equally important difference is the
fact that (the possibility of an expansion notwithstanding) we no longer have a general
expression for the field energy uF – which was important for arriving at the right-side
terms of Eqs (127, 128), especially the Lorentz force. In fact, it will not even be possible
to separate the total, conserved energy density u into uF and uM , such that the former
depends on the field variables alone, and the latter only on the material ones. In the simple
example u = ũ(ρ, s) + 1

2
B2/µ̄m(ρ, s), the temperature T = ∂u/∂s + 1

2
B2∂(1/µ̄m)/∂s is

a function of B, and H = B/µ̄m depends on s. As a result, none of the variables or
conjugate variables is unambiguously assigned to either field or material. (This is the
reason why attempts to divide the total, conserved momentum density g into gM and gF

is such a futile exercise, see the discussion in [2].)
Fortunately, neither the Lorentz force nor a division of u and g into material and field

contributions are necessary for deriving the hydrodynamic Maxwell theory. As a first step,
we shall convince ourselves that the present theory can be equally well written in the
variables u ≡ uF + uM , g ≡ gF + gM , such that the Lorentz force never appears. We do
this by adding to the material equations the field contributions from 5.1, same as we did
there, obtaining

u̇ + ∇i(Q
R
i − QD

i ) = 0, (132)

ġi + ∇k (ΠR
ik − ΠD

ik) = 0, (133)

QR ≡ (Ts + µρ + v · gM )v + c e × b, (134)

ΠR
ik ≡ gM

i vk − eiek − bibk + δik ×
(Ts + µρ + v · gM − u + e2 + b2). (135)

g = gM + e × b/c = ρv + QR/c2. (136)

The dissipative terms, ΠD
ik and QD

i ≡ TfD
i +vkΠD

ik, remain as given above. Note QD does
not contribute to the total momentum density,9 see Eq (136). The expression for du is
obtained by adding the first of Eqs (112) to Eq (122),

du = Tds + µdρ + v · dgM + e · de + b · db (137)

= Tds + µdρ + v · dg + e0 · de + b0 · db. (138)

Eq (138) is algebraically identical to Eq (137), because v · d(gM − g)c = −v · d(e × b) =
−(v ×e) ·db +(v × b) ·de, where e0 ≡ e +(v/c)× b, b0 ≡ b− (v/c)×e are the respective
rest frame fields.

Containing ρ, s, u, g, e, b as variables, the new theory is given by the Maxwell equa-
tions (13, 14), the equations for mass and entropy (126), and all the displayed equations
of this section. It is closed, complete and quite equivalent to the old one. We may refer to
it as the “2-field” theory, and require that the genuinely low-resolution “ 4-field” theory
reduces to it by setting ED, HD = 0, and

9 This is a subtle point. The quick argument is, as a variable, g must not contain terms of
different time-inversion parity. The more complete argument is, the existence of a finite
QD is in fact the result of subtracting the rest energy from the total – without which
the dissipative energy flux vanishes identically. As shown in [33], there is a connection
between this and the vanishing of the dissipative mass current, jD: Taking the mass,
energy and total energy conservation as ρ̇ + ∇i(ρvi + jD) = 0, u̇ + ∇i(Qi − QD

i ) = 0,
u̇tot + ∇iQ̃i = 0, we have utot = u + ρc2 and Q̃i = Qi + ρvic

2 = gic
2, with Q̃D

i = 0, or
jD
i c2 − QD

i = 0. Because jD
i = QD

i /c2 is a relativistically small quantity, it is usually
neglected.
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E = D → e, H = B → b, (139)

implying also E0 = D0 → e0, H0 = B0 → b0.

Radiation Damping

Let us briefly address the old problem of radiation damping, which has created considerable
confusion in some textbooks, with the result that a good number of physicists take it to be
an indication for the inconsistency of the Maxwell theory. The basic physics of radiation
damping is in fact given by the equations derived in 5.2, stating conservation of total energy
and momentum. So it is an easy conclusion to draw that if a charged body’s acceleration
generates radiation, it will lack exactly the energy and momentum that is being carried
away by the radiation. This is all we need to know about radiation damping, and there is
no reason whatever why it is not consistently accounted for by the above equations.

The problems such as discussed in [1] arise from two sources: First and foremost, it
is the usual yet unreasonable insistence to reduce the above derived set of differential
equations to a term or two, ∼ v, v̈, in the Newtonian equation of motion for the charged
body. Failure of this oversimplified description is not connected to any inconsistencies of
the Maxwell theory. Second, and less centrally, it also stems from the fruitless attempt to
describe point charges employing the Maxwell theory – constructed to account for finite
charge densities. Although electrons may well be infinitely small, one can at most criticize
the Maxwell theory for not being realistic (in this extreme quantum limit), but not for
being inconsistent.

5.3 The Hydrodynamic Maxwell Theory

The low-resolution, hydrodynamic Maxwell theory we are going to derive and consider is
a fairly general one, valid for arbitrarily strong fields and nonlinear constitutive relations,
with the medium moving and the electromagnetic field time-dependent. However, it is a
local-equilibrium theory with a confined frequencies range. To go beyond it, additional,
nonhydrodynamic variables such as magnetization and polarization need to be included,
as in sections 7 and 8.

Galilean versus Lorentz Transformation

Another constraint of the hydrodynamics Maxwell theory is that it is only non-relativistically
valid, confined to small medium velocities, v ≪ c. Unfortunately, the first-order Lorentz
transformation is quite different from the Galilean transformation. For instance, with ∇0

denoting the rest-frame spatial derivative, the former takes it to change as ∇ = ∇0− 1
c2

v∂t,
while the latter sees no difference, ∇ = ∇0. The Lorentz transformation is of course the
fundamentally correct one. And we could, as a matter of principle, construct a fully co-
variant theory, and employ the theory expanded to linear order in v/c. This has in fact
been done [35, 36, 37], but the result is unnecessarily complicated, and highly unpractical
as an account for laboratory physics – there is simply no need to include relativistic terms
distinguishing ∇0 from ∇ say in Eqs (119, 120). And the question remains whether the
theory may be simplified in a consistent fashion.

The semi-macroscopic theory in section 5.2, on weakly dissociated liquids, has an easy
way out. Because the material and field variables are cleanly separated there, we may
simply employ the Galilean transformation for the material variables, and the Lorentz
transformation for the field variables, applying the same dichotomy to ∇, depending on
what kind of variables it is applied to. This does not work for a dense, strongly interacting
system, as it becomes quite impossible to distinguish field from material variables. For
instance, since temperature or chemical potential are functions of s, ρ, B, we would not
know which transformation to prescribe for ∇µ = [∂µ/∂ρ]∇ρ + [∂µ/∂H]∇H + · · · .

Facing this dilemma, a practical solution is to assume true Galilean behavior, taking
the variables of the two temporal Maxwell equations (18) as invariant,

D = D0, B = B0, (140)
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and its fluxes to transform as

E ≡ E0 − (v/c) × B, H ≡ H0 + (v/c) × D. (141)

(Compare this with the continuity equation (107), in which the density ρ is invariant, while
the flux transforms as j = ρv+j0.) As we shall presently see, this transformation maintains
the form-invariance of the Maxwell equations. (See [38] for a thoughtful, more formal
derivation.) As a result, the theory to be derived and considered is fully Galilean invariant.
And one may convince oneself that all relevant terms from the covariant equations in [35,
36, 37] are included, with the excluded ones quite obviously numerically insignificant.

Unfortunately, there is one inconsistency. Starting from the rest-frame energy, Eq (24),
to find the associated expression for an arbitrary frame, and requiring it to reduce to
Eq (138) under the prescription of Eq (139), the only possibility is

du = Tds + µdρ + v · dg + E0 · dD + H0 · dB, (142)

where g is the conserved total momentum density. The inconsistency is, this expression is
a result of a first-order Lorentz transformation, see appendix B. However, since there is no
clear prescription for transforming the energy in Galilean-invariant systems, we may simply
take Eq (142) as the correct starting expression, from which to derive the hydrodynamic
Maxwell theory. [Eq (142) is not needed after the equations are set up, since all constitutive
relations, T, µ, E0, H0 as functions of s, ρ, D, B are obtained from the rest frame energy.]

Frame-Independent Thermodynamics

Starting from Eq (142), the associated equilibrium conditions are

∇ × H0 = 0, ∇ × E0 = 0 (or E0 = 0), (143)

∇T = 0, vij = 0, v̇ + ∇µ = 0. (144)

The three equations of the first line are deduced starting from Eq (142), going through
the same steps as those leading to Eqs (26). Clearly, in spite of the more general starting
point, these conditions have not changed, and are still given by setting, in the local rest
frame, either the curl or the field itself to zero, nicely illustrating that the fact of being in
equilibrium does not depend on the frame of reference. ∇T = 0 is also unchanged, and the
last two equations are obtained by keeping momentum, angular momentum and the booster
constant: Vanishing vij allows only motions that are combinations of translation and solid-
body rotation. Not being Galilean invariant, the chemical potential µ has additional terms
when the system rotates and translates. The gradient of these terms is canceled by v̇.
(The details are in [33], and not reproduced here, because it is off the present focus on the
Maxwell theory.)

