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Abstract 

Cancer cells are the site of numerous metabolic and thermodynamic abnormalities. We focus this review on the inter-

actions between the canonical WNT/beta-catenin pathway and peroxisome proliferator-activated receptor gamma 

(PPAR gamma) in cancers and their implications from an energetic and metabolic point of view. In numerous tis-

sues, PPAR gamma activation induces inhibition of beta-catenin pathway, while the activation of the canonical WNT/

beta-catenin pathway inactivates PPAR gamma. In most cancers but not all, PPAR gamma is downregulated while the 

WNT/beta-catenin pathway is upregulated. In cancer cells, upregulation of the WNT/beta-catenin signaling induces 

dramatic changes in key metabolic enzymes that modify their thermodynamic behavior. This leads to activation of 

pyruvate dehydrogenase kinase1 (PDK-1) and monocarboxylate lactate transporter. Consequently, phosphorylation of 

PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into 

acetyl-coenzyme A (acetyl-CoA) in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. 

This leads to aerobic glycolysis in spite of the availability of oxygen. This phenomenon is referred to as the Warburg 

effect. Cytoplasmic pyruvate is converted into lactate. The WNT/beta-catenin pathway induces the transcription of 

genes involved in cell proliferation, i.e., MYC and CYCLIN D1. This ultimately promotes the nucleotide, protein and 

lipid synthesis necessary for cell growth and multiplication. In cancer, activation of the PI3K-AKT pathway induces an 

increase of the aerobic glycolysis. Moreover, prostaglandin E2 by activating the canonical WNT pathway plays also a 

role in cancer. In addition in many cancer cells, PPAR gamma is downregulated. Moreover, PPAR gamma contributes to 

regulate some key circadian genes. In cancers, abnormalities in the regulation of circadian rhythms (CRs) are observed. 

CRs are dissipative structures which play a key-role in far-from-equilibrium thermodynamics. In cancers, metabolism, 

thermodynamics and CRs are intimately interrelated.
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Introduction

Schrödinger in his famous book “What is life” [1] pro-

vided us a new understanding of the thermodynamics 

in living systems. By applying this to the thermodynam-

ics of physical, chemical and biological far-from-equi-

librium systems, Prigogine and his colleagues opened 

new avenues for the exploration of dissipative structures 

which occupy a major place in the living world [2, 3]. 

Cancer is an exergonic process in which heat flows from 

the tumor to its surroundings [4]. �e entropy produc-

tion rate is increased in cancer cells and is characteristic 

of irreversible processes driven by changes in heat pro-

duction, Gibbs energy, intracellular acidity, ionic con-

ductance, membrane potential gradient [5]. Numerous 

cellular mechanisms can induce and develop carcino-

genic processes. In most cancers, the WNT/beta-catenin 

pathway is upregulated while peroxisome proliferator-

activated receptor gamma (PPAR gamma) is downregu-

lated. �is profile has been observed in several diseases 
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[6] such as cancers [7, 8], type 2 diabetes [9], and certain 

neurodegenerative diseases (amyotrophic lateral sclero-

sis [10], Huntington’s disease [11], multiple sclerosis [12, 

13] and Friedreich’s ataxia [14]). �e opposite profile has 

been reported in arrhythmogenic right ventricular car-

diomyopathy (ARVC) [15, 16], osteoporosis [17–19], and 

certain neurodegenerative diseases (Alzheimer’s disease 

[20], Parkinson’s disease [21], bipolar disorder [22, 23] 

and schizophrenia [24]). From a thermodynamic view-

point and among numerous cellular processes involved 

in cancers, two major phenomena play a key role, i.e., 

aerobic glycolysis or the Warburg effect and disruption of 

circadian rhythms (CRs). �e thermodynamic dysregu-

lation induced by these two processes is consubstantial 

with metabolic abnormalities commonly found in can-

cers. PPAR dysfunction influences statistical mechan-

ics by modifying thermodynamic force, thermodynamic 

flow, and rate of entropy production [5, 25]. We focus 

our review on the opposing interactions observed in 

cancers between the canonical WNT/beta-catenin path-

way and PPAR gamma and their metabolic and energetic 

implications.

