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Thermodynamics of binary liquid organic mixturesa
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Abstract Recent studies on the thermodynamic properties of binary organic liquid
mixtures are reviewed. Emphasis is placed on structure-property correlations and
pseudo-lattice group contribution models. The examples of application cover
low-pressure phase diagrams, excess enthalpies and excess heat capacities for several
classes of polar or nonpolar systems containing alkanes, cyclohexane, benzene, ethers,
alkanones, chloroalkanes, or alkanols.

INTRODUCTION

In order to relate the nature of a given system to its thermodynamic properties, it is necessary to
postulate a "molecular model" for the system, i.e., to define the structure of the molecules and the
molecular interactions. The thermodynamic properties are then derived from the molecular model either
by computer simulation or by means of a theoretical model, based on statistical thermodynamics (Fig. 1).

Computer simulation studies on mixtures are relatively scarce and deal mainly with simply-shaped rigid
molecules (spheres, dumbbells, etc.). Mixtures formed by "hard molecules", i.e., molecules without
attractive forces, have a merely theoretical interest. Mixtures of simple diatomic molecules possessing
electrostatic charges (dipoles or quadrupoles) have been studied quite recently by Gubbins and coworkers
(Refs. 1-3). Depending on the distribution of charges, different types of molecular clustering effects have
been shown with significant consequences on the thermodynamic properties.

System

Non —thermodynamic properties

Molecular model

(structure — interaction)/
Computer Theoretical

simulation model/
Thermodynamic

properties

Fig. 1. Theoretical methods of investigating the thermodynamic properties of systems

In this paper we are concerned with dense (liquid) mixtures of simple organic molecules, i.e., members of
homologous series of basic classes of organic compounds such as alkanes, ethers, alkanones, etc. Organic
molecules, with a few exceptions, are polyatomic and flexible and their interaction forces are fairly
complex. For physically obvious reasons, one may expect that the force field of a given segment or group
in an organic molecule which belongs to a homologous series will depend less on the nature of the
molecule, than on the nature of the group itself. The most general definition, or basic assumption, of the
group contribution method is that, with conveniently defined groups, the interaction energy of the system
is given by the sum of group interaction energies. This definition refers to the molecular model only, not
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to the procedure followed to derive the thermodynamic properties, which may be computer simulation or
a more or less rigorous theoretical model (Fig. 1).

Computer time is probably at present the main limitation in simulating organic mixtures in terms of group
contributions. Another limitation results from our inadequate knowledge of the interaction forces
between groups. For these reasons, at least, the development and use of theoretical models are
necessary.

Perturbation theories are regarded as the most convenient compromise between rigor and ease of
calculation of thermodynamic properties (Ref. 3). Like the computer simulation studies, perturbation
theories have been applied mostly to spherical or to simple nonspherical molecules. Winkelmann (Ref. 4)
has taken into account electrostatic interactions for a model of polarizable dipolar hard spheres. There
have been significant advances in recent years in treating larger anisotropic molecules as multi-center-
Lennard-lones molecules (Refs. 5,6). Svejda and Kohler (Ref. 7) have presented a group contribution
approach for pure nonpolar compounds with possible extension to mixtures.

PSEUDO-LATTICE GROUP CONTRIBUTION MODELS

The most widely applicable statistical group contribution methods are still based on rigid or free-volume
pseudo-lattice models (Ref. 8). The use of such models is justified by their ability to correlate and predict
low-pressure phase equilibria and related properties in terms of characteristic group interaction
parameters. Moreover, the comparison of the model predictions with experimental data, taken within the
limits of validity of the model, enables certain intra- and intermolecular effects to be highlighted which
are relevant in any other, more empirical or more fundamental, group contribution approach.

Fischer (Refs. 9, 10) has recently tested the pseudo-lattice theory of Guggenheim (Ref. 11) for spherical
molecules of equal size by using perturbation theory and has shown that the free energy predictions are
qualitatively correct. The differences between the excess quantities at constant pressure and at constant
volume are usually large, but this may have little effect in terms of group contributions if the intergroup
distances at constant pressure are nearly the same for the different members of homologous series.

The random-mixing model. Guggenheim's rigid-lattice model in the random mixing approximation (Ref.
11) is the simplest group-contribution model founded on statistical thermodynamics. According to this
model, in the group-surface interaction version (Refs. 12, 13), the configurational energy, Uc, is given by

Uc = A
55 + 1/2 st 5ac5) (1)

where A is the total intermolecular contact surface, is the s-type surface fraction, and C5 is the
ineraction energy per surface unit between s- and t-surf aces. The residual molar excess Gibbs energy,
Gres,m, of a multicomponent system is of the form

Ges,m = 1/2 (q1x1 (2)

where

ij,m = 1/2 st sisjtitjst,m
gst,m is the interchange Gibbs energy of contact (s,t), a5 is the value of O on molecule i, q is the total
surface of molecule i, and X and are, respectively, the mole fraction and the surface fraction of
component i.