First, given the fact that the charge density ρǫ = ∇ · D is (to linear order in v/c) a
scalar, D must also be one. Since ∇ · B = 0 is also a scalar, so is B. In equilibrium and
for a medium at rest, because both Ḃ = −c∇ × EM and ∇ × E0 vanish, we deduced
in section 2.3 that EM = E0 and Ḃ = −c∇ × E0; similarly, also Ḋ = c∇ × H0. For a
translating and rotating medium in equilibrium, D and B move with the medium, such
that each material point keeps their values, and the temporal derivatives in the local rest
frame, dtD and dtB vanish. They relate to the laboratory derivatives as given in Eq (3),

dtD ≡ Ḋ + (v · ∇)D − Ω×D = 0, (145)

dtB ≡ Ḃ + (v · ∇)B − Ω×B = 0, (146)

where Ω ≡ 1
2
(∇ × v). So the properly generalized equations are

dtD = c∇ × H0, dtB = −c∇ × E0. (147)

On the other hand, because of locality and charge conservation, we know that the Maxwell
equations always have the structure

Ḃ = −c∇ × EM , Ḋ + jǫ = c∇ × HM . (148)
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Defining E = EM , H = HM to be the Maxwell fields of an arbitrary inertial frame
in equilibrium, we find that Eqs (148) and (147) are equivalent with the identifications
jǫ = ρǫv and Eq (141). (Terms ∼ vij are neglected, since it vanishes in equilibrium.)

In a satellite containing a superconducting coil and a magnetizable medium, the field is
in general non-uniform. Yet if coil and medium co-rotate and co-translate, dtD, dtB = 0,
the system may stay in equilibrium, ∇× E0, ∇× H0 = 0, maintaining its motion for
ever, and keeping its momentum and angular momentum constant. In an earth-bound
laboratory, the magnetic coil is frequently fixed, and the field stationary in the lab-frame
Ḃ, Ḋ = 0. If the medium rotates, with Ω×B 6= 0, all four quantities, dtD, dtB, ∇×E0, ∇×
H0 are finite, and the system is not in equilibrium, implying the motion is dissipative and
will eventually stop. This combination of field dissipation and transformation is the basic
physics for magneto-viscous effects such as field-enhanced viscosity and rotational field
deflection, see section 6.2 and 6.3. As this consideration is so general, there is no doubt that
any magnetic suspensions (Brownian or not), or in fact any uniform magnetizable fluids,
are capable of showing these effects, though the associated magnitude will depend on the
relaxation time of the magnetization and be very different. Usually, of course, magneto-
viscous effects are derived by considering the term Ω × M in the relaxation equation
for the magnetization, set up for the specific case of suspended particles relaxing in a
Brownian fashion (ie, with the magnetization fixed to the particles and the particle rotating
against the fluid matrix) [13, 16]. As a result, the false impression was established in the
ferrofluid community that Brownian relaxation is a necessary precondition for magneto-
viscous effects.

With Eqs (140, 141), we may rewrite the energy, Eq (142), as

du = Tds + µdρ + v ·dgM + E ·dD + H ·dB, (149)

gM ≡ g − D × B/c, (150)

generalizing Eq (137). Note Eq (150) is only a shorthand, the result of going from Eq (142)
to (149). As we shall see, in all the fluxes of the hydrodynamic equations, this gM will
replace the material momentum density gM = ρv of section 5.2. But there is no further
implication, especially not that this gM were the (unambiguous) material part of the
momentum density.

In their classic book, De Groot and Mazur devoted a chapter to considering macro-
scopic electromagnetism, aiming to set up a hydrodynamic theory capable of accounting
for polarizable and magnetizable condensed systems. Yet because they oversaw the crucial
difference between g and gM , and started from the superficially plausible thermodynamic
relation, du = · · ·+v·dg+E·dD+H·dB, and because they did not include the dissipative
fields, HD and ED, their results differ significantly from those given below.

The Standard Procedure

The complete set of equations of motion, valid also off equilibrium, is

Ḋ = c∇ × HM− jǫ, Ḃ = −c∇ × EM, (151)

ρ̇ + ∇ · (ρv) = 0, ṡ + ∇ · f = RD/T, (152)

u̇ + ∇ · Q = 0, ġi + ∇k Πik = 0, (153)

stating that conserved quantities satisfy continuity equations, while the field variables
satisfy the Maxwell equations – expressing locality and charge conservation. To obtain the
fluxes, HM , EM , f , Q, Πik, and the entropy production RD, we first introduce some fluxes
with a superscript D, as a pure definition, though they will turn out to be the dissipative
contributions,

f = sv − fD, Πik = ΠR
ik − ΠD

ik, jǫ = ρǫv + jD
ǫ , (154)

EM = E + ED, HM = H + HD, (155)

then we proceed as in 5.2, inserting the equations of motion into the temporal derivative
of Eq (142), u̇ = T ṡ+µρ̇+v · ġ+E0 ·Ḋ+H0 ·Ḃ, and sorting the terms to be either part of
a divergence, or proportional to a thermodynamic force that vanishes in equilibrium. The
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result is ∇ ·Q = ∇ ·Q1 + RD −R1 = ∇ ·Q2 + RD −R2, and contains a non-uniqueness,
with Q2 = Q1 + ED × HD, R2 = R1 + ∇ · (ED × HD), where

R1 ≡ (jǫ − ρǫv) · E0 − (fi − svi)∇iT − (Πik − ΠR
ik)vik (156)

+(EM − E) · c∇ × H0 − (HM − H) · c∇ × E0,

Q1
i ≡ Tfi + (µρ + v · gM )v + (Πik − ΠR

ik)vk +

c[E×H + (EM − E)×H0 + E0×(HM − H)]i. (157)

ΠR
ik ≡ gM

i vk − EiDk − HiBk + δik×
(Ts + µρ + v · gM − u + E · D + H · B), (158)

R2 ≡ fD ·∇T + Π̃D
ikvik + HD ·dtB + ED ·dtD + jD · EM

0 , (159)

Q2
i ≡ Tfi + (µρ + v · gM )vi − Π̃D

ikvk + c[EM ×HM ]i (160)

+ 1
2
(BiH

D
k − BkHD

i + DiE
D
k − DkED

i )vk

Πik ≡ ΠR
ik − Π̃D

ik + (BjH
D
j + DjE

D
j )δik (161)

− 1
2
(BkHD

i + BiH
D
k + DkED

i + DiE
D
k ).

We may either conclude Q = Q1, RD = R1, or Q = Q2, RD = R2, with both satisfying all
general principles, and the difference mainly notational. In the first case, the thermody-
namic forces are c(∇×H0), c(∇×E0). In the second, they are the rest-frame derivatives,
dtBi and dtDi, connected to the first pair as

dtBi = −c(∇× [E0 + ED ])i − Bivkk + Bkvik, (162)

dtDi = (c∇× [H0 + HD ] − jD)i − Divkk + Dkvik.

[dtBi and dtDi are defined by Eqs (145, 146), and the two above expressions are the
off-equilibrium generalization of Eqs (147).] Therefore, a diagonal Onsager matrix in the
second will have off-diagonal terms in the first, and vice versa.10 We choose the second
representation, as ferrofluids tend to be diagonal in it.

In equilibrium, all forces vanish, ∇T , vik, ∇×H0, ∇×E0, dtBi, dtDi → 0, (possibly
also E0 → 0,) and we have: f = sv, jǫ = ρǫv, EM = E, HM = H , especially Πik = ΠR

ik

and
Q = (Ts + µρ + v · gM )v + c E × H . (163)

These expressions correctly reduce to the 2-field theory, especially Eqs (134, 135). Also,
for v = 0, the stress ΠR

ik reduces to that of Eq (38).
For vanishing fluid velocity and linear constitutive relations, v ≡ 0, ε̄E = D and

µ̄mH = B, the symmetry of the stress tensor is obvious. Consider the rotational invariance
of the energy u to see that the stress is generally symmetric, ΠR

ik = ΠR
ki: Rotating the

system by an infinitesimal angle dθ, the scalars are invariant, du, ds, dρ = 0, while the
vectors change as dgM = gM × dθ, dD = D × dθ, dB = B × dθ. Inserting these into
Eq (149) yields,

εijkΠkj = (v × gM + E × D + H × B)i = 0. (164)

With dissipation, RD 6= 0, the fluxes are amended by dissipative contributions. Iden-
tifying Q = Q2, RD = R2, and assuming a diagonal matrix, we have

HD = αdtB, ED = βdtD, jD = σEM
0 , (165)

fD = κ∇T, Π̃D
ik = 2η1v

0
ik + η2vℓℓδik, (166)

10 Since the energy flux and the entropy production were slightly altered, by the term
∇ ·(ED×HD), the two sets of expressions are in fact inequivalent – if both ED and HD

are finite. [The term ∇ · (ED × HD) is both the divergence of something and vanishes
in equilibrium, it can therefore be part of either the energy flux Q or the entropy
production RD, a rare instance of inconclusiveness of the standard procedure.] This
mainly concerns the so-called sq-modes, considered in [6, 7] and relevant for systems, in
which both the magnetic and electric dissipation are sufficiently large, such that neither
α nor β may be neglected.
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where α, β, σ, κ, η1, η2 are transport coefficients [or matrices as in Eq (130)], and functions
of thermodynamic variables. Note v0

ij ≡ vij − 1
3
δijvℓℓ as before. Insert the expressions into

Eq (155), to find EM , HM ; into Eq (161) to find the stress Πik; into Eq (154) to find the
entropy flux f and electric current jǫ. Though off-diagonal terms are generally needed for
a complete account, these fluxes are frequently a good approximation, eg for ferrofluids
exposed to weak fields.

Summary of the Results

First, we write down the explicit formulas for the energy and momentum flux,

Qi = (sT + µρ + v · gM )vi − κ∇iT − (2η1v
0
ik + η2vℓℓδik)vk (167)

+
[

cEM ×HM + 1
2
v × (αB × dtB + βD × dtD)

]

i
,

Πik = Aδik − (2η1v
0
ik + η2vℓℓδik) + gM

i vk − EM
i Dk − HM

i Bk (168)

+ 1
2
(αBkdtBi − αBidtBk + βDkdtDi − βDidtDk).

