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Abstract. A generalization is given of the linearized constitutive equation, proposed

by Gurtin and Pipkin for the heat flux in a rigid heat conductor, which includes the effects

of both the histories of the temperature gradient g and of ∇g. This new contribution

yields a non-simple material, for which the Second Law of Thermodynamics assumes a

modified form, characterized by an extra flux, depending on the material. Some standard

free energy functionals are adapted to these new materials, including an explicit formula

for the minimum free energy.

1. Introduction. A generalization of the linearized constitutive equation for the

heat flux, proposed by Gurtin and Pipkin [18] is given in this paper, influenced by the

work of Guyer and Krumhansl [19]. Using kinetic theory, they obtain a generalization of

Cattaneo-Maxwell’s equation containing new terms with second gradients of q.

We consider a new constitutive equation with memory for the heat flux, which includes

not only the effects of the history of the temperature gradient g, but also the history

of ∇ · ∇g. This choice yields a non-simple material, for which the classical Second Law

of Thermodynamics, expressed by the Clausius-Duhem inequality, must be modified by

means of a different definition of internal entropy power or by considering the presence

of an extra flux.
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788 G. AMENDOLA, M. FABRIZIO, AND J. M. GOLDEN

We study the compatibility of the new non-local constitutive equation with the Second

Law and derive restrictions on the kernels. Under these restrictions one can study free

energies related to the non-local constitutive equation for the heat flux.

The layout of the paper is as follows. In Section 2, some constitutive equations for

the heat flux are examined in a generalized linear theory of rigid heat conductors with

memory effects. In Section 3, the classical form of the Second Law of Thermodynamics

is considered for simple materials in order to introduce an appropriate modification for

non-simple materials. In Section 4, after introducing states and processes for non-simple

conductors, the linearized form of the Second Law is deduced for these materials. The

thermodynamic restrictions on the constitutive equation for the heat flux are then de-

rived. In Section 5, two free energies already introduced for viscoelastic materials are

adapted to our non-simple rigid heat conductors. In Section 6, we derive an explicit

expression for the minimum free energy of these materials.

2. Preliminaries. Gurtin and Pipkin developed [18] a general theory of heat con-

duction for non-linear materials with memory, based on the work of Coleman [5]. A

major objective of this formulation was to avoid the infinite speed of propagation of

thermal disturbances of the classical theory, characterized by Fourier’s law

q(x, t) = −κg(x, t), (2.1)

where q denotes the heat flux and g =∇ϑ is the temperature gradient, both of which

depend on the position vector x and the time t. The scalar quantity κ is the conductivity,

which must be positive. The linearization of such a theory for isotropic media, also

considered in [18], gives for the heat flux the following constitutive equation:

q(x, t) = −
∫ +∞

0

a(s)gt(x, s)ds. (2.2)

This expresses the heat flux q as a linear functional of the history of the temperature

gradient g up to time t, gt(x, s) = g(x, t − s) ∀s ∈ R+ ≡ [0,+∞). The authors

observed that Fourier’s law is not a particular case of their functional, unless a constant

temperature gradient has been imposed on the body for all past times. Under this

assumption, gt(x, s) = g(x) ∀s ∈ R+ and (2.2) reduces to

q(x, t) = −κg(x, t), κ =

∫ +∞

0

a(s)ds. (2.3)

They noted that their relation yields a generalization of the Cattaneo-Maxwell equa-

tion, previously introduced in a pioneering paper [3], which sought to avoid the propa-

gation of heat at an infinite speed. To show this, they considered the Cattaneo-Maxwell
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relation1 written in the form

q̇(x, t) + σq(x, t) = −κσg(x, t) (2.4)

and observed that this expression is the special case of (2.2) corresponding to the kernel

a(s) = κσe−σs. (2.5)

To prove this it is enough to replace the kernel a(s) with (2.5) in (2.2), that is,

q(x, t) = −
∫ +∞

0

κσe−σsgt(x, s)ds, (2.6)

and to check that this relation and its time derivative (after an integration by parts)

satisfy (2.4).

We rewrite the Cattaneo-Maxwell relation in its original form:

τ q̇(x, t) + q(x, t) = −κg(x, t). (2.7)

Guyer and Krumhansl [19] (see also Cimmelli and Frischmuth [4]), with a suitable

approximation, obtain from kinetic theory the following generalization of the Cattaneo-

Maxwell equation:

τ q̇(x, t) + q(x, t) = −k∇ϑ(x, t) + α [∇ · ∇q(x, t) + 2∇∇ · q(x, t)] , (2.8)

where τ is the relaxation time, k > 0 is the heat conduction and α is a suitable coefficient.

An argument similar to that used by Guyer and Krumhansl (see also [4]) yields the new

equation

τ q̇(x, t) + q(x, t) = −h1g(x, t) + h2∇ · ∇g(x, t), (2.9)

where, besides the effect of g, we also have the contribution of the divergence of its

gradient ∇g. This new constitutive equation is equivalent, in the Gurtin-Pipkin sense,

to

q(x, t) = −
∫ +∞

0

h1

τ
e−γsgt(x, s)ds+∇ ·

∫ +∞

0

h2

τ
e−γs∇gt(x, s)ds, γ =

1

τ
. (2.10)

In fact, its time derivative, taking account of ġt(s) = − d
dsg

t(s) and integrating by parts,

yields

q̇(x, t) =
h1

τ

∫ +∞

0

e−γs d

ds
gt(x, s)ds−∇ · h2

τ

∫ +∞

0

e−γs d

ds
∇gt(x, s)ds

= γ

[∫ +∞

0

h1

τ
e−γsgt(x, s)ds−∇ ·

∫ +∞

0

h2

τ
e−γs∇gt(x, s)ds

]

− 1

τ
[h1g(x, t)− h2∇ · ∇g(x, t)]

=
1

τ
[−q(x, t)− h1g(x, t) + h2∇ · ∇g(x, t)] , (2.11)

1The exact expression proposed by Cattaneo for the heat flux is

σq̇+ κq = −κ
2∇ϑ.

