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Abstract:   

The partition functions, heat capacities, entropies, and enthalpies of selected molecules were 

calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy 

surface for internal motions was modeled as a sum of independent one-dimensional potentials for each 

mode.  The computational cost of such approaches scales the same with molecular size as standard 

harmonic oscillator vibrational analysis using harmonic frequencies (HOhf).  To compute 

thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was 

established.  The accuracy of the UM approximation depends strongly on how the one-dimensional 

potentials of each modes are defined.  If the potentials are determined by the energy as a function of 

displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic 

properties are not significantly improved versus the HOhf model.  Significant improvements can be 

achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along 

the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT).  For 

hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition 

functions on average.  By contrast, the HOhf model and UM-N can capture no more than 50%.  For a 

selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the 

enthalpies calculated using the HOhf model, UM-N, and UM-VT are all quite accurate comparing with 

reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT.  

However, the accuracies in entropy calculations differ significantly between these three models.  For 

the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.2.5218 cal mol-1 K-

1 at 1000 K.  By contrast, the RMS error obtained using the HO model and UM-N are 8.496.42 and 

6.895.73 cal mol-1 K-1, respectively.  For a test set composed of nine alkanes ranging from C5 to C8, 
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the heat capacities calculated with the UM-VT model agree with the experimental values to within a 

RMS error of 0.730.78 cal mol-1 K-1, which is less than one-third of the RMS error of the HOhf (3.142.69 

cal mol-1 K-1) and UM-N (2.332.41 cal mol-1 K-1) models.    
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Introduction: 

Recent advances in ab initio calculations have opened the door towards quantitative 

understanding of challenging chemical problems such as zeolitic reactions or solution-phase 

chemistries.1–5  With on-going developments, the accuracy of electronic energy calculations via density 

functional theory has been greatly improved,6 although not yet to the level of chemical accuracy, which 

is in thermochemistry understood as a 95% confidence limit of ± 1 kcal/mol.7  However, to compare 

with quantities measured directly by experiments, calculations of thermodynamic properties at finite 

temperatures are often essential.  For molecular systems, this involves computing vibrational energy 

levels, which is in principle a challenging problem because it requires modeling the full-dimensional 

potential energy surface, which is often computationally prohibitive except for extremely small systems. 

The problem can be greatly simplified by assuming that vibrational modes behave like harmonic 

oscillators (HO) so that all the energy levels as well as thermodynamic functions can be derived from 

fundamental frequencies measured by experiments. The standard computational approach is less accurate 

because experimental fundamental frequencies are replaced by the harmonic frequencies calculated by 

normal mode analysis (to maintain this distinction, we shall abbreviate it as HOhf). 

Accordingly, the harmonic approximation faces many limits especially for low frequency modes 

whose potential energy surface (PES) deviates significantly from a quadratic potential. For instance, as 

outlined in detail in previous publications, torsions and intermolecular motions of weakly bound 

molecular clusters are notoriously difficult to handle because their PESs are highly anharmonic.8–11  The 

harmonic approximation fails to describe many features of vibrational spectroscopy even for high 

frequency modes, such as Fermi resonances, as well as tending to overestimate fundamental frequencies.  

For this reason, zero point energies (ZPEs) derived from harmonic frequencies are often down-scaled.12,13  

Accurate methods for treating the vibrational energy levels for small systems include those utilizing 

complete quartic force fields,14–18 and vibrational self-consistent field theory (VSCF),19–21 perturbation 
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theory (VPT),22–26 configuration interaction (VCI),27–30 and coupled cluster theory (VCC),31–33 which 

correct the harmonic reference for higher than quadratic terms.  These methods, particularly the higher 

accuracy variants, have had significant success for small systems, but, with the possible exception of the 

lower accuracy VSCF and VPT2, are not generally viable for larger molecules.     

Significant efforts have also been made to improve the accuracy of the calculated thermodynamic 

quantities of anharmonic systems.  Path integral Monte Carlo (PIMC) and path integral molecular 

dynamics (PIMD) provide attractive fully numerical schemes to accurately calculate quantum 

mechanical partition functions with anharmonicity and mode-mode coupling effects taken into account, 

providing that the temperature of interest is sufficiently high, so that integration over inherently discrete 

levels is warranted.34–36  However, due to high computational costs, applications of path integral 

methods are usually restricted to small systems.  On the other hand, methods that represent the full-

dimensional PES with tractable functions are more computationally feasible for medium or large size 

systems though mode-mode coupling effects must inevitably be neglected, at least to some extent.37  

The simplest model following this philosophy is, of course, the HOhf model, which treats all the modes 

as independent springs with quadratic potentials.  The HOhf model is very attractive computationally 

because only the second derivatives of energies at the critical point have to be computed.  Moreover, 

analytical solutions for the energy levels of quadratic potentials exist so that partition functions can also 

be derived analytically.  More sophisticated models have been proposed for specific cases where the 

energy surface deviates from a quadratic potential.  For instance, truncated Fourier series and Taylor 

series have been used to approximate the PESs of torsions and anharmonic vibrations.9,11,38–40  In these 

models, coupling between modes is often neglected so that the complexity of the problem does not grow 

exponentially with the size of the system.  The accuracy of this approach is, of course, governed by how 

well the potential function represents the energy surface.  Though simple functions such as cosines and 

low-order truncated polynomials are often chosen to minimize the effort in solving for the energy 
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levels,9,11,38 it is usually challenging for non-experts to assess the errors in computed thermodynamic 

properties due to discrepancies between the model and the real energy surface.   

