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Abstract We use the counterterms subtraction method to
calculate various thermodynamical quantities for
charged rotating black holes in five-dimensional mini-
mal gauged supergravity (Chong et al. in Phys Rev Lett
95:161301, 2005, https://doi.org/10.1103/PhysRevLett.95.
161301, arXiv:hep-th/0506029). Specifically, we analyze
certain issues related to the first law and Smarr’s relation
in the presence of a conformal anomaly. Among the bulk
quantities calculated are the on-shell action, total mass, and
angular momenta of the solution. All these quantities are con-
sistent with previous calculations made using other meth-
ods. For the boundary theory, we calculate the renormal-
ized stress tensor, conformal anomaly, and Casimir energy.
Using the Papadimitriou–Skenderis analysis (Papadimitriou
and Skenderis in J High Energy Phys 08:004, 2005), we show
that the mass calculated via the counterterms method satis-
fies the first law of black hole thermodynamics. To discuss
extended thermodynamics, we extend the definition of the
thermodynamic volume to cases with conformal anomalies
using a procedure similar to that of Papadimitriou–Skenderis.
We show that this volume correctly accounts for extra terms
due to boundary metric variation. This shows that the mass
and volume calculated using counterterms satisfy Smarr’s
relation as well as the first law.
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1 Introduction

The discovery of the anti-de sitter/conformal field theory
(AdS/CFT) correspondence [3] invoked lots of interest in
asymptotically AdS solutions in general relativity. This dual-
ity reveals how various gravitational solutions in the AdS
side encode important information about a specific gauge
field theory on the boundary in their semi-classical gravita-
tional action. A strong interest in studying black hole solu-
tions in AdS5 spacetimes then followed after studying a spe-
cific example of this duality, namely, the equivalence between
string theory on AdS5 × S5 and four-dimensional N = 4,
Super Yang–Mills (SYM) theory on the boundary. This dual-
ity and other similar ones allow one to map certain five-
dimensional AdS solutions to certain states in the boundary
field theory. Furthermore, it shows that bulk boundary quan-
tities work as sources to CFT quantities, e.g., the boundary
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metric works as a source for the boundary energy-momentum
tensor. In this duality as well as in a Euclidean path-integral
formalism we have certain boundary conditions which fix
bulk boundary quantities. For example, AdS black hole ther-
modynamics with its possible phase transitions are investi-
gated for a fixed boundary metric as is discussed in [4,5].

The AdS/CFT correspondence relates a strong-coupling
regime in the boundary with a weak-coupling regime in the
bulk. The bulk partition function can be approximated [6]
using saddle points leading to

Zgrav � exp(−I ), (1)

where I is the on-shell gravitational action. However, in
AdS spacetimes, the action as a volume integral diverges
as we take the radial coordinate r to infinity. There are two
main techniques often used to regulate this action: the back-
ground subtraction method (for example, see [7] and refer-
ences therein) and the counterterms subtraction method [8].
Background subtraction works by defining a reference back-
ground spacetime, then calculating the finite action as the
difference between the action of the spacetime and that of the
background metric. Since both metrics have the same diverg-
ing asymptotic region, this subtraction method leaves a finite
action. But a disadvantage of this technique is that the choice
of a proper background reference is not always obvious or
clear [8–10]. In addition, sometimes certain quantities which
are common between the spacetime and its background (such
as the conformal anomaly and vacuum energy) cancel out in
this procedure [11].

The counterterms subtraction method [8–10] works by
adding certain covariant boundary counterterms to the action
which cancel action divergences exactly. These counterterms
are thus inherent to the spacetime boundary and there is no
need for a background or a reference spacetime. Moreover,
the employment of the counterterms subtraction technique
allows one to compare some important quantities between
the bulk and the boundary. For instance, the trace of the
Brown–York quasilocal stress tensor [12] resulting from the
action of the counterterms technique is related to the confor-
mal anomaly on the boundary. Another example is the total
energy/mass found using the counterterms technique, which
includes a non-vanishing contribution as the mass parame-
ter m is sent to zero. In the context of the AdS/CFT corre-
spondence, this contribution, which is the spacetime back-
ground energy, is interpreted as the Casimir energy of the
boundary CFT. These two phenomena appear particularly in
odd-dimensional bulk theories, or even-dimensional bound-
ary field theories. For example, see [10,11] and references
therein.

It is expected that the energy derived from the countert-
erms method or any other method satisfies the first law of
black hole thermodynamics,

dM = TdS +
∑

i

�i d Ji + �dQ. (2)

Historically there have been a couple of puzzles regarding
the validity of the first in AdS spacetimes. In Ref. [7] it was
shown that to retrieve an energy term that satisfies the first
law, one must use a timelike Killing vector which is non-
rotating at infinity, namely

χ = ∂t +
∑

i

�∞
i , (3)

where �∞
i is an angular velocity at infinity. It is also noted

that, to satisfy Eq. (2), one should use angular velocities
which are non-rotating at infinity. This means that if �H

i is
the angular velocity on the horizon, then the corresponding
angular velocity which enters in the first law should be

�i := �H
i − �∞

i . (4)

In fact, this form of the first law can be obtained from
varying Smarr’s relation written as surface integrals.

The authors in [7] have claimed that, even with the correct
choice of a timelike Killing vector and angular velocities, the
counterterms subtraction method is not guaranteed to yield
a mass that satisfies the first law. Several authors have pre-
sented resolutions to this apparent violation [2,13]. Here we
are particularly interested in the resolution presented in [2],
which we briefly explain below.

