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ABSTRACT

In this paper we present a deep learning method to predict the temporal evolution of dissipative dy-
namic systems. We propose using both geometric and thermodynamic inductive biases to improve
accuracy and generalization of the resulting integration scheme. The first is achieved with Graph
Neural Networks, which induces a non-Euclidean geometrical prior with permutation invariant node
and edge update functions. The second bias is forced by learning the GENERIC structure of the
problem, an extension of the Hamiltonian formalism, to model more general non-conservative dy-
namics. Several examples are provided in both Eulerian and Lagrangian description in the context
of fluid and solid mechanics respectively, achieving relative mean errors of less than 3% in all the
tested examples. Two ablation studies are provided based on recent works in both physics-informed
and geometric deep learning.

1 Introduction

Computer simulation has become a standard tool in a wide variety of fields, from natural to social sciences, in order
to simulate physical phenomena and predict its future behaviour. Simulation models enable engineers to find optimal
designs which can later be validated in a much more expensive experimental set-ups. Thus, it is important to develop
models based on mathematical and physical foundations which ensure the reliability of the results. With the irruption
of the information era, recent research lines have focused on the use of data-based deep learning algorithms which
overcome some of the limitations of traditional methods, such as handling highly nonlinear dynamics [1], problems
whose mathematical formulation is unknown [2] or real-time simulation performance [3].

However, deep learning is usually very demanding in both data and computational power. A present challenge is not
only to develop numerical algorithms that speed-up the already complicated neural network models but also to build
smarter architectures which take advantage of the problem structure, potentially reducing the data consumption and
improving its generalization. Two historical examples are convolutional [4] and recurrent [5] neural networks, which
exploit the structured data in grid elements and timesteps to induce translation and time invariance respectively, both
remaining as major breakthroughs in their respective fields.

Motivated by the study of such architectures, which exploit the invariant quantities of the problem, a new machine
learning paradigm recently arose known as geometric deep learning [6]. The key insight is to impose specific con-
straints related to the symmetries of the problem, acting as a strong inductive bias to the learning process. This
framework is not only restricted to regular structured data (images or time series) but also to a general case of relations
(edges) over arbitrary entities (nodes), mathematically represented with a graph.

In a similar way, physics problems have an intrinsic mathematical structure unveiled by centuries of theoretical and
experimental knowledge. From Newton’s laws of motion to the Standard Model, the laws of nature can often be
described as a set of partial differential equations (PDEs) which can also lead neural networks to find the correct
solution of a dynamical problem. These are the foundations of the so-called physics-informed deep learning.
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Thermodynamics-informed Graph Neural Networks

The present work aims to combine both inductive biases in order to learn a physical simulator able to predict the
dynamics of complex systems in the context of fluid and solid mechanics.

2 Background

2.1 Physics-informed deep learning

Recent works about predicting physics with neural networks [7, 1] have demonstrated the convenience of using phys-
ical constraints to exploit the dynamical properties of a simulation problem. In fact, the Lagrangian and Hamiltonian
reformulations of Newton’s classical equations of motion describe a rich mathematical theory based on the Poisson
bracket and a symplectic manifold structure. This topological property can be applied to neural networks obtaining
robust time integrators, as shown in plenty of recent literature [8, 9, 10, 11, 12].

This structure can be extended to non-conservative systems using a dissipative bracket with the so-called GENERIC
formalism [13, 14]. Several works have already addressed the imposition of this structure bias [15, 16, 17, 3, 18],
but are hard to learn as the standard multilayer perceptron architectures may not be adequate for larger systems or
phenomena whose GENERIC formulation is more complex.

2.2 Geometric deep learning

The consideration of a general graph theory framework is motivated by the fact that certain data are not structured
in the usual Euclidean space, but in a more complex manifold. For instance, solving PDEs on arbitrary domains is a
common problem in physics and engineering, whose solution is rarely found in an Euclidean manifold.

Several graph-based works have achieved great improvements in physics problems such as predicting atomic bond
forces [19], particle tracking in high energy physics [20, 21], n-body problem with more general interactions [22,
23, 2], or learning simulators to predict complex fluid interactions [24] and meshed domains [25, 26]. These last
approaches include the dynamics of the system by predicting the velocity or acceleration, depending on the order of
the governing PDE, and integrating them in time. However, they do not include any physical information about the
rest of the predicted variables, which remain as black-box direct predictions.