A ≡ Ts + µρ + v · gM + EM · D + HM · B − u.

For stationary media, v ≡ 0, the energy flux is Q2 = cEM × HM − TfD, demonstrating
the validity of the Poynting theorem in the presence of dissipation. However, for a moving
medium, the additional terms ∼ vdtB do show up the limit of the Poynting theorem.
For a solid-body rotation, these terms are ∼ v × Ω · (αB2 + βD2) and imply an energy
current either converging onto, or escaping from, the center, possibly causing a temperature
gradient to form. The stress may also be written as

Πik = Aδik − (2η1v
0
ik + η2vℓℓδik) (169)

− 1
2
[EM

i Dk + EM
k Di − gM

i vk + (i ↔ k)],

which renders it explicitly symmetric, and seemingly a straight-forward extension of
Eq (38). In this context it is of some interest to revisit the discussion in §80, 81 of [15],
in which the authors lamented our ignorance about the form of the Maxwell stress in
the presence of dissipation. It is also instructive to retrace the considerations of sec-
tion 3.2, to obtain the off-equilibrium expression for the bulk force density, the gener-
alization of Eq (50) and (131). Inserting ġM

i +∇k(gM
i vk) = ρ d

dt
gM

i /ρ and ∂
∂t

(D×B)i/c =
∇k(BkHM

i + DkEM
i )−Bk∇iH

M
k −Dk∇iE

M
k − ρǫE

M
i − (jǫ ×B)i/c into ġi +∇k Πik = 0,

with Πik given by Eq (168), we find

ρ d
dt

(gM
i /ρ) + s∇iT + ρα∇iµα + gM

k ∇ivk −∇k(2η1v
0
ik + η2vℓℓδik)

= (ρǫE
M + jǫ × B/c)i − αdtBk∇iBk − βdtDk∇iDk

+ 1
2
[∇ × (αB × dtB + βD × dtD)]i. (170)

Clearly, the bulk force is s∇iT + ρα∇iµα + gM
k ∇ivk, and the Lorentz force is now given in

terms of EM . Two purely dissipative forces are operative, one longitudinal and the other
transversal. For the magnetic case, the first is αdtBk∇iBk, finite if dtB‖B; the second is
1
2
∇ × (αB × dtB), finite when dtB ⊥ B. This is the case when the field rotates while

the medium is stationary, or more usually, when the medium rotates in the presence of a
stationary field, Ḃ = 0, Ω 6= 0. If B‖H , one can write this force as 1

2
∇×(M×B), because

B × dtB = B × HD = B × HM ≡ M × B. This force is routinely used in ferrofluids
to account for dissipative behavior, see [16], and widely believed to be a consequence of
ferrofluids being suspensions, as it is derived from the internal angular momentum of the
particles [13]. Yet as we now realize, it is quite generically the transversal part of the
dissipative force. There is no reason whatever it should not exist in homogeneous systems,
fluid or solid.

To generalize the boundary conditions discussed in 3.3, we note that the connecting
conditions for fields are now △Dn,△Bn, △EM

t ,△HM
t = 0. As a result, especially the

condition △Πtn = 0 is no longer automatically satisfied and hence contains useful infor-
mation. At a free surfaces contiguous to atmosphere, inserting Eq (168) with vn = 0 into
△Πtn = 0 (ie. neglecting surface tension), we find
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BnHD
t − BtH

D
n + DnED

t − DtE
D
n = η1(∇nvt + ∇tvn). (171)

We shall use this boundary condition for instance to consider the shear force exerted by a
rotating field on the surface of a magnetizable liquid, in section 6.2.

The Total Momentum Density

Since all expressions of this section are derived starting from Eq (142), without the total,
conserved momentum density g ever being specified, they remain valid irrespective of its
explicit form, whether g is given by ρv + E × H/c, or say ρv + D × B/c, to pick a
historically popular form, see the discussion in [2]. Yet the rigorous identity, g = Q/c2

discussed in 5.1, or its rewritten version, the second of Eq (136), really leaves us with no
choice other than

g = ρv + E × H/c (172)

[again neglecting (Ts + µρ + v · gM )/ρc2 ≪ 1]. Being a term of zeroth order in the
velocity, E × H/c may not be neglected – though the difference to E0 × H0/c may.
Our considerations make abundantly clear that the conserved momentum density is the
sum of material and field contributions, with the Maxwell tensor being the associated
flux. Nevertheless, the numbers in the context of condensed matter are such that ρv ≫
E × H/c, and the second term may usually be neglected.11 Given Eq (150), or gM =
ρv +(E×H −D×B)/c, Eq (170) yields the term ∂

∂t
(E × H − D × B)/c, the Abraham

force [39]. And since D × B and E × H are of the same order of magnitude, it is again a
negligible quantity.

6 Off-Equilibrium Experiments

Having been derived from thermodynamics, conservation laws, and the transformation
properties, the expressions of section 5 are fairly general, valid for all magnetizable and
polarizable liquids, from single-component paramagnetic fluids to suspensions such as fer-
rofluids, and their respective electric counterparts. In the case of ferrofluids, although one
is tempted to think that the properties of the ferromagnetic particles, the magnetic mo-
ment and internal angular momentum, would be important, this is true only at higher
frequencies or at higher resolutions. On a coarse scale relevant for many experiments, of
which four are discussed below, the present theory is quite adequate, even appropriate for
being not unnecessarily detailed.

6.1 Induction and Incompatible Equilibria

First, we examine the familiar case of the Faraday law of induction and the eddy-current
break, from the perhaps unusual view angle of equilibria in different frames [40, 41]. As
similar “transformational physics” is also at work in the ensuing sections on various ex-
periments in (non-conducting) ferrofluids, this example builds a useful analogy.

The third of Eqs (143) states that equilibrium requires the electric field in the conduc-
tor’s local rest-frame to vanish,

E0 = E + v × B/c = 0. (173)

If E0 is finite, the entropy is not maximal, and an electric current je = jD = σE0 is
cranked up to redistribute the charge, forcing E0 towards zero. Inserting je = σE0 into

11 Taking ρ as 1 g/cm3, v as 1 cm/s, Ĥ = 107A/m, Ê = 107V/m (ie H as 104, and E as
30

√

J/M2), we still have ρvc/EH ≈ 3000. And if we are to compare ∂(E × H)/c∂t

with the dissipative force ∇ × (B ×αḂ), we find their quotient to scale with the small
quantity, t/τ , where t = L/c is the time light needs to cross the system of extension L,
while τ is the relaxation time of magnetization or polarization, because ∇ ∼ 1/L ∼ 1/ct
and α ∼ τ .
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Ḋ = ∇ × HM − je (and taking D = E as appropriate for metals) leads to a relaxation
equation for E,

Ė = c∇ × HM − E0/τ, (174)

with τ ≡ 1/σ around 10−19s for copper. This fact allows us to cast a fresh look on the
Faraday’s law of induction.

B-field

v

R1

R2 I

Fig. 8. Equilibrium requires the rest-frame electric field of both the stationary and moving
section of the wire to vanish. As this cannot happen simultaneously, a current is generated
“out of frustration.”

If a metallic object starts to move with the velocity v in the presence of a magnetic field
B, the equilibrium condition, E0 = 0, is established very quickly, as described by Eq (174)
– implying a finite lab-frame field, E = −v × B/c, and an appropriate charge separation.
Now consider a loop, with only a section of it moving, as in the classic setup of Fig. (8).
Because there are two inequivalent paths, “frustration” sets in: The moving section, as
just discussed, strives to establish a finite lab-frame field E by separating charges, while
the stationary part works just as hard to eliminate it. It is the incompatibility of these two
equilibria that maintains a field and gives rise to circulating current. Both exist as long as
the velocity of the moving section v is finite.

Integrating the Maxwell equation in the form Ḃ = −c∇ × (E0 − v × B/c) around a
conducting loop, we arrive at

∫

dA · Ḃ +
∮

B · (v × dℓ) = −c
∮

E0 · dℓ. Identifying the
conductor’s velocity v with that the area A changes, the two terms on the left may be
combined as d

dt

∫

B ·dA. The term on the right, −c
∮

je · dℓ/σ, may be integrated assuming
constant current I. In the example of Fig. 8, this gives −c(R1+R2)I, with R1, R2 denoting
the respective resistance. The result is the Faraday’s law of induction,

d
dt

φ ≡ d
dt

∫

B · dA = −c(R1 + R2)I. (175)

Frequently, the term motional electro-motive force is used for
∫

E0 · dℓ. It is a label
(and not an understanding) for a quantity that looks like a potential yet cannot possibly
be one, as

∮

E0 · dℓ is non-zero. Yet the point is, every portion of
∮

E0 · dℓ that is in the
same rest frame is certainly a healthy potential in this frame. Their sum is finite simply
because they are potentials in different frames.

Eq (173) may be understood in two different ways. The first takes E0 as the field in its
local rest frame: E0 is different from E in the moving wire, but the same in the stationary
one. The second takes E0 as a Lorentz-transformed field. It is the field of the frame moving
with v in the lab frame, and always different from E. To distinguish this second field from
the first, we refer to it as E2. Both E2 and the lab-frame field E are stationary in our
example and possess a potential: E2 = −∇U2, E = −∇U1, but E0 does not. So

∮

E0 · dℓ
is finite, while

∮

E · dℓ =
∮

E2 · dℓ = 0. Nevertheless, there is no reason why we may
not identify

∫

E0 · dℓ across R2 with
∫

E2 · dℓ = ∆U2 = R2I,
∫

E0 · dℓ across R1 with
∫

E · dℓ = ∆U1 = R1I, and rewrite the law of induction as d
dt

φ = ∆U1 + ∆U2, with each
of the two two potential drops well defined – although their sum does not vanish, because
they are given in different frames.