In (n + 1)-dimensional asymptotically locally AdS
(AlAdS), the Euclidean bulk metric is invariant under the
action of the SO(1, n + 1) group. However, on the bound-
ary there is only a conformal structure that is invariant under
the action of SO(1, n + 1) [5]. Therefore, the boundary con-
ditions in the variational problem in AlAdS are in general
defined through keeping the conformal class fixed (for a more
detailed discussion see sections 2 and 3 in Ref. [2]). However,
when a conformal anomaly is present, it was shown in [2]
that the boundary conditions must be defined using a particu-
lar representative of the conformal class. In odd-dimensional
field theories (which is the case that we are interested in here)
it is well known that quantum corrections can break classi-
cal conformal symmetries, leading to conformal anomalies.
The conformal or Weyl transformation on the boundary is a
subset of the bulk diffeomorphisms. This diffeomorphism is
a Penrose–Brown–Henneaux (PBH) transformation [14,15]
which will induce a Weyl transformation on the conformal
boundary. A consequence of that the representative of the
conformal class as well as the gravitational on-shell action
are not left invariant. However, the action has a relation to
other quantities through the Gibbs–Duhem relation, namely

I = βM − T S −
∑

i

�i Ji − �Q. (5)
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Now, by performing a PBH transformation on this equa-
tion, one is expected to get variation of all terms, but instead
we get

δ I = βδM. (6)

In other words, this variation affects only the mass, but
not the other quantities in the first law, since entropy, electric
charge Q, and angular momenta Ja and Jb can be expressed
in terms of integrals over the horizon [2]. In Sect. 4.2 we
show that the counterterms mass is the sum of two terms, the
first is localized in the black hole region (depends on the mass
parameter and electric charge) while the second term is the
background energy of the spacetime which is not restricted to
the black hole region. The flux of the latter term depends on
the boundary metric. An important boundary condition for
the variational problem [2] is to keep the boundary metric
fixed by utilizing a PBH or boundary Weyl transformation.
Therefore, one can use a Weyl transformation to cancel the
boundary metric variation of the mass term in the first law. As
a result, the first law is satisfied. To summarize, the first law is
not really violated by the counterterms mass, but one should
be careful about how to compute variations of bulk quantities
since those must be done at a fixed boundary metric as the
AdS/CFT requires.

In this work, we use the counterterms subtraction method
to calculate the renormalized on-shell action for the general
rotating charged AdS solution presented in [1] as well as its
mass and angular momenta. We show that these quantities
satisfy the first law and the Gibbs–Duhem relation. Going to
extended thermodynamics [16,17] where we allow the cos-
mological constant to vary and act as a pressure, a naive
calculation of the first law shows that it is not satisfied. We
show that a similar issue exists with the volume defined in
extended thermodynamics [16,17]. This means that varying
this quantity does not leave the boundary metric fixed, and
one needs to use a compensating PBH term to keep the vol-
ume fixed. This modification is important to satisfy the first
law as well as the generalized Smarr’s formula in countert-
erms context with a conformal anomaly.

The rest of the paper is organized as follows: in Sect. 2 we
present the black hole solution and its thermodynamic quan-
tities as in [1]. In Sect. 3 we show that these quantities satisfy
the standard thermodynamic relations: the first law (2) and
the Gibbs–Duhem relation (27). In Sect. 4 we use the coun-
terterms subtraction method to calculate finite expressions
for the action, mass, and angular momenta of the solution.
In Sect. 5 we make the connection between the boundary
metric in [1] and the Kerr-AdS5 boundary in [18]. We then
review the calculations in [18] for the conformal anomaly
and Casimir energy of the dual CFT. In Sect. 6 we show that
the quantities calculated using counterterms subtraction sat-
isfy the first law in regular and extended thermodynamics.
We study the effect of a Weyl transformation on the bound-

ary and use this to show that the mass calculated using the
counterterms method satisfies the first law of thermodynam-
ics. Furthermore, we check that our expressions for action
and mass satisfy the Gibbs–Duhem relation. Finally, we dis-
cuss the effect of boundary variations on Smarr’s formula and
propose a new modification to the thermodynamic volume in
the presence of a conformal anomaly. This new volume sat-
isfies the first law in extended phase-space as well as Smarr’s
formula.

2 The 5D charged rotating AdS solution

The Einstein–Hilbert–Chern–Simons Lagrangian in five-
dimensions has the following form [1]

L = (R2 + 12g2) � 1 − 1

2
� F ∧ F + 1

3
√

3
F ∧ F ∧ A.

(7)

The first term on the right-hand side is the gravita-
tional Einstein–Hilbert Lagrangian in AdS5, the second is
the Maxwell Lagrangian and the third is the Chern-Simons
Lagrangian in five dimensions. The latter is required in five-
dimensional gauged supergravity [19].

In this letter we are interested in studying the general non-
extremal rotating black holes in minimal five-dimensional
gauged supergravity [1] which has the following metric:

ds2 = −	θ [(1 + g2r2)ρ2dt + 2qν]dt
abρ2 + 2qνω

ρ2

+ f

ρ4

(
	θdt

ab
− ω

)2

+ ρ2dr2

	r
+ ρ2dθ2

	θ

+r2 + a2

a
sin2 θ dφ2 + r2 + b2

b
cos2 θ dψ2, (8)

where

ν = b sin2 θ dφ + a cos2 θ dψ,

ω = a sin2 θ
dφ

a
+ b cos2 θ

dψ

b
, (9)

	r = (r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2 − 2m,

(10)

	θ = 1 − a2g2 cos2 θ − b2g2 sin2 θ,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (11)

a = 1 − a2g2, b = 1 − b2g2, (12)

f = 2mρ2 − q2 + 2abqg2ρ2. (13)

The constant g = 1/�, where � is the AdS radius, is not
to be confused with the determinant of the metric.
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The coordinate system in (8) is (t, r, θ, φ, ψ). The ranges
of the last three coordinates is such that they cover a three-
sphere. The range for θ is between 0 and π/2, while that
for φ and ψ is between 0 and 2π . The electromagnetic four-
potential is given in [1] by

A =
√

3q

ρ2

(
	θ dt

ab
− ω

)
. (14)

And the electric charge is given by

Q =
√

3πq

4ab
. (15)

In four spatial dimensions, the black hole has two possi-
ble rotation axes. The corresponding angular velocities are
denoted �a (in the φ-direction) and �b (in the ψ-direction).
They are given in [1] by

�a = a
(
r2+ + b2

) (
1 + g2r2+

) + bq
(
r2+ + a2

) (
r2+ + b2

) + abq
,

�b = b
(
r2+ + a2

) (
1 + g2r2+

) + aq
(
r2+ + a2

) (
r2+ + b2

) + abq
. (16)

It is important to note that in the coordinate system used
(8), which is different from the more conventional coordi-
nates used for example in [2,18], the angular velocities on
the boundary vanish,

�∞
a = �∞

b = 0. (17)

Evidently, the metric in (8) has axial symmetries in φ and
ψ . The Killing vectors associated with these symmetries are
∂φ and ∂ψ . The angular momenta were subsequently calcu-
lated in [1] using the Komar integral,

Ja = 1

16π

∫

S3
�d

(
∂φ

)
, Jb = 1

16π

∫

S3
�d

(
∂ψ

)
, (18)

yielding

Ja = π
[
2am + qb

(
1 + a2g2

)]

42
ab

,

Jb = π
[
2bm + qa

(
1 + b2g2

)]

42
ba

. (19)

Note that the integrals in (18) directly lead to finite results
and do not need regularization.