Canonical WNT/beta-catenin pathway

�e canonical WNT/beta-catenin pathway plays an 

important role in metabolism, embryonic development, 

cell fate, and epithelial-mesenchymal transition (EMT) 

[26]. �e canonical WNT activity is reflected by elevated 

levels of beta-catenin in the nucleus and/or cytoplasm, 

which can be detected by means of immunohistochemical 

staining, Western blotting and semiquantitative RT-PCR 

[27]. Its dysfunction is involved in numerous diseases, 

particularly in cancers [28–31]. �e transcription fac-

tor beta-catenin/T-cell factor/lymphoid enhancer factor 

(TCF/LEF) represents the key effector of the canonical 

WNT pathway (Figs. 1, 2). �e destruction complex con-

sists of AXIN, tumor suppressor adenomatous polyposis 

coli (APC), and glycogen synthase kinase-3 (GSK-3beta). 

�e destruction complex exerts a tight control on the 

beta-catenin signaling. In the absence of WNT ligands 

(“off state”), the destruction complex phosphorylates beta-

catenin which is then degraded in the proteasome. In the 

presence of WNT ligands (“on state”), the WNT receptor 

interacts with Frizzled (FZL) and LDL receptor-related 

protein 5/6 (LRP5/6). WNT receptor is associated with 

Dishevelled (DSH). �is triggers the disruption of the 

destruction complex and prevents degradation of beta-

catenin in the proteasome. Beta-catenin then translocates 

to the nucleus and interacts with TCF/LEF. �is leads to 

the stimulation of the beta-catenin target genes (pyruvate 

dehydrogenase kinase (PDK), monocarboxylate lactate 

transporter-1 (MTC-1), MYC, CYCLIN D1, cyclooxyge-

nase-2 (COX-2), AXIN) [32–35] (Fig. 1).

PPAR gamma

Peroxisome proliferator-activated receptor gamma is a 

ligand-activated transcriptional factor that belongs to 

the nuclear hormone receptor superfamily [36]. It het-

erodimerizes with the retinoid X receptor. PPAR gamma 

is expressed in numerous cell types, such as adipose tis-

sues, muscles, brain, and immune cells. PPAR gamma 

activates the expression of many genes and regulates 

glucose homeostasis, insulin sensitivity, lipid metabo-

lism, immune responses, cell fate and inflammation [37–

39]. PPAR gamma agonists thiazolidinediones (TZDs) 

Fig. 1 Schema of interactions between the canonical WNT/

beta-catenin pathway and PPAR gamma under aerobic glycolysis 

conditions in cancer. In the absence of the WNT ligands (“off state”), 

cytosolic beta-catenin is phosphorylated by GSK-3 beta. APS and 

AXIN combine with GSK-3 beta and beta-catenin to enhance the 

destruction process in the proteasome. In the presence of the WNT 

ligands (“on state”), Wnt binds both Frizzled and LRP5/6 receptors 

to initiate LRP phosphorylation and dishevelled-mediated Frizzled 

internalization. This leads to dissociation of the AXIN/APC/GSK-3 beta 

complex. Beta-catenin phosphorylation is inhibited which prevents 

its degradation in the proteasome. Thus, beta-catenin accumulates in 

the cytosol and then translocates to the nucleus to bind TCF-LEF co-

transcription factors. This induces the WNT-response gene transcrip-

tion (PDK, MCT-1, MYC, CYCLIN D1). Glucose itself activates the WNT 

pathway. PPAR gamma inhibits the beta-catenin/TCF-LEF-induced 

activation of WNT target genes. PDK inhibits the PDH complex in 

mitochondria. Thus pyruvate cannot be fully converted into acetyl-

CoA and enter the TCA cycle. MYC activates LDH-A which converts 

cytosolic pyruvate into lactate. MCT-1 favors lactate extrusion out 

of the cytosol which favors angiogenesis. MYC increases glutamine 

entry in the cytosol and mitochondria. MYC-induced glutamine 

enhances aspartate and nucleotide synthesis. APC adenomatous 

polyposis coli, alpha-KG alpha ceto-glutarate, DSH Dishevelled, FZD 

Frizzled, GSK-3beta glycogen synthase kinase-3beta, LDH lactate 

dehydrogenase, LRP5/6 low-density lipoprotein receptor-related 

protein 5/6, MCT-1 monocarboxylate lactate transporter-1, OAA: 