This form has the advantage over (2.4), adapted by Gurtin and Pipkin, that one can recover Fourier’s
law immediately from this form by putting σ = 0 . This was important for Cattaneo, who was very
conscious of the importance of the Fourier relation, in particular because of its continuous use in technical

applications. Therefore, we use such an expression in the form (2.7), where τ = σ
κ

and k = κ.
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whence it follows that (2.9) is satisfied with γ = 1
τ .

In this paper we study a constitutive equation more general than (2.10), of the form

q(x, t) =

∫ +∞

0

K ′
1(s)ḡ

t(x, s)ds−∇ ·
∫ +∞

0

K ′
2(s)∇ḡt(x, s)ds, (2.12)

where K1 and K2 ∈ L1(R+) ∩ L2(R+) are two smooth positive functions and we have

introduced the integrated history of g, given by

ḡt(x, s) =

∫ s

0

gt(x, ξ)dξ =

∫ t

t−s

g(x, λ)dλ, . (2.13)

From (2.12), we have, after an integration by parts,

q(x, t) = −
∫ +∞

0

K1(s)g
t(x, s)ds+∇ ·

∫ +∞

0

K2(s)∇gt(x, s)ds. (2.14)

Henceforth, since our attention shall be fixed on a specific point x ∈ Ω, the space

dependence will be omitted in the following.

3. Thermodynamics. Simple materials.

In order to study the thermodynamic restrictions connected with the constitutive

equation we firstly consider local materials.2 For these systems, the classical expression

of the Second Law of Thermodynamics is given by the Clausius-Duhem inequality

η̇ ≥ −∇ · q
ϑ
+

r

ϑ
, (3.1)

where ϑ is the absolute temperature, η denotes the entropy and r is the heat supply.

Moreover, from the heat balance law we have

h = −∇ · q+ r, (3.2)

where h is the rate, per unit mass, at which heat is absorbed, or the internal heat power.

Moreover, since we are working with a rigid conductor, the First Law takes the form

ė = h, (3.3)

where e is the internal energy. From (3.2) and (3.3), we obtain the entropy power law

ė

ϑ
+

1

ϑ2
q · ∇ϑ = −∇ · q

ϑ
+

r

ϑ
. (3.4)

This relation, for local material, can be considered as the following balance equation,

Pi
η = Pe

η , (3.5)

between the internal entropy power Pi
η and the external entropy power Pe

η defined by

Pi
η =

ė

ϑ
+

1

ϑ2
q · ∇ϑ, Pe

η = −∇ · q
ϑ
+

r

ϑ
. (3.6)

Consequently, we can rewrite the inequality (3.1) as

η̇ ≥ ė

ϑ
+

1

ϑ2
q · ∇ϑ, (3.7)

2Examples of local materials for the heat flux are given by constitutive equations such as the Fourier

law (2.1) or the Cattaneo-Maxwell equation (2.7) as well as the Gurtin-Pipkin relation.
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by virtue of (3.5). Therefore, the Second Law can be represented in terms of the internal

entropy power, by means of the inequality

η̇ ≥ Pi
η. (3.8)

By introducing the free energy ψ = e− ϑη, the inequality (3.7) can be rewritten as

ψ̇ ≤ −ηϑ̇− 1

ϑ
q · ∇ϑ. (3.9)

Let us introduceD(x, t), a non-negative function referred to as the internal dissipation,

which allows us to transform the inequality (3.9) into the following equality:

ψ̇ +D = −ηϑ̇− 1

ϑ
q · ∇ϑ = −ηϑ̇− 1

ϑ
q · g. (3.10)

Non-simple materials.

When the constitutive equation for q is not local, as for (2.9) and (2.12) or (2.14),

we need to change the classical Clausius-Duhem inequality (3.1) or equivalently the

inequality (3.7), because the internal entropy power assumes a different form. However,

for non-local as well as local systems, the entropy power equation is defined by (3.4),

but where the heat flux q is now expressed by a constitutive equation for a non-simple

material. In this case, we modify the inequality (3.1) as follows:

η̇ ≥ −∇ · q
ϑ
+

r

ϑ
−∇ ·Φ, (3.11)

where Φ denotes an extra flux which depends on the constitutive equation for q. Taking

into account (3.4), this inequality assumes the form

η̇ ≥ ė

ϑ
+

1

ϑ2
q · g −∇ ·Φ, (3.12)

which, by introducing the free energy ψ = e− ϑη, becomes

ψ̇ ≤ −ηϑ̇− 1

ϑ
q · g + ϑ∇ ·Φ. (3.13)

Following the viewpoint of [8], we consider a linearization in a neighborhood of the

temperature ϑ0 and the null values of ḡt and ∇ḡt; therefore, in particular, we suppose

that ϑ(x, t) = ϑ0+ εϑ1(x, t), where ε 
 1 and ϑ1(x, t) is the relative temperature. Then,

the linearization of (3.13) yields the following inequality:

ψ̇ ≤ −ηϑ̇− 1

ϑ0
q · g + ϑ0∇ ·Φ, (3.14)

where the linearized quantities are denoted without a subscript.

4. Thermodynamic restrictions. Let B be a homogeneous and isotropic rigid heat

conductor with memory, occupying a fixed bounded domain Ω ⊂ R3 with a smooth

boundary ∂Ω, characterized by the constitutive equations for the heat flux given by

(2.14). The memory kernels Ki : R
+ → R (i = 1, 2) belong to L1(R+) ∩H1(R+). To

characterize the behaviour of such a material, we introduce a state defined by

σT (t) = (ϑ, σ(t)) =
(
ϑ, ḡt,∇ḡt

)
, (4.1)
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and a process, which is a piecewise continuous map PT : [0, d) → R×R3 defined as

PT (τ ) = (ϑ̇P , P ) = (ϑ̇P ,gP (τ ),∇gP (τ )) ∀τ ∈ [0, d), (4.2)

where d, the duration of the process, generally has a finite value.