3 Thermodynamics: background method

In this section we review the thermodynamics of the space-
time under consideration using background-subtraction cal-
culations. For this solution, the temperature and entropy are

given by

T = r4+
[
g2

(
a2 + b2 + 2r2+

) + 1
] − (ab + q)2

2πr+
[(
a2 + r2+

) (
b2 + r2+

) + abq
] , (20)

S = π2
[(
r2+ + a2

) (
r2+ + b2

) + abq
]

2abr+
. (21)

The total energy/mass was calculated in [1] by integration
of the first law (2). This mass is given by1

M0 = πm (2a + 2b − ab) + 2πabg2q (a + b)

4G2
a

2
b

.

(22)

It is worth noting that this expression for the mass matches
the one that was found using the ADM calculation in [6,20].

Using the above mass, it is straightforward to check the
validity of the first law

dM0 = TdS + �ad Ja + �bd Jb + �dQ. (23)

The electric potential is found from

� = ξa Aa |r→∞ − ξa Aa |r→r+

=
√

3qr2+(
a2 + r2+

) (
b2 + r2+

) + abq
, (24)

which is in agreement with [21].
To check the first law, one needs to verify the following

equation

∂M0

∂α
dα = T

∂S

∂α
dα + �

∂Q

∂α
dα + �a

∂ Ja
∂α

dα + �b
∂ Jb
∂α

dα,

(25)

for the parameters, α = r+, q, a, b, since the mass is a func-
tion of these variables. Direct evaluation of these expressions
shows that the first law is verified.

3.1 Gibbs free energy and action calculation

Since the integral of (7) is divergent as r → ∞, the back-
ground subtraction method instructs us to start by taking a
cut-off at a large value R. We then specify a background
metric by taking m → 0, q → 0 in (8), which gives the
AdS5 spacetime. We compute the integral of this action at
the cut-off value R, then subtract it from our previous calcu-
lation with the original metric to cancel the divergences. The
action using the background subtraction method was given

1 The mass was denoted in [1] by M but we will use here the notation
M0 to distinguish this mass from that which we will derive using the
counterterms method in Sect. 4.2.
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in [20] by

I0 = πβ

4ab

[
m −

(
g2

(
a2 + r2

) (
b2 + r2

))

− q2r2
(
a2 + r2

) (
b2 + r2

) + abq

]
. (26)

It is straightforward to verify that

I0 = βG0, (27)

where the Gibbs free energy is given by2

G0(T,�a,�b,�) = M0 − T S − �a Ja − �b Jb − �Q.

(28)

This is the Gibbs–Duhem relation, one of the few impor-
tant thermodynamic relations used to check the consis-
tency of black hole thermodynamics. To check that G0 =
G0(T,�a,�b,�), one might vary G0 to obtain

dG0 = −SdT − Jad�a − Jbd�b − Qd�, (29)

where

(
∂G

∂T

)

�a ,�b,�

= −S,

(
∂G

∂�a

)

T,�,�b

= −Ja,

(
∂G

∂�b

)

T,�,�b

= −Jb,

(
∂G

∂�

)

T,�a ,�b

= −Q.

(30)

Notice that the above quantum-statistical relation which
we call the Gibbs–Duhem relation is going to be the same
for the background and counterterms methods apart from a
modification in mass and action calculations. As we have
mentioned in the Introduction, in the counterterms method,
this relation plays an important role to prove the validity of
the first law.

3.2 A generalized Smarr’s formula

For asymptotically AdS spaces, in order to construct a gen-
eralized Smarr’s formula, one must allow the cosmological
constant to vary, leading to the following form of Smarr’s
formula [22]

M0 = 3

2
(T S + �a Ja + �b Jb) + �Q − PV0, (31)

where the cosmological constant plays the role of a pressure
with some thermodynamic volume as a conjugate variable

2 We use the subscript “0” to refer to the Gibbs free energy calculated
from M0 to distinguish it from that calculated from the counterterms
mass.

[16,17], or

P = − �

8π
= 3g2

4π
, (32)

And V0 is the “thermodynamic volume” V0 conjugate to
P . Following the prescription in [22], we find

V0 =
(

∂M0

∂P

)

S,Q,Ja ,Jb

= π2

2ab

[(
r2+ + a2

) (
r2+ + b2

)
+ 2

3
abq

]

+ 2π

3
(aJa + bJb) , (33)

in accordance with [21]. With some algebraic manipulations,
it is straightforward to show that the above Smarr’s formula
(31) is satisfied.

4 Thermodynamics: counterterms method

As mentioned in the introduction the need to use the countert-
erms method is to obtain a finite on-shell gravitational action.
This method gives a non-ambiguous procedure to regularise
the action in a manner independent of any other spacetime
(i.e. a background spacetime). This allows us to make some
important connections between the bulk gravity and the dual
CFT in four dimensions. As we will see in the coming sec-
tions, this method enables us to calculate quantities such as
the vacuum expectation value (vev) of the stress-tensor, the
conformal anomaly, as well as the Casimir energy of the
boundary field theory. Our aim is to calculate the gravita-
tional finite action first, then use it to calculate the vev of
the field theory stress tensor through calculating the quasilo-
cal stress tensor, or the Brown–York (BY) stress-tensor [12]
(using Eq. (63). For details see for example [10,11]). The BY
tensor is also used to calculate conserved quantities such as
the mass and angular momenta.

4.1 Action calculation

The action of the Lagrangian presented in Eq. (7) is composed
of the following terms

Inon-ren = IEH + IGH + IEM. (34)

Calculating the electromagnetic part,3 one finds

IEM = −πβ

4ab

[
q2r2+(

r2+ + a2
) (
r2+ + b2

) + abq

]
, (35)

3 See also, [23].
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While the Einstein–Hilbert action calculation leads to

IEH = β

[
πg2r4

4ab
+ πg2r2

(
a2 + b2

)

4ab

−πg2r2+
(
a2 + b2 + r2+

)

4ab

] ∣∣∣∣
r→+∞

. (36)

And the Gibbons–Hawking action calculation produces

IGH = β

[
− πg2r4

ab
+ 15πr2 (a + b + 3/4)

24ab

+ π
(
a4g2 − 8a2b2g2 − 9a2 + b4g2 − 9b2 + 24m

)

24ab

]∣∣∣∣
r→+∞

.