This motivates us to pursue an improved general representation for the PES of complex molecules 

which still permits direct calculation of thermodynamic properties.  In this work, we present a 

computational protocol solving for the energy levels of PESs represented by cubic splines.  With a 

proper sampling scheme, cubic spline interpolations can accurately represent the PES of a mode, no 

matter whether it is a nearly harmonic bond stretch, or a highly anharmonic torsion.  Our goal is to 

approach the limit of accuracy that is possible within the uncoupled mode (UM) approximation, so that 

all modes are treated independently.  Remaining errors are then directly due to mode coupling.  In this 

study, two sampling schemes were examined.  One is to sample along the direction of each normal 

mode (UM-N).  This sampling scheme has been adopted previously by Sauer and coworkers to study 

the effect of anharmonic vibrations on adsorption thermodynamics of small molecules with fourth and 

sixth order polynomials.9–11  Hoping to generalize the methodology to larger molecules where internal 

rotations are important effects, we developed another scheme where sampling of vibrations and internal 

rotations (UM-VT) were carried out separately, which.  This can be done by projecting torsional modes 

out of the Hessian matrix and then separately modeling the PES along the torsional coordinates of rotors 

and along the eigenvectors of the projected Hessian.  The accuracies of the HOhf model, UM-N, and 

UM-VT were benchmarked for selected molecules against partition functions calculated by path integral 

methods, heat capacities measured by experiments, as well as enthalpies and entropies derived from 

statistical mechanics based on spectral data.  We found that UM-VT significantly outperformed UM-N 

and the HOhf model in partition function, heat capacity, and entropy calculations.  In enthalpy 

calculations, these three models performed almost equally well, but a slightly smaller error was obtained 

for UM-VT.  The advantage of UM-VT is that it allows a treatment of anharmonicity for which 

computational cost scales the same as the HOhf model since it requires only a number of additional single 
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point calculations along each independent mode or torsion.   

 

Methods: 

The details of how to derive energy levels of a system with cubic spline representations for the 1-

dimensional PESs are documented in this section. The starting point for any uncoupled mode (UM) 

model, as documented in detail in previous studies,9–11,41 are the eigenvectors of the mass-weighted 

Hessian (i.e. the normal modes)  𝐻𝐻� = 𝑀𝑀−1/2 𝐻𝐻𝑀𝑀−1/2 (1) 

𝑆̂𝑆𝑇𝑇𝐻𝐻�𝑆̂𝑆 = 𝐹𝐹, (2) 

where 𝐹𝐹𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖2; 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖; 𝐻𝐻 is the Hessian matrix; 𝐻𝐻� is the mass-weighted Hessian; 𝑆̂𝑆 is the 

matrix of directional vectors of normal modes in mass-weighted coordinates, which can be transformed 

into Cartesian coordinates by 

𝑆𝑆 = 𝑀𝑀−1/2𝑆̂𝑆. (3) 

The jth column of 𝑆𝑆, 𝑆𝑆𝑖𝑖 , can be normalized to obtain unitary displacements in Cartesian coordinates 

𝑆𝑆𝑖𝑖 = �𝜇𝜇𝑖𝑖𝑆𝑆𝑖𝑖 (4) 

where 𝜇𝜇𝑖𝑖 = ��𝑆𝑆𝑖𝑖�2�−1, which is the reduced mass of mode j.42  The normal mode analysis can be done 

in linear coordinates because the displacements are assumed to be infinitesimal.  However, for nonlinear 

modes such as bends and torsions, non-infinitesimal displacements in linear coordinates along the normal 

mode lead to unphysical distortions of the geometry, and hence introduce strong, fictitious coupling 

between modes.9,41  Therefore, as pointed out in previous studies,9,41 the distortions along 𝑆𝑆𝑖𝑖 have to 

be done in internal coordinates, instead of Cartesian coordinates 
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𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + (𝐵𝐵−1)𝑇𝑇𝑞𝑞𝑖𝑖  Δ𝑥𝑥, (5) 

where 𝑥𝑥𝑖𝑖  is the Cartesian coordinates of step i; 𝐵𝐵 is the well-known Wilson B-matrix; 𝑞𝑞𝑖𝑖  = 𝐵𝐵𝑆𝑆𝑖𝑖 , 

which is the direction of mode j in internal coordinates; Δ𝑥𝑥  is the step size chosen.  Since 𝐵𝐵  is 

rectangular, no direct inverse can be calculated.  However, its generalized inverse can be derived as 

𝐵𝐵−1 = (𝐵𝐵𝑀𝑀−1𝐵𝐵𝑇𝑇)−1𝐵𝐵𝑀𝑀−1. (6) 

As well documented,43–46 since internal coordinates are nonlinear, Eq (5) must be solved iteratively to 

achieve the correct displacements in Cartesian coordinates.  Following the recommendations of 

previous studies,9,41 the sampling of UM-N was carried out symmetrically for each mode as far as the 

classical turning points determined by the harmonic frequency 

Δ𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = ±4� ℏ𝜇𝜇𝑗𝑗𝜔𝜔𝑗𝑗 . (7) 

As mentioned above in the introduction, an alternative sampling scheme is to sample vibrations 

and internal rotations separately (UM-VT).  This can be achieved by projecting out the internal rotations 

before the normal mode problem is solved 

𝐻𝐻′ = 𝐵𝐵𝑇𝑇𝑃𝑃(𝐵𝐵−1)𝑇𝑇𝐻𝐻(𝐵𝐵−1)𝑃𝑃𝐵𝐵, (8) 

where 𝑃𝑃 is a projection matrix the diagonal elements of which equal to 0’s for the bond torsions and 1’s 

for the other coordinates.  With the projected Hessian, 𝐻𝐻′, one can solve for the remaining eigenvectors 

corresponding to stretches, bends, and out-of-plane motions using Eqs. (1) to (4) and then distort the 

geometry along these directions with bond torsions intact using 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + (𝐵𝐵−1)𝑇𝑇𝑃𝑃 𝑞𝑞𝑖𝑖  Δ𝑥𝑥. (9) 

Sampling along each torsional mode can be done similarly with 
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𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + (𝐵𝐵−1)𝑇𝑇 𝑞𝑞𝑘𝑘  Δ𝜃𝜃, (10) 

where 𝑞𝑞𝑘𝑘 is a unit vector for displacement along the kth bond torsion (i.e. with 0’s for all others); Δ𝜃𝜃 

is the step size chosen for the sampling of bond torsions.  Hoping to gather more non-local information 

about the anharmonic PES that might yield improved accuracy for thermodynamic quantities, instead of 

sampling only the region bound by classical turning points, the sampling of UM-VT was terminated 

either when the torsional angle displaces by 2𝜋𝜋 or the energy rises above a cut-off value.  The cut-off 

energy chosen in this work was 0.05 hartree.  This value is high enough to ensure the convergence of 

the thermodynamic quantities of interest in the low and medium temperature range (< 1000K), which 

will be discussed in detail below.  