Now, we seek a free energy ψ as a sum of a temperature-dependent function and a

functional of the temperature gradient, specifically

ψ
(
ϑ, ḡt,∇ḡt

)
= ψ1 (ϑ) + ψ2

(
ḡt,∇ḡt

)
. (4.3)

Then, the inequality (3.14) can be satisfied if we put

∂

∂ϑ
ψ1(ϑ) = −η(ϑ), (4.4)

ψ̇2

(
ḡt,∇ḡt

)
≤ − 1

ϑ0
q · g + ϑ0∇ ·Φ. (4.5)

In the following we shall suppose

ϑ0 = 1. (4.6)

From the linearized constitutive equation (2.12) we have

q(t) · g(t) =
∫ +∞

0

K ′
1(s)ḡ

t(s)ds · g(t) +
∫ +∞

0

K ′
2(s)∇ḡt(s)ds · ∇g(t)

−∇ ·
{[∫ +∞

0

K ′
2(s)∇ḡt(s)ds

]T
g(t)

}
. (4.7)

The transpose in the last term is irrelevant because the matrix in square brackets is

symmetric. Taking

Φ(t) = −
[∫ +∞

0

K ′
2(s)∇ḡt(s)ds

]
g(t), (4.8)

the inequality (4.5), by virtue of (4.6), reduces to

ψ̇2(t) ≤ −q · g +∇ ·Φ

≤ −
∫ +∞

0

K ′
1(s)ḡ

t(s)ds · g(t)−
∫ +∞

0

K ′
2(s)∇ḡt(s)ds · ∇g(t).

(4.9)

By introducing the entropy action

A(t) = A(σ, P ) = −
∫ +∞

0

K ′
1(s)ḡ

t(s)ds · g(t)

−
∫ +∞

0

K ′
2(s)∇ḡt(s)ds · ∇g(t),

(4.10)

the inequality (4.9)2 can be rewritten as

ψ̇2

(
ḡt,∇ḡt

)
≤ A(t), (4.11)

with which, as for (3.10), we can associate an internal dissipation D2(x, t), a non-negative

function obeying

ψ̇2(t) +D2(t) = A(t). (4.12)
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The inequality (4.9)1 is equivalent to the representation (4.11) by virtue of an extra

flux Φ(t), which for a local material is zero, while for non-local systems depends on the

material (see I. Müller [20]). Using (4.7) and (4.10), we have

A(t) = −q(t) · g(t) +∇ ·Φ(t), (4.13)

where Φ(t) is given by (4.8). We can write (4.10) in the form

A(t) =

∫ +∞

0

K1(s)g
t(s)ds · g(t)

+

∫ +∞

0

K2(s)∇gt(s)ds · ∇g(t),

(4.14)

with the aid of partial integrations. Extending the integration to R but defining gt(s),

∇gt(s), s < 0, to be zero, we have the alternative form:

A(t) =

∫ +∞

−∞
K1(|s|)gt(s)ds · g(t)

+

∫ +∞

−∞
K2(|s|)∇gt(s)ds · ∇g(t).

(4.15)

The quantity A(t) allows us to evaluate the total entropy action B(σ, P ) of the material

during the application of a process P of duration d,

B(σ, P ) =

∫ t+d

t

A(ξ)dξ. (4.16)

We now assert the following principle, which is a consequence of the Second Law of

Thermodynamics, as expressed by (4.12).

Dissipation principle. On any cycle (σ,P ) we have

B(σ, P ) ≥ 0, (4.17)

where the equality sign holds if and only if the cycle is reversible.

Using (2.14) instead of (2.12) in (4.7), we obtain an alternative form for B(σ, P ), given

by

B(σ, P ) =

∫ t+d

t

[∫ +∞

0

K1(s)g
τ (s)ds · g(τ )

+

∫ +∞

0

K2(s)∇gτ (s)ds · ∇g(τ )

]
dτ.

(4.18)

This expression shall be used to obtain the thermodynamic restrictions imposed on the

constitutive equation (2.14).

Let us assume periodic histories for g and its gradient ∇g of the form

g(s) = cosωs a1 + sinωs a2, ∇g(s) = cosωsA1 + sinωsA2 (4.19)

for any s ≤ t and ω ∈ R\ {0}, where ai, Ai (i = 1, 2) denote arbitrary non-zero vectors

and second-order tensors depending only of x, while d = 2π/|ω| is the period of the
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history. Substituting (4.19) into (4.18), and invoking periodicity to change the interval

of integration (t, t+ d) to (0, d), we obtain

B(σ, P ) =

∫ d

0

{∫ +∞

0

K1(s) [cosω(t− s) a1 + sinω(t− s) a2] ds

· [cosωt a1 + sinωt a2] +

∫ +∞

0

K2(s)[cosω(t− s)A1

+sinω(t− s)A2]ds · [cosωtA1 + sinωtA2]

}
dt > 0, (4.20)

where τ has been replaced by t. Integrating with respect to t, we find that

B(σ, P ) =
d

2

[(
|a1|2 + |a2|2

)
K1c(ω) +

(
|A1|2 + |A2|2

)
K2c(ω)

]
> 0, (4.21)

where K1c(ω) and K2c(ω) are the half-range Fourier cosine transforms of the kernels

K1(s) and K2(s), given by (7.3)1. Also (no summation over repeated indices)

|ai|2 = ai · ai (i = 1, 2) (4.22)

and

|Ai|2 = Tr(AiA
�
i ) (i = 1, 2). (4.23)

It follows from the arbitrariness of ai, Ai (i = 1, 2) that

K1c(ω) > 0, K2c(ω) > 0 ∀ ω ∈ R\ {0} . (4.24)

Under the hypothesis that

K1c(0) =

∫ +∞

0

K1(s)ds := ν1∞ = 0,

K2c(0) =

∫ +∞

0

K1(s)ds := ν2∞ = 0,

(4.25)

we can extend (4.24) to R.

The inequality (4.25) is also a sufficient condition for the compatibility of the consti-

tutive equation with the Dissipation Principle; this proof is analogous to that given in

[11].

We also note that, under the hypotheses assumed for Ki (i = 1, 2), using the inverse

half-range Fourier transform, (4.24) and (7.5), we have

Ki(t) =
2

π

∫ +∞

0

Kic(ω) cosωt dω,

Ki(0) =
2

π

∫ +∞

0

Kic(ω)dω > 0 (i = 1, 2).

