
Thermodynamics of a Physical Model Implementing a Maxwell Demon

Philipp Strasberg,1 Gernot Schaller,1 Tobias Brandes,1 and Massimiliano Esposito2

1Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
2Complex Systems and Statistical Mechanics, University of Luxembourg, L-1511 Luxembourg, Luxembourg

(Received 20 October 2012; published 24 January 2013)

We present a physical implementation of a Maxwell demon which consists of a conventional single

electron transistor (SET) capacitively coupled to another quantum dot detecting its state. Altogether, the

system is described by stochastic thermodynamics. We identify the regime where the energetics of the

SET is not affected by the detection, but where its coarse-grained entropy production is shown to contain a

new contribution compared to the isolated SET. This additional contribution can be identified as the

information flow generated by the ‘‘Maxwell demon’’ feedback in an idealized limit.
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For more than a century the thermodynamic implica-
tions of various types of ‘‘intelligent interventions’’ (e.g.,
feedbacks) on the microscopic degrees of freedom of a
system have intrigued scientists [1]. AMaxwell demon, for
example, can be thought of as a hidden idealized mecha-
nism that is able to modify the second law of thermody-
namics (entropy balance) but without modifying the first
law (energy balance). Such a demon would thus be able to
heat a hot reservoir while cooling down a cold reservoir
without using any additional energy, which clearly breaks
the traditional formulation of the second law of
thermodynamics.

Nowadays, our ability to manipulate small devices has
drastically increased, and what used to be unrealistic
thought experiments have become real experiments [2–4].
In parallel to that, significant progress in understanding the
nonequilibrium thermodynamics of small systems has
been achieved [5–7]. This is particularly true for systems
described by Markovian stochastic dynamics where a con-
sistent theoretical framework, called stochastic thermody-
namics, has emerged and has proven very useful to study
fluctuations and efficiencies of systems driven far from
equilibrium [8–10]. Quite naturally, recent studies have
started considering the thermodynamic description of sys-
tems subjected to different types of feedbacks [11–25].

To understand the thermodynamic behavior of feedback
controlled systems it is important to include the informa-
tion generated or used by the feedback [22,24].
Nevertheless, every feedback scheme has to be imple-
mented physically and the natural question which
arises—and which has not been answered yet—is under
which circumstances this physical implementation appears
as pure information entering the thermodynamic descrip-
tion. This is the object of the present Letter.

Our model consists of two single level quantum dots
interacting capacitively via a Coulomb repulsion U and
additionally coupled to thermal reservoirs as depicted in
Fig. 1. No electrons can be transferred between the dots.
The corresponding system Hamiltonian is given by

H ¼ �dc
y
dcd þ �sc

y
s cs þUcydcdc

y
s cs with fermionic op-

erators annihilating electrons on the system dot (cs) and
the detecting dot (cd). The dots are weakly coupled to ideal
reservoirs �2fD;L;Rg at temperature T� ¼ 1=�� (kB�1)
and chemical potential ��. As shown in Fig. 1, dot s is
coupled to the two reservoirs L and R and constitutes a
usual single electron transistor (SET), while dot d is
coupled to reservoir D. One can show that dot d with
reservoir D can be tuned to ‘‘detect’’ the state of the SET
[26] and will eventually constitute the Maxwell demon. We
denote the four eigenvectors of the two coupled dots by
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FIG. 1 (color online). The shaded region constitutes the de-
mon, the contained dot d couples capacitively to the lower dot s
via Coulomb repulsion U. The latter is placed in a conventional
SET setup, which can be accessed experimentally, whereas the
demon remains hidden. The trajectory (with initial state � ¼ 1
and � ¼ E) marked by the steps 1–4, where an electron is
transferred against the bias through the SET, becomes likely in
the Maxwell demon limit. Note also that the tip of a scanning
tunneling microscope could represent the detector dot d with its
reservoir, such that in principle the SET and the demon need not
share the same substrate.
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j��i ¼ j�id � j�is where � 2 f0; 1g and � 2 fE; Fg
denote the states of the dot d and s, respectively, which
are either empty (0 or E) or filled (1 or F). For weak dot-
reservoir interaction, the time evolution of the coupled-dot
density matrix � can be shown to be governed by a
Markovian master equation d

dt � ¼ W�, which simply

yields a rate equation for the probabilities p�� to be in

the eigenstate j��i. In the ordered basis (p0E, p1E, p0F,
p1F) the rate matrix reads