The discrete data points obtained by either of the two sampling schemes can be used to construct 

continuous PESs with the aid of cubic spline interpolations.  For a set of N+1 points sampled for a mode 

(𝐸𝐸0,𝐸𝐸1, … ,𝐸𝐸𝑁𝑁), the ith piece of the spline is 

𝑉𝑉𝑖𝑖(𝑄𝑄) = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑄𝑄 + 𝑐𝑐𝑖𝑖𝑄𝑄2 + 𝑑𝑑𝑖𝑖𝑄𝑄3, (11) 

where 𝑄𝑄 is the mass weighted coordinate.  For UM-N, 𝑄𝑄 is set to √𝜇𝜇𝑥𝑥 for all the modes; whereas 

for UM-VT, 𝑄𝑄 is taken as √𝜇𝜇𝑥𝑥 for vibrations and √𝐼𝐼𝜃𝜃 for torsions, where I is the reduced moment of 

inertia of the rotor.  In principle, just as the PES of a mode could be affected by the motions of other 

modes, the reduced moment of inertia of a rotor could be affected by the motions of others.  However, 

under the assumption of uncoupled modes, the reduced moments of inertia can be approximated with the 

diagonal elements of the internal rotation kinetic energy matrix, which can be derived by the procedures 

reported by Kilpatrick and Pitzer.47  The coefficients of Eq. (11) can be determined by restricting 𝑉𝑉𝑖𝑖 to 

pass through the ith and (i-1)st data points 

 𝑉𝑉𝑖𝑖(𝑄𝑄𝑖𝑖) = 𝐸𝐸𝑖𝑖 and 𝑉𝑉𝑖𝑖(𝑄𝑄𝑖𝑖−1) = 𝐸𝐸𝑖𝑖−1 (12) 
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and requiring the first and second derivatives of the splines to be continuous 

 𝑉𝑉𝑖𝑖′(𝑄𝑄𝑖𝑖) = 𝑉𝑉𝑖𝑖+1′(𝑄𝑄𝑖𝑖) and 𝑉𝑉𝑖𝑖′′(𝑄𝑄𝑖𝑖) = 𝑉𝑉𝑖𝑖+1′′(𝑄𝑄𝑖𝑖). (13) 

At the endpoints, various boundary conditions can be chosen.  For instance, one could either set the first 

derivatives to zero (clamped conditions) or the second derivatives to zero (natural conditions).  In 

principle, if the cut-off energy employed for sampling is very high, it does not matter which set of 

boundary conditions are used because the wave function decays to zero before reaching the endpoints.  

However, to avoid unnecessary computational effort sampling the high energy region, one can instead 

use a lower cut-off energy and extrapolate the PES beyond the endpoints using quadratic splines 

𝑉𝑉𝑖𝑖(𝑄𝑄) = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑄𝑄 + 𝑐𝑐𝑖𝑖𝑄𝑄2,   ∀𝑖𝑖 ∈ {0,𝑁𝑁 + 1}.  (14) 

The coefficients of Eq. (14) can of course be fully determined by imposing continuity of 𝑉𝑉, 𝑉𝑉′, and 𝑉𝑉′′ 
at 𝑄𝑄0  and 𝑄𝑄𝑁𝑁 .  However, for modes with real frequencies, the second derivatives of 𝑉𝑉  at the 

endpoints must be positive, otherwise Eq. (14) tends to minus infinity as 𝑄𝑄 → ±∞ .  A reasonable 

choice is therefore the second derivative of the mode at the origin, which is already available from Eq. 

(2).  Therefore, the boundary conditions of the cubic splines we used were 

𝑉𝑉1′′(𝑄𝑄0) = 𝑉𝑉𝑁𝑁′′(𝑄𝑄𝑁𝑁) = 𝑉𝑉′′(0). (15) 

This set of boundary conditions is also a good choice for the PES of a torsional mode since the 𝑉𝑉′′(0) 

is exactly the second derivative at the end points 𝑄𝑄0 = 0 and 𝑄𝑄𝑁𝑁 = 2𝜋𝜋 (see Text S1 in Supporting 

Information for the details of how to solve for the coefficients 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖, and 𝑑𝑑𝑖𝑖). 
Under the assumption of uncoupled modes, energy levels of the system can be obtained by solving 

one-dimensional Schrödinger equations for each mode, which can be done variationally with basis 

functions 
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𝐻𝐻𝑚𝑚𝑚𝑚 = �𝜑𝜑𝑚𝑚�− ℏ22 𝑑𝑑2𝑑𝑑𝑄𝑄2 + 𝑉𝑉(𝑄𝑄)�𝜑𝜑𝑚𝑚�, (16) 

where 𝐻𝐻𝑚𝑚𝑚𝑚 is the Hamiltonian matrix element.  Since the PES is represented by a collection of splines 

as described above, the integration of 𝑉𝑉(𝑄𝑄) has to be done piecewise 

𝐻𝐻𝑚𝑚𝑚𝑚 = �𝜑𝜑𝑚𝑚�− ℏ22 𝑑𝑑2𝑑𝑑𝑄𝑄2 �𝜑𝜑𝑚𝑚� + ∑ ∫ 𝜑𝜑𝑚𝑚𝑉𝑉𝑖𝑖𝜑𝜑𝑚𝑚𝑑𝑑𝑄𝑄𝑄𝑄𝑖𝑖𝑄𝑄𝑖𝑖−1𝑖𝑖 . (17) 

For the vibrational modes, where quadratic potentials are often a reasonable approximation to the 1-D 

PESs, it is natural to use harmonic oscillator functions as the basis set 

𝜑𝜑𝑚𝑚 = �𝜔𝜔𝑗𝑗𝜋𝜋ℏ�14 1√2𝑛𝑛𝑚𝑚!
𝐻𝐻𝑚𝑚(�𝜔𝜔𝑗𝑗ℏ 𝑄𝑄)𝑒𝑒−𝜔𝜔𝑗𝑗𝑄𝑄2 2ℏ⁄ . (18) 

On the other hand, for internal rotations, since the PESs are periodic with period 2𝜋𝜋 , it is more 

convenient to use Fourier basis 

𝜑𝜑0 =
1√2𝐿𝐿 and 𝜑𝜑𝑚𝑚 = �   1√𝐿𝐿 cos (

𝑚𝑚𝜋𝜋𝑄𝑄𝐿𝐿 )1√𝐿𝐿 sin (
𝑚𝑚𝜋𝜋𝑄𝑄𝐿𝐿 )

, ∀𝑛𝑛 > 0, (19) 

where 𝐿𝐿 = 𝜋𝜋√𝐼𝐼.  With harmonic and Fourier basis functions, no numerical integration is needed to 

compute the matrix elements of Eq. (17) (see Text S2 in Supporting Information for the formulas).   