Equations (1)-(3) are applicable to nonpolar systems only, the quantities of gst,m representing "dispersive"
interchange Gibbs energies. These are usually temperature-dependent (see Ref. 8). The temperature
dependence can be expressed by a 3-constant equation (Ref. 14).

gs,m(T)/RT = Cst,i + Cst,2 ((T0/T) 1) + Cst,3 (ln(T0/T)_(T0/T) + i) (4)

where T = 298.15 K is the scaling temperature. The enthalpy of interchange, hst,m, and the heat capacity
of interchange, cp,st,m are then given by

hst,m(T)/RT Cst,2 Cst,3 I) (5)

and

cp,st,m/R Cst,3 (6)

the latter being assumed independent of T. Cst,i are dimensionless quantities termed "interchange
coefficients". The molar excess enthalpy, H, and the molar excess heat capacity, C m' are given by
equations similar to equations (2) and (3).
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Chemical association models. One may readily incorporate chemical association equilibria in the rigid
pseudo-lattice group contribution model described above (Ref. 15). All the contacts (s,t) are
characterized by "physical" (dispersive) interchange energies. In addition, certain contacts or "bonds" are

assumed to be chemically active yielding "associates" AB(ii = 0,1,2,...), A and B being the monomeric

species. Each associate AiBj is characterized by its association energies, Gibbs energy L GM and

enthalphy which may be expressed as a sum of bond energies. This is the so-called
"non-athermal associated" solution model. Assuming that all the deviation from ideal behavior is due to

the chemical equilibria, i.e., neglecting the dispersive interchange energies, we obtain the "athermal
associated" model (Ref. 16).

If we also neglect the differences in size between the monomers and the associates we obtain the well-
known model of ideal association.

Quasi-chemical models. Weak orientational effects in mixtures can be accounted for by means of

Guggenheim's quasi-chemical approach (Ref. 11). The configurational energy, Uc, is given by an equation
similar to equation (1)

Uc = A + 1/2 st xsxtcst) (7)

the random contact surfaces cX being replaced by the quasi-chemical quantities x5. The latter are
obtained by solving the system of quasi-chemical equations in which the main parameters are the
Boltzmann factors exp{-g5,rn/zkT}.

In the classical theory, molecules are forced to occupy the sites of a particular lattice. However, the
assignment of contact points is arbitrary and irrelevant and can be avoided by using the group-surface-
interaction version of the theory (Ref. 13). Moreover, we regard the coordination number z as a non-
randomness factor. Since no explicit relation is given between z and the anisotropy of the intergroup
potentials, z is a very crude representation of non-randomness. The random-mixing equations are
obtained for z =

The major shortcomings of the classical quasi-chemical approach are the folowing: a) the entire
interchange energy of any given contact is assumed to generate non-randomness to the extent expressed
by the coordination number z; b) z is assumed to be the same for all the contacts.

Random Chemical Quasi—chemical

(A B)
ii z

IGEM C
CHEM QUAC

3 ,t,2

Non AT QUAC DISQUAC

C — C
DIS — ..DIS

st,2 st,2

Fig. 2. Pseudo-lattice models: AT, athermal associated; QUAC, classical
quasi-chemical; DISQUAC, dispersive & quasi-chemical

A physically more realistic approach should take into account a dispersive, random, contribution for every
contact, eventually supplemented by an electrostatic, non-random contribution. A simple extension of
the quasi-chemical theory is DISQUAC, the "dispersive-quasi-chemical" model (Ref. 8). It resembles the
theory of non-athermal associated mixtures (Fig. 2). In the latter, the chemical contribution is
supplemented by the dispersive physical contribution. In DISQUAC the same type of dispersive
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contribution supplements the quasi-chemical expressions. The configurational energy, Uc, of the system
is the sum of the two terms given by equations (1) and (7)

c A'v 2DIS rr DISU =—,5x5c55 + 1/2 LsLt5t65t +

+ x + 1/2 s t x5xt QUAC)
(8)

The surface fractions o being constant, at a given composition x1, the quasi-chemical contact surfaces
x5, obtained by maximizing the configurational partition function (see Ref. 13), are the same as in the
classical theory. Each contact (s,t), either polar or nonpolar, is thus characterized by a set of dispersive

interchange coefficients, and the polar contacts by an additional set of quasi-chemical interchange

coefficients, C,i , and the coordination number z. The excess functions each contain a dispersive and a
quasi-chemical term which are calculated independently and then simply additioned.