W ¼ W EE W EF

W FE W FF

 !
� X

�

W ð�Þ: (1)

The superscript � denotes transitions triggered by the
respective reservoir � 2 fD;L; Rg. The two blocks

W EE ¼ ��D � �L � �R ��D

�D � ��D � �U
L � �U

R

 !
; (2)

W FF ¼ ��U
D � ��L � ��R ��U

D

�U
D � ��U

D � ��U
L � ��U

R

 !
(3)

denote the dynamics of the dot d when dot s is empty or
filled, respectively, while the blocks

W EF ¼ Diagð ��L þ ��R; ��
U
L þ ��U

R Þ; (4)

W FE ¼ Diagð�L þ �R; �
U
L þ �U

R Þ (5)

denote the transitions between an empty and filled dot s,
which can occur when dot d is either empty or filled. The
rates are given by �� � ��f�, �

U
� � �U

� f
U
� , ��� � ��ð1�

f�Þ, and ��U
� � �U

� ð1� fU� Þ with electronic tunneling rates
�� > 0 and �U

� > 0 and Fermi functions 0< f�, f
U
� <1

with �2fD;L;Rg. Note that �� � �U
� requires to go be-

yond the common wide-band approximation. The Fermi
functions are evaluated at the respective transition energies
of the SET dot fL=R � 1=½expð�L=Rð�s ��L=RÞÞ þ 1�,
fUL=R � 1=½expð�L=Rð�s þU��L=RÞÞ þ 1� and the de-

tector dot fD � 1=½expð�Dð�d ��DÞÞ þ 1�, fUD � 1=
½expð�Dð�d þU��DÞÞ þ 1�, respectively. From now on
we will assume �L ¼ �R ¼ �. The present rate equation

description is valid when ���
ðUÞ
� � 1 but may remain

qualitatively correct even outside this range.
This system is consistently described by stochastic ther-

modynamics. At steady state the entropy production of the
full system reads

_S i ¼
X
�

X
�;�0;�;�0

Wð�Þ
���0�0p�0�0 ln

Wð�Þ
���0�0

Wð�Þ
�0�0��

� 0: (6)

It can be rewritten after some algebra as the sum of force-
flux terms associated with matter and energy transfers

_S i ¼ �ð�L ��RÞIS þ ð�D � �ÞIE � 0; (7)

where IS ¼ �Lp0E � ��Lp0F þ �U
Lp1E � ��U

Lp1F is the sta-
tionary electronic particle current flowing from reservoir L
to R through the SET and IE ¼ Uð�Dp0E � ��Dp1EÞ is the
energy current entering the reservoir D due to the interac-
tion between dot d and the SET. The matter current asso-
ciated with the detector bathD vanishes because there is no
particle exchange between dot d and dot s.
Using usual techniques [6,27], it is possible to show that

the following fluctuation theorem for the entropy produc-
tion is satisfied:

lim
t!1

pþnS;þnDðtÞ
p�nS;�nDðtÞ

¼ e�ð�L��RÞnSþð�D��ÞUnD; (8)

where pnS;nDðtÞ denotes the probability of having nS elec-

trons traversing the system from left to right together with
net nD electrons entering dot d at energy �d and leaving it
at energy �d þU, altogether leading to a net energy trans-
fer of UnD into reservoir D after time t. So far, our system
is thus only a conventional thermoelectric device in which
the thermal gradient may be used to generate an electronic
current through the SET against the bias. Related models
have been considered in Refs. [26,28–31].
We now assume that our experimental setup allows us

to detect electron transfers in the SET (e.g., counting
statistics experiments) but does not provide any informa-
tion about the existence of the demon (i.e., dot d and
reservoir D). The observed SET states � 2 fE; Fg thus
constitute two coarse-grained ‘‘mesostates’’ with probabil-
ities p� ¼ p0� þ p1� (see Fig. 2). Moreover, we denote by

FIG. 2 (color online). Visualization of the dynamics in the full
(black arrows) and coarse-grained (red arrows) state space. The
four states are denoted by black squares with their size being
proportional to the occupation probability near the sought-after
limit. The two mesostates of the SET (E or F) are composed by
the shaded regions. They each contain two possible states of the
detector dot d, which are connected by fast transitions. The red
labels in the center of the figure denote transition rates between
the two SET mesostates in the error-free limit (fD ! 1, fUD ! 0

and �D=�
ðUÞ
� ! 1 for � 2 fL; Rg).
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P�j� ¼ p��=p� the conditional stationary probability to

find dot d in state � if the state of the SET is �. Each of
these probabilities can be explicitly calculated from the
analytical steady-state solution of Eq. (1). It is straightfor-
ward to see that the exact coarse-grained dynamics of the
SET may formally be written as

_p� ¼X
�0
V��0p�0 (9)

with ‘‘rates’’ V��0 ¼ P
�V

ð�Þ
��0 ¼ P

�

P
��0 Wð�Þ

��;�0�0P�0j�0 .