Diagonalization of the Hamilationian matrix yields the energy levels of a mode; and hence the 

partition function for each mode can be derived as  

𝑞𝑞 = ∑ 𝑒𝑒−𝛽𝛽𝜖𝜖𝑚𝑚𝑀𝑀𝑚𝑚  (20) 

where 𝛽𝛽 = 1/𝑘𝑘𝑘𝑘; 𝜖𝜖𝑚𝑚 is the mth eigenvalue of the Hamilationian matrix; and M is the number of basis 

functions.  The convergence of q and the fundamental anharmonic frequency 𝜐𝜐 = (𝜖𝜖1 − 𝜖𝜖0) ℎ⁄  with 

respect to the number of basis functions were used as variational criteria to truncate the basis.  When 
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they converge (𝑞𝑞𝑀𝑀+1 − 𝑞𝑞𝑀𝑀 and 𝜐𝜐𝑀𝑀+1 − 𝜐𝜐𝑀𝑀 are below a required tolerance), the partition function was 

used to calculate thermodynamic properties of interest.  Note that for the modes whose PESs are 

periodic, i.e., internal rotations of UM-VT, eq. (20) has to be divided by the symmetry number of the 

rotor to derive the correct partition function. 

 

Computational Details: 

 For UM-N and the vibrations of UM-VT, the step size chosen for sampling was �ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄ , which 

is one-fourth of Eq. (7), the distance between the origin and the classical turning point determined by the 

harmonic frequency.  The rationale of making the step size proportional to the classical turning distance 

is to reduce computational cost by enlarging the spacing between sample points for soft modes.  For the 

torsional modes of UM-VT, to capture the commonly seen three-fold rotational barriers, the largest step 

size one could use is 𝜋𝜋 3⁄ .  However, to obtain accurate descriptions for the PESs of torsions, a step 

size of 𝜋𝜋 18⁄  was used in this work.  As mentioned above, following the methodology of previous 

studies,9,41 the sampling of UM-N was carried out symmetrically for each mode to the classical turning 

points.  On the other hand, hoping to achieve a better description of the PES, the sampling of UM-VT 

was terminated either when the torsional angle has been displaced by 2𝜋𝜋 or the energy rises more than 

0.05 hartree (i.e. about 130 kJ/mol) compared with the reference stationary point.  The step sizes and 

the cut-off energy were examined to ensure satisfactory convergence of thermodynamic calculations, as 

discussed in the subsection on Convergence.   

The reported thermodynamic properties were calculated using the standard equations derived 

from statistical mechanics (see Text S3 in Supporting Information for the formulas).48  Geometry 

optimizations and frequency computations were performed at the ωB97X-D49,50/6-311+G(2df,2pd) level 

of theory, unless noted otherwise.  All calculations were done using a development version of the Q-

Chem software package.51 
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Results and Discussion: 

Partition Functions.  Hydrogen peroxide and its isotopologs (D or 18O) were chosen to examine 

the performance of the HOhf model, UM-N, and UM-VT for evaluation of partition functions as shown 

in Fig. 1.  The benchmarks were the data previously reported by Lynch et al., which were calculated 

with the PIMC method.34,35  The PESs of these species were generated using the anharmonic quartic 

force field reported by Koput et al.,52 which is the same force field that was used for the PIMC 

calculations.34,35   

Figure 1 shows that only about 30% of the partition functions of these molecules can be captured 

if the HOhf model is used directly, which is consistent with the findings of Truhlar and coworkers.35  

However, aA correction is possible, because, as shown in Fig. 2, H2O2 and its isotopologs are molecules 

with a torsion, which has two degenerate minima with nonsuperimposable structures.  Since the HOhf 

model assumes that the PES is a quadratic well, only one minimum is considered, and hence the HOhf 

partition function is less than 50% of the benchmarks.  For H2O2 and its isotopologs, one can simply 

multiply the HOhf partition functions by two to take into account the contributions of both of the minima 

because they are degenerate.  However, since complicated molecules typically have nondegenerate 

minima, this type of correction is not always applicable.   

As shown in Fig. 1, an improvement can be achieved with UM-N, where the PES is described 

more accurately by splines through data points evaluated along the direction of each normal mode.  

However, the percentage of the benchmark partition functions that can be captured by UM-N is still under 

50%.  The reason for this is because for UM-N, the sampling region is defined by the classical harmonic 

oscillator turning points, which only covers the vicinity of the starting geometry.  As shown in Fig. 2, 

if one initiates the sampling with the structure of the minimum on the left (∠𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 112.5° ) and 

terminates the sampling at the classical turning points, the minimum on the right will not be covered.   
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One might expect that the problem can be solved by simply expanding the sampling region.  

However, as shown in Fig. 2, this instead leads to a new problem, namely the PES of the torsion obtained 

from UM-N with extended sampling was not symmetric.  In UM-N, the direction of sampling is 

determined by the direction of normal modes, which have no clean separation between bond torsions and 

other stretches and bends.  Therefore, when the structure is distorted away from the minimum along the 

“torsional mode”, all the stretches and bends start to deviate from the equilibrium values, which 

introduces artificial coupling and prevents UM-N from sampling multiple minima of a torsion correctly.   