In this work, we propose a learning method of the GENERIC operators and potentials using graph neural networks.
This graph-based architecture exploits both the geometrical constraints of discretized systems and the thermodynami-
cally consistent integration scheme of the GENERIC formalism to predict the time evolution of dynamical systems.

The present paper is organized as follows. In section III, we formalize the problem statement and introduce the
metriplectic and geometrical inductive biases induced by the proposed architecture. In section IV, we provide three
examples of fluid and solid mechanics comparing the results with other methods. Concluding remarks are given in
section V.

3 Methodology

3.1 Problem Statement

Let z ∈ M ⊆ Rn be the independent state variables which fully describe a dynamical system up to a certain level
of description, with M the set of all the admissible states (space state) which is assumed to have the structure of a
differentiable manifold in Rn. The given physical phenomenon can be expressed as a system of differential equations
encoding the time evolution of its state variables z,

ż =
dz

dt
= F (z, t), t ∈ I = (0, T ], z(0) = z0, (1)

where t refers to the time coordinate in the time interval I and F (z, t) refers to an arbitrary nonlinear differential
function.

The goal of this paper is to find the convenient mapping F for a dynamical system governed by Eq. (1) from data, in
order to efficiently predict its time evolution after a prescribed time horizon T using deep learning [27]. The solution
is forced to fulfill the basic thermodynamic requirements of energy conservation and entropy inequality restrictions
via the GENERIC formalism.
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3.2 Metriplectic structure: The GENERIC formalism

In this work, we guarantee the physical meaning of the solution by enforcing the GENERIC structure of the system
[13, 14], a generalization of the Hamiltonian paradigm to dissipative systems. The GENERIC formulation of time
evolution for nonequilibrium systems, described by the set of z state variables, is given by

dz

dt
= {z, E}+ [z, S]. (2)

The conservative contribution is assumed to be of Hamiltonian form, requiring an energy potential E = E(z) and a
Poisson bracket {z, E} acting on the state vector. This accounts for the reversible dynamics in classical mechanics,
expressed by the time structure invariance of the Poisson bracket. Similarly, the remaining irreversible contribution to
the energetic balance of the system is generated by the nonequilibrium entropy potential S = S(z) with an irreversible
or friction bracket [z, S]. This term is considered an extension of Landau’s idea of the time evolution of a state variable
towards its equilibrium value via a dissipation potential [28].

For practical use, it is convenient to reformulate the bracket notation using two linear operators:

L : T ∗M→ TM, M : T ∗M→ TM, (3)

where T ∗M and TM represent, respectively, the cotangent and tangent bundles of the state spaceM. These operators
inherit the mathematical properties of the original bracket formulation. The operatorL = L(z) represents the Poisson
bracket and is required to be skew-symmetric (a cosymplectic matrix). Similarly, the friction matrix M = M(z)
accounts for the irreversible part of the system and is symmetric and positive semi-definite to ensure the positiveness
of the dissipation rate.

Replacing the original bracket formulation in Eq. (2) with their respective operators, the time-evolution equation for
the state variables z is derived,

dz

dt
= L

∂E

∂z
+M

∂S

∂z
. (4)

However, the restrictions of L and M are not sufficient to guarantee a thermodynamically consistent description of
the dynamics of the system, and two degeneracy conditions are introduced

{S, z} = [E,z] = 0. (5)

The first one states that the entropy is a degenerate functional of the Poisson bracket, showing the reversible nature
of the Hamiltonian contribution to the dynamics. The second expression states the conservation of the total energy
of the system with a degenerate condition of the energy with respect to the friction bracket. These restrictions can be
reformulated in a matrix form in terms of the L andM operators, resulting in the following degeneracy restrictions:

L
∂S

∂z
= M

∂E

∂z
= 0. (6)

The degeneracy conditions, in addition to the non-negativeness of the irreversible bracket, guarantees the first (energy
conservation) and second (entropy inequality) laws of thermodynamics,

dE

dt
= {E,E} = 0,

dS

dt
= [S, S] ≥ 0. (7)

The specific topological requirements based on a pair of skew-symmetric (L) and symmetric (M ) operators over
a smooth manifold is called a metriplectic structure [29, 30]. We make use of this hard constraint to construct a
thermodynamically-sound integrator, acting as the first inductive bias of our approach. This integration is performed
using a forward Euler scheme with time increment ∆t and the GENERIC formalism in Eq. (4), resulting in the
following expression

zt+1 = zt + ∆t

(
L
∂E

∂zt
+M

∂S

∂zt

)
. (8)

In order to learn the GENERIC operators L, M and potentials E, S for each particle of the domain, we propose the
use of graph-based deep learning, which exploits the geometrical structure of that specific domain.