(37)

Summing the previous three expressions we get the fol-
lowing divergent action

Inon-ren = IEH + IGH + IEM

=
[
− 3πβg2r4

4ab
+ βr2

(
πg2

(
a2 + b2

)

4ab

+π
(−15a2g2 − 15b2g2 − 18

)

24ab

)] ∣∣∣∣
r→+∞

+ finite terms.

(38)

Now let us calculate the counterterms and verify that they
cancel these divergences. The expression for these countert-
erms is given in 5 dimensions is given by [8]

Ict = 1

8π

∫

∂M
dnx

√
h

[
log

(r
�

)
T a

a + n − 1

�
+ �

2(n − 2)
R

]
,

(39)

where Rab and R are the Ricci tensor and Ricci scalar of the
boundary metric, and we recall that � = 1/g.

We will calculate the trace of the stress-tensor T a
a in

Sect. 5. It is easy to verify that its integral vanishes, and
therefore the logarithmic counterterm is 0. Indeed, this was
previously noted in [24]. Evaluation of the remaining terms
in (39) yields

Ict = β

[
3πg2r4

4ab
+ 3πr2

(
a2g2 + b2g2 + 2

)

8ab

] ∣∣∣∣
r→+∞

+finite terms. (40)

The final expression for the renormalized Euclidean action
is found by adding the term in (40) to the divergent action in
(38), which gives the regulated action

Iren = πβ

96g2ab

[
2
a + 2

b + 7ab + 24g2

× (
m − a2b2g2 − g2r2+(r2+ + a2 + b2)

)]

− πβ

4ab

[
q2r2+(

r2+ + a2
) (
r2+ + b2

) + abq

]
. (41)

This action reduces to that of the Reissner–Nordström
black hole in [19] in the limit a, b → 0. We can also re-
express the gravitational part of the action as

I grav
ren = βMKerr-AdS5

BG + πβ
[
m − g2(r2+ + a2)(r2+ + b2)

]

4ab
,

where

MKerr-AdS5
BG = π

[
9a9b + (a − b)

2
]

96g2ab
(42)

is the background energy of the Kerr-AdS5 black hole [2].
Our result takes the exact same form as the one calculated by
Papadimitriou and Skenderis [2] for a non-charged rotating
black hole.

The difference here of course is that the charge does make
an appearance in the β term. Nevertheless, it is interesting
that the gravitational action maintains the same expression
in terms of β. This also automatically shows that our result
reduces to that in [2] since, in the absence of an electric
charge, the temperature takes the same form as that in [2],
and the electromagnetic action vanishes.

4.2 Mass and angular momenta calculations

The calculation of conserved charges is based on the Brown–
York quasilocal charge definition [12]. The Brown–York
quasilocal stress tensor is given by

T ab = −2√|h|
δ Iren

δhab

= 1

8πG

[
Kab − habK + g(n − 1)hab − Gab

g(n − 2)

]
,

(43)

where hab, Kab, and Gab are the metric, extrinsic curvature,
and Einstein tensors on the induced boundary, respectively.
Note that D = n + 1 is the spacetime dimensions. Note also
that the gauge fields in the solution (7) vanish at infinity. The
following results will be expressed in light of this fact. For
more general expressions of conserved charges in minimal
gauged supergravity where the gauge fields do not vanish on
the boundary, we refer the reader to Refs. [25,26]. In our case,
where the gauge fields vanish on the boundary at infinity, a
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charge associated with a Killing vector Ka is defined by

Q[K ] =
∫

S3
d3x

√
σuaTabK

b. (44)

Here ua = −N∇at , while N is the lapse function and σ

is the spacelike metric that appear in the ADM-like decom-
position of the metric

ds2 = −Ndt2 + σab(dx
a + Nadt)(dxb + Nbdt). (45)

In the above expression Na is the shift vector. Recall that
the angular velocities vanish at infinity in the coordinate sys-
tem in (8), so the timelike Killing vector associated with the
energy is simply χ = ∂t . Plugging this in (44) initially yields
a slightly complicated expression for the mass. To simplify
the long calculation let us write the mass as the sum of four
terms:

M = Mnr1 + Mnr2 + Mct1 + Mct2. (46)

The first two terms are divergent; they result from the origi-
nal non-regularized components of the Brown–York quasilo-
cal stress tensor. The last two terms are those arising from
the counterterms action. The first of those four terms is given
by

Mnr1 = πm
[−3g2

(
a2 + b2

) + a2g2b + b2g2a − 2ab + 6
]

8G2
a

2
b

+ πq
[
abg2

(−3g2
(
a2 + b2

) + a2g2b + 6
) + ab3g4a + 2abg2ab

]

8G2
a

2
b

+ π
[
2a2b2g2ab + 2g2r2(a2 + b2)ab + 2g2r4ab

]

8G2
a

2
b

, (47)

where we have reinstated the gravitational constant G (origi-
nally a factor in the denominator of the Brown–York quasilo-
cal stress tensor) for future need. The second term is given
by

Mnr2 = −π

24Gab

[
a4 − g2 + 3r2

(
5g2

(
a2 + b2

)
+ 6

)

+ 8a2b2g2 + 9a2 − b4g2 + 9b2 + 24g2r4 − 24m
]
.

(48)

The first part of the counterterms contribution is

Mct1 = π

32g2G2
a

2
b

[
12g2

(
a2g2b + a2g2 + b2g2 − 2

)

×
(
abg2q + m

)
+ a

(
b

( − a4g4 + a2g2

×
(

11b2g2 + 18g2r2 + 9
)

+ 24abg4q − b4g4

+ 9b2
(

2g4r2 + g2
)

+ 3
(
8g4r4 + 4g2r2 − 1

))

+ 12b2g4
(
abg2q + m

) )]
. (49)

And lastly, the second contribution from the counterterms
gives

Mct2 = −3π
[
a2g4

(
b2 + r2

) + g2r2
(
b2g2 − 2

) − 1
]

16g2Gab
.