There are two limiting cases worth a brief pause. In the first, R2 ≫ R1, the resistance
of the sliding bar is much larger than that of the stationary arc. Because the latter wins
out fighting to maintain its equilibrium, we have E ≈ 0, field and potential are negligible
in the lab frame. Vice versa, for R2 ≪ R1, E2 ≈ 0 holds; there is no field or potential in
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the moving frame. However, in neither case does E0 vanish, and the current that flows
remains the same as long as the sum R1 + R2 is the same, and given by Eq (175).

The next example is the eddy-current break, a metal plate moving with v, with only
part of the metal exposed to a stationary magnetic field. Typically, the plate is rotating,
with Ω, and the field-exposed region sits off-center, at radius R. Equilibrium is given by
E = 0 outside the field-exposed region, and by E = −v × B/c inside it, same as in the
previous example. The only difference is, the inhomogeneity is now in B rather than v.
Again, the field-exposed region wants to maintain a charge separation, while the field-free
region works to eliminate it, and the result is a frustration-induced eddy current. For
homogeneous conductivity, both regions work equally hard, and the two residual fields
are equal in magnitude: E = −E0. So the current is je = σE0 = 1

2
σv × B/c, see [42].

To calculate the breaking force of the eddy current, start from Eq (131), assume ρe = 0,
constant T and µ, small velocity v, and b = B, to arrive at ρ ∂

∂t
v = je × B/c, or

ρ∂v/∂t = 1
2
σ(v × B) × B/c2. (176)

This implies a relaxation time τ = 2ρc2/σB2 for v ⊥ B. Assuming σ = σ̂/ε0 ≈ 1019s,
ρ ≈ 104kg/m3, c = 108m/s, and B̂ in T, we have τ ≈ 10−5B̂−2s.

If the magnetic field (ie. the field-producing coil) also moves, and is stationary in the
frame of the metal plate, the total system is in equilibrium. There is then no current,
dissipation or force. If it moves with u, the current is je = 1

2
σ(v−u)×B, proportional to

the metal’s velocity in the frame of the field. The dissipation RD is always jeE0 = j2
e/σ,

see Eq(129).

6.2 Rotational Field deflection

W

B

H

H

M

ex

Fig. 9. Due to dissipation, a real (rather than imaginary) contribution in the permeability
µm, the fields B and HM are misaligned in a rotating ferrofluid.

Similar “transformational physics” also exists in non-conductors. As we shall see, in
all three following experiments, it is the need for field and medium to be stationary in the
same frame before they can equilibrate. (All experiments are magnetic, though of course
the exact same electric ones, obtained by employing Eqs (53) and α → β, also exist.)

Consider a long cylinder filled with ferrofluid, rotated along the cylinder axis and
subject to a perpendicular external field Hex, see Fig. (9). The internal fields HM , B are
related to the external one as HM +B = 2Hex, see §8 of [15]. With Eq (165), the internal
fields are related as HM = H(B) − αΩ × B. So HM , H may be expressed by B, which
in turn is given by Hex. For lcr, (1 + χ)H = B, we have

HM =
[

1
(1+χ)

− αΩ×
]

B, (177)

Hex = 1
2

[

1 + 1
(1+χ)

− αΩ×
]

B. (178)

The expression in the bracket of the first formula contains the inverse permeability. Note
the term αΩ × B that is both dissipative and real. If the external field Hex also rotates,
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resulting in Ḃ = ω × B, we have instead HM = H(B) + α(ω − Ω) × B, see Eqs (146,
165). And dissipation vanishes for ω = Ω.

To calculate the torque T exerted by the rotating field on the container, dragging it to
co-rotate, Ω → ω, we consider the entropy produced in the sample, RDV = (HD)2V/α =
αB2(ω − Ω)2V , see Eqs (159, 165), and equate it with the change in kinetic energy,
U̇kin = (ω − Ω) · T , to obtain

θ Ω̇ ≡ T = αB2(ω − Ω)V. (179)

Clearly, the time the system needs to come to a stop is θ/αB2V , with θ denoting the
system’s moment of inertia. Although this time has the same field dependence as that
of the eddy-current break, see Eq (176), it is, with α = τ( χ

1+χ
) [see section 7: χ is the

susceptibility and τ the relaxation time of the magnetization], typically a few orders of
magnitude larger.

6.3 Field-Enhanced Viscosity

Next, we consider how field dissipation (terms ∼ α) gives rise to an enhanced viscosity [43].
Take (i) neutrality, (ii) small, stationary, incompressional flow, and (iii) time-independent
and spatially constant field, temperature, and chemical potential in Eq (170) to obtain [5]

∇k{2η1vik + 1
2
α[Bi(B × Ω)k − Bk(B × Ω)i]} = 0. (180)

The viscosity is η, if B‖Ω, and it is maximally enhanced if B ⊥ Ω. For a plane shear flow,
|vik| = |Ω| = 1

2
∇xvy, the effective viscosity is ηe = η + 1

2
αB2. This result was first derived

by Shliomis [13], as mentioned, from considering the angular momentum and the magnetic
moment of the suspended particles in ferrofluids explicitly. Neither is obviously necessary,
and a one-component paramagnetic fluids will in principle display the same enhancement.
However, due to the time scales typical in these fluids, α is many orders of magnitude
smaller.

6.4 A Magnetic Pump

ferrofluid

y=0

y=L

B-field

v

x

y

Fig. 10. Due to dissipation, a real (rather than imaginary) contribution in the perme-
ability µm, the fields B and HM are misaligned in a rotating ferrofluid.

Finally, we consider an experiment probing the force exerted by a time-dependent,
uniform field. Assume planar geometry and consider a slab of ferrofluid extending from a
solid bottom at y = 0 to the free surface at y = L. Given a B-field rotating in the x̂/ŷ
plane, there will be a velocity v along x̂: Because the field is uniform, Eq (170) reduces to
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the shear flow equation, ρv̇ = ηe∇2v (with ηe = η + 1
2
αB2, cf 6.3). We solve the equation

employing the boundary conditions:

ηe∇nv = 1
2
α(BnḂt − BtḂn) (181)

at y = L, cf Eq (171), and v = 0 at y = 0. (The physics is, since the coefficient α
is discontinuous at the free surface, the dissipative field HD = αdtB deliver a finite
contribution there, and represents a surface force.) Take the rotation frequency of the
rotary field as ω, we have BnḂt−BtḂn = B2ω. For large penetration depths,

√

ηe/ρω ≫ L,
the flow field is linear,

v = 1
2
αB2Ωy/ηe, (182)

with its maximal value v = 1
2
αB2ΩL/ηe at the surface. This experiment has already been

performed in a special geometry, with excellent agreement, see [44, 45].
A static, normal field Bn‖ŷ, and an oscillatory, tangential one, Bt = △Bt × exp(−iωt)‖x̂,

lead to the time-dependent velocity v(x) = (αx/2ηe)BnḂt. The results for curved inter-
faces (causing a spin-up of the ferrofluid) or for higher frequencies may be found in [5].

7 Ferrofluid-Dynamics

As discussed and demonstrated in details in the last two sections, the hydrodynamic
Maxwell theory is well capable of accounting for magneto- and electro-viscous effects,
when the fields, HM and B, or EM and D, are not in equilibrium with each other, either
being misaligned or not having the appropriate magnitude. Yet this is only true for small
frequencies, ωτ ≪ 1, and small shear rates, γ̇τ ≪ 1, where τ is the relaxation time of ei-
ther the magnetization M or the polarization P . At higher frequencies, ωτ & 1, or higher
shear rates, γ̇τ & 1, M or P need to be included as independent variables, complete with
an own equation of motion. In this section, we discuss the inclusion of the magnetization.
(The inclusion of the Polarization is done somewhat differently, and found in section 8.1.)

There are broadly speaking three theories applied to understanding ferrofluids: The
quasi-equilibrium theory [16] was introduced by Rosensweig, who employed it in the
first seven chapters of his book[16] to account for a wide range of static effects. In
this theory, the magnetization is taken in local equilibrium with the magnetic field,
M (r, t) = M eq[H(r, t)], and not an independent variable. Although it is widely believed
that this is the reason the quasi-equilibrium theory does not account for magneto-viscous ef-
fects, we have seen that the reason is rather the neglect of the dissipative field, HD ∼ dtB.

To account for magneto-viscous effects, especially the fact that the shear viscosity is
enhanced by a static magnetic field [43], Shliomis [13] (see also [46, 47]) started from the
intuitive picture of magnetic particles rotating against the viscosity of the carrier liquid as
the actual source of dissipation, and included both the magnetization M and the angular
momentum density S as additional variables (though the latter is usually adiabatically
eliminated afterwards). This theory contains the relaxation equation for magnetization and
an extra term in the momentum flux, ∆Πij = 1

2
εijk(H × M)k. Frequently referred to as

the Shliomis theory, it does its job well for ωτ ≪ 1, but is less competent to quantitatively
account for “negative viscosity” [48, 49], a phenomenon at ωτ & 1. As a consequence,
Shliomis referred to a more elaborate evolution equation for M , see [50, 51], derived from
a microscopic, statistical investigation of rotating magnetic particles. Since the equation
was solved with the assistance of the effective field method, this second variant is commonly
denoted as the effective-field theory, or eft. The eft considerably improved the agreement
to the “negative viscosity”-experiment. More recently, it was found that if the ferrofluid
is polydisperse, the larger magnetic particles form short chains when subject to field,
showing as a consequence polymer-like behavior such as shear-thinning and normal stress
differences [52, 55, 56, 57, 58], see the accompanying article on rheology by Ilg. So the
conclusion seems that the Shliomis theory is only valid for low frequency, ωτ ≪ 1, and
that even eft fails for non-Newtonian ferrofluids.