(4.26)

Also, from (7.6),

lim
ω→+∞

ωK ′
is(ω) = − lim

ω→+∞
ω2Kic(ω) = K ′

i(0) ≤ 0 (i = 1, 2). (4.27)

It will be assumed that

K ′
i(0) < 0 (i = 1, 2). (4.28)
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For constant histories

gt(s) = g, ∇gt(s) = ∇g ∀s ∈ R+,

we obtain from (2.14) the following heat flux,

q(t) = −ν1∞g + ν2∞∇ · ∇g,

with the aid of (4.25).

5. Free energies for the rigid heat conductor. We now consider two candidate

expressions for the free energy ψ2 (ḡ
t,∇ḡt) introduced in (4.3), based on functionals

which have already been considered for linear viscoelastic solids and rigid heat conductors

[1, 2] in the case of simple materials. Our aim here is to generalize these functionals to

non-simple materials.

5.1. The Graffi-Volterra free energy. An important functional, frequently used in ap-

plications for viscoelastic solids, is the Graffi-Volterra free energy [16, 17, 22]. Such a

functional can be generalized to our non-simple heat conductors with the following form:

ψG(t) = −1

2

∫ +∞

0

K ′
1(s)ḡ

t(s) · ḡt(s)ds

− 1

2

∫ +∞

0

K ′
2(s)∇ḡt(s) · ∇ḡt(s)ds,

(5.1)

which is non-negative if we assume that

K ′
i(s) < 0 ∀s ∈ R

+ (i = 1, 2) . (5.2)

Another constraint will be imposed on these kernel functions to ensure a non-negative

rate of dissipation, namely

K ′′
i (s) ≥ 0 ∀s ∈ R

+ (i = 1, 2) . (5.3)

Taking account of
d

dt
ḡt(s) = g(t)− d

ds
ḡt(s), (5.4)

and the analogous relation for d
dt∇ḡt(s), the derivative with respect to time of (5.1) gives,

with the aid of an integration by parts,

ψ̇G(t) = −
∫ +∞

0

K ′
1(s)ḡ

t(s) · d

dt
ḡt(s)ds

−
∫ +∞

0

K ′
2(s)∇ḡt(s) · d

dt
∇ḡt(s)ds

= −
∫ +∞

0

K ′
1(s)ḡ

t(s)ds · g(t)−
∫ +∞

0

K ′
2(s)∇ḡt(s)ds · ∇g(t) (5.5)

− 1

2

∫ +∞

0

K ′′
1 (s)

[
ḡt(s)

]2
ds− 1

2

∫ +∞

0

K ′′
2 (s)

[
∇ḡt(s)

]2
ds

= A(t)−DG(t),
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which satisfies (4.12), by virtue of (4.10), provided we take

DG(t) =
1

2

∫ +∞

0

K ′′
1 (s)

[
ḡt(s)

]2
ds+

1

2

∫ +∞

0

K ′′
2 (s)

[
∇ḡt(s)

]2
ds ≥ 0. (5.6)

This is the non-negative internal dissipation corresponding to the Graffi-Volterra func-

tional.

We can derive from (5.5)2 the relation (4.9)1 (or (4.12) with (4.13)) in terms of the

extra flux, since we have

ψ̇G(t) = −
[∫ +∞

0

K ′
1(s)ḡ

t(s)ds−∇ ·
∫ +∞

0

K ′
2(s)∇ḡt(s)ds

]
· g(t)

− 1

2

∫ +∞

0

K ′′
1 (s)

[
ḡt(s)

]2
ds− 1

2

∫ +∞

0

K ′′
2 (s)

[
∇ḡt(s)

]2
ds (5.7)

+∇ ·
{[

−
∫ +∞

0

K ′
2(s)∇ḡt(s)ds

]
g(t)

}
= −q(t) · g(t)−DG(t) +∇ ·Φ(t) ≤ −q(t) · g(t) +∇ ·Φ(t),

where (4.8) has been invoked.

5.2. A new free energy in terms of the minimal state. We now consider the new free

energy ψF , recently introduced and considered, in particular, in [7] and [6] for viscoelastic

solids. For this purpose let us introduce the quantities

It(τ, ḡt) =

∫ +∞

0

K ′
1(τ + η)ḡt(η)dη,

I
t(τ,∇ḡt) =

∫ +∞

0

K ′
2(τ + η)∇ḡt(η)dη,

(5.8)

which define a minimal state. In particular, we have

It(0, ḡt) =

∫ +∞

0

K ′
1(η)ḡ

t(η)dη, It(0,∇ḡt) =

∫ +∞

0

K ′
2(η)∇ḡt(η)dη. (5.9)

Moreover, their derivatives with respect to τ are given by

It(1)(τ, ḡ
t) =

∫ +∞

0

K ′′
1 (τ + η)ḡt(η)dη,

It(1)(τ,∇ḡt) =

∫ +∞

0

K ′′
2 (τ + η)∇ḡt(η)dη,

(5.10)

which yield

It(1)(0, ḡ
t) =

∫ +∞

0

K ′′
1 (η)ḡ

t(η)dη,

I
t
(1)(0,∇ḡt) =

∫ +∞

0

K ′′
2 (η)∇ḡt(η)dη.

(5.11)
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Now, consider the following functional:

ψ
(q)
F (t) = −1

2

∫ +∞

0

1

K ′
1(τ )

[
It(1)(τ, ḡ

t)
]2

dτ

−1

2

∫ +∞

0

1

K ′
2(τ )

[
I
t
(1)(τ,∇ḡt)

]2
dτ, (5.12)

under the hypotheses that K ′
i(s) and K ′′

i (s) (i = 1, 2) satisfy (5.2) and (5.3). In order

to verify that this expression gives a possible free energy ψ2 (ḡ
t,∇ḡt) for our body, we

evaluate its derivative with respect to t, which takes the form

ψ̇
(q)
F (t) = −

∫ +∞

0

1

K ′
1(τ )

İt(1)(τ, ḡ
t) · It(1)(τ, ḡt)dτ

−
∫ +∞

0

1

K ′
2(τ )

İt(1)(τ,∇ḡt) · It(1)(τ,∇ḡt)dτ. (5.13)