(50)

The addition of all these terms gives the mass via the
counterterms subtraction method,

M = πm (2a + 2b − ab) + 2πabg2q (a + b)

4G2
a

2
b

+ π
[
9ab + (a − b)

2
]

96Gg2ab
. (51)

The first term on the RHS is just the black hole mass cal-
culated in [1] by integrating the first law. The second term is
the background energy of the spacetime: it is the value that
the total energy reduces to in the absence of the black hole
(when m = 0, q = 0). We note that this background energy

is the same as that in the Kerr-AdS5 black hole solution [18].
In Sect. 5.2 we will show that this is exactly equal to the
Casimir energy of the dual CFT on the boundary. Further-
more, when the two rotation parameters are set to zero, this
vacuum energy in (54) reduces to the background energy of
the pure non-rotating AdS5 spacetime given in [10] by

MBG

∣∣∣
a=b=0

= 3π

32g2G
. (52)

The full expression for the mass calculated via the coun-
terterms method can now be written as

M = M0 + MBG, (53)

with

MBG = π
[
9ab + (a − b)

2
]

96Gg2ab
. (54)

The final quantities to calculate using the counterterms
method are the angular momenta. To get Ja (respectively Jb)
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we plug in (44) the Killing vector ∂φ (respectively ∂ψ ). The
angular momentum in the φ-direction is given by

Ja =
∫

S3

sin3 θ cos θ
[
am + b

(
a2g2q + 1

2qa
)]

2π2
ab

dθdφdψ

= π
[
2am + qb

(
1 + a2g2

)]

42
ab

. (55)

And we find a similar result for Jb,

Jb = π
[
2bm + qa

(
1 + b2g2

)]

4a
2
b

. (56)

These results are equal to the angular momentum calcu-
lated in [1] using the Komar integral.

There are some intriguing features of this solution worth
discussing, some of which are indeed unique. Before we
discuss these features let us take some limits to check the
above mass/total energy expression. By setting q = 0 and
a = b = 0, we reduce this solution to the Schwarzschild
mass,

M
∣∣
q=0,a=b=0 = 3πm

4
.

This means that the parameter m has the usual interpreta-
tion of a “mass parameter”. Yet there seems to be an unusual
aspect of this solution: when this parameter vanishes, the
black hole’s mass does not vanish not only because of the
background energy but also due to contributions from the
electric charge, q.

M
∣∣
m=0 = πabg2q(a + b)

22
a

2
b

+ MBG. (57)

Indeed, the charge contributes to the total mass of the solu-
tion! We do not know any other solution that shares this prop-
erty with the solution presented here. For instance, we find the
mass of a static charged black hole in five-dimensional anti-
de Sitter spacetime and the neutral Kerr-AdS solutions have
no charge contributions in their mass expressions. Therefore,
the physical significance of the expression in (51) when m
vanishes seems a bit puzzling. However, one can show that
there are no horizons, or real values for r+, if m = 0 while
q �= 0. In other words, the case m = 0, q �= 0 has a naked
singularity.

Another puzzling feature appears in the angular momenta
expression in Eqs. (55), and (56). The angular momenta carry
some dependence on the electric charge. This feature has no
analog in four dimensions. While the mass is non-vanishing if
m goes to zero, there are also non-vanishing angular momenta
Ja and Jb. Furthermore, if we keep m �= 0 and set a = 0 we
still have a non-null value for Ja! The same thing happens if
we m �= 0 and b = 0: we still have a non-null value for Jb!

Of course, this does not happen in the Kerr-AdS5 solution
where the angular momenta are given [2] by

Ja = πam

22
ab

, Jb = πbm

22
ba

. (58)

We suspect that there must be a change of geometric
parameters that would allow one to write the mass only in
terms of a new mass parameter m′, and independent of the
new charge parameter q ′. We also suspect that this would
lead to angular momenta J ′

a and J ′
b which vanish when the

parameters a and b vanish respectively. We expect these new
parameters to be associated with a different coordinate sys-
tem.

5 Review of the holographic stress tensor and Casimir
energy on the Kerr-AdS5 boundary

One of the predictions of the AdS/CFT correspondence is
that the conformal anomaly calculated from the conformal
field theory on the boundary should exactly match the trace
of the gravitational stress tensor (BY tensor) [10,11], where
the identification G−1 ↔ 2N 2g3/π is to be made. Another
prediction is the matching of the dual field theory Casimir
energy with the background energy obtained as we setm = 0
and q = 0 in the mass expression.

The boundary metric of the solution (8) does not depend
on the charge parameter q, and is exactly the same as that
of the Kerr-AdS5 (see below), for which the corresponding
calculations of the vacuum expectation value (vev) of the
renormalized CFT stress tensor and the Casimir energy were
presented in [18]. In this section we will present these results
and discuss their consistency with the bulk calculations of
BY stress tensor and background energy. Additionally, the
trace of the CFT stress tensor and the Casimir energy will
play a role in the study of the thermodynamics in Sect. 6.

Before proceeding, we note that to express the boundary
metric in the canonical Kerr-AdS5 coordinates, we can use
the following transformations presented in [27]

cos θ̂ =
√

b

	θ

cos θ, sin θ̂ =
√

a

	θ

sin θ, (59)

dφ̂ = dφ − g2adt, dψ̂ = dψ − g2bdt. (60)

The induced metric can now be expressed by

dŝ2
Boundary = g2r2

[
−dt2 + 2a sin2 θ̂

a
dtdφ̂ + 2b cos2 θ̂

b
dtdψ̂

+ dθ̂2

g2	
θ̂

+ sin2 θ̂

g2a
dφ̂2 + cos2 θ̂

g2b
dψ̂2

]
, (61)

which is nothing but the rotating Einstein Universe.
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5.1 CFT stress tensor and conformal anomaly

The CFT or the boundary metric is found by removing the
divergent conformal factor g2r2 from the induced boundary
metric [11]

ds2
BG = −dt2 + 2a sin2 θ̂

a
dtdφ̂ + 2b cos2 θ̂

b
dtdψ̂ + dθ̂2

g2	
θ̂

+ sin2 θ̂

g2a
dφ2 + cos2 θ̂

g2b
dψ̂2. (62)

The bulk stress tensor is related to the expectation value
of the renormalized CFT stress tensor 〈T̂ab〉 [11] by
√−γ γab〈T̂ bc〉 = lim

r→+∞
√−h habT

bc. (63)

Therefore, we expect the trace of the gravitational tensor
to be related to the CFT’s stress tensor through the following
factor

lim
r→+∞

√
h/γ = g4r4. (64)

Evaluation of the trace of (43) yields [18]

g4r4T a
a = −

g3
(
a2 − b2

) [
3g2

(
a2 − b2

)
cos4 θ̂ − 2 cos2 θ̂

(
a2g2 − 2b2g2 + 1

) − b2g2 + 1
]

8πG
.