3



Thermodynamics-informed Graph Neural Networks

3.3 Geometric structure: Graph Neural Networks

Let G = (V, E ,u) be a directed graph, where V = {1, ..., n} is a set of |V| = n vertices, E ⊆ V ×V is a set of |E| = e
edges and u ∈ RFg is the global feature vector. Each vertex and edge in the graph is associated with a node and a
pairwise interaction between nodes respectively in a discretized physical system. The global feature vector defines the
properties shared by all the nodes in the graph, such as gravity or elastic properties. For each vertex i ∈ V we associate
a feature vector vi ∈ RFv , which represents the physical properties of each individual node. Similarly, for each edge
(i, j) ∈ E we associate an edge feature vector eij ∈ RFe .

In practice, the positional state variables of the system (qi) are assigned to the edge feature vector eij so the edge
features represent relative distances (qij = qi − qj) between nodes, giving a distance-based attentional flavour to the
graph network [31, 32, 33] and translational invariance [34, 35]. The rest of the state variables are assigned to the
node feature vector vi. The external interactions, such as forces applied to the system, are included in an external load
vector f i. A simplified scheme of the graph codification of a physical system is depicted in Fig. 1.

f i

qij

zi
u

zj
eij

vi

vj

u

Figure 1: Physical system domain discretized in a mesh with node state variables zi, relative nodal distances qij ,
external interactions f i and global properties u (top). Graph representation of the same system, with node and edge
attributes: vi and eij (bottom).

These features are fed into an encode-process-decode scheme [23], which consists on several multilayer perceptrons
(MLPs) shared between all the nodes and edges of the graph. The algorithm consists of five steps (Fig. 2):

3.3.1 Encoding

We use two MLPs (εv , εe) to transform the vertex and edge initial feature vectors into higher-dimensional embeddings
xi ∈ RFh and xij ∈ RFh respectively,

εe : RFe −→ RFh

eij 7−→ xij

εv : RFv −→ RFh

vi 7−→ xi.
(9)

3.3.2 Processing

The processor is the core task of the algorithm, as it shares the nodal information between vertices via message passing
and modifies the hidden vectors in order to extract the desired output of the system. First, a MLP (πe) computes the
updated edge features x′ij for each graph edge, based on the current edge features, global features, and sending and
recieving node,

πe : R3Fh+Fg −→ RFh

(xij ,xi,xj ,u) 7−→ x′ij .
(10)

Then, for each node the messages are pooled with a permutation invariant function φ based on the neighborhood
Ni = {j ∈ V|(i, j) ∈ E} of the node i. Last, the node embeddings are updated with a second MLP (πv) using the
current node features, the pooled messages, the external load vector and the global features,

πv : R2Fh+Ff+Fg −→ RFh

(xi, φ(x′ij),f i,u) 7−→ x′i
(11)

where (·, ·) denotes vector concatenation and x′i and x′ij are the updated nodal and edge latent vectors.

4



Thermodynamics-informed Graph Neural Networks

The processing step is equivalent to the message passing [36] of 1-step adjacent nodes. In order to get the influence of
further graph nodes, the process can be recurrently repeated with both shared or unshared parameters in M processing
blocks and optionally using residual connections [37]. In this approach, we use both unshared parameters and residual
connections to each message passing block and sum as aggregation function φ. Note that the computed messages
φ(x′ij) represent a hidden embedding of the intermolecular interactions of the system (internal messages) whereas the
vector f i accounts for the external interactions (external messages).