This finding is strong motivation to separate torsions from other modes, which is the reason why 

we introduce the UM-VT model.  Modeling torsions and vibrations separately is not without 

precedents,8,37 though the motivation and treatment may vary in literature.8,37  With UM-VT, as shown 

in Fig. 2, the symmetry of the torsional PES is restored.  Even though the torsional barriers are slightly 

over estimated comparing with the minimum-energy path because the dihedral angle is varied with all 

the other coordinates frozen, the PES constructed with UM-VT has two degenerate minima so that its 

eigenstates include the two conformers of H2O2 and its isotopologs.  Therefore, on average, UM-VT 

partition functions of these molecules can capture more than 70% of the benchmark over a broad 

temperature range (300-2400K), which significantly outperforms the HOhf and UM-N models as shown 

in Fig. 3.   

Following a published strategy35, the accuracy of the UM-VT partition function can be further 

improved by correcting the zero-point energy 𝑄𝑄𝑈𝑈𝑀𝑀−𝑉𝑉𝑇𝑇(𝑍𝑍𝑍𝑍) = 𝑄𝑄𝑈𝑈𝑀𝑀−𝑉𝑉𝑇𝑇 × 𝑒𝑒−𝛽𝛽(𝜖𝜖0𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝜖𝜖0𝑈𝑈𝑈𝑈−𝑉𝑉𝑉𝑉) (21) 

where 𝜖𝜖0𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 is the accurate zero-point energy (available from previous work35) and 𝜖𝜖0𝑈𝑈𝑀𝑀−𝑉𝑉𝑇𝑇 is the 

zero-point energy calculated using the UM-VT model.  As shown in Fig. 1 and Fig. 3, the zero-point 

corrected UM-VT partition function captures more than 90% of the benchmark in the low and medium 

temperature range (< 1000K).  Unfortunately, this correction cannot be applied universally because a 
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zero-point energy that is sufficiently accurate for this purpose is rarely available.  After all, even an 0.1 

kcal/mol error in the zero-point energy will lead to a 15% underestimation of the partition function at 

300K.  However, the good agreement between the zero-point corrected UM-VT partition function and 

the benchmark suggests that the number and spacing of energy levels are adequately captured by the 

UM-VT model. In the following subsection, we shall explore whether or not heat capacities, standard 

entropies, and enthalpy increments calculated with the UM-VT model also agree well with the 

benchmarks.   

Heat capacities, Entropies and Enthalpies.  Further examination of the methods were carried 

out for larger molecules.  As listed in Table 1, heat capacities for nine selected alkanes ranging in size 

from C5 to C8 were calculated with HOhf, UM-N, and UM-VT.  The benchmarks chosen are the ideal 

gas heat capacities obtained by measuring heat capacities at two or more pressures and extrapolating 

linearly to zero pressure.53–57  As shown in Fig. 4, because of the absence of  anharmonic effects, all 

of the heat capacities calculated with the HOhf model are underestimated.  The UM-N heat capacities 

are slightly more accurate than those of the HOhf model since the UM-N model takes local 

anharmonicities into account.  However, tThe improvements were not very significant because, as 

discussed above, the UM-N sampling scheme cannot handle internal rotors properly.  Separating 

torsions and vibrations helps to remedy the problem.  As listed in Table 1, the RMS error is reduced to 

less than 1 cal mol-1 K-1 with the UM-VT model.  The UM-VT heat capacities agree well with the 

experimental values and no systematic error is observed, suggesting that the energy levels calculated 

with UM-VT are sufficiently accurate to obtain correct thermodynamic properties, which is consistent 

with what we observed for the H2O2 partition functions.  This also indicates that the large basis ωB97X-

D DFT calculations are adequately describing the electronic potential energy surface of these alkanes. 

In addition to heat capacities, we also examined the performance of these methods for entropy 

and enthalpy calculations for C2 to C8 branched and linear alkanes and species with different moieties 
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as listed in Table 2 and Table 3.  Because experimentally measured entropies and enthalpies are very 

rare, the HOhf, UM-N, and UM-VT values are compared with the data collected by NIST/TRC,58,59 which 

were mostly calculated using statistical mechanics based on spectral data, frequently with internal rotor 

corrections but without considering anharmonicity or coupling effects.  As listed in Table 2, most of the 

entropies are significantly underestimated with the HOhf model, especially for long-chain alkanes, 

because of the inaccurate treatments for the torsional modes.  Normal octane, the molecule with the 

highest number of internal rotors deviates the most from the reference value.  As shown in Fig. 5, the 

UM-N results are slightly more accurate compared to the HOhf model, which is similar to what we 

observed for the heat capacity calculations.  Separating torsions and vibrations significantly improves 

the accuracy.  For instance, for n-octane, the error is reduced to less than 1 2 cal mol-1 K-1 with the UM-

VT model.  The accuracy of the other molecules are is also improved systematically with UM-VT.  

The overall performance of the methods for entropy calculations is summarized in Fig. 6.  Over the 

300-1000K temperature range, the RMS error is about 65-9 6.5 cal mol-1 K-1 using the HOhf model.  The 

UM-N RMS errors are slightly lower, at around 54-7 5.5 cal mol-1 K-1.  By contrast, the UM-VT RMS 

error is about 1-2 cal mol-1 K-1, which is significantly lower than the HOhf and UM-N RMS errors, and 

hence validates the superior accuracy of the UM-VT calculated entropies for molecules with internal 

rotors.  We note that for the internal rotors with only one minimum or multiple minima which are 

superimposable, the HOhf model can perform quite accurately, such as for the ethane case.  No distinct 

configuration is omitted from the HOhf model in this case.   