Some of these common believes have been contradicted in [10], especially: (1) the
Shliomis theory and eft share the same basic structure. And the only difference lies in the
coefficients the relaxation equation for the magnetization is adorned with – because they
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were derived from differing microscopic assumptions. (2) Frequently, the most efficient
way to construct a macroscopic theory is to establish its structure from general principles,
employ a few experiments to determine its coefficients, and avoid a microscopic deriva-
tion altogether. Take for instance the Navier-Stokes equation, which may be set up in
accordance to momentum conservation and the second law of thermodynamics. Then one
measures the viscosity in a simple geometry – rather than trying to calculate it. With both
pieces of information present, this theory develops great predictive power in a broad range
of circumstances, for any geometry and boundary conditions. (3) Including the magneti-
zation as an independent variable, one may employ thermodynamics to yield the general
structure for its relaxation equation, which contains especially a coefficient λ2 that ac-
counts for the coupling to elongational flows (measured to be between 0 and 0.88 in [59]).
(4) Choosing appropriate values for the relaxation time τ and coefficient λ2, experiments
in the range of ωτ ≫ 1 are well accounted for, see [60, 61, 62]. There is no reason why this
should not be the case also with polydisperse, non-Newtonian ferrofluids.

7.1 Polydispersity

In this and the next section, we present a theory for polydisperse, chain-forming ferrofluids
that consists of (1) a relaxation equation for the magnetization M 1 of the chains (or any
other aggregates), and (2) the hydrodynamic Maxwell theory to account for the particles
that remain single. The latter possess a wide range of relaxation times, all smaller than
τ2, typically at around 10−4s. And M 1’s relaxation time τ1 is orders of magnitude larger
than τ2, as it is determined not only by how fast the chains may be oriented, but also how
quickly particles can be transported and assembled, to form chains or aggregates of the
appropriate shape and size. Although all particles above a certain critical radius would
contribute to chain formation, and they also possess a range of intrinsic relaxation times
before chain formation sets in, we may expect, und shall at any rate assume, that chains
are formed with a mixture of particles, and the associated relaxation time is fairly well
defined. (τ1 is probably typically around a few seconds – though the actual numbers are
less important than the fact τ1 ≫ τ2.) Clearly, the resulting theory is valid for arbitrary
values of ωτ1 and γ̇τ1, as long as ωτ2, γ̇τ2 ≪ 1 hold.

When the hydrodynamic Maxwell theory was derived in section 5, no assumption
whatever was made with respect to the microscopic makeup of the magnetic fluid, certainly
not that it must consist of magnetic particles of identical radius. So it is naturally valid
for polydisperse ferrofluids. Here, we only generalize the evaluation of α, from that given
around Eq (31) to a ferrofluid characterized by many different magnetizations Mq, each
relaxing with τq. Starting from Ṁq = −(Mq − Meq

q )/τq with q = 1, 2, 3, ..., we have (1 −
iωτq)Mq = Meq

q , or for small frequencies, Mq = (1 + iωτq)M
eq
q . This implies Mq = Meq

q −
τqṀ

eq
q = Meq

q − τq(dMeq
q /dB)Ḃ. Inserting this into HM = B −

∑

Mq = B −
∑

[Meq
q +

τq(dMeq
q /dB)Ḃ], and identifying B −

∑

Meq
q as H, we find

α =
∑

τq(dMeq
q /dB) → ∑

τqχq/(1 +
∑

χq), (183)

where the sign → (here and below) holds for linear constitutive relations. This formula
clearly holds however finely graded the particle populations are defined, one can even
substitute the sums by integrals. Of relevance is only the insight that the effect of magne-
tization relaxation in a polydisperse ferrofluid is well accounted for by a single coefficient
α, a quantity that is easily measured.

7.2 Magnetization of the Chain-Forming Particles

The hydrodynamic Maxwell theory of section 5 describes, as it is, a polydisperse ferrofluid
without chain-formation. Adding the associated magnetization M 1 as an independent
variable, the energy density of Eq (149) has the additional term,

du = ... + h · dM 1, (184)

where ... stand for the terms of the hydrodynamic Maxwell theory as given in section 5.
For linear constitutive relations and in the rest frame, u → u0(ρ, s) + 1

2
B2/µm − B ·
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M + 1
2
µm(1 + χ1)M

2
1 /χ1, we have H ≡ ∂u/∂B → B/µm − M 1 and h ≡ ∂u/∂M 1 →

µm(1 + χ1)M 1/χ1 − B. (The magnetic permeability µm is from the non-chain-forming
particles.) The total field is still given as HM = H + HD = H + αdtB, but now depends
on M 1 via H .

The relaxation equation for M 1 is

dtM 1 = XD, (185)

where dt is the rest frame derivative of Eq (3), while XD couples to the dissipative stress
Π̃D

ij in a Onsager matrix-relation, and is given as

Π̃D
ik = 2η1v

0
ik + η2vℓℓδik + 1

2
λ2(Mihk + Mkhi) (186)

XD
i = −ζhi + λ2Mkv0

ik, (187)

where v0
ij ≡ vij − 1

3
δijvℓℓ. Characterizing the anisotropy of the system, the Mi here are the

total magnetization. In fact, because of the anisotropy, many more coefficients are allowed
by symmetry, see [10]. Aiming to keep the theory as simple as possible, only the respective
term ∼ λ2 is included, as the only off-diagonal one, because they are demonstrably large
and relevant in the presence of chain formation [59].

Given the above expressions, the energy flux, the stress tensor, and the entropy pro-
duction of Eqs (167, 168, 159) are necessarily modified. The added terms are

Qi = . . . − 1
2
λ2(Mihk + Mkhi)vk + 1

2
[v × (h × M )]i, (188)

Πik = . . . − 1
2
λ2(Mihk + Mkhi) + 1

2
(hkMi − hiMk), (189)

RD = . . . + Π̃D
ikvik − XD · h. (190)

These are the complete set of equations for a polydisperse, chain-forming ferrofluid sporting
a dielectric fluid matrix.

7.3 Shear-Thinning

Because ferrofluids display non-Newtonian behavior when the magnetic particles form
chains [52, 57, 58], the analogy to polymer solutions appears fairly obvious, and one is
lead to expect the need to amend ferrofluid-dynamics with some ingredients from polymer
physics. On the other hand, polymer solutions and ferrofluids do differ in fundamental
ways: Polymer strands are entangled without shear, but get aligned along the flow by it,
while magnetic chains are aligned along the field without shear, and broken into pieces by
it [52]. Being a negative statement, the term “non-Newtonian” lacks specificity, and there
may well be different versions of it requiring different descriptions.

In this section, we demonstrate12 that ferrofluid-dynamics already has the proper struc-
ture to account for shear-thinning [40, 66]. We consider the equations,

d
dt

Mi + (M × Ω)i − λ2Mjvij = −(Mi − Meq
i )/τ, (191)

Πij = P̃ δij − 2η1vij − HiBj +

+ 1
2
[(Mihj − Mjhi) − λ2(Mihj + Mjhi)], (192)

and for simplicity neglect the contribution from the single particles that do not form chains,
by setting α = 0. (A finite α only delivers a constant field-induced viscosity enhancement

12 Polymers are characterized by transient elasticity, and its rheology is well-accounted
for by a relaxing strain field [63, 64]. There are magnetic fluids which also need the
strain field as an extra variable: If the magnetic particles are large enough, they will, in
the presence of a strong field, form long chains bridging the whole system. This is the
jamming transition, after which the system is truly elastic [65]. Close to it, the strain
should be a critical, relaxing variable (because two chains, neither quite bridging the
system, temporarily get in the way of each other). This implies transient elasticity. We
shall deal with magnetic fluids here that are either incapable of the jamming transition,
or far enough away from it, and refer to them as ferrofluids. The accepted term for the
polymer-like magnetic fluids is Magneto-rheological fluids.
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that is independent of shear, and hence off the present focus.) We also confine our consid-
erations to incompressible flow, ∇ivi = 0, and linear constitutive relations. This makes an
analytic solution possible, which alone could incontrovertibly establish the fact that the
observed non-Newtonian behavior of ferrofluids may indeed be accounted for by magneto-
relaxation. The scalar P̃ in Eq (192) contains all diagonal terms. They are not further
specified, as they are relevant only for compressional flows such as considered in [11, 12].

We employ Eqs (191,192) to consider simple shear, v = γ̇yx̂, with the velocity along
x̂ and the gradient along ŷ (see inserts of Fig 11, 12), so the equilibrium magnetization
M eq is also in the xy-plane. Assuming stationarity, d

dt
M = 0, Eq (191) is a linear, 2x2

matrix equation, AM = M eq. Inverted, it reads

Mx =
4Meq

x + 2 (1 + λ2) ξMeq
y

4 + (1 − λ2
2) ξ2

, (193)

My =
4Meq

y − 2 (1 − λ2) ξMeq
x

4 + (1 − λ2
2) ξ2

, (194)

where ξ ≡ γ̇τ . These two expressions already contain the essence of shear thinning: The
magnetization goes to zero in the limit of strong shear, ξ → ∞, implying the vanishing of
any magneto-viscous effect, because the second line of Eq (192) also vanishes.

The force density on an infinitely extended plate in the xz-plane, being dragged along
x̂ on top of a ferrofluid layer, is △Πxy ≡ Πair

xy − Πff
xy . The stress of air, Πair

xy , is −HxBy,
that of the ferrofluid, Πff

xy , is given by Eq (192). (Because HxBy is continuous, △Πxy

is calculated from the second line, in addition to the term −2η1vij .) Taking the total
viscosity as η1 + ηr ≡ −△Πxy/γ̇, the magneto-viscous contribution, ηr, is evaluated by
inserting Eqs (193,194) into (192) for given boundary conditions, of which we consider
two, perpendicular and parallel external field B0, (see inserts of Fig 11 and 12).
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Fig. 11. The magneto-viscous contribution to the shear viscosity (in units of τB2
0) as a

function of ξ ≡ γ̇τ , from λ2 = 0 to λ2 = 0.9, in 0.1-steps, for a perpendicular external field
B0, with χ=1 (from [66]). Shear-thinning is obvious.