oxalo-acetic acid, PPAR gamm peroxisome proliferator-activated 

receptor gamma, PDH pyruvate dehydrogenase complex, PDK 

pyruvate dehydrogenase kinase, RTK receptor tyrosine kinase, TCF/LEF 

T-cell factor/lymphoid enhancer factor, TCA tricarboxylic acid, *WNT 

targets: PDK, MCT-1, MYC, CYCLIN D1
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improve insulin sensitivity in peripheral tissues [40] and 

ameliorate glucose tolerance and insulin sensitivity in 

type 2 diabetic patients [41]. TZDs act on the promoters 

of glucose transporter (GLUT-2) and glucokinase (GK) 

in pancreatic beta-cells and liver. Abnormalities of PPAR 

gamma are observed in several pathological states such 

as cancers, diabetes, obesity, and atherosclerosis. Some 

TZDs have been used for treating type 2 diabetes. PPAR 

gamma also plays an important role in regulating cardio-

vascular rhythms by controlling circadian variations of 

blood pressure and heart rate through BMAL1 [42, 43]. 

However, numerous side effects induced by TZD have 

been reported [44].

Opposing e�ects of the canonical WNT/beta-catenin 

pathway and PPAR gamma

�e link between the WNT/beta-catenin pathway and 

PPAR gamma involves the TCF/LEF beta-catenin-bind-

ing domain and a catenin binding domain within PPAR 

gamma. In numerous mammalian cells, PPAR gamma 

and WNT/beta-catenin signaling behave in an opposite 

manner [45–50]. In some diseases, although the WNT/

beta-catenin pathway is downregulated, PPAR gamma 

appears to be upregulated and vice versa (see: “Intro-

duction”) [6]. In several cellular systems, beta-catenin 

is inhibited by PPAR gamma agonists [45, 47, 48, 51]. It 

has also been observed that inhibition of the WNT/beta-

catenin pathway induces activation of PPAR gamma [15].

Aerobic glycolysis in cancer cells: role of the canonical WNT 

signaling

�e role of the WNT/beta-catenin signaling in cancer 

development, especially in colorectal cancer, is now bet-

ter understood [52, 53]. Upregulation of the WNT/beta-

catenin pathway via TCF/LEF leads to cell proliferation, 

EMT, migration and angiogenesis [54–56]. In cancer 

cells, overactivation of the WNT/beta-catenin pathway 

induces aerobic glycolysis. �is allows glucose utilization 

for cell proliferation [35]. �us in a large part, glucose 

supply is fermented in lactate regardless of oxygen avail-

ability. �is phenomenon is referred to as aerobic glyco-

lysis or the Warburg effect [57].

In cancer, the behavior of two key enzymes involved in 

glucose metabolism is modified leading to the Warburg 

effect. Activation of PDK-1 is required for the Warburg 

aerobic glycolysis. Upregulation of WNT/beta-catenin 

signaling activates both PDK-1 and MCT-1 [35, 58]. 

PDK-1, a major regulator of glucose metabolism, phos-

phorylates the pyruvate dehydrogenase complex (PDH) 