Then, from (5.10), by using (5.4) and integrating by parts, we obtain

İt(1)(τ, ḡ
t) ≡ d

dt
It(1)(τ, ḡ

t) = −K ′
1(τ )g(t) + It(2)(τ, ḡ

t), (5.14)

İ
t
(1)(τ,∇ḡt) ≡ d

dt
I
t
(1)(τ,∇ḡt) = −K ′

2(τ )∇g(t) + I
t
(2)(τ,∇ḡt), (5.15)

with

It(2)(τ, ḡ
t) ≡ d

dτ
It(1)(τ, ḡ

t), I
t
(2)(τ,∇ḡt) ≡ d

dτ
I
t
(1)(τ,∇ḡt). (5.16)

Then, by substituting (5.14) and (5.15) into (5.13), we have

ψ̇
(q)
F (t) = −It(0, ḡt) · g(t)− It(0,∇ḡt) · ∇g(t)

− 1

2

∫ +∞

0

K ′′
1 (τ )

[K ′
1(τ )]

2

[
It(1)(τ, ḡ

t)
]2

dτ

− 1

2

∫ +∞

0

K ′′
2 (τ )

[K ′
2(τ )]

2

[
I
t
(1)(τ,∇ḡt)

]2
dτ

+
1

2

1

K ′
1(0)

[
It(1)(0, ḡ

t)
]2

+
1

2

1

K ′
2(0)

[
It(1)(0,∇ḡt)

]2
, (5.17)
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whence, using (5.9), it follows that

ψ̇
(q)
F (t) = −

[∫ +∞

0

K ′
1(η)ḡ

t(η)dη · g = (t)

+

∫ +∞

0

K ′
2(η)∇ḡt(η)dη · ∇g(t)

]

− 1

2

∫ +∞

0

K ′′
1 (τ )

[K ′
1(τ )]

2

[
It(1)(τ, ḡ

t)
]2

dτ (5.18)

− 1

2

∫ +∞

0

K ′′
2 (τ )

[K ′
2(τ )]

2

[
I
t
(1)(τ,∇ḡt)

]2
dτ

+
1

2

1

K ′
1(0)

[
It(1)(0, ḡ

t)
]2

+
1

2

1

K ′
2(0)

[
I
t
(1)(0,∇ḡt)

]2
= A(t)−DG(t) ≤ A(t),

by virtue of (4.10); hence, the equality (4.12) is satisfied with the following form for the

internal dissipation:

DF (t) =
1

2

∫ +∞

0

K ′′
1 (τ )

[K ′
1(τ )]

2

[
It(1)(τ, ḡ

t)
]2

dτ

+
1

2

∫ +∞

0

K ′′
2 (τ )

[K ′
2(τ )]

2

[
I
t
(1)(τ,∇ḡt)

]2
dτ (5.19)

− 1

2

1

K ′
1(0)

[
It(1)(0, ḡ

t)
]2

− 1

2

1

K ′
2(0)

[
I
t
(1)(0,∇ḡt)

]2
≥ 0,

because of the hypotheses (5.2) and (5.3) for K ′
i(s) and K ′′

i (s) (i = 1, 2). As in (5.7),

the relation (5.18)1 can also be written in the form

ψ̇
(q)
F (t) = −

[∫ +∞

0

K ′
1(η)ḡ

t(η)dη −∇ ·
∫ +∞

0

K ′
2(η)∇ḡt(η)dη

]
· g(t)

+∇ ·
{
−
[∫ +∞

0

K ′
2(η)∇ḡt(η)dη

]
g(t)

}

− 1

2

∫ +∞

0

K ′′
1 (τ )

[K ′
1(τ )]

2

[
It(1)(τ, ḡ

t)
]2

dτ (5.20)

− 1

2

∫ +∞

0

K ′′
2 (τ )

[K ′
2(τ )]

2

[
It(1)(τ,∇ḡt)

]2
dτ

+
1

2

1

K ′
1(0)

[
It(1)(0, ḡ

t)
]2

+
1

2

1

K ′
2(0)

[
I
t
(1)(0,∇ḡt)

]2
= −q(t) · g(t)−DG(t) +∇ ·Φ(t) ≤ −q(t) · g(t) +∇ ·Φ(t),

which is (4.9)1 with Φ expressed by (4.8).
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6. The minimum free energy. Applying partial integrations, (5.8) can also be

written in the form

It(τ, ḡt) = −
∫ +∞

0

K1(τ + η)gt(η)dη,

I
t(τ,∇ḡt) = −

∫ +∞

0

K2(τ + η)∇gt(η)dη.

(6.1)

We can write these as

It(τ, ḡt) = −
∫ 0

−∞
K1(τ − η)gt(−η)dη

= −
∫ 0

−∞
K1(|τ − η|)gt(−η)dη,

It(τ,∇ḡt) = −
∫ 0

−∞
K2(τ − η)∇gt(−η)dη

= −
∫ 0

−∞
K2(|τ − η|)∇gt(−η)dη.

(6.2)

Let us now consider the total entropy action B(σ, P ) of the material during the appli-

cation of a process P (τ ) = (gP (τ ),∇gP (τ )) ∀τ ∈ [0, d), starting at time t when the state

is σ(t) = (ḡt,∇ḡt). Its expression is given by (4.16), with (4.10), which can be rewritten

as

B(σ, P ) =

∫ d

0

[−q(t+ τ ) · gP (τ ) +∇ ·Φ(t+ τ )] dτ,

gP (τ ) = g(t+ τ )

(6.3)

with the aid of (4.13). Here we must consider the restriction Pτ of the process and the

related continuations of the initial histories, expressed by

ḡt+τ (s) = (ḡP ∗ ḡ)t+τ (s)

=

{ ∫ τ

τ−s
gP (s)ds = ḡτ

P (s) ∀s ∈ [0, τ ),

ḡτ
P (τ ) + ḡt(s− τ ) ∀s ≥ τ,

(6.4)

∇ḡt+τ (s) = (∇ḡP ∗ ∇ḡ)t+τ (s)