Fast demon.—Because we want dot d and reservoir D to
ultimately constitute a Maxwell demon, we are now going
to assume that the dynamics of the demon is much faster

than the SET dynamics �D ¼ �U
D � maxf�ðUÞ

L ;�ðUÞ
R g. As

expected, in the extreme case �D=maxf�ðUÞ
L=Rg ! 1, the

conditional probabilities equilibrate instantaneously with
respect to the reservoir D

P0jE ! ��D

�D þ ��D

¼ 1� fD; P1jE ! 1� P0jE;

P0jF ! ��U
D

�U
D þ ��U

D

¼ 1� fUD; P1jF ! 1� P0jF;
(10)

such that Eq. (9) becomes an ordinary rate equation. For
finite demon temperatures, there will thus always be
some finite detection ‘‘error,’’ which we quantify
by �E � P0jE=P1jE and �F � P1jF=P0jF. For instance,

when �d ¼ �D �U=2, these errors will be given by
�E ¼ �F ¼ expð��DU=2Þ.

The entropy production corresponding to the coarse-
grained SET dynamics is

_S �
i ¼

X
�;�;�0

Vð�Þ
��0p�0 ln

Vð�Þ
��0

Vð�Þ
�0�

¼ A�
SIS � 0; (11)

with an effective affinity

A�
S ¼ ln

�ð ��D�L þ �D�
U
L Þð ��U

D ��R þ �U
D ��U

R Þ
ð ��U

D ��L þ �U
D ��U

L Þð ��D�R þ �D�
U
R Þ
�
: (12)

This coarse-grained entropy production always undereval-
uates the full entropy production:� _Si � _Si � _S�i � 0 [32].
Furthermore, it implies an effective fluctuation theorem
for the particle counting statistics of the SET (e.g., see
Ref. [31])

lim
t!1

pþnSðtÞ
p�nSðtÞ

¼ eA
�
SnS ; (13)

where pnSðtÞ is the probability of having nS electrons

transferred from left to right after time t. This demonstrates
that the coarse-grained entropy production [Eq. (11)] is a
meaningful and measurable quantity characterizing the
SET in the fast-demon limit. Because the entropy produc-
tion of an isolated SET is _SSETi ¼ �ð�L ��RÞIS, the
coarse-grained entropy production can be written as

_S �
i ¼ _SSETi þ IF: (14)

In ignorance of the physical nature of the demon that has
been traced out, IF must be interpreted as an information
current between demon and system that modifies the sec-
ond law of the SET.
Fast and Precise demon.—Because the demon also

needs to be able to reliably discriminate between the two
states of the SET, we put �d ¼ �D �U=2 and further
assume that �DU � 1, which implies ��D, �

U
D ! 0 and

�D, ��U
D ! �D. As a result the two dots become perfectly

correlated, meaning that when the SET gets filled up (resp.
emptied) the detecting dot gets emptied (resp. filled up)
immediately after. The steady state then reads p1E ¼
ð ��L þ ��RÞ=ð ��L þ ��R þ �U

L þ �U
R Þ, p0F ¼ 1� p1E, p0E¼

p1F¼0 and the effective affinity (12) becomes

A�
S ¼ ln

�
fLð1� fRÞ
ð1� fLÞfR

fUL fR
fLf

U
R

�U
L�R

�L�
U
R

�
: (15)

As a result the information current reads

IF ¼ ln

�
fUL fR
fLf

U
R

�U
L�R

�L�
U
R

�
IS: (16)

We note, however, that this demon is not yet a true
Maxwell demon because it is effectively extracting energy
from the SET at a rate

IE ¼ U
ð ��L þ ��RÞð�U

L þ �U
R Þ

��L þ ��R þ �U
L þ �U

R

; (17)

and is thus creating an imbalance of order U between the
energy currents at the left and right interface of the SET:

IE ¼ �IðLÞE � IðRÞE . We note that the right hand side of
Eq. (17) equals U=2 times the activity current in the
SET, which measures the total number of electron jumps
in and out of the SET. This is due to the fact that each
change in the mesostates (E $ F) instantaneously induces
a jump in dot d (1 $ 0) and in the error-free limit no other
contribution arises. Finally, because IE remains finite as
�D ! 1, the total entropy production diverges in that limit
_Si ! 1. This means that the demon generates an infinite
dissipation � _Si ! 1 to be able to operate in the fast and
precise limit.
Maxwell demon.—In order to obtain a true Maxwell

demon, we further need to assume that the temperatures
of the left and right reservoirs are sufficiently large com-
pared to the capacitive interaction U such that �U ! 0. In
this limit, the energetics of the SET is not affected anymore
by the demon because the Fermi functions evaluated at the
different energies become equal:

lim
�U!0

fU� ¼ f�; � 2 fL; Rg: (18)

The energy imbalance IE then can be made arbitrarily
small in comparison to the SET energy currents since their
ratio is of order U=�s.

The bare rates �ðUÞ
� , however, could—and to obtain any

nontrivial effect should—depend on the energy levels of the
dots. As a result, the information current [Eq. (16)] becomes
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IF ¼ ð	L � 	RÞIS; (19)

where we introduced the feedback parameters 	� ¼
ln½�U

� =��� with � 2 fL; Rg. Remarkably, the coarse-
grained rate matrix equation (9) describing the effective
SET dynamics now satisfies the modified local detailed
balance condition

ln
Vð�Þ
FE

Vð�Þ
EF

¼ ���ð�s ���Þ þ 	�; � 2 fL;Rg: (20)

This result is in perfect agreement with the modified local
detailed balance condition introduced in Ref. [24] to
describe Maxwell demon feedbacks within the framework
of stochastic thermodynamics. Alternatively, such a modi-
fication of local detailed balance may be generated using a
fast feedback control loop [33]. Now, when 	L � 0 and/or
	R � 0, a trajectory as shown in Fig. 1 becomes highly
probable. Naturally, even without the strict mathematical
limits that we discussed, we demonstrate in Fig. 3 that
the coarse-grained entropy production _S�i approaches the
idealMaxwell demon fromRef. [24]. Furthermore, the inset

demonstrates that for �s � U, the modification of the

first law for an isolated SET IðLÞE þ IðRÞE ¼ �IE 	 0 is
negligible.
We note that even the strict Maxwell demon limit is well

described by our model, as all the required inequalities can

be simultaneously fulfilled: ���
ðUÞ
� � 1 (weak coupling),

�ðUÞ
D =�ðUÞ

L=R � 1 (fast measurement), �DU � 1 (precise

measurement), �L=RU � 1 (neglect of back-action), and

U=�s � 1 (preservation of SET energy currents). For ex-
ample, the curves with finite �D in Fig. 3 only require a
sufficiently small base tunneling rate �.
We now turn to the interpretation of our results. We have

seen that the true entropy production of the system and the
detector, _Si [Eq. (7)], diverges when the detector performs
a perfect feedback (i.e., infinitely fast and precise) on the
system. This is conceptually very important, but of low
practical interest to assess how effective the feedback is in
generating gains at the system level. To do so one has to
simply discard the demon dissipation and focus on the
coarse-grained entropy production _S�i [Eq. (14)], which
characterizes the entropy production of the system sub-
jected to the information current IF generated by the feed-
back. Using this entropy production one can study the
thermodynamic efficiency with which a negative informa-
tion current can be used to generate various processes on
the system (e.g., to transport electrons against the bias or to
cool a cold reservoir). In contrast, the efficiencies of the
thermoelectric device as a whole may be drastically lower,
because in that case the total entropy production _Si should
be considered.
Conclusion.—To the best of our knowledge, this Letter

establishes for the first time the precise connection between
the complete thermodynamic description of a Maxwell
demon model and the system it is acting on. In particular,
we have identified the effective level of description of the
system where the demon manifests itself solely through an
information flow modifying the second law. Furthermore,
by showing that the effective entropy production is only a
piece of the total entropy production of the joined system,
we provide a rigorous support for the generic claim that a
system subjected to a ‘‘Maxwell demon’’ is an idealization
that neglects the dissipation associated with the implemen-
tation of the demon mechanism.
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