which is inhibited and largely prevents the conversion 

of pyruvate into acetyl-CoA in mitochondria [59]. In 

colon cancer, PDK-1 is upregulated [35, 60], so that the 

conversion of pyruvate into acetyl-CoA in mitochondria 

is diminished with a consequent reduction of acetyl-

CoA entering the tricarboxylic acid (TCA) cycle. �is 

induces aerobic glycolysis in spite of the availability of 

oxygen. PDK-1 has also been observed to be upregulated 

in several other cancers [61, 62]. Cytosolic pyruvate is 

converted into lactate through activation of lactic dehy-

drogenase-A (LDH-A). Upregulation of both LDH-A 

and MCT-1 results in pyruvate being diverted towards 

the formation of lactate and the secretion of the latter 

outside of the cell, which favors angiogenesis [63] and 

ultimately leads to anabolic production of biomass i.e., 

nucleotide synthesis [64, 65]. �e Warburg effect partly 

shunts the TCA cycle leading to aerobic glycolysis which 

is less efficient in terms of ATP production. �e most 

cost effective way producing ATP is via glucose oxida-

tion (ATP/O2  =  6.4), since the pathway via free fatty 

acid beta-oxidation is less efficient (ATP/O2 = 5.6). �is 

takes about 11% more  O2 to produce the same amount 

of ATP from fatty acids as it does from glucose. Moreo-

ver, PDK-1 and 2 enhance angiogenesis [66, 67]. Block-

ing WNT reduces the PDK-1 level via the transcription 

regulation and reduces in vivo tumor growth [35]. Con-

versely, PPAR gamma activation selectively decreases 

PDK mRNA [68]. PDKs allow metabolic flexibility [69] 

and are transcriptionally regulated by insulin, glucocor-

ticoids, thyroid hormone and fatty acids [70]. Several 

diseases presenting PDK abnormalities are often associ-

ated with type 2 diabetes, obesity, metabolic disorders, 

cardiomyopathies, neuropathies and cancers.

Fig. 2 Synthetic diagram of opposing effects of PPAR gamma and 

canonical WNT/beta-catenin signaling in cancer. Green arrow activa-

tion; red arrow inhibition; A-CoA acetyl-CoA, GSK-3beta glycogen 

synthase kinase-3beta, IC lactate intracellular lactate, EC lactate 

extracellular lactate, GSK-3beta glycogen synthase kinase-3beta, 

LDH-A lactico-dehydrogenase-A, MCT-1 monocarboxylate lactate 

transporter-1, PI3 K-AKT phosphatidylinositol 3-kinase-protein kinase 

B, PDH pyruvate dehydrogenase, PDK pyruvate dehydrogenase 

kinase, TCF/LEF T-cell factor/lymphoid enhancer factor, PPAR gamma 

peroxisome proliferator-activated receptor gamma
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In colon cancer, activation of WNT/beta-catenin sign-

aling decreases the oxidative metabolism in the TCA 

cycle and promotes cell proliferation [35]. In addition, 

the WNT/beta-catenin pathway induces the transcrip-

tion of genes involved in cell proliferation, particularly 

CYCLIN D1 and MYC operating through the G1 phase 

[71–74]. MYC activates aerobic glycolysis and glutami-

nolysis and favors nucleotide synthesis [75, 76]. MYC 

also activates LDH-A, induces glutamine uptake into the 

cell and mitochondria, and stimulates aspartate synthesis 

which favors nucleotide synthesis [75] (Fig.  1). Moreo-

ver, MYC increases the hypoxia-inducible factor -1alpha 

(HIF1A) which controls PDK-1 [77]. Part of the pyruvate 

is converted into acetyl-CoA which in turn enters the 

TCA cycle and is converted into citrate. �is promotes 

protein and lipid synthesis. Cellular accumulation of 

metabolic intermediates (aspartate, serine, glycine, and 

ribose) allows de novo nucleotide synthesis, which con-

tributes to growth and proliferation.

Phosphofructokinase (PFK), an allosteric enzyme, is 

responsible for glycolytic oscillations. PFK can lead to 

instabilities beyond which a new state can be organized 

in time and in space [78]. A positive feedback is respon-

sible for periodic behavior. �ese far-from-equilibrium 

oscillatory mechanisms come within the field of dissipa-

tive structures initially described by Illia Prigogine [79]. 

Elevated PFK-1 activity is characteristic of cancer cells 

and is induced in response to oncogenes [80].

Cancer cells are characterized by increased glucose 

consumption. High serum glucose levels may modu-

late cancer-related processes. Glucose itself can directly 

impact the canonical WNT pathway [81]. High glucose 

level enhances the nuclear translocation of beta-catenin 

in response to WNT activation. In cancer cells, glu-

cose-induced beta-catenin acetylation favors the WNT 

pathway.