For chemical association models, the consideration of a "physical", dispersive, contribution is necessary in
order to predict partial liquid-liquid miscibility. The quasi-chemical model, even in its classical version,
predicts partial miscibility. The superiority of DISQUAC appears clearly when we consider the
concentration dependence of the molar excess functions for sxstems such as (alkanols + alkanes). G
being a less sensitive quantity, we have represented in Fig. 3 H of (ethanol + heptane), the experimental
points and the curves calculated with the classical quasi-chemical model using different values of z. The
interchange coefficients Cah,i, where h represents the OH group and a the CH2 or CH3 groups, were
adjusted to fit the experimental and H values for x1 = 0.5.

XI

Fig. 3. Molar excess enthalpy H of (ethanol + heptane) against x (ethanol).
Points, experimental values (Ref. 17). Curves, quasi-chemical calculations
for z = 4 or z = 8 with interchange coefficients fitted at x1 =0.5. Dashed
curve, calculated in the random-mixing approximation.

It may be seen that the maximum of the experimental H curve is situated at much lower concentrations
of ethanol than that calculated in the random-mixing approximation. This is quite characteristic for all
(polar + nonpolar) systems. For z = 8, the agreement is satisfactory for xi > 0.5, but not for xj <0.5.
low ethanol concentrations, we should take z -4, but in this case no Cah,1 can fit the experimental Gm

(Fig. 4). As a matter of fact, no value of z can represent H over the entire concentration range, the
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experimental curve being broader and flatter than any of the calculated ones. This behavior is quite
general for (polar+ nonpolar) mixtures (see next Section).
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Fig. 4. Equimolar excess Gibbs energy G(x1 = 0.5) of (ethanol + heptane) at
303.15 K. Dashed line, experimental value (Ref. 18). Curves, model
calculations for different values of z against the interchange Gibbs energy
coefficient, Cah,1 (Ref. 19).

Assuming, as in DISQUAC, that the calculated H is the sum of two contributions, dispersive and
quasi-chemical, taken in adequate proportions, with the maxima situated at different values of x1, we can
reproduce much better the shape of the experimental H (Fig. 5).
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Fig. 5. Molar excess enthalpy H of (ethanol + heptane) against x(ethanol)
represented schematically by DISQUAC (Ref. 19). Points, experimental
values (Ref. 17).
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APPLICATION TO BINARY SYSTEMS

The examples of application in this paper were selected among the systems which have already been
investigated quite carefully in terms of the classical pseudo-lattice group contribution model. All these
systems contain a nonpolar or polar component + an alkane. These studies revealed, in addition to the
above-mentioned systematic deviations between the predicted and the experimental concentration
dependence of Hh, an anomalous variation of the interchange coefficients with temperature and the
structure of the alkane. The very accurate C,m measurements performed recently on these systems
appear to be of considerable value for a better understanding of their behavior.

(Benzene + alkanes). G and H of (benzene + n-alkane) are correlated quite well in the random_mixin
approximation using the coefficients Cab,1 = 0.2598 and Cab,2 = 0.5623 (Ref. 13). The experimental Hm
values for the higher n-alkanes (ten or more carbon atoms) are somewhat larger than the corresponding
calculated results. This additional H has been attributed to conformational and/or short-range
orientational changes when n-alkanes are mixed with globular molecules. This effect, which we termed
"Patterson effect", has been extensively investigated by Patterson and collaborators (Ref s. 20,2 1).

An analysis of C,m of (benzene + n-alkane) (Ref. 22) revealed that the compositional dependence is fairly
well represented by the random-mixing model, but the interchange coefficient Cab,3 depends strongly on
the size of the n-alkane (Fig. 6).

-4
E

U

EFig. 6. Molar excess heat capacities, Cp,m at 298.15 K, of (benzene +heptane)
(m=7) or + tetradecane (m=14) against x(benzene). Points, experimental
values (Ref. 22). Curves calculated according to the random-mixing
approximation with Cab,3 = -0.600 (m=7) or Cab,3 = -0.828 (m=14).

In Fig. 7 we have represented Cab,i of (benzene + n-alkanes), adjusted to the equimolar, experimental,
G, H, and C,m data, as a function of m, the number of carbon atoms in the n-alkane. We note the
relative constancy of Cab,1 (enthalpy-entropy compensation, Ref. 20), the slight increase of Cab,2, and
the strong decrease of Cab,3, with increasing m.

The entire value of Cab,1 and almost the entire value of Cab,2 may be attributed to differences in
interaction energies between benzene and CH2 or CH3 groups. C,m of (benzene +2,3-dimethylbutane), a
branched alkane, being negative and fairly large (Ref. 23), we infer that the interactional part in Cab,2 is
temperature-dependent and contributes significantly to the value of Cab,3. The slight increase of Cab,2
with m is due to the Patterson effect. The latter being very sensitive to temperature causes Cab,3 to
decrease rapidly with increasing m. Additional C,m measurements for (benzene +higher branched
alkanes) are needed to confirm these remarks.