3.3.3 Decoding

The last block extracts the relevant physical output information yi ∈ RFy of the system from the node latent feature
vector, implemented with a MLP (δv). In this work, we predict for each particle the GENERIC energy E and entropy
S potentials and the flattened operators l andm:

δv : RFh −→ RFy

x′i 7−→ yi = (l,m, E, S).
(12)

3.3.4 Reparametrization

A last processing step is needed to get the GENERIC parameters before integrating the state variables. Both operators
in matrix formL andM are constructed using the flattened output of the Graph Neural Network l andm respectively,
reshaped in lower-triangular matrices. The skew-symmetric and positive semi-definite conditions are imposed by
construction using the following parametrization:

L = l− l>, M = mm>. (13)

Both E and S are directly predicted for every node. Then, these potentials can be differentiated with respect to the
network input in order to get the gradients ∂E

∂z and ∂S
∂z needed for the GENERIC integrator. These gradients are easily

obtained using automatic differentiation [38], and ensures the integrability of the energy and entropy gradients [39].

Considering the dimensions of the lower triangular matrices and the scalar value of both potentials, the output dimen-
sion of the decoder network is

Fy =
n(n+ 1)

2
+
n(n− 1)

2
+ 1 + 1 (14)

where n represent the dimension of the state variables z.

3.3.5 Integration

The single-step integration of the state variables of the system zt → zt+1 is then performed using Eq. (8).

πe

u

vi

eij

V ′

E ′

πv

φ

f

εe

εv δ

×M
...

...

(b) Processor(a) Encoder (c) Decoder

(l,m)

Node blockEdge block

zt

(E,S)

(d) Reparametrization (e) Integrator

(L,M)

�
∂E
∂zt

, ∂S
∂zt

� zt+1

Figure 2: Algorithm block scheme used to predict a single-step state variable change in time. (a) The encoder trans-
forms the node and edge features to a learnt embedding. (b) The processor shares the nodal information through the
graph viaM message passing modules. (c) The decoder extracts the GENERIC flattened operators and potentials from
the processed node embeddings. (d) The reparametrization step builds the symmetries of the L and M operators and
computes the potential gradients with respect to the network input. (e) The integrator predicts the next time step state
variables based on the GENERIC formulation. The whole process is repeated iteratively to get the dynamical rollout
of the physical system.
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3.4 Learning procedure

The complete dataset D is composed by Nsim multiparametric simulation cases of a dynamical system evolving in
time. Each case Di contains the labelled pair of a single-step state vector zt and its evolution in time zt+1 for each
node of the system

D = {Di}Nsim
i=1 , Di = {(zt, zt+1)}Tt=0, (15)

where the dataset D is disjointly partitioned in 80% training, 10% test and 10% validation sets: Dtrain, Dval and Dtest
respectively.

The training is performed in a single-snapshot supervision, which has two main advantages: (i) enables parallelization
between snapshots, which decreases training time, and (ii) avoids intensive memory usage due to a several-snapshot
recursive training. The loss function is divided in two terms:

• Data loss: This term accounts for the correct prediction of the state vector time evolution using the GENERIC
integrator. It is defined as the MSE along the graph nodes and state variables between the predicted and the
ground-truth time derivative of the state vector in a given snapshot,

Ldata
n =

∥∥∥∥dzGT

dt
− dznet

dt

∥∥∥∥2
2

, (16)

where ‖ · ‖2 denotes the L2-norm. The choice of the time derivative instead of the state vector itself is to
regularize the global loss function to a uniform order of magnitude with respect to the degeneracy terms, as
shown in Eq. (8).

• Degeneracy loss: This condition is added to the optimization in order to force the degeneracy conditions
of the Poisson and dissipative operators, which ensure thermodynamical consistency of the integrator. It is
defined as the MSE along the graph nodes and state variables of two residual terms corresponding to the
energy and entropy degeneracy conditions,

Ldeg
n =

∥∥∥∥L ∂S

∂zn

∥∥∥∥2
2

+

∥∥∥∥M ∂E

∂zn

∥∥∥∥2
2

. (17)

Alternative approaches are found in the literature to impose this degeneracy restrictions, such as a specific
tensor parametrization of the brackets [17] or forcing ortogonality using additional skew-symmetric matrices
[18]. However, we decide to include it as a soft constraint in order to allow more flexibility in the learning
process and improve convergence while maintaining the degeneracy conditions up to an admissible error.