The experimentally most convenient configuration is given by B0 along ŷ, perpendic-
ular to the plate. Because By, Hx are continuous, the internal fields are B = (Mx, B0),
H = (0, B0 − My), and M eq = χ(0, B0 − My). Using these in Eqs (192,193,194), we find

η⊥
r =

(1 + λ2)
2[4 + (1 − λ2)

2ξ2]

[4(1 + χ) + (1 − λ2
2)ξ

2]2
τχB2

0 . (195)

For vanishing shear, ξ → 0, the viscosity η⊥
r grows with τ, χB2

0 and λ2. More generally, η⊥
r

decreases monotonically with shear if χ < (1+3λ2)/(1−λ2), and displays shear-thickening
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Fig. 12. The magneto-viscous contribution to the shear viscosity as a function of ξ ≡ γ̇τ ,
from λ2 = 0 to λ2 = 0.9, for a parallel external field B0, with χ=1 (from [66]). A growing
λ2 diminishes the effect, possibly because the chains are already aligned along the flow,
same as polymer strands at high shear.

(ie. a maximum) otherwise. Fig 11 shows the monotonic decay of the magneto-viscous
contribution, as a function of shear, for χ = 1 and ten different values of λ2, from 0 to 0.9.

If the external field B0 is parallel to the plate, along x̂, again because By, Hx are
continuous, the internal fields are B = (B0 + Mx, 0), H = (B0,−My), and M eq =
χ(B0,−My). Using these in Eqs (192,193,194), we find

η‖
r =

(1 − λ2)
2 [

4 (1 + χ)2 + (1 + λ2)
2 ξ2

]

[4(1 + χ) + (1 − λ2
2) ξ2]2

τχB2
0 . (196)

In the limit of low shear, ξ → 0, η
‖
r still grows with τ, χB2

0 , but now decreases with λ2.
(For λ2 = 0 and χ ≪ 1, both shear viscosities are the same, η⊥

r = η
‖
r , as they should.) For

finite shear, η
‖
r decreases monotonically with ξ, if χ > 1

2
(3λ2 − 1)/(1 − λ2), see Fig 12.

8 Extensions

8.1 The High-Frequency Regime

If we draw a diagram of field strength versus frequency, see Fig 13, we have a vertical

A

B

C

w

E, H
Fig. 13. diverse ranges of validity

A-stripe along the ω-axis — arbitrary frequency but small field strength — that is the
range of validity for the linear-response theory, EM ∼ D, HM ∼ B. The hydrodynamic
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theory presented above is valid in the horizontal B-stripe, given by arbitrary field strength
and small frequencies: With only terms linear in ω included, dissipation is accounted for,
but not dispersion.

Curiously, only limited results about field energy and momentum exist in the vertical
A-stripe, for linear-response theory. Assuming • linear constitutive relations, • lack of
dissipation (ie real ε, µm), • quasi-monochromacy (small variation around one frequency)
and • stationarity (no fluid motion, v ≡ 0), Brillouin showed in 1921 that the additional
energy due to the presence of fields is

1
2
〈E2〉d(ωε)/dω + 1

2
〈H2〉d(ωµm)/dω, (197)

where the average is temporal, over a period of oscillation. Forty years later, Pitaevskii
showed that under essentially the same assumptions, the stress tensor retains its form
from equilibrium, Eq(38), and remarkably, does not contain any frequency derivatives.
Both results may be found in §80, 81 of [15]. Note neither expression is valid in the entire
A-stripe, only in patches disjunct from the field-axis. This is because leaving the field-axis
(ω = 0), the first corrections are linear in ω – therefore odd and dissipative.

The C-space electrodynamics must be a theory that can simultaneously account for
dissipation and dispersion, allowing nonlinear constitutive relations and finite velocities for
the medium. Although one might expect principal difficulties — due to the apparent lack
of a small parameter — the system is in fact, up to the optical frequency ∼ 1015Hz, still
in the realm of macroscopic physics, as the associated wavelengths remain large compared
to the atomic graininess, in spite of the the clearly ballistic frequency. So a universal,
hydrodynamic-type theory should still be possible, and would be useful, for answering
questions such as what the average force on a volume element exerted by a laser beam
is. (The averaging has a temporal resolution larger than the time needed to establish
local equilibrium, and much larger than the light’s oscillatory period.) A first step toward
such a theory has been quite successful [9]. It includes the polarization as an additional
variable, the equation of motion of which is a nonlinear differential equation of second
order in the time. The theory reduces to the hydrodynamic Maxwell theory of section 5
for small frequencies, and reproduces the linear-response results of Brillouin and Pitaevskii
for small field strength and vanishing dissipation. Further work is needed here to make
connections to experiments, clarifying questions such as whether the Poynting theorem
holds for dissipative systems, cf [67] and the discussion of Eq (167).

8.2 Ferro-Nematics and Ferro-Gels

The works on Ferro-Nematics and Ferro-Gels, by Harald Pleiner, Helmut Brand and co-
workers, are reported in this section. Ferrofluids are suspensions of magnetic nanoparticles
in a suitable carrier liquid. They are polymer coated or charged in order to prevent coag-
ulation. They show various distinct material properties, like superparamagnetism (large
magnetic susceptibility, high saturation magnetization in rather low fields), sensitivity to
magnetic Kelvin forces, and a rather complicated influence of magnetic fields on their flow
behavior [16, 52]. This has led to a host of important applications as seals (in hard disk
drives), active dampers (suspensions), thermal conductors (loudspeakers), as well as in
the medical sector (hypothermia, drug targeting in cancer therapy). The favorable fer-
rofluid properties are generally preserved when dealing with more complex systems, like
ferronematics and ferrogels. In addition, new features are coming into play leading to quite
unusual and novel type of behavior. Ferronematics are obtained, if the carrier liquid is a
lyotropic or thermotropic nematic liquid crystal, while ferrogels are polymer melts swollen
by ferrofluids and crosslinked into a gel [68]. If the latter process is done in an external field,
a uniaxial ferrogel with a frozen-in magnetization is obtained [69]. Pleiner and Brand are
interested in the unconventional macroscopic dynamic behavior of usual ferrofluids and,
in particular, in the unusual behavior of unconventional ”ferrofluids”, like ferronematics
and ferrogels.

Viewed as binary mixtures of magnetic particles and carrier fluid, ferrofluids have
rather extreme properties. With the grain size being large on molecular length scales,
the particle mobility (or concentration diffusivity) is extremely small (very small Lewis
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number L), allowing to disregard the concentration dynamics in most cases [70, 71]. How-
ever, this simplification does not hold for thermal convection, since due to the pronounced
Soret effect of these materials in combination with a considerable solutal expansion (large
separation ration ψ), the resulting solutal buoyancy forces are dominant. By considering
the classical Rayleigh Bénard setup it is shown [72] that both the linear as well as the
nonlinear convective behavior is significantly altered by the concentration field as com-
pared to single-component systems. Starting from an initial motionless configuration with
a uniform concentration distribution, convective perturbations are found to grow even at
Rayleigh numbers well below the threshold Ra0

c of pure-fluid convection. It turned out that
the actual critical Rayleigh number Rac is drastically smaller, but experimentally inac-
cessible due to the extremely slow growth of convection patterns for Ra & Rac, requiring
extremely large observation times. On the other hand, operating the ferrofluid convection

experiment at Rayleigh numbers Rac < Ra
<∼ Ra0

c , reveals considerable positive growth
rates, which lead to a saturated nonlinear state almost as fast as pure-fluid convection
does at Ra > Ra0

c .
In an external magnetic field the apparent imperfection of the bifurcation is even more

pronounced. Magnetophoretic effects as well as magnetic stresses have been taken into
account in the static and dynamic parts of the equations leading to rather pronounced
boundary layer profiles (with respect to the concentration and magnetic potential). This
boundary layer couples effectively to the bulk behavior due to the magnetic boundary
condition [73].

Another interesting case are ferrofluids with negative separation ratio (negative Soret
coefficient). When heating from below molecular binary mixture with negative separation
ratio, the thermal and solutal density gradients are opposed such that the linear stationary
thermal instability is suppressed for ψ < −1. Instead, this antagonistic behavior leads to a
linear convective instability of the oscillatory type at Ra0

c , the critical Rayleigh number for
the onset of convection in the single fluid case. This feature is found for ferrofluids, too, but
the nonlinear treatment shows that the linearly unstable oscillatory states are transients
only and decay after some time, rendering the final convection-free state stable [74]. Above
a second threshold, somewhat higher than Ra0

c , a finite amplitude stationary instability is
found, while small amplitude disturbances do not destroy the convection-free state. When
heating from above molecular binary mixtures with negative separation ratio ψ < −1, a
linear stationary instability is found, which is basically driven by the solutal buoyancy and
only slightly modified by thermal variations. In ferrofluids, however, the concentration and
temperature dynamics show completely different behavior. Thus, this stationary instability
is very different from that obtained by heating from below with a positive separation ratio.
In the former case small scale structures arise at very high Ra numbers, whose wavelength
decreases strongly with increasing Ra. For smaller Ra numbers (|Ra| ∼ Ra0

c) the procedure
of using the separation of thermal conduction and concentration diffusion times, breaks
down.