=

{ ∫ τ

τ−s
∇gP (s)ds = ∇ḡτ

P (s) ∀s ∈ [0, τ ),

∇ḡτ
P (τ ) +∇ḡt(s− τ ) ∀s ≥ τ,

(6.5)

which, with some integrations, allow us to obtain from (2.12),

q(t+ τ ) =

∫ τ

0

K ′
1(s)ḡ

τ
P (s)ds+

∫ +∞

τ

K ′
1(s)

[
ḡτ
P (τ ) + ḡt(s− τ )

]
ds

−∇ ·
{∫ τ

0

K ′
2(s)∇ḡτ

P (s)ds+

∫ +∞

τ

K ′
2(s)

[
∇ḡτ

P (τ ) +∇ḡt(s− τ )
]
ds

}

= −
∫ τ

0

K1(s)g
τ
P (s)ds+

∫ +∞

0

K ′
1(ξ + τ )ḡt(ξ)dξ

+∇ ·
∫ τ

0

K2(s)∇gτ
P (s)ds−∇ ·

∫ +∞

0

K ′
2(ξ + τ )∇ḡt(ξ)dξ (6.6)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



800 G. AMENDOLA, M. FABRIZIO, AND J. M. GOLDEN

and from (4.8),

∇ ·Φ(t+ τ ) = −∇ ·
{∫ τ

0

K ′
2(s)∇ḡτ

P (s)ds+

∫ +∞

τ

K ′
2(s)[∇ḡτ

P (τ )

+∇ḡt(s− τ )]ds
}
· gP (τ )−

{∫ τ

0

K ′
2(s)∇ḡτ

P (s)ds

+

∫ +∞

τ

K ′
2(τ )[∇ḡτ

P (τ ) +∇ḡt(s− τ )]ds

}
· ∇gP (τ )

=

{
∇ ·

∫ τ

0

K2(s)∇gτ
P (s)ds−∇ ·

∫ +∞

0

K ′
2(ξ + τ )∇ḡt(ξ)dξ

}
· gP (τ )

+

{∫ τ

0

K2(s)∇gτ
P (s)ds−

∫ +∞

0

K ′
2(ξ + τ )∇ḡt(ξ)dξ

}
· ∇ḡP (τ ). (6.7)

Substituting (6.6) and (6.7) into (6.3), we obtain

B(σ, P ) =

∫ d

0

{[∫ τ

0

K1(s)g
τ
P (s)ds−

∫ +∞

0

K ′
1(ξ + τ )ḡt(ξ)dξ

]
· gP (τ )

+

[∫ τ

0

K2(s)∇gτ
P (s)ds−

∫ +∞

0

K ′
2(ξ + τ )∇ḡt(ξ)dξ

]
· ∇gP (τ )

}
dτ. (6.8)

Let us extend the process on R+ by means of P (τ ) = (0,0), ∀τ > d; thus, (6.8)

becomes

B(σ, P ) =

∫ +∞

0

{[∫ τ

0

K1(τ − η)gP (η)dη − It(τ, ḡt)

]
· gP (τ )

+

[∫ τ

0

K2(τ − η)∇gP (η)dη − I
t(τ,∇ḡt)

]
· ∇gP (τ )

}
dτ

=

∫ +∞

0

[
1

2

∫ +∞

0

K1(| τ − η |)gP (η)dη − It(τ, ḡt)

]
· gP (τ )dτ

+

∫ +∞

0

[
1

2

∫ +∞

0

K2(| τ − η |)∇gP (η)dη − It(τ,∇ḡt)

]
· ∇gP (τ )dτ. (6.9)

The minimum free energy ψm(t) coincides with the maximum recoverable action

BR(σ),

ψm(t) ≡ BR(σ) = sup {−B(σ, P ) : P ∈ Π} , (6.10)

which is the maximum quantity of action we can obtain from a state σ. This is best

understood in the context of the axiomatic formulation in [9] (see also [10, 13]), where

B(σ, P ) can be identified with the (abstract) work function. It is clear from the same

axiomatic developments that ψm is a non-negative quantity.

We denote by P (m)(τ ) = (g(m)(τ ),∇g(m)(τ )) the optimal process, which yields such

a maximum. With reference to such a process we consider

gP (τ ) = g(m)(τ ) + δe(τ ), ∇gP (τ ) = ∇g(m)(τ ) + γh(τ ) ∀τ ∈ R+, (6.11)

where e and h are two arbitrary smooth functions, such that e(0) = 0, h(0) = 0, and γ

and δ are two real parameters.
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Substituting (6.11) into the expression (6.9)2 gives

−B(σ, P ) = −1

2

∫ +∞

0

∫ +∞

0

K1(| τ − η |)
{
g(m)(η) · g(m)(τ )

+δ
[
g(m)(η) · e(τ ) + e(η) · g(m)(τ )

]
+ δ2e(η) · e(τ )

}
dηdτ

+

∫ +∞

0

It(τ, ḡt) · [g(m)(τ ) + δe(τ )]dτ

− 1

2

∫ +∞

0

∫ +∞

0

K2(| τ − η |)
{
∇g(m)(η) · ∇g(m)(τ )

+γ
[
∇g(m)(η) · h(τ ) + h(η) · ∇g(m)(τ )

]
+ γ2h(η) · h(τ )

}
dηdτ

+

∫ +∞

0

It(τ, ḡt) · [∇g(m)(τ ) + γh(τ )]dτ, (6.12)

whence, differentiating with respect to δ and γ, we have the following system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂δ [−B(σ, P )] |δ=0 =

∫ +∞
0

e(τ ) ·
[
−
∫ +∞
0

K1(| τ − η |)g(m)(η)dη

+It(τ, ḡt)] dτ = 0
∂
∂γ [−B(σ, P )] |γ=0 =

∫ +∞
0

h(τ ) ·
[
−
∫ +∞
0

K2(| τ − η |)∇g(m)(η)dη

+It(τ,∇ḡt)] dτ = 0.