The global loss term is a weighted mean of the two terms over the shuffled Nbatch batched snapshots,

L =
1

Nbatch

Nbatch∑
n=0

(λLdata
n + Ldeg

n ). (18)

As the energy and entropy are supervised only by their gradients, we remark that (i) they are learnt up to an integration
constant value and (ii) the activation functions must have a sufficient degree of continuity. To meet this second
requirement, one must select activations with non-zero second derivative in order to have a correct backpropagation
of the weights and biases. Thus, linear or rectified units (ReLU, Leaky ReLU, RReLU) are not appropriate for this
task. It is well known [40] that logistic functions such as sigmoid and hyperbolic tangent are universal approximators
of any derivative arbitrarily well, but are not optimal for very deep neural networks architectures, as they suffer from
several problems such as vanishing gradients. Then, the correct activation functions suitable for learning gradients are
the ones which combine both non-zero second derivatives and ReLU-type non-linearities, such as Softplus, Swish [41]
or Mish [42]. In the present work we use the Swish activation function.

The inputs and outputs of the networks are standardized using the training dataset statistics. Gaussian noise is also
added to the inputs during training in order to model the accumulation of error during the time integration [25], which
is not contemplated in a single-snapshot training, with the variance of the noise σ2

noise as a tunable hyperparameter and
zero mean value. All the cases are optimized using Adam [43] and a multistep learning rate scheduler.

The code is fully implemented in Pytorch. Our datasets and trained networks are publicly available online at https:
//github.com/quercushernandez.
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3.5 Evaluation metrics

Two ablation studies are performed to evaluate the method presented in this work. The first case is performed using
only Graph Neural Networks (from now, GNN) with similar architecture and learning procedure used in prior works
[24, 25] and no metriplectic integrator. In the second case, we impose the metriplectic structure [15, 16] (from now,
SPNN), using standard MLPs with no graph computations. Both alternative methods are tuned for equal parameter
count in order to get a fair comparison of the results.

All the results are computed with the integration scheme in Eq. (8) iteratively from the initial conditions to the pre-
scribed time horizon T , denoted as rollout. The rollout prediction error is quantified by the relative L2 error, computed
with Eq. (19) for each snapshot and simulation case,

ε =
‖zGT − znet‖2
‖zGT‖2

. (19)

The results are represented in Fig. 9, 10 and 11 showing the rollout statistics for all the snapshots divided in train and
test simulations, state variables and method used (Ours, GNN or SPNN).

4 Numerical experiments

4.1 Couette flow of an Oldroyd-B fluid

4.1.1 Description

The first example is a shear (Couette) flow of an Oldroyd-B fluid model (Fig. 3). This is a constitutive model for
viscoelastic fluids, considering linear elastic dumbbells as a proxy representation of polymeric chains immersed in a
solvent.

x

y

N

Re, We

H

V

Figure 3: Couette flow in an Oldroyd-B fluid. The simulations span different Reynolds and Weissenberg numbers to
obtain different flow profiles with a fixed lid velocity.

The state variables chosen are the position of the fluid on each node of the mesh q, its velocity v in the x direction,
internal energy e and the conformation tensor shear component τ ,

S = {z = (q, v, e, τ) ∈ R2 × R× R× R}. (20)

The edge feature vector contains the relative position of the nodes whereas the rest of the state variables are part of the
node feature vector. An additional one-hot vector n is added to the node features in order to represent the boundary
and fluid nodes. The global feature vector u represent the Weissenberg and Reynolds numbers of each simulation,
resulting in the following feature vectors:

eij = (qi − qj , ‖qi − qj‖2), vi = (v, e, τ,n), u = (Re,We). (21)

4.1.2 Database and Hyperparameters

The training database for the Couette flow is generated with the CONNFFESSIT technique [44], based on the Fokker-
Plank equation [45], using a Monte Carlo algorithm. The fluid is discretized in the vertical direction with Ne = 100
elements and N = 101 nodes in a total height of H = 1. A total of 10,000 dumbells are considered at each nodal
location in the model. The lid velocity is set to V = 1, with variable Weissenberg We ∈ [1, 2] and Reynolds number
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Re ∈ [0.1, 1], summing a total of Nsim = 100 cases. The simulation is discretized in NT = 150 time increments of
∆t = 6.7 · 10−3.

Following Eq. (21), the dimensions of the graph feature vectors are Fe = 3, Fv = 5 and Fg = 2. The hidden
dimension of the node and edge latent vectors is Fh = 10. The learning rate is set to lr = 10−3 with decreasing order
of magnitude on epochs 2000 and 4000, and a total number of Nepoch = 6000. The training noise variance is set to
σ2

noise = 10−2.