Aerobic glycolysis and vitamin C

It has been recently described a novel antitumoral mech-

anism of vitamin C [82]. Mutation of the proto-oncogene 

KRAS is often present in colon and pancreatic cancer. In 

KRAS mutant colorectal cancer, this mechanism involves 

the Warburg metabolic disruption. In the absence of vita-

min C, pyruvate kinase PKM2 is phosphorylated, then 

translocates to the nucleus and binds the beta-catenin/

TCF/LEF transcriptional factor. �is promotes the 

MYC transcription which in turn enhances GLUT-1 and 

Polypyrimidine Tract Binding Protein (PTB) expression. 

In the presence of vitamin C which enters into the cell 

via GLUT-1, RAS is detached from the cell membrane 

which blocks the PKM2 phosphorylation. �is induces 

downregulation of GLUT-1 and PKM2 expression via 

disruption of the beta-catenin/TEF/LEF transcriptional 

complex. �is leads to downregulation of MYC and inhi-

bition of the Warburg pathway. �us, vitamin C uncou-

ples the Warburg metabolic switch in KRAS mutant 

colon cancer.

Thermodynamics and lawless-disorderly cancer growth

From a thermodynamic viewpoint, the lawless-disor-

derly cancer growth and the orderly fetal growth share 

some similar features [83]. Hypoxic conditions reported 

in cancer cells for their growth requirements resemble 

to those observed during normal fetal growth, which 

requires a relatively low oxygen tension. For both cancer-

ous and fetal growth, low energy requirements are linked 

to the tumorigenic arm of acute inflammation [83], as 

in wound healing. Moreover, the production of lactate 

under aerobic glycolysis conditions is characteristic of 

the human placenta [84], a tissue in which the population 

of contractile myofibroblasts is important [85]. In can-

cer (mammary carcinoma, epithelial cells in cancerous 

mammary glands), fibrotic lesions (Dupuytrens nodules, 

hypertrophic scars) [86], and normal placental stem villi 

[87], the main myosin molecular motor in myofibroblasts 

is the non muscle myosin (NMM). Kinetics of contrac-

tile NMM crossbridges are dramatically slow [88] and 

their entropy production rate is extremely low [89]. �e 

presence of numerous myofibroblasts is associated with 

the aerobic glycolysis metabolism. In epithelial cancers, 

myofibroblasts represent a significant part of the stroma 

reaction. Myofibroblasts, epithelial cells, and connective 

tissue cells participate to cancer invasion, with loss of 

epithelial characteristics and acquisition of mesenchymal 

properties. �is refers to as EMT [26] which greatly influ-

ences the invasive carcinoma progression and in which 

the canonical WNT pathway plays a key role. WNT3a 

favors myofibroblast differentiation by upregulating the 

transforming growth factor (TGF-beta1). �is occurs 

through SMAD2 in a beta-catenin-dependent manner 

[90]. Importantly, it has been recently demonstrated that 

aerobic glycolysis is induced in response to TGF-beta1 

[91].

Activation of WNT/beta-catenin pathway and inactivation 

of PPAR gamma in cancers

WNT/beta-catenin signaling has been found to be acti-

vated in cancers [92, 93]. WNT1 was first discovered 

as a proto-oncogene in a breast cancer mouse model. 

Increased expression of beta-catenin may be due to fac-

tors such as mutations in beta-catenin, abnormalities in 

the beta-catenin destruction complex, mutations in APC, 

overexpression of WNT ligands, and loss of inhibition or 

decreased activity of regulatory pathways. Alterations in 

gene expression of CTNNB1 which encodes beta-catenin, 

have been reported in numerous cancers such as breast 
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colorectal, melanoma, prostate and lung tumors. WNT 

1, WNT2 and WNT7A ligand-proteins are overex-

pressed in glioblastoma, esophageal cancer and ovarian 

cancer respectively. Proteins of the TCF/LEF family and 

WNT5A may also induce cancer. Repression of WNT/

beta-catenin signaling can prevent EMT and inhibit 

metastasis. Mutations of the WNT pathway components 

are associated with many cancers, particularly with colo-

rectal cancer. APC deficiency and beta-catenin muta-

tions upregulate the WNT/beta-catenin pathway and 

prevent beta-catenin degradation. �is leads to excessive 

stem cell renewal and cell proliferation that predisposes 

to tumor genesis particularly for colorectal cancer [94]. 