(6.13)

This system must be satisfied by arbitrary e and h; therefore, it follows that{ ∫ +∞
0

K1(| τ − η |)g(m)(η)dη = It(τ, ḡt),∫ +∞
0

K2(| τ − η |)∇g(m)(η)dη = It(τ,∇ḡt),
∀τ ∈ R+, (6.14)

which is a system of two Wiener-Hopf integral equations of the first kind. Using (6.2),

we can write it in the form{ ∫ +∞
0

K1(| τ − η |)g(m)(η)dη = −
∫ 0

−∞ K1(| τ − s |)gt(−s)ds,∫ +∞
0

K2(| τ − η |)∇g(m)(η)dη = −
∫ 0

−∞ K2(| τ − s |)∇gt(−s)ds,
(6.15)

for all τ ∈ R+. Let us define

ht
−(ω) =

∫ 0

−∞
gt(−s)e−iωsds =

[
gt
+(ω)

]∗
, (6.16)

in terms of the notation (7.2). This quantity is analytic in C+. We have

d

dt
ht
−(ω) = iωht

−(ω) + g(t). (6.17)

It is possible to solve (6.15) and derive the solutions g(m) and ∇g(m), which yield the

maximum recoverable action, by virtue of the thermodynamic properties of the kernels

and some theorems on factorization. Consequently, by substituting the expressions for

It and It, given by (6.14), into (6.9)2, we can evaluate this maximum:

BR(σ) =
1

2

∫ +∞

0

∫ +∞

0

K1(| τ − η |)g(m)(η) · g(m)(τ )dηdτ

+
1

2

∫ +∞

0

∫ +∞

0

K2(| τ − η |)∇g(m)(η) · ∇g(m)(τ )dηdτ. (6.18)
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We can rewrite this expression in terms of Fourier’s transform, by applying Plancherel’s

theorem; we obtain

BR(σ) =
1

2π

∫ +∞

−∞
K1c(ω) | g

(m)
+ (ω) |2 dω

+
1

2π

∫ +∞

−∞
K2c(ω) | ∇g

(m)
+ (ω) |2 dω.

(6.19)

It remains to solve the system (6.14). For this purpose, we introduce r1(τ ) and r2(τ ),

both of which vanish on R++. On R−, they are defined by the fact that they allow us

to write (6.14) on R in the form{ ∫ +∞
0

K1(| τ − η |)g(m)(η)dη = It(τ, ḡt) + r1(τ ),∫ +∞
0

K2(| τ − η |)∇g(m)(η)dη = It(τ,∇ḡt) + r2(τ ),
∀τ ∈ R. (6.20)

Using (6.15), we have for all τ ∈ R,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ +∞
0

K1(| τ − η |)g(m)(η)dη

= −
∫ 0

−∞ K1(| τ − s |)gt(−s)ds+ r1(τ ),∫ +∞
0

K2(| τ − η |)∇g(m)(η)dη

= −
∫ 0

−∞ K2(| τ − s |)∇gt(−s)ds+ r2(τ ).

(6.21)

Taking the Fourier transform to these equations, using the notation of (7.2), we have{
2K1c(ω)g

(m)
+ (ω) = −2K1c(ω)h

t
−(ω) + r1−(ω),

2K2c(ω)∇g
(m)
+ (ω) = −2K2c(ω)∇ht

−(ω) + r2−(ω).
(6.22)

We now consider the function3

Hi(ω) = (1 + ω2)Kic(ω) > 0 (i = 1, 2) , (6.23)

which has no zero for any real ω and also at infinity, by virtue of (4.24), (4.27) and (4.28).

Consequently, we can factorize both Hi(ω) and Kic(ω) (i = 1, 2) [15], since

Hi(ω) = Hi(+)(ω)Hi(−)(ω) ≡ (1 + iω) (1− iω)Kic(ω) (i = 1, 2) , (6.24)

so that

Kic(ω) =
Hi(+)(ω)

(1 + iω)

Hi(−)(ω)

(1− iω)
≡ Ki(+)(ω)Ki(−)(ω) (i = 1, 2) , (6.25)

where

Ki(±)(ω) =
Hi(±)(ω)

1± iω
(i = 1, 2) . (6.26)

Note thatK1(±)(ω) tend to zero as ω−1 for large ω. Also, we have that all the singularities

and zeros of K1(±) are in C±, respectively, and the factors can be chosen so that[
Ki(±)(ω)

]∗
= Ki(±)(−ω) = Ki(∓)(ω) (i = 1, 2) . (6.27)

3The factor (1 +ω2) in (6.23) may be (ω2
0 +ω2), where ω is any real frequency. We assign it a value

of unity for convenience.
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Thus, from (6.22), we have

K1(+)(ω)g
(m)
+ (ω) = −K1(+)(ω)h

t
−(ω) +

r1−(ω)

2K1(−)(ω)
,

K2(+)(ω)∇g
(m)
+ (ω) = −K2(+)(ω)∇ht

−(ω) +
r2−(ω)

2K2(−)(ω)
.

(6.28)

By virtue of the Plemelj formulae [21], it follows that

K1(+)(ω)h
t
−(ω) = Pt

(1)(−)(ω)−Pt
(1)(+)(ω),

K2(+)(ω)∇ht
−(ω) = Pt

(2)(−)(ω)−Pt
(2)(+)(ω),

(6.29)

where

Pt
(1)(z) =

1

2πi

∫ +∞

−∞

K1(+)(ω)h
t
−(ω)

ω − z
dω,

Pt
(1)(±)(ω) = lim

β→0∓
Pt

(1)(ω + iβ),

Pt
(2)(z) =

1

2πi

∫ +∞

−∞

K2(+)(ω)∇ht
−(ω)

ω − z
dω,

Pt
(2)(±)(ω) = lim

β→0∓
Pt

(2)(ω + iβ).

(6.30)

Using (6.29) in (6.28), we obtain

U(ω) ≡ K1(+)(ω)g
(m)
+ (ω)−Pt

(1)(+)(ω)

= −Pt
(1)(−)(ω) +

r1−(ω)

2K1(−)(ω)
,

V(ω) ≡ K2(+)(ω)∇g
(m)
+ (ω)−Pt

(2)(+)(ω)

= −Pt
(2)(−)(ω) +

r2−(ω)

2K2(−)(ω)
.