In the nonlinear domain the question of pattern formation and competition has been
discussed numerically and using model amplitude equations for ferrofluids with positive
and negative separation ratios [75].

Ferronematics

If the carrier liquid is a nematogen, several phases are possible. Using a Landau-type free
energy function one can describe the phase transitions from an isotropic (superparam-
agnetic) ferrofluid to a ferromagnetic nematic liquid crystal either directly or via a su-
perparamagnetic nematic liquid crystal [76]. These two nematic phases are usually both
called ’ferronematic’, although they are distinct phases. Both show nematic ordering, but
only the ferromagnetic phase shows spontaneous magnetic ordering, additionally. In the
presence of a strong external magnetic field these transitions are smeared out and the dif-
ferent ferronematic phases become rather similar to each other. In nature no ferromagnetic
ferronematic phase has been found until today, so the theoretical considerations have been
restricted to the superparamagnetic variant.

In equilibrium the orientation of the nematic director and of the magnetization (in-
duced by an external magnetic field) are locked. The macroscopic dynamics of ferronemat-
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ics can be described on two different levels, either assuming the magnetization to be relaxed
to its static value, or it can be treated as an additional dynamic (relaxing) degree of free-
dom. In the latter case the equations are structurally the same as for an ordinary nematic
liquid crystal, except for the fact that the influence of the magnetic field is much more
intense. However, in ordinary nematics magnetic field effects in the dynamics have never
been discussed or detected, possibly due to their smallness. In ferronematics there is a good
chance to find those effects, which come by various linear field (Hall-like) contributions
to the fluxes [77]. They are of opposite thermodynamic signature (reversible/irreversible)
compared to the field-free contributions. These new dynamic effects predicted come in four
classes. First, the alignment of the nematic director in shear flow is modified by an external
field such that the director has a component out of the shear plane, even if the field is
in the shear plane. Second, the heat flux due to a temperature gradient, in a magnetic
field orthogonal to the latter, induces an additional reversible heat current that is perpen-
dicular to both. Third, a linear field contribution to viscosity leads, for a magnetic field
orthogonal to the propagation direction of a sound wave, to a force on a tracer particle in
the third direction. Fourth, when the director is reoriented in an external magnetic field,
its relaxation is accompanied by an oscillation not observed in usual nematics.

Another possibility to probe the dynamic linear field contributions is the detection
of their qualitatively new effects on some well- known instabilities [78]. In the Rayleigh-
Bénard instability with the temperature gradient adverse to gravity one gets, in addition
to convection flow in the form of one-dimensional rolls, a vorticity flow. As a consequence,
in the homeotropic case (the director parallel to the field) the streamlines are oblique to
the roll cross-section, while in the planar case (the director perpendicular to the magnetic,
but parallel to an electric field) the rolls themselves are tilted with respect to the director
depending on the magnetic field strength. In the Saffman-Taylor viscous fingering instabil-
ity of a growing interface between fluids of different density, the new linear magnetic-field
contributions lead to a rotation of the finger structure.

The complete set of macroscopic dynamic equations for ferronematics includes the
magnetization as an independent slowly relaxing variable [79]. Orientational changes of
the magnetization are coupled to nematic director reorientations not only in the statics,
but in the dynamics as well. In addition, there are reversible and dissipative dynamic cross-
couplings between (compressional, shear and elongational) flow, (rotations and changes of
the absolute value of the) magnetization and director reorientations. Some of these cou-
plings are only possible, when an external magnetic field is present. Some combinations
of the parameters that describe these crosscouplings can be measured employing sound
waves and the rheology of shear. For a sound wave propagating in a direction oblique to
the preferred directions (equilibrium magnetization, nematic director) compressional flow
(and changes of the absolute value of the magnetization) are coupled to shear flow (and
rotations of the director and the magnetization). There is also a field dependent contribu-
tion to sound damping. In addition, the linear response of the system to oscillatory shear
flow has been discussed concentrating on frequencies below the transverse magnetization
relaxation frequency. This shows directly the influence of the magnetic dynamic degree of
freedom on the director dynamics. Even without a magnetic field the modified nematic
director diffusion couples to the flow and the apparent viscosity is different from the bare
one. In the presence of an external field the director diffusion/relaxation is shifted to a
finite frequency, which approximately increases with the third power of the field strength.

Ferrogels

Due to the crosslinking in ferrogels a network is created that gives rise to elasticity. The
truly hydrodynamic variable describing elasticity is the displacement field, or more appro-
priate for nonlinear theories, the strain tensor. Isotropic ferrogels are superparamagnetic
and the magnetization is an additional independent slowly relaxing variable, which allows
us to study the system for high frequencies as well [80]. The fact that magnetic grains
are attached to the network is expressed by the static coupling of the magnetization and
the strain tensor (magnetostriction). This leads to an additional field-dependent contribu-
tion to the sound spectrum. The contribution to the transverse sound modes depends on
the relative angle between an external field and the wave vector. From the low frequency
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limit of the sound spectrum one can obtain information about the effective, magnetic-
field-dependent elastic moduli. However, these moduli are different from those measured
by static elongations or shear deformations in an external field. The reason is that due to
the finite magnetostriction the linear response theory is not applicable. Only in the limit
of a vanishing field are they equal and match the true elastic moduli. In the high fre-
quency limit one gets a shift in the sound velocities proportional to the dynamic coupling
between the flow and the magnetization. This reflects the fact that the magnetization is an
independent variable. Finally, a shear excitation experiment in an oscillating temperature
gradient plus a gradient of the magnetic field has been proposed.

Ferromagnetic gels are uniaxial, if the frozen-in magnetization denotes the only pre-
ferred direction. Such materials are potentially very interesting for a variety of applica-
tions. Uniaxial magnetic gels show on the one hand similarities to other anisotropic gels,
like nematic elastomers, and to isotropic ferrofluids and ferrogels, but the combination of
preferred direction, magnetic degree of freedom, and elasticity makes them unique and very
peculiar. Prominent features are [81] the relative rotations between the magnetization and
the elastic network, which couple dynamically flow, shear, and magnetic reorientation. As
a result, shear flow in a plane that contains the frozen-in magnetization induces a rotation
of the magnetization, not only within the shear plane, but also out of the shear plane. This
behavior is qualitatively different from that of other types of materials. The basic results
hold, even if the constant shear flow is replaced by an oscillating one, which is very likely
done in actual experiments, although the formulas for that case will become much more
complicated. Another outstanding aspect of the hydrodynamics of this material is the dif-
ference between the mass current density (mass density times velocity) and the momentum
density due to a nonvanishing magnetization vorticity. Unheard of in other classical con-
densed phases, it is known from some uniaxial quantum fluids, where, however, experiments
on this aspect are impossible. In uniaxial ferromagnetic gels the static susceptibilities for
momentum fluctuations (the long wavelength limit of the static momentum correlation
functions) are given by the (bare) density for some geometries only, but show an increased
renormalized effective density for other directions. Finally, an oscillating external magnetic
field induces not only an oscillation of the magnetization in the direction of the external
field, but also oscillating shear strains. The latter are found in planes that contain the
frozen-in magnetization and either the external field or the third, perpendicular direction.
In addition, the external field also induces a magnetization component perpendicular to
both the field and the frozen-in magnetization. The reversible transport coefficient that
governs this effect can be calculated by referring to the microscopic quantum mechanical
spin-type dynamics for magnetic moments and using the projector formalism to evalu-
ate the frequency matrix. This coefficient vanishes with the magnetization and is, thus,
characteristic for this type of ferromagnetic gel.

Surface undulations of the free surface of viscous liquids are known to be able to
propagate as gravity or capillary waves. In more complex systems like viscoelastic liquids
or gels the transient or permanent elasticity allows for modified transverse elastic waves at
free surfaces [82]. They are excited e.g. by thermal fluctuations or by imposed temperature
patterns on the surface. In ferrofluids magnetic stresses at the surface come into play. In
particular, in an external magnetic field normal to the surface there is a focusing effect
on the magnetization at the wave crests of an undulating surface with the tendency to
increase the undulations [16]. At a critical field strength no wave propagation is possible
and the surface becomes unstable with respect to a stationary pattern of surface spikes
(Rosensweig or normal field instability). The same linear instability mechanism is operative
when dealing with (isotropic) ferrogels where elasticity comes into play as an additional
stabilizing factor. Using linearized dynamic equations and appropriate boundary conditions
one gets [83] the general surface wave dispersion relation for ferrogels (in a normal external
field), which contains as special cases those for ferrofluids and non-magnetic gels and can
be generalized to viscoelastic ferrofluids and magnetorheological fluids. A linear stability
analysis reveals the threshold condition, above which stationary surface spikes grow. This
critical field depends on gravity, surface tension and on the elastic (shear) modulus of the
gel, while the critical wavelength of the emerging spike pattern is independent of the latter.
As in the case of ferrofluids neither the threshold nor the critical wavelength depends on
the viscosity.
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A linear theory neither can determine the actual spike pattern, nor the true nature
of the instability (forward, backward etc.). The standard weakly nonlinear (amplitude
expansion) theory that provides suitable amplitude equations, by which those questions can
be answered, is hampered in the present situation by two problems. First the driving force
of the instability is manifest in the boundary conditions, but not in the bulk equations, and
second the surface profile (the location where the boundary conditions have to be applied)
changes with the order of the amplitude expansion. Thus, for ferrofluids a different path
has been chosen [84]. Neglecting the viscosity (and any other dissipative process) from the
beginning, the system is Hamiltonian and its stability governed by a free energy, more
precisely by the surface free energy, since the magnetic destabilization acts at the surface.
This approach is generalzed to (uniaxial) ferrogels by taking into account the elastic free
energy, additionally. The results have to be taken with the caveat that the neglect of the
viscosity is justified at the (linear) instability threshold, but is an unproven assumption
for the nonlinear domain and for the pattern forming and selecting process.