(65)

We now look at the expectation value of the stress tensor
of the dual CFT. Following the notation in Ref. [18], the
renormalized stress tensor is given by

〈T̂ab〉 = − 1

16π2

∑

s

(
1

9
αs H (1)

ab + βs H (3)
ab

)
, (66)

where the summation is over the possible fields of the the-
ory, with s = 0, 1

2 , 1 standing for scalar, Weyl spinor, and
U(1) gauge fields, respectively. If we calculate the expecta-
tion value over a vacuum state then H (4)

ab will vanish since
it is the vacuum expectation value of the stress tensor in flat
spacetime.

Furthermore, one can choose a regularization scheme in
which the αs coefficients vanish. For more details on this, the
reader can refer to Ref. [28]. The values of the remaining βs

coefficients are given [28] by

β0 = − 1

2880π2 N
0, β

1
2 = − 1

2880π2 N
1
2 ,

β1 = − 1

2880π2 N
1, (67)

where Ni is the number of fields of spin i . These numbers

are [11] N 0 = 6N 2, N
1
2 = 4N 2 and N 1 = N 2. The tensor

H (3)
ab is given in [29] by

H (3)
ab = 1

12
R2γab − RcdRcadb, (68)

where γab is the CFT metric tensor and Rabcd , Rab and R
are the Riemann tensor, Ricci tensor, and Ricci scalar of the
CFT, respectively.

It is important to state here that the above CFT stress tensor
matches the one predicted by the duality, which is calculated
using from the Brown–York tensor and the above relation in
Eq. (63). Indeed, this is one of the important non-perturbative
silent checks of this duality. As a result, evaluating the trace
of this stress tensor yields the expected conformal anomaly
[18]

〈T̂ a
a〉 = −

(
a2 − b2

)
N 2g6

[
3g2

(
a2 − b2

)
cos4 θ̂ − 2 cos2 θ̂

(
a2g2 − 2b2g2 + 1

) − b2g2 + 1
]

4π2 . (69)

This identification is exact upon remembering that, in the
AdS/CFT correspondence, 2N 2g3/π is translated to G−1 at
the gravity side and vice versa. We have therefore shown
that the CFT stress tensor – which is calculated from the
counterterm-regulated action at the gravity side – is exactly

equal to the CFT boundary stress tensor calculated at the
field theory side. This also implies an equality between the
conformal anomalies on both sides.

5.2 Casimir energy

Another consequence of the matching of the above two stress
tensors – the one predicted by gravity and that calculated on
the field theory side – is the matching between the vacuum
energies, (54) on the gravity side and the Casimir energy
ECasimir on the field theory side. The Casimir energy is found
using the formula ( [11])

ECasimir =
∑

s=0, 1
2 ,1

Ns
∫

S3
d3x

√
σ χa〈T̂ s

ab〉ub. (70)

Here the summation is again over the possible fields of
the theory. χa and ua are the timelike Killing vector and unit
normal vector, and σab is the foliation metric of the conformal
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boundary. Direct evaluation of the integral in (70) followed
by some simplifications gives [18]

ECasimir = N 2g
[
9ab + (a − b)

2
]

48ab
. (71)

Making the identification π/(2Gg3) ↔ N 2, it is easy to
see that the Casimir energy in (71) is identical to the back-
ground energy of the bulk spacetime in (54),

ECasimir = MBG. (72)

6 The first law and the counterterms method

As was discussed in [2], introducing surface counterterms to
regulate the on-shell gravitational action in five dimensions
induces an anomalous Weyl transformation on the boundary.4

This is how the bulk encodes the boundary Weyl anomaly. Let
us denote the radial spacelike boundary at infinity by ∂M. It
was found [2] that a Weyl factor δσ changes the renormalized
action by

δσ Iren =
∫

∂M
dnx

√−hAδσ, (73)

in the presence of a conformal anomaly A.
Now, we have seen that in order to verify the first law, we

need to vary various quantities, such as the entropy, angular
momenta, and charge with respect to r+, q, a and b (see for
example Eq. (25)). But since the boundary metric is expressed
in terms of a and b, variation of these parameters will change
the boundary metric that should remain fixed. We will see
(Eq. (83)) that variations of a and b have the effect of a Weyl
transformation on the boundary metric. The entropy, angu-
lar momenta, and electric charge are expressed as surface
integrals of fluxes whose sources are localized in the black
hole region. In that sense, they can be written as integrals
over the horizon [2]. Thus they will not be affected by vari-
ations of the boundary metric. This is not the case for the
mass. As we saw in Eq. (51), the total mass is the sum of
a term that depends on the mass parameter (M0) plus the
background energy (MBG). The latter is certainly affected by
conformal transformations of the boundary. Another quantity
that is affected by the boundary conformal transformation is
the renormalized action, which contains contributions from
surface integrals on the boundary.

The main idea is to subtract from the LHS of the first
law the variation of the mass that results from varying the
boundary metric. If we denote this mass variation by δσ M ,
the correct form of the first law [2] is thus given by

dM = δσ M + TdS + �ad Ja + �bd Jb + �dQ. (74)

4 This happens specifically when the rotation parameters are different.

Note that the variations of the renormalized action Iren and
mass are not independent since (see Eq. (77) below)

Iren = β(M − T S − �a Ja − �b Jb − �Q), (75)

so

δσ Iren = βδσ M. (76)

We argue here that, by a similar analysis, the volume term
(see Eq. (33)) needs to be modified due to extra terms arising
from boundary variation when the AdS radius 1/g is varied
as well.