(6.31)

The two functions U and V are defined by means of two different expressions, which,

considered as functions of z ∈ C, are analytic in C− and analytic in C+, respectively;

they also vanish at infinity. Therefore, both of them must be equal to zero and we obtain

the solutions

g
(m)
+ (ω) =

Pt
(1)(+)(ω)

K1(+)(ω)
, ∇g

(m)
+ (ω) =

Pt
(2)(+)(ω)

K2(+)(ω)
, (6.32)

which allow us to write (6.10), using (6.19) and (6.32), as follows:

ψm(t) ≡ BR(σ) =
1

2π

∫ +∞

−∞
| Pt

(1)(+)(ω) |2 dω

+
1

2π

∫ +∞

−∞
| Pt

(2)(+)(ω) |2 dω.

(6.33)

Remark 6.1. Comparing this expression with the results of [14, 6, 10] and other

references, one observes that Pt
(i)(+) (i = 1, 2) occur with singularities in C(+) rather

than functionals similarly defined but with singularities in C(−). Note however that

the results of [13] and other papers agree with (6.33). The source of this difference is
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simply that histories and continuations used here are time-reversed compared with those

in earlier works, leading to complex conjugates in the frequency domain, which of course

leaves quantities of the form (6.33) unchanged.

We now express (4.15) in terms of Fourier domain quantities. Parseval’s formula yields

A(t) =
1

π

∫ +∞

−∞
K1c(ω)h

t
−(ω)dω · g(t)

+
1

π

∫ +∞

−∞
K2c(ω)∇ht

−(ω)dω · ∇g(t).

(6.34)

Now, from (6.29),

1

π

∫ +∞

−∞
K1c(ω)h

t
−(ω)dω

=
1

π

∫ +∞

−∞
K1(−)(ω)

[
Pt

(1)(−)(ω)−Pt
(1)(+)(ω)

]
dω

= − 1

π

∫ +∞

−∞
K1(−)(ω)P

t
(1)(+)(ω)dω,

(6.35)

since the term involving Pt
(1)(−)(ω) vanishes by closing the contour on C(+). A similar

result applies to the second integral in (6.34). The last form of (6.35) and the corre-

sponding result for the second integral must be real, since A is real.

Finally, we seek to determine the rate of dissipation associated with ψm(t). Following

the steps outlined in [14] and other papers, we find, with the aid of (6.17), that

d

dt
Pt

(1)(+)(ω) = iωPt
(1)(+)(ω) +K1(t)−K1(+)(ω)g(t),

d

dt
Pt

(1)(−)(ω) = iωPt
(1)(−)(ω) +K1(t),

K1(t) =
1

2π

∫ +∞

−∞
K1(+)(ω)h

t
−(ω)dω.

(6.36)

The time derivatives of Pt
(2)(±) yield similar expressions but with g(t) replaced by ∇g(t)

and K1(t) replaced by K2(t), where

K2(t) =
1

2π

∫ +∞

−∞
K2(+)(ω)∇ht

−(ω)dω. (6.37)

Also,

1

2π

∫ +∞

−∞
Pt

(i)(∓)(ω)dω = ±1

2
Ki(t), i = 1, 2. (6.38)

Differences from earlier results relate to Remark 6.1 and the fact that K1(±)(ω) vanish

at large ω. The complex conjugate relations are easily obtained on noting (6.27).

If we differentiate (6.33) and use these relations, then on recalling (4.12), (6.34) and

(6.35), we find that

Dm(t) =| K1(t) |2 + | K2(t) |2

= K2
1(t) +K2

2(t),
(6.39)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THERMODYNAMICS OF A NON-SIMPLE HEAT CONDUCTOR WITH MEMORY 805

since the Ki, i = 1, 2 are real; this follows by taking the complex conjugate of (6.36)3,

(6.37) and changing the integration variables.

7. Appendix. The Fourier transform of any function f : R → Rn is defined by

fF (ω) =

∫ +∞

−∞
f(s)e−iωsds = f−(ω) + f+(ω) ∀ω ∈ R, (7.1)

where

f−(ω) =

∫ 0

−∞
f(s)e−iωsds, f+(ω) =

∫ +∞

0

f(s)e−iωsds. (7.2)

The half-range Fourier cosine and sine transforms are given by

fc(ω) =

∫ +∞

0

f(s) cosωs ds, fs(ω) =

∫ +∞

0

f(s) sinωs ds; (7.3)

they hold even if f is defined only on R+, as it occurs for f+.

Any function f defined only on R+ can be extended on R in several ways. We recall

the following expressions:

2fF (ω) = fc(ω)− ifs(ω), fF (ω) = 2fc(ω), fF (ω) = −2ifs(ω) (7.4)

for the Fourier transform of the new functions corresponding to the extension made with

the causal extension, f(ξ) = 0 ∀ξ < 0, or with an even function, f(ξ) = f(−ξ) ∀ξ < 0,

or with an odd one, f(ξ) = −f(−ξ) ∀ξ < 0, respectively.

Moreover, if also f and f ′ belong to L1(R+) ∩ L2(R+), we have

f ′
s(ω) = −ωfc(ω). (7.5)

If f ′(0) is non-zero, we have the important relation

lim
ω→∞

iωf ′
+(ω) = f ′(0) = lim

ω→∞
ωf ′

s(ω) = − lim
ω→∞

ω2fc(ω), (7.6)

by using (7.5).

Finally, we denote by C(∓) and C∓ the subsets of the complex z-plane C, defined by

C(−) =
{
z ∈ C; Im z ∈ R−−} , C(+) =

{
z ∈ C; Im z ∈ R++

}
, (7.7)

where R−− = (−∞, 0) and R++ = (0,+∞) and

C− =
{
z ∈ C; Im z ∈ R−} , C+ =

{
z ∈ C; Im z ∈ R+

}
. (7.8)

We observe that f±(ω), given by (7.2), can be extended in C and become analytic

functions inC(∓). On assuming the analyticity of the Fourier transforms onR [14], f±(z)

become analytic in the subsets C∓, which in fact include the real axis. The notation

f(±)(z) is used in general (not necessarily in the context of Fourier transforms) to denote

that the singularities of f are only in C±.
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