The performance of these methods for enthalpy calculations was examined from 0K to higher 

temperatures.  As shown in Fig. 7 and Table 3, all of the UM-VT enthalpies agree well with the reference 

at 298K.  While their performance is not as good as UM-VT, most of the enthalpies calculated with the 

UM-N and HOhf models also lie within the ±1 kcal/mol error bar despite the limitations of these two 

models.  At higher temperatures, as shown in Fig. 8, the UM-VT RMS error is more significantly 
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reduced relative to the HOhf and UM-N models, which indicates that taking internal rotors into account 

does improve the accuracy. The enthalpy is not very sensitive to the choice of the model because it is 

based on the first derivative of the logarithm of the partition function 𝐻𝐻 = 𝑅𝑅𝑘𝑘2 𝜕𝜕𝜕𝜕𝑚𝑚(𝑄𝑄)𝜕𝜕𝑇𝑇 + 𝑅𝑅𝑘𝑘., (22) 

The logarithm inherently deemphasizes the differences in the partition function, and the derivative wipes 

out the contribution of degenerate conformers (as discussed earlier for H2O2, where the HOhf partition 

function should be corrected by a factor of two).  Therefore, for enthalpy calculations, even the 

uncorrected HOhf model can be reasonably accurate.  By contrast, a proper correction for degenerate 

conformers is essential for reliable entropies, because the entropy depends directly on the logarithm of 

the partition function: 𝑆𝑆 = 𝑅𝑅𝑘𝑘 𝜕𝜕𝜕𝜕𝑚𝑚(𝑄𝑄)𝜕𝜕𝑇𝑇 + 𝑅𝑅𝑅𝑅𝑛𝑛(𝑄𝑄)., (23) 

Thus the entropy is affected by the constant scaling of the partition function.  The calculation of the 

heat capacity is more sensitive to the accuracy of the energy levels than is the enthalpy, since the heat 

capacity is the derivative of the enthalpy with respect to temperature, which incurs a second derivative 

of the partition function.  Therefore, the enthalpies are less sensitive to the choice of the model than 

either the entropy or the heat capacity. 

Convergence.  The success of the UM-VT model discussed above was achieved using the 

ωB97X-D/6-311+G(2df,2pd) level of electronic structure theory.  However, the most demanding real-

world problems involve larger systems for which frequency calculations using a range-separated hybrid 

GGA with valence triple-ζ basis sets including f-functions are computationally very costly or perhaps 

not even feasible.  In light of this, we examined the performance of the UM-VT model with B97-D60/6-

31G*, a much less computationally demanding level of electronic structure theory (more than 50 times 

faster, typically).  The B97-D/6-31G* tests were carried out for heat capacities listed in Table 1 since, 

as discussed above, heat capacity is more sensitive to the energy levels and has good experimental 

Formatted: Indent: First line:  0"
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benchmarks.  We found that, as listed in Table 4, the statistical errors do not significantly increase if 

ωB97X-D/6-311+G(2df,2pd) is replaced by B97-D/6-31G*.  Therefore, from the perspective of 

computational cost, B97-D/6-31G* is an attractive alternative if ωB97X-D/6-311+G(2df,2pd) is not 

feasible for larger systems of interest.  Just as optimized molecular structures are well-known to depend 

more weakly on basis set and correlation treatment than relative energies, it is reasonable that the 

treatment of local vibrations may not be overly sensitive to the level of theory employed. 

A last remark should be made on the convergence of the UM-VT calculations with respect to the 

step size and the cut-off energy for sampling.  We recomputed the heat capacities listed in Table 1 after 

doubling the cut-off energy and halving the step sizes for torsions and vibrations, respectively.  As listed 

in Table 4, making more conservative (and computationally expensive) choices for these parameters did 

not affect the accuracy of the model, suggesting that the original step size and cut-off energy was adequate 

to achieve converged calculations.   

 

Conclusions: 

The purpose of this work was to explore approaches that go beyond the standard harmonic 

oscillator model with harmonic frequencies (HOhf) for nuclear motion without changing the 

computational cost scaling (only increasing the prefactor). To this end, partition functions, heat capacities, 

entropies, and enthalpies of molecules with internal rotors were calculated using uncoupled mode (UM) 

approximations, where the full-dimensional PESs of internal motions were treated as a collection of 

independent one-dimensional potentials.  The accuracy of this approach depends critically on how the 

one-dimensional potentials are determined.  The HOhf model, which assumes that the PESs of all modes 

are quadratic, can capture only about 30% of the partition functions of hydrogen peroxide and its 

isotopologs at 300K because there are two degenerate minima with nonsuperimposable structures on the 

torsional coordinate, whereas only one of them is taken into account if the PES is assumed to be quadratic.  
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Limitations of the HOhf model are not strongly evident in the calculations of enthalpies since, for a 

selected test set of linear and branched C1 to C8 alkanes and species with different moieties, the RMS 

error of the enthalpy changes from 0 to 298K calculated by the HOhf model is less than 1 kcal/mol.  

However, as is well-known, the HOhf model strongly limits the accuracy that can be achieved for entropy 

calculations.  For the same test set, the RMS error of standard entropies calculated by the HOhf model 

is 6.334.74 cal mol-1 K-1 at 298K.  As the temperature rises, the error further increases.  Systematic 

error is also observed for the HOhf heat capacities. 

More realistic representations of one-dimensional PESs help to alleviate the problem.  Our first 

attempt was to reconstruct the PESs by interpolating energies of geometries distorted along each normal 

mode with cubic splines (the UM-N model).  To obtain energy levels of these PESs, a computational 

protocol solving one-dimensional Schrödinger equations with potentials represented by cubic splines was 

established.  However, it was found that though UM-N successfully takes local anharmonicities into 

account, it cannot recover qualitatively correct (i.e., periodic) PESs for bond torsions.  Therefore, the 

improvements in calculations of thermodynamic properties using UM-N were quite limited relative to 

the basic HOhf model.   

Significant improvements were achieved by constructing the 1D PESs of torsions and vibrations 

separately (UM-VT).  The PESs were still constructed by interpolating energies of geometries distorted 

along each mode with cubic splines.  However, instead of using normal mode directions, the directions 

of torsional and vibrational modes were determined by the torsional coordinates and the eigenvectors of 

the Hessian with torsional modes projected out, respectively.  On average, UM-VT captures more than 

70% of the partition functions of hydrogen peroxide and its isotopologs between 300K and 2400K.  The 

UM-VT heat capacities agree with the experimental values to within a RMS error of 0.73 78 cal mol-1 K-

1 for nine selected alkanes ranging from C5 to C8.  For the calculations of standard entropies of 

branched and straight chain alkanes and other standard organic species, the UM-VT RMS error is about 
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1-2 cal mol-1 K-1 over the temperature range of 300 K to 1000 K, which is less than one-third of the RMS 

error of the HOhf model for the same test set.  The UM-VT model also improves the accuracy in enthalpy 

calculations though the error of the HOhf model for our test set was quite small to begin with, particularly 

at lower temperatures.   
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Table 1. Heat capacities of selected molecules (cal mol-1 K-1). 