8.3 Microscopics of Magnetization Relaxation

The results of Berkov and co-workers are reported here, who studied the magnetization
relaxation after switching off the external field, and showed that the magnetization decay
time (rather the initial slope) rapidly increases with the particle concentration [85]. Such
a behaviour results from the formation of clusters due to the magnetodipolar particle
interaction. The average equilibrium size of clusters grows with the particle concentra-
tion (if the applied field magnitude is kept constant), so that after switching the field
off the magnetization relaxation of the system is slower for larger concentrations. The
concentration dependence of the ac-susceptibility χ(w, T ) of a ferrofluid is also studied.
According to simulations, ac-susceptibility itself increases with the particle concentration
c due to a collective response involving many particles (“dynamic clusters”). The peak of
the Im(χ(w))-dependence (for T = const) is slightly shifted towards higher frequencies
with increasing concentration. This behaviour is probably due to two competing trends:
remagnetization of a cluster should occur slower than for a single particle (larger size),
but demagnetizing interaction inside the clusters should lead to a faster magnetization
relaxation. Comparing the above results with the corresponding dependencies obtained
for rigid dipoles model (where the magnetic moment is fixed with respect to the parti-
cle), Berkov and coauthors demonstrated that for the magnetic anisotropy values typical
for commonly used ferrofluid materials (like magnetite) inclusion of ‘magnetic’ degrees of
freedom is essential to obtain a correct description of ferrofluid dynamics [86]. Using the
theory of magnetization relaxation in fine magnetic particle systems consisting of mechani-
cally fixed particles, a new and powerful method for the measurement of the energy barrier
density in polydisperse ferrofluids and their characterization is developed [87, 88].

A Legendre Transformations of Fields

To derive the Maxwell stress, some steps in section 3.1 involve the Legendre transforma-
tions u−E ·D and u−H ·B. They may not seem quite self-evident, because the constancy
of the conjugate variable (say Temperature T ) is usually a crucial input. Yet only very
few geometries sport a constant field. And the question is, are Legendre transformations
generally valid for the field variables?

First we summarize the considerations of a usual Legendre Transformation, taking the
free energy F as an example. The energy change of a closed system is dU =

∫

d3r du =
∫

d3r Tds = T
∫

d3r ds = TdS, as T is a spatial constant in equilibrium. Two systems
that come into thermal contact will exchange entropy, △S1 + △S2 = 0, to achieve equal
temperature. If one of the two systems is much larger than the other – call them bath

and subsystem, respectively – the bath temperature will not be changed by the contact,
Tbath = T = constant, though its entropy will, △Sbath +△S = 0. (The quantities without
a subscript belong to the subsystem.) So its energy may be written as a function of the
subsystem’s variables, △Ubath = T△Sbath = −T△S = −△(TS). The change in combined
energy △(U + Ubath) is therefore
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△(U + Ubath) = △(U − TS) =
∫

d3r(u − Ts) = △F (T ), (198)

the same as the change in the free energy, making it a very useful thermodynamic quantity.
This consideration does not appear transferable to field variables, as E (unlike the

temperature T ) is not generally constant in equilibrium. And our inability to write the
energy change dU =

∫

d3rE · dD as an expression analogous to TdS stalls an analogous
deduction at its very first step. To circumvent this difficulty, we partially integrate the
expression, dU =

∫

d3r E · dD =
∫

d3r φdρǫ = φ
∫

d3r dρǫ = φdQ, shifting the energy
from the dielectric region to that of the charge carrying metal, where the potential φ is a
spatial constant. The charge Q is a conserved quantity, so △Q1 + △Q2 = 0 holds when
two pieces of metal are brought into contact. Now the analogy T → φ, S → Q works,
and a Legendre transformed potential U −φQ makes sense, say for a smallish capacitor as
the subsystem, and a very large one (or a good battery) as the bath that maintains the
potential. Clearly, U − φQ is, as in the case of the heat bath, equal to the change of the
combined energy,

△(U + Ubath) = △(U − φQ) =
∫

d3r(u − φρǫ) =
∫

d3r(u − E · D). (199)

The last step, again involving a partial integration, shows that the combined change in
energy density may also be written as (u − E · D), which is therefore a perfectly healthy
potential. In fact, if we insist on a potential density that is local valid, only ũ ≡ u−E ·D
with dũ = Tds + µdρ − D · dE will do.

For magnetic variables, there is a similar need to consider systems in which the current
is confined to a certain region, say a coiled wire. As we need to consider a closed system in
equilibrium maintaining a persistent current, we start with superconducting coils. Defining
the magnetic flux as Φ =

∫

B · dA =
∫

A · ds, where A is the vector potential and s the
line element, we employ ∇ × H = jǫ/c to write the magnetic energy as

∫

d3r du =
∫

d3r H · dB =
∫

d3r jǫ · dA/c = JdΦ/c. (200)

Again, the second equal sign involves a partial integration, while the third takes the current
J =

∫

jǫ · dA, obtained by integrating jǫ over the cross section of the wire, as a constant,
because ∇ ·jǫ = ∇ · (c∇×H) = 0. The thermodynamic relation dU = · · ·+φdQ+JdΦ/c
shows Q, Φ are the quantities remaining constant in an isolated system, that the magnetic
counterpart to the conserved charge Q is the flux Φ, both remaining constant when the
system is compressed or sheared – as is known to be true for superconductors.

Breaking the currents in both circuits and reconnecting them such that the current go
through them consecutively may, in “thermodynamic talk,” may seen as: Two connected
coils “exchanging flux Φ to equalize their current J .” And there is also the possibility of a
flux-bath that imposes its current onto a coil with far fewer windings.13 So the replacements
T → J , S → Φ are thermodynamically sound,

△(U + Ubath) = △(U − JΦ/c) =
∫

d3r(u − A · jǫ/c) =
∫

d3r(u − H · B), (201)

and the potential ũ(H) ≡ u − H · B denotes the energy change of the total system.
Of course, we do not usually deal with superconducting coils. But we may substitute

the flux-bath by a battery (that maintains a constant voltage, and because of the Ohm law
also a constant current), the subsystem-coil by one made of normal metal. Concentrating
on the physics outside the wires, where the magnetizable medium only probes the local
field, not how it is generated, there is no reason why ũ(H) ≡ u − H · B does not yield a
perfectly valid thermodynamic description. [The closed system, described by u(B), needs
to be emulated by an adjusting battery that maintains the flux.]

13 The more windings, the larger the flux for a given current J . A coil with many windings,
or a large ∂Φ/∂J , therefore corresponds to a system with a big heat capacity, a large
∂S/∂T .
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B The General-Frame Thermodynamic Energy

The validity of Eq (142) is shown here directly by transforming the rest frame expression.
More specifically, we demonstrate ∂(u−v ·g)/∂D = E0, holding s, ρα, v, and B constant.
We start with the pleasingly simple expression

u = u0(D0 → D, B0 → B) + 1
2
ρv2, (202)

that is a result of the accidental cancellation of the terms from the first-order-Lorentz
transformation with that of the Tailor expansion,

u(D, B) = u0(D0, B0) + 2v · g0 + 1
2
ρv2

= u0(D0, B0) + 2v · (E × H)/c + 1
2
ρv2

= u0(D, B) + 1
2
̺v2.

Assuming lcr, or u = 1
2
(D2/ǫ + ρv2) with D0 = ǫE0, we have

u − v · gtot = 1
2
(D2/ǫ − ρv2) − v · (E × H)/c

= 1
2
(D2/ǫ − ρv2) − v · (D × H)/cǫ + O(v2/c2), (203)

and deduce

∂(u − v · gtot)/∂D

= (D + v × H/c)/ǫ = D0/ǫ = E0. (204)

Higher order terms (such as one ∼ D4 in the energy u) do not invalidate this result. The
terms in the magnetic field behave analogously.

In Eq (203), the explicit form of g in the lab frame was employed to deduce the lab
frame energy, Eq (142), from which then the lab frame energy flux, Eq (157), is deduced.
This may appear as an inconsistency, but is not, because with the rest frame expression for
g0 given, we already know that the term ∼ v is from the rest mass. No detailed information
about the energy flux is necessary here.
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35. Peter Kostädt, PhD Thesis University Hannover, 1995.
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68. M. Zŕınyi, L. Barsi, and A. Büki, Deformation of ferrogels induced by nonuniform

magnetic fields, J. Chem. Phys. 104 (1996) 8750
69. D. Collin, G.K. Auernhammer, O. Gavat, P. Martinoty, and H.R. Brand, Frozen-in

magnetic order in uniaxial magnetic gels: Preparation and physical properties, Macro-
mol. Rapid Commun. 24 (2003) 737

70. J. Lenglet, A. Bourdon, J.-C. Bacri, G. Demouchy, “Thermodiffusion in magnetic
colloids evidenced and studied by forced Rayleigh scattering” Phys. Rev. E 65 (2002)
031408

71. E. Blums, Some new problems of complex thermomagnetic and diffusion-driven con-

vection in magnetic colloids, J. Magn. Magn. Mater. 149 (1995) 111.
72. A. Ryskin, H.-W. Müller, and H. Pleiner, hermal convection in binary fluid mixtures

with a weak concentration diffusivity but strong solutal buoyancy forces, Phys. Rev. E
67 (2003) 046302.

73. A. Ryskin and H. Pleiner, The influence of a magnetic field on the Soret-dominated

thermal convection in ferrofluids, Phys. Rev. E 69 (2004) 046301.
74. A. Ryskin and H. Pleiner, Thermal convection in colloidal suspensions with negative

separation ratio, Phys. Rev. E 71 (2005) 056303.
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