4.1.3 Results

The rollout results for the Couette flow are presented in Fig. 9. A substantial improvement is shown in the present
approach over the two other methods, which remain in a similar performance. Note that the skewed distributions
towards higher errors on each box is due to the error accumulation on snapshots further in time from the starting
conditions, where errors are lower. Fig. 8 (left) shows that the degeneracy conditions imposed by our method ensure
the thermodynamical consistency of the learnt energy and entropy potentials.

4.2 Viscoelastic bending beam

4.2.1 Description

The next example is a viscoelastic cantilever beam subjected by a bending force. The material is characterized by a
single-term polynomial strain energy potential, described by the following equation

U = C10(I1 − 3) + C01(I2 − 3) +
1

D1
(Jel − 1)2 (22)

where U is the strain energy potential, Jel is the elastic volume ratio, I1 and I2 are the two invariants of the left
Cauchy-Green deformation tensor, C10 and C01 are shear material constants and D1 is the material compressibility
parameter. The viscoelastic component is described by a two-term Prony series of the dimensionless shear relaxation
modulus,

gR(t) = 1− ḡ1(1− e
−t
τ1 )− ḡ2(1− e

−t
τ2 ), (23)

with relaxation coefficients of ḡ1 and ḡ2, and relaxation times of τ1 and τ2.

Figure 4: Viscoelastic beam problem with a load case. The load position and direction are modified on each simulation,
obtaining different stress fields.

The state variables for the viscoelastic beam on each node are the position q, velocity v and stress tensor σ,

S = {z = (q,v,σ) ∈ R3 × R3 × R6}. (24)

The relative deformed position is included into the edge feature vector whereas the rest of the variables are part of the
node feature vector. An additional one-hot vector n is added to the node features in order to represent the encastre and
beam nodes. The external load vector F is included in the node processor MLP as an external interaction. No global
feature vector is needed in this case, resulting in the following feature vectors:

eij = (qi − qj , ‖qi − qj‖2), vi = (v,σ,n). (25)

8
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4.2.2 Database and Hyperparameters

The prismatic beam dimensions are H = 10, W = 10 and L = 40, discretized in Ne = 500 hexahedral linear brick
elements andN = 756 nodes. The material hyperelastic and viscoelastic parameters areC10 = 1.5·105,C01 = 5·103,
D1 = 10−7 and ḡ1 = 0.3, ḡ2 = 0.49, τ1 = 0.2, τ2 = 0.5 respectively. A distributed load of F = 105 is applied
in Nsim = 52 different positions with an orientation perpendicular to the solid surface. The quasi-static simulation is
discretized in NT = 20 time increments of ∆t = 5 · 10−2.

Following Eq. (25), the dimensions of the graph feature vectors are Fe = 4, Fv = 11 and Fg = 0. The hidden
dimension of the node and edge latent vectors is Fh = 50. The learning rate is set to lr = 10−4 with decreasing order
of magnitude on epochs 600 and 1200, and a total number of Nepoch = 1800. The training noise variance is set to
σ2

noise = 10−5.

4.2.3 Results

The rollout results for the bending viscoelastic beam are presented in Fig. 10. The errors achieved by the present
approach are again below the other two methods. The beam deformed configuration of three different test simulation
snapshots are represented in Fig. 5, with the color code representing the xx component of the stress tensor. Similarly
to the previous case, Fig. 8 (center) shows the thermodynamical consistency of our dynamical integration.

Figure 5: (a), (b) and (c): Representation of a snapshot of three test simulations, i.e. not seen by the network on
training, of the bending beam problem. (c), (d) and (e): Their respective ground truth simulations. The color code
represents the xx component of the dimensionless stress tensor, scaled ×0.001.

4.3 Flow past a cylinder

4.3.1 Description

The last example consists of a viscous unsteady flow past a cylinder obstacle. The flow conditions are set to obtain
varying Reynolds regimes, which result in Kármán vortex street and therefore a periodic behaviour in the steady state.

The state variables for the flow past a cylinder are the velocity v and the pressure field P ,

S = {z = (v, P ) ∈ R2 × R}. (26)

9
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Figure 6: Unsteady flow past a cylinder obstacle. The flow velocity and cylinder obstacle position are varied to obtain
different Reynolds numbers and flow profiles.