Nuclear accumulation of beta-catenin drives cancer cell 

proliferation. In colon cancer, beta-catenin-TCF/LEF 

signaling is activated [95], and activation of the WNT 

pathway via APC gene mutations favors cell proliferation 

[96]. Mutations in PPAR gamma are linked with human 

colon cancer [97].

Several studies have presented evidence for a protec-

tive role of PPAR gamma against cancer. In colon cancer, 

PPAR gamma downregulates the oncogene beta-catenin 

and suppresses cell proliferation [98]. In contrast, other 

studies have implicated PPAR gamma in the promotion 

and development of cancer [8]. �us, PPAR gamma acti-

vation by specific agonists can induce growth inhibition, 

apoptosis and differentiation of numerous tumor cells. 

On the contrary, overexpression of PPAR gamma has 

been reported in tumors of colon, breast, prostate, stom-

ach, salivary gland, cervix, ovary, bladder, lung, testes and 

the neural crest element of sympathetic nervous system 

[7]. �e biological significance of PPAR gamma in cancer 

remains controversial. Activation of PPAR gamma can 

induce either tumor suppressive or promoting responses. 

On the one hand, PPAR gamma can act as a tumor 

inhibitor in colon cancer [99–105], in breast cancer 

[106–110], in urological cancer [110–115], in lung can-

cer [116–118], and in gastric cancer [119–122]. On the 

other hand, PPAR gamma can act as a tumor promotor in 

colon cancer [123–126], in breast cancer [127–132], and 

in urological cancer [133–135]. �ere is no clear unify-

ing accepted mechanism explaining these contradictory 

evidences concerning either the protective role of PPAR 

gamma or their role on promotion/development of can-

cer. �is might be partly explained by cell type-specific 

effects, organ-specific effects, receptor-independent 

effects according to the PPAR gamma agonist used. �is 

might also be due to specific pharmacokinetic properties 

of PPAR gamma ligands or the stage of cancer develop-

ment at which the PPAR gamma ligand is administered 

[8]. �ese arguments are hypotheses, and for the time 

being, no universal mechanism is able to explain the con-

tradictory effects of PPAR gamma ligands on cancers.

Role of PI3K-AKT pathway in aerobic glycolysis and cancers

Hyperactivation of phosphatidylinositol 3-kinase (PI3K)-

protein kinase B (AKT) pathway is associated with an 

increased rate of glucose metabolism in tumor cells 

[136]. AKT signaling directly acts on aerobic glycolysis in 

cancer cells. AKT regulates the localization of GLUT1 in 

the plasma membrane and hexokinase expression. It also 

activates phosphofructokinase-1 (PFK-1) which directly 

phosphorylates PFK-2. �is leads to produce fructose-

2.6-bisphosphate, an activator of PFK-1. AKT activa-

tion causes an increase in aerobic glycolysis or Warburg 

effect in cancer. PI3K-AKT pathway promotes cell sur-

vival, cell growth, cell proliferation, cell migration and 

angiogenesis in response to extracellular signals includ-

ing hormones and growth factors. �is pathway is stimu-

lated by the binding of extracellular ligands to a receptor 

tyrosine kinase (RTK) located in the plasma membrane 

(Fig. 1). �is signaling is upregulated in certain cancers. 

�rough phosphorylation of GSK-3beta, PI3  K-AKT 

favors the G1 phase of the cell cycle. GSK-3beta phos-

phorylation decreases the degradation of beta-catenin 

in the proteasome. �us, TCF/LEF transcription factor 

is activated which in turn favors transcription of the tar-

get gene CYCLIN D1 [137]. Consequently, by decreasing 

the GSK-3beta activity, AKT pathway behaves similarly 

to the WNT pathway. Aberrant activation of PI3K-AKT 

is often associated with cancers, including glioblasto-

mas, ovarian, pancreatic and breast cancers [138]. AKT 

mRNA is increased in breast and prostate cancer. PI3K-

AKT contributes to angiogenesis by acting on the vascu-

lar endothelial growth factor in endothelial cells and on 

the endothelial nitric oxide synthase. �is activates vaso-

dilation and vascular remodeling [139]. Moreover, the 

PI3K-AKT pathway increases the hypoxia-inducible tran-

scription factor [140].