 Temperature (K) Expt HOhf UM-N UM-VT 

Isopentane 317.2 29.95 a 28.27  28.23  29.97  
 358.2 33.25 a 31.47  31.44  33.04  
 402.3 36.72 a 34.94  34.91  36.29  
 449.2 40.24 a 38.53  38.50  39.59  
 487.1 42.93 a 41.29  41.27  42.11  

n-Hexane 333.9 37.35 b 34.41  34.62  36.86   
365.2 40.22 b 37.36  37.57  39.54   
398.9 43.30 b 40.55  40.77  42.42  

 433.7 46.39 b 43.79  44.01  45.33  
 468.9 49.46 b 46.97  47.18  48.17  

2,2-Dimethylbutane 341.6 38.10 b 34.25  37.19  39.24   
353.2 39.25 b 35.42  38.30  40.33  

 376.1 41.50 b 37.71  40.48  42.45  
 412.4 44.95 b 41.28  43.87  45.73  
 449.4 48.33 b 44.80  47.19  48.92  

2,3-Dimethylbutane 341.6 37.78 c 36.16  35.93  38.91  
 371.2 40.69 c 38.95  38.72  41.58  
 402.3 43.63 c 41.86  41.63  44.32  
 436.0 46.73 c 44.94  44.71  47.17  
 471.2 49.77 c 48.05  47.81  50.00  

2-Methylpentane 325.1 36.77 c 34.08  34.10  36.51  
 362.2 40.30 c 37.56  37.59  39.79  
 402.3 44.08 c 41.34  41.38  43.26  
 436.2 47.14 c 44.47  44.51  46.10  
 471.2 50.16 c 47.58  47.63  48.90  

3-Methylpentane 332.1 36.88 c 34.72  34.58  37.54  
 367.6 40.25 c 38.07  37.91  40.54  
 402.4 43.43 c 41.35  41.17  43.46  
 436.2 46.52 c 44.47  44.28  46.23  
 471.2 49.55 c 47.58  47.39  48.99  

n-Heptane 357.1 45.77 d 41.96  42.28  46.18  
 373.2 47.51 d 43.74  44.02  47.66  
 400.4 50.37 d 46.75  46.99  50.18  
 434.4 53.85 d 50.44  50.62  53.29  
 466.1 57.00 d 53.78  53.91  56.12  

2,2,3-Trimethylbutane 328.8 42.74 d 41.20  40.69  44.11  
 348.9 45.09 d 43.41  42.90  46.22  
 369.2 47.39 d 45.64  45.14  48.33  
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400.4 50.92 d 49.03  48.52  51.49  

 434.3 54.54 d 52.61  52.09  54.79  
 461.8 57.36 d 55.42  54.90  57.36  

n-Octane 405.7 58.00 e 53.86  54.17  57.51  
 462.5 64.70 e 60.79  61.01  63.38  
 522.7 70.60 e 67.65  67.77  69.24  

MSE   -2.57  -2.31  -0.05  
MAE   2.57  2.31  0.68  
RMS   2.69  2.41  0.78  

a Ref 53 
b Ref 54 
c Ref 55 
d Ref 56 
e Ref 57 
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Table 2. Standard entropies (298.15K, 1bar) of selected molecules (cal mol-1 K-1). 

  Ref HOhf UM-N UM-VT 

Ethane  54.79 a  52.90 54.79 54.75  
Propane  64.61 a  63.31 64.17 64.57  
n-Butane  74.10 a  72.21 71.95 74.21  
Isobutane  70.63 a  69.71 69.75 70.22  
n-Pentane  83.55 a  80.26 79.46 83.56  
Isopentane  82.16 a  79.68 79.28 81.51  
Neopentane  73.14 a  71.66 72.77 73.18  
n-Hexane  92.94 a  86.87 86.95 93.49  

2,2-Dimethylbutane  85.66 a  78.47 83.83 84.97  
2,3-Dimethylbutane  87.46 a  82.86 83.77 85.17  

2-Methylpentane  91.06 a  86.75 86.79 90.56  
3-Methylpentane  91.54 a  86.41 86.42 90.54  

n-Heptane  102.32 a  91.53 93.56 102.88  
2,2-Dimethylpentane  93.86 a 94.89 91.88 92.71  
2,3-Dimethylpentane  99.11 a 94.33 92.51 94.72  
2,4-Dimethylpentane  94.89 a 90.36 90.66 92.80  
3,3-Dimethylpentane  95.20 a 89.62 89.81 93.66  

3-Ethylpentane  98.37 a 92.45 92.33 96.25  
2-Methylhexane  100.50 a  94.73 94.28 100.48  
3-Methylhexane  101.84 a 95.95 94.37 99.94  

2,2,3-Trimethylbutane  91.63 a 92.29 90.24 90.06  
n-Octane  111.70 a 97.75 101.36 113.51  
1-Butene  73.58 a 70.05 71.09 73.36  

1,3-Butadiene  66.63 a 64.34 66.05 66.05  
Ethyl Methyl Ether  73.91 a 72.34 72.36 73.07  

Ethanol  67.07 a 63.88 65.18 66.41  
Propionaldehyde  72.75 a 69.66 70.89 72.73  

2-Butanone  81.12 a 76.27 78.83 80.63  
Acetic Acid  67.75 a 67.35 68.37 68.06  
Propylamine  77.78 a 71.96 73.13 76.63  

1-Nitropropane  83.80 a 82.01 82.35 84.68  
1-Fluoropropane  72.85 a 70.33 71.14 73.11  
1-Chloropropane  75.43 a 72.88 73.64 75.54  
1-Bromopropane  79.07 b 75.32 76.25 78.08  

Ethyl Methyl Sulfide  79.64 a 75.34 77.19 79.41  
Methyl Disulfide  80.16 a 75.36 78.12 80.12  

Ethanethiol  70.79 a 67.95 69.16 71.01  
Ethylene Glycol  72.61 b 68.11 71.33 74.56  

Acrylic Acid  73.54 a 71.04 71.49 72.18  
MSE   -3.85  -3.13  -0.51  
MAE   3.94  3.16  0.87  
RMS   4.74  3.97  1.24  

a Ref 58 

b Ref 59 
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Table 3. Enthalpies H(298.15K)-H(0K) of selected molecules (kcal/mol). 