(Cyclohexane + alkanes). The differences in interaction energies between cyclohexane and alkanes are
much smaller than between benzene and alkanes. The interaction contribution to G in (cyclohexane +

E En-alkanes) is very small, Cac,1 =0.0512 (Ref. 13). Comparing Hm and Cp,m of (cyclohexane + n-alkanes)

T —2
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Fig. 7. Interchange coefficients Cab,i of (benzene + n-alkanes) against m, the
number of carbon atoms in the n-alkane (Ref. 23).

with H and C,m of (cyclohexane + branched alkanes) (Ref s. 24-26), we see that the Patterson effect

contributes largely to of (cyclohexane + n-alkanes) and that it represents almost the entire source of

C,m. Formally we can describe and C,m by means of Cab,2 and Cab,3 coefficients, but these
depend very strongly on the chain length of the n-alkane. The shape of the calculated excess quantities is
also less satisfactory than, e.g., for (benzene + n-alkanes), where the interaction contribution is

predominant.

Branched alkanes behave similarly to cyclohexane as shown recently by Benson and collaborators
(Ref. 27).

(n-Ethers + n-alkanes). The previously reported (Ref. 13) interchange coefficients for O/CH2 or O/CH3 in

(n-ether + n-alkane), in the random-mixing approximation, are: Cae,1 15.73 and Cae,2 =29.04. The

availability of recent, very accurate, G, H and ,m measurements permit a check to be made of both
the model and the values of the coefficients. The Gm of (dibutyl ether +hexane), calculated by Marsh and
Ott (Refs. 28,29) from LVE measurements, agree to better than 3 Jmol' (1 per cent) with the
predictions. The partial molar excess Gibbs energies at infinite dilution, are reproduced to within

2.5 per cent. As already noted (Ref. 30), the experimental H data fall about 50 Jmol (30 per cent in
the central range of concentration (Ref. 30)) below the predicted curve, due to the strong steric effect of
the two butyl groups. In dipropyl ether the steric effect is smaller and the recent experimental H results
of Kimura et al. (Ref. 31) fall about 25 Jmof (10 per cent in the central range of concentration) below
the predicted curve. The predicted H curve of (2,5,8-trioxanonane +heptane) agrees much better with
the recent measurements (Ref. 32) which fall about 100 J•mol' (less than 6 per cent in the central range
of concentration) below the predicted curve. These measurements require therefore a readjustment of the
enthalpic interchange coefficient, Cae,2, and appropriate consideration of the steric effect. It should be
remembered that similar steric effects, always stronger for H than G, have been observed for many
other classes of compounds of the type RX, e.g., alkanals (Refs. 33,34), R2X, e.g., alkanones (Refs. 35,36)

or alkanoates (Ref. 37), and R3X, e.g., tertiary amines (Refs. 38,39). Nonetheless, the random-mixing
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model seems to be in satisfactory agreement with the experimental G and H results for

(n-ether + n-alkane).

0
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Fig. 8. Deviation plot of the measured, H(EXp) (Ref. 32), and the calculated,
H(CALC), molar excess enthalpies for (2,5,8-trioxanonane + heptane).
Curve A, random-mixing calculation with Cae,2 = 27.35; Curve B, quasi-
chemical calculation with Cae 1 12.62 and Cae,2 = 18.51 (z=29); Curve C,

DISQUAC calculation with C1 = 13.00, C2 = 23.00, CfC = 1.861,
CC = 22.447 (z=2).

However, careful examination of the shape of the H curves and, especially, of the recently determined

C,m curves reveals serious discrepancies between the experimental and the predicted curves. This is
E E .

best illustrated by Hm and Cp,m of (2,5,8-trioxanonane + heptane). Figure 8 represents the deviation plot
E E E .. . . . E.6 Hm = Hm(EXP) - Hm(CALC). In the random-mixing approximation (Fig. 8, Curve A), 6 Hm is relatively

large (may exceed 80 Jmof) for x1 <0.5, the agreement being better at x1 > 0.5 (6 H < 20
This indicates that ethers are slightly oriented and, indeed, if H(CALC) is calculated in the quasi-
chemical approximation, with z=29 (Fig. 8, Curve B), then the agreement improves for x1 <0.5
(6 H < 20 3.mof), but worsens for x1 > 0.5. Thus we find the same behavior as for (ethanol + heptane)

(Fig. 3), though with much less pronounced deviations. DISQUAC gives a somewhat better agreement.
Thus, for curve C in Fig. 8, 6 H