�e phosphatase and tensin homologue (PTEN) repre-

sents the main brake of the PI 3′-OH kinase (PIK3)-AKT 

pathway [141]. PI3K generate phosphatidylinositol-3,4,5-

triphosphate (PIP3) from PIP2. AKT is activated by PIP3. 

PTEN is a PIP3-phosphatase and its activity is opposed 

to that of PI3K. PI3K-AKT signaling is a major pathway 

which is activated in cancer. PTEN appears to be rel-

evant against cancer progression and represents a target 

for somatic cancer inactivation. In some cancers (endo-

metrial, breast, and colorectal cancers), PI3K and PTEN 

mutations coexist. PTEM also induces a decrease in can-

cer cell proliferation due to cell cycle arrest in the G1 

phase.

Prostaglandins, WNT and PPAR gamma

Several studies have established the role of prostaglandin 

E2 (PGE2) by activating the WNT/beta-catenin path-

way. �e link between PGE2 and the canonical WNT 
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pathway suggests that chronic inflammation induced by 

a prolonged increase of PGE2 could lead to activation of 

WNT signaling resulting in cell proliferation and cancer. 

PGE2 enhances the beta-catenin-dependent transcrip-

tion [142, 143]. PGE2 promotes colon cancer cell growth 

through the beta-catenin pathway. �us, blockage of 

WNT/beta-catenin signaling can be of interest for cancer 

treatment. In treatment of colorectal cancer, nonsteroi-

dal anti-inflammatory drugs (NSAIDs) induce benefi-

cial effects [144], partly due to their interaction with the 

beta-catenin pathway and their inhibition of the PGE2 

synthesis. PGE2 modulates the WNT activity in hemat-

opoietic stem cell (HSC) in zebrafish. Inhibition of PGE2 

synthesis blocks alterations in HSC induced by WNT. 

PGE2 modifies the WNT signaling cascade at the level of 

beta-catenin degradation through the cAMP/PKA path-

way. WNT activation in stem cells requires PGE2 [145]. 

Dimethyl-prostaglandin E2 increases HSC in  vivo. In 

addition, dimethyl-prostaglandin E2 leads to the forma-

tion of components of the WNT pathway [146]. WNT 

signaling upregulates interleukin (IL)-7R and IL-2Rbeta. 

In neuroectodermal (NE-4C) stem cells, PGE2 inter-

acts with the canonical WNT signaling through PKA 

and PI3K [147]. In WNT-induced cells, beta-catenin is 

increased and the WNT-target genes (Ctnnb1, Ptgs2, 

Ccnd1, Mmp9) are significantly upregulated after PGE2 

use. PPAR gamma and proinflammatory enzyme path-

ways are interrelated. Decreased expression of PPAR 

gamma and high levels of COX-2 have been reported 

in many cancers [148]. TZDs decrease COX-2, inhibit 

growth of non-small-cell lung cancer cells in  vitro, and 

block tumor development. TZDs diminish COX-2 and 

PGE2 through PPAR gamma. �e PPAR gamma activa-

tor 15dPGJ2 plays an anti-inflammatory role in a PPAR 

gamma-dependent manner, decreasing COX-2, PGE2 

and iNos expression [149].

Circadian rhythms (CRs), cancers, metabolism 

and thermodynamics

CRs can be defined as endogenous, entrainable free-run-

ning periods that last approximately 24  h. CRs are far-

from-equilibrium dissipative structures and are due to a 

negative feedback produced by a protein on the expres-

sion of its own gene [150–152]. �ey operate in far-

from-equilibrium manner if affinity of the studied system 

is ≫RT (R is the universal gas constant and T is the abso-

lute temperature), and generate order spontaneously by 

exchanging energy with their external environment [2, 

153]. In mammals, CRs involve several major critical 

transcription factors such as circadian locomotor output 

cycles kaput (CLOCK), brain and muscle aryl-hydrocar-

bon receptor nuclear translocator-like1 (BMAL1), period 

1 (PER1), period 2 (PER2), and period 3 (PER3) [154, 

155]. Transcription/translation autoregulatory feedback 

loops with both activating and inhibiting pathways are 

involved in CRs [156, 157].