 Ref HOhf UM-N UM-VT 

Ethane 2.84 a 2.76 2.84 2.83  
Propane 3.52 a 3.32 3.43 3.53  
n-Butane 4.61 a 4.26 4.24 4.61  
Isobutane 4.29 a 4.14 4.14 4.28  
n-Pentane 5.78 a 5.09 5.06 5.65  
Isopentane 5.26 a 4.96 4.94 5.38  
Neopentane 5.54 a 4.76 4.91 5.04  
n-Hexane 6.86 a 5.85 5.88 6.78  

2,2-Dimethylbutane 6.01 a 4.85 5.66 6.41  
2,3-Dimethylbutane 5.85 a 5.72 5.67 6.31  

2-Methylpentane 6.29 a 5.76 5.77 6.42  
3-Methylpentane 6.23 a 5.75 5.74 6.57  

n-Heptane 7.94 a 6.47 6.69 8.13  
2,2-Dimethylpentane 6.98 a 6.61 6.49 7.13  
2,3-Dimethylpentane 6.77 a 6.64 6.51 6.99  
2,4-Dimethylpentane 7.00 a 6.46 6.50 6.96  
3,3-Dimethylpentane 6.94 a 6.49 6.44 7.30  

3-Ethylpentane 7.50 a 6.65 6.62 7.49  
2-Methylhexane 7.39 a 6.61 6.61 7.62  
3-Methylhexane 7.26 a 6.71 6.60 7.63  

2,2,3-Trimethylbutane 6.69 a 6.51 6.36 7.26  
n-Octane 9.03 a 7.34 7.57 9.33  
1-Butene 4.09 a 3.79 3.90 4.09  

1,3-Butadiene 3.62 a 3.45 3.49 3.52  
Ethyl Methyl Ether 4.42 a 4.08 4.10 4.55  

Ethanol 3.41 a 3.20 3.41 3.63  
Propionaldehyde 4.18 a 3.67 3.78 4.13  

2-Butanone 5.01 a 4.47 4.66 5.17  
Acetic Acid 3.25 a 3.35 3.40 3.41  
Propylamine 4.27 a 4.07 4.24 4.68  

1-Nitropropane 4.66 a 4.77 4.79 5.05  
1-Fluoropropane 3.75 a 3.75 3.85 3.88  
1-Chloropropane 3.85 a 3.90 3.99 4.16  
1-Bromopropane 4.10 b 3.96 4.07 4.28  

Ethyl Methyl Sulfide 4.57 a 4.31 4.50 5.00  
Methyl Disulfide 4.77 a 4.50 4.63 5.30  

Ethanethiol 3.71 a 3.50 3.68 3.84  
Ethylene Glycol 3.96 b 3.90 4.14 4.69  

Acrylic Acid 3.90 a 3.68 3.72 3.87  
MSE  -0.41  -0.33  0.17  
MAE  0.42  0.37  0.22  
RMS  0.57  0.50  0.29  

a Ref 58 
b Ref 59 
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Table 4. Statistical errors of heat capacities listed in Table 1 calculated by UM-VT.  

Level of theory 
Step size E cut-off 

(hartree) 

MSE 
(cal mol-1 

K-1) 

MAE 
(cal mol-1 

K-1) 

RMS 
(cal mol-1 

K-1) Torsion Vibration 

ωB97X-D/6-311+G(2df,2pd) 𝜋𝜋 18⁄  �ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄  0.05 -0.05 0.68 0.78 

B97-D/6-31G* 𝜋𝜋 18⁄  �ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄  0.05 0.49  0.70  0.92  

B97-D/6-31G* 𝜋𝜋 36⁄  �ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄  0.05 0.49 0.70 0.92 

B97-D/6-31G* 𝜋𝜋 18⁄  
1

2
�ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄  0.05 0.49 0.70 0.92 

B97-D/6-31G* 𝜋𝜋 18⁄  �ℏ 𝜇𝜇𝑖𝑖𝜔𝜔𝑖𝑖⁄  0.1 0.49 0.70 0.92 

 
 
 

 
Figure 1. Ratios of the partition functions calculated by HOhf, UM-N, UM-VT, and UM-VT(ZP) to the 
partition functions calculated by the path integral method at 300K.  These ratios represent the 
percentages of the partition functions that can be captured by the models. 
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Figure 2. The potential energy surface of the torsion of H2O2.  The black curve is the minimum-energy 
path.  The circles are the data sampled with UM-N.  Those shown in red are within the sampling region 
defined by the classical turning points (CT).  Extending the sampling region of UM-N yields the blue 
circles (EXT).  The green triangles are the data sampled with UM-VT. 
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Figure 3. Average of the ratios of partition functions (Qcal/QPI) over HOOH, H18OOH, H2

18O2, HOOD, 
D18OOH, H18OOD, and D2O2. 
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Figure 4.  Parity plot of the heat capacities listed in Table 1.  An error bar of ±1 cal mol−1 K−1 is 
shown by the dashed lines. 
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Figure 5.  Parity plot of standard entropies listed in Table 2.  An error bar of ±3.35 cal mol−1 K−1 
(equivalent to ±1 kcal/mol of T ∙ S at 298.15K) is shown by the dashed lines.   
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Figure 6.  RMS errors of standard entropies of the species listed in Table 2.  
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Figure 7.  Parity plot of H(298.15K)-H(0K) listed in Table 3.  An error bar of ±1 kcal/mol is shown 
by the dashed lines. 
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Figure 8.  RMS errors of H(T)-H(0K) of the species listed in Table 3. 
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