The flow is computed with an Eulerian description of the output fields. Thus, the nodal coordinates (q0) are fixed
in space and considered as edge features, whereas the whole state variables are assigned to the node features. An
additional one-hot vector n is added to the node features in order to represent the inlet/outlet, walls or fluid nodes. No
global feature vector is needed in this case, resulting in the following feature vectors:

eij = (q0i − q0j , ‖q0i − q0j‖2), vi = (v, P,n). (27)

4.3.2 Database and Hyperparameters

The ground truth simulations are computed solving the 2D Navier Stokes equations. Six different obstacle positions
are simulated with varying fluid discretization, which consist of approximately Ne = 1100 quadrilateral elements and
N = 1200 nodes. No-slip conditions are forced in the stream walls and the cylinder obstacle. The fluid has a density
of ρ = 1 and a dynamic viscosity of µ = 10−3. The variable freestream velocity is contained within the interval
v ∈ [1, 2], summing a total of Nsim = 30 cases. The unsteady simulation is discretized in NT = 300 time increments
of ∆t = 10−2.

Following Eq. (27), the dimensions of the graph feature vectors are Fe = 3, Fv = 8 and Fg = 0. The hidden
dimension of the node and edge latent vectors is Fh = 128. The learning rate is set to lr = 10−4 with decreasing
order of magnitude on epochs 600 and 1200, and a total number of Nepoch = 2000. The training noise variance is set
to σ2

noise = 4 · 10−4.

4.3.3 Results

The rollout results for the flow past a cylinder problem are presented in Fig. 11. In this example the domain varies
significantly, using a different unstructured mesh for each simulation. Thus, the graph-based architectures outperform
the vanilla SPNN, which is meant for fixed structured problems. Considering the other two methods, our approach
outperforms the standard GNN architecture due to the metriplectic structure imposition over the dynamical problem,
as depicted in Fig. 8. A single snapshot of the whole rollout of three different test simulations are represented in Fig. 7,
with the color code representing the x component of the velocity field.

5 Conclusions

We have presented a method to predict the time evolution of an arbitrary dynamical system based on two inductive
biases. The metriplectic bias ensures the correct thermodynamic structure of the integrator based on the GENERIC
formalism, whose operators and potentials are estimated using computations over graphs, i.e. exploiting the geometric
structure of the problem. The results show relative mean errors of less than 3% in all the tested examples, outperform-
ing two other state-of-the-art techniques based on only physics-informed and geometric deep learning respectively.
These results confirm that both biases are necessary to achieve higher precision in the predicted simulations. The use
of both techniques combine the computational power of geometric deep learning with the rigorous foundation of the
GENERIC formalism, which ensure the thermodynamical consistency of the results.

The limitations of the presented technique are related to the computational complexity of the model. Large simulations
with fine grids require a high amount of message passing to get the information across the whole domain, or a very

10
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Figure 7: (a), (b) and (c): Representation of a snapshot of three test simulations, i.e. not seen by the network on
training, of the cylinder flow problem. (c), (d) and (e): Their respective ground truth simulations. The color code
represents the x component of the dimensionless velocity field.
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Figure 8: Conservation of energy and non-decreasing entropy potentials for a test case of the (a) Couette flow, (b)
bending beam and (c) cylinder flow. Both quantities are averaged across all graph nodes for visualization.

fine time discretization, which both result in a high computational cost. Similarly, high-speed phenomena in relation
to the wave velocity of the medium might be impossible to model.

Future work may overcome the stated limitations by combining graph representations with model order reduction tech-
niques, such as autoencoders or U-net architectures [46, 47]. The idea is to replace deep message passing with various
coarse-graining steps, allowing the boundary information to reach every node in the simulation domain while reducing
the number of parameters of the neural network. Another interesting topic to extend our work is to improve the general-
ization and decrease the amount of training data via equivariant arquitectures [48, 49], which avoid data augmentation
by exploiting the invariance to certain groups such as rotations SO(3) or general Euclidean transformations E(3). As
the present work is only limited to in-silico experiments, future work may extend the proposed method to measured
datasets in real-world applications, such as digital twins of industrial processes or real-time augmented/virtual reality
environments.
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