In conclusion, we expect the action and mass calculated
from the counterterms method to verify the quantum statis-
tical relation, the first law, and Smarr’s formula. But in order
to show the latter two, we must account for extra terms which
result from a Weyl transformation of the boundary when cer-
tain parameters are varied

6.1 The first law in the presence of a conformal anomaly

We begin by noting that the counterterms action (41) and
mass (51) satisfy the so-called quantum statistical relation

Iren = βG(T,�a,�b,�). (77)

We will adopt the same procedure that was done in [2].
The first step is to transform the boundary metric into a more
canonical asymptotic form. To do so we use the coordinates
r̄ and θ̄ defined by

r = r̄

[
1 + 	̂θ̄

4g2r̄2 + 	̂θ̄

16gr̄

(
1 + ̂a + ̂b − 2	̂θ̄

)
+ O

(
1

r̄6

)]
,

(78)

θ = θ̄ + 1

16gr̄

(
1 − 	̂θ̄

)
	̂′̄

θ

− 1

32g6r̄6

(
1 − 	̂θ̄

)
	̂′̄

θ

×
(

1 + ̂a + ̂b + 3	̂θ̄

)
+ O

(
1

r̄8

)
. (79)

The functions 	̂θ , ̂a and ̂b are given by

	̂θ = 1 − 	θ, ̂a = 1 − a, ̂b = 1 − b. (80)

The conformal boundary metric in terms of the new coor-
dinates is

ds̄2
BG = −dt2 + 2a sin2 θ̄

a
dtdφ + 2b cos2 θ̄

b
dtdψ

+ 1

g2	θ̄

dθ̄2 + sin2 θ̄

g2a
dφ2 + cos2 θ̄

g2b
dψ2. (81)

We now consider the variation of this metric under
infinitesimal variations of a and b. We switch to a new coor-
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dinate system (t, r̄ , θ̄ ′, φ′, ψ ′) given by

tan2 θ̄ =
(

1 + δa

a
− δb

b

)
tan2 θ̄ ′,

φ = φ′ − g2tδa, ψ = ψ ′ − g2tδb. (82)

In terms of these coordinates, the resulting variation of the
metric in (81) is given [2] by

ds̄2
BG →

(
1 − δa

a
sin2 θ̄ − δb

b
cos2 θ̄

)
ds̄2

BG. (83)

We use the value of the conformal anomaly that we calcu-
lated in (69) to find the variation of the action resulting from
the Weyl factor in (83):

δσ Iren =
∫

[0, β]×S3
d4x

√−hAδσ (84)

= πβ

96g2G
δ

(
a

b
+ b

a

)
. (85)

This form is in agreement with [2], again with the caveat
that the electric charge appears in β. We also explicitly verify
that

δσ Iren = βδσ M

= βδMCasimir, (86)

which is expected, given the result in (77). The first law can
then be written as5

dM = dM0 + dMCasimir

= δMCasimir + TdS + �ad Ja + �bd Jb + �dQ. (87)

We have already seen that the first term on the left-hand
side equals the sum of all but the first term on the right-hand
side. The Casimir energy is only a function of a and b and
does not depend on r+ or q. The term dMCasimir is hence just
the variation of the Casimir energy with respect to a and b.
Using (86) this term can be calculated from

δMCasimir = β−1
∫

[0, β]×S3
d4x

√−hAδσ. (88)

6.2 Extended thermodynamics and volume calculation

Allowing the cosmological constant to vary leads to another
treatment called extended thermodynamics [16,17]. In this
treatment we are adding another pair of thermal quantities,
namely the pressure, P = 3g2/4π , and its conjugate ther-
modynamic volume

V =
(

∂M

∂P

)

S,Q,Ja ,Jb

. (89)

5 Recall that M = M0 + MBG = M0 + MCasimir.

This pair is supposed to obey Smarr’s relation (31) as in
[17], but it is straightforward to check that the volume in (89)
does not satisfy this relation. In this section we analyze the
reason behind this contradiction and show how it can be fixed.
We are unaware of any similar attempts to address this issue
for this or any other black hole solutions in the literature.

The relation in (89) can equivalently be written as

V = ∂g

∂P

(
∂M

∂g

)

S,Q,Ja ,Jb

. (90)

It is easy to see that the last term on the RHS induces
a variation in the boundary metric analogous to variations
with respect to a and b in Sect. 6.1. We thus need to add a
compensating term to the thermodynamic volume to account
for this variation. Let us go back to the metric in (81). We
now switch to a new coordinate system

(
t, r̄ , θ̄ ′′, φ′′, ψ ′′),

where

tan2 θ̄ =
(

1 + δa

a
− δb

b

)
tan2 θ̄ ′′,

φ = φ′′ − a2tδg, ψ = ψ ′′ − b2tδg. (91)

We emphasize that the variations of a and b are now
with respect to g, and the rotation parameters a and b are
kept fixed throughout this subsection. With this in mind, it is
easy to see that the variation of the metric follows the form

ds̄2
BG →

(
1 − δa

a
sin2 θ̄ − δb

b
cos2 θ̄

)
ds̄2

BG. (92)

Let us denote the Weyl factor in this section by δσ̃ . We
define an effective thermodynamic volume V̄ that takes care
of the extra terms in the mass that arise from the transforma-
tion (92) by

V̄ =
(

∂M

∂P

)

S,Q,Ja ,Jb

+ ∂(δσ̃ M)

∂P
. (93)

This is a generalized definition of the volume that reduces
to the usual definition in (33) and (89) in the absence of a
conformal anomaly and still satisfies Smarr’s formula in the
presence of the latter. Furthermore, this definition satisfies
Smarr’s formula even if we use the ADM [20] or the Koun-
terterms method [30]. These two techniques give the mass
expression in (22), resulting in the last term on the RHS van-
ishing. Expression (93) will hence give the same quantity in
(33), which we have already verified that it satisfies Smarr’s
formula if the mass is given by (22).

In AdS5, it is straightforward to verify that transformation
(92) leads to a variation of the mass given by

δσ̃ M = β−1δσ̃ Iren

= β−1
∫

[0, β]×S3
d4x

√−hAδσ̃
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= π

96g2G

[
δa(a − b)(a + b)

a
2b

− δb(a − b)(a + b)

ab
2

]

= π

96g2G
δ

(
a

b
+ b

a

)
. (94)

The first line is just Eq. (84), and we used relation (86)
to arrive at the second line. We now calculate the volume in
(93) for our solution:

V̄ = V0 − π2
[−9g2

(
a2 + b2

) + g
(
a + 7a2b2 + b

) + 9
]

72gab
.