Circadian rhythms govern numerous physiological 

and metabolic functions [158]. �us, CRs are observed 

in sleep-awake and feeding patterns, energy metabolism, 

body temperature, hormone secretion, heart rate and 

blood pressure. Following epidemioloigical and genetic 

probes, it has been suggested that disruption of CRs may 

be directly linked to cancer, leading to aberrant cellular 

proliferation [159]. Since numerous connections between 

the circadian clock and cellular metabolism have been 

reported, it is thougth that the abnormal metabolism 

observed in cancer may be a consequence of disrupted 

CRs. CRs within the cell regulate the timing of many 

important life cycles [160]. �e phase diffusion constant 

depends on the free-energy dissipation per period. Oscil-

lations are driven by multiple irreversible cycles that 

hydrolyze fuel molecules such as ATP. �e free energy 

consumed per period is proportional to the number of 

phase coherent periods. A decreased BMAL1 function 

modifies the behavior of genes involved in the canoni-

cal WNT pathway [161]. Beta-catenin induces PER2 

degradation altering circadian clock gene in intestinal 

mucosa of ApcMin/+ mice [162]. A deceased expression 

level of PER1 and/or PER2 has been reported in numer-

ous cancers: breast cancer [163], prostate cancer [164], 

pancreatic cancer [165], colorectal cancer [166], chronic 

myeloid leukemia [167], and glioma [168, 169].

Peroxisome proliferator-activated receptors interferes 

with the mammalian clock and energy metabolism [170]. 

PPARs are rhythmically expressed in mammalian tis-

sues [171] and directly interact with the core clock genes. 

PPAR gamma exhibits variations in diurnal expression in 

mouse fat, liver and blood vessels [42]. Deletion of PPAR 

gamma in mouse impairs diurnal rhythms [172]. PPAR 

gamma plays an important role in the coordinated con-

trol of circadian clocks, metabolism and cardiac perfor-

mance. PGC-1 alpha, a transcriptional co-activator that 

regulates energy metabolism, is rhythmically expressed 

in the liver and skeletal muscle of mice. PGC-1 alpha 

upregulates the expression of the clock genes BMAL1 

and Rev-erb alpha. Mice lacking PGC-1 alpha show 

changes in CRs and metabolism [173]. PGC-1 alpha 

acts as a stress sensor in cancer cells. In maintaining 

metabolic homeostasis, PGC-1 alpha favors cancer cell 

survival [174]. PGC-1 alpha interfers in a very complex 

manner with nuclear receptors such as Rev-erb, ROR, 

PPARs [175]. PPAR alpha and gamma up-regulate the 

expression of Rev-erb alpha and BMAL1 by binding to 

their promotors. PGC-1 potentiates ROR alpha tran-

scriptional activity and enhances both Rev-erb alpha 

and BMAL1 transcription. Moreover after serum shock, 
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GSK-3beta-mediated stabilization of Rev-erb alpha plays 

a key role to initiate, maintain and synchronize CRs.

Conclusions

Cancers exhibit thermodynamic and metabolic altera-

tions and abnormal CRs. In many cancers but not all, the 

canonical WNT/beta-catenin pathway is upregulated, 

while PPAR gamma is downregulated, the two systems 

behaving in an opposite manner. Overactivation of the 

WNT pathway results in cell proliferation due to the 

activation of certain target genes of beta-catenin, such as 

MYC and CYCLIN D1. �is promotes protein synthesis 

and angiogenesis. PDK and MCT-1 are also target genes 

of beta-catenin, explaining the significant decrease in the 

transformation of pyruvate into acetyl-CoA in mitochon-

dria and the formation of intracellular lactate, which will 

be extruded out of the cell. �is is referred to as aerobic 

glycolysis or the Warburg phenomenon. �e expression 

of PPAR gamma is decreased due to the overactivation 

of WNT/beta-catenin signaling. Circadian rhythms, dis-

sipative structures which are governed by the laws of 

far-from-equilibrium thermodynanics are disrupted in 

cancers. �ey are influenced by both the WNT/beta-

catenin pathway and PPAR gamma. Changes in thermo-

dynamics, metabolism and circadian rhythms are tightly 

linked in cancers.
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