(95)

It is straightforward to show that the expression in (95)
satisfies Smarr’s formula with the mass calculated via the
counterterms method,

M = 3

2
(T S + �a Ja + �b Jb) + �Q − PV̄ . (96)

Alternatively, one can define the thermodynamic volume
by (89) and add a compensating term to Smarr’s formula,

M = 3

2
(T S + �a Ja + �b Jb) + �Q

−
(
PV + P

∂(δσ̃ M)

∂P

)
. (97)

6.3 The first law in extended thermodynamics

We discuss here the first law in extended thermodynamics for
the general black hole in five dimensions. In extended ther-
modynamics, the mass/energy M is nothing but the enthalpy

H = U + PV̄ . (98)

The internal energy is thus found from

U = M − PV̄ . (99)

With this, the first law in terms of U can be written as

dU = TdS +
∑

i

�i d Ji + �dQ − PdV̄ . (100)

It is easy to show that

∂U

∂r+
= T

∂S

∂r+
+

∑

i

�i
∂ Ji
∂r+

+ �
∂Q

∂r+
− P

∂ V̄

∂r+
,

∂U

∂q
= T

∂S

∂q
+

∑

i

�i
∂ Ji
∂q

+ �
∂Q

∂q
− P

∂ V̄

∂q
,

∂U

∂g
= T

∂S

∂g
+

∑

i

�i
∂ Ji
∂g

+ �
∂Q

∂g
− P

∂ V̄

∂g
. (101)

When we vary with respect to c = a, b we find

∂U

∂c
= T

∂S

∂c
+

∑

i

�i
∂ Ji
∂c

+ �
∂Q

∂c
− P

∂ V̄

∂c
+ ∂MBG

∂c
.

(102)

Equations (101) and (102) can be combined in the form

dU = TdS +
∑

i

�i d Ji + �dQ − PdV̄ + δσ MBG,

(103)

where the variation δσ is understood to be w.r.t. to a and b
but not g.

This completes our investigation of the extended thermo-
dynamics of the general charged rotating black hole in five
dimensions where we saw that Smarr’s relation as well as the
first law are satisfied using the counterterms method.

7 Conclusion

We used the counterterms subtraction method to calculate
various physical quantities of the charged rotating black holes
in AdS5 introduced in [1]. We showed that the resulting quan-
tities satisfy the known thermodynamic relations in the cases
of a varying and fixed cosmological constant, i.e., in extended
and regular thermodynamics. All these quantities satisfy the
Gibbs–Duhem relation, the first law, and Smarr’s relation.

Quantum corrections break conformal symmetries in four-
dimensional field theories, producing conformal anomalies.
This classical symmetry on the boundary is realized as a sub-
set of the bulk diffeomorphisms which is called the Penrose–
Brown–Hennaux (PBH) transformation [14,15]. For bound-
ary field theories with a non-vanishing conformal anomaly, a
PBH transformation will not leave the gravitational on-shell
action invariant. As was generally argued in [2], this varia-
tion affects only the mass, but not the other quantities in the
first law. This is because these other quantities can be written
as integrals over the horizon.

We showed that the mass calculated from the counterterms
method can be written as a sum of two terms, one containing
the mass parameter and electric charge, and another which
is nothing but the background energy of the spacetime. The
background energy is not restricted to the black hole region
and its flux depends on the boundary. An important boundary
condition for the AdS/CFT correspondence (or for the vari-
ation problem in [2]) is to keep the boundary metric fixed
by utilizing a PBH or boundary Weyl transformation. As a
result, one can use a Weyl transformation to cancel the varia-
tion in the mass term that results from varying the boundary
metric. This leaves the first law satisfied.

In this work we used the counterterms subtraction method
to calculate the renormalized on-shell action for the general
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rotating charged AdS solution presented in [1], as well as
its mass and angular momenta. We showed that these quan-
tities satisfy the first law and the Gibbs–Duhem relation.
Going to extended thermodynamics [16,17] where we allow
the cosmological constant to vary and act as a pressure, a
naive calculation of first law shows that it is not satisfied. We
showed that a similar issue exists with the volume defined
in the extended-thermodynamics treatment [16,17], mean-
ing varying this quantity does not leave the boundary metric
fixed and one needs to use a compensating PBH term to keep
the volume fixed. This modification is important to satisfy
the first law in this case as well as the generalized Smarr’s
formula when the counterterms subtraction method is used
in the presence of a conformal anomaly.

We calculated the renormalized stress tensor and confor-
mal anomaly of the CFT living on the boundary as pre-
dicted by the AdS/CFT duality, i.e., from the gravity side.
We showed that these quantities coincide with the quanti-
ties calculated on the field theory side on a rotating Einstein
Universe. Furthermore, we calculated the Casimir energy in
the CFT and verified that it exactly matches the background
energy of the bulk theory.

Finally, we showed that the calculation of the thermody-
namic volume induces a Weyl transformation on the bound-
ary metric, which adds extra terms to the calculated expres-
sion. We have generalized the definition of the thermody-
namic volume in a way that accounts for these extra terms
in the presence of a conformal anomaly. We have shown that
our definition leads to a volume term that satisfies Smarr’s
relation as well as the first law in extended thermodynamics
when the counterterms method is used. It would be inter-
esting to use the quantities calculated here to study various
phase transitions for the five-dimensional charged rotating
solution [1], which are expected to have a rich structure.
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A CFT stress tensor components

We list below the non-vanishing components of the CFT
stress tensor which were not presented explicitly in the liter-
ature before.

〈T̂t t 〉

= − 495N 2g4

1952π2ab

[(
g2

(
a2 + b2

)

+ g2(a2 − b2) cos(2θ) − 2
)(

g2(a2 − b2)
(
20 cos(2θ)

×
(
g2

(
a2 + b2

)
− 2

)
+ 7g2(a2 − b2) cos(4θ)

)

− 24g2
(
a2 + b2

)

+ g4
(

5a4 + 14a2b2 + 5b4
)

+ 24
)]

,

〈T̂θθ 〉

= 495N 2g2

976π2
(
g2

(
b2 − a2

)
cos2 θ − b2g2 + 1

)

×
[
g2

(
a2 − b2

) (
3g2

(
a2 − b2

)
cos(4θ)

+ 4 cos(2θ)
(
g2

(
a2 + b2

)
− 2

))

+ 8g2
(
a2 + b2

)
+ g4( − 7a4 + 6a2b2 − 7b4) − 8

]
,

〈T̂φφ〉

= 495N 2g2 sin2 θ

976π2a

[
g2(a2 − b2)

(
7g2(a2 − b2) cos(4θ)

− 4 cos(2θ)
(
g2

(
3a2 − 5b2

)
+ 2

)) + 8g2(a2 + b2)

+ g4(5a4 − 18a2b2 + 5b4) − 8
]
,

〈T̂ψψ 〉

= 495N 2g2 cos2 θ

976π2b

[
g2

(
a2 − b2

) (
7g2

(
a2 − b2

)

× cos(4θ) + 4 cos(2θ)
(
g2

(
5a2 − 3b2

)
− 2

))

+ 8g2(a2 + b2)

+ g4(5a4 − 18a2b2 + 5b4) − 8
]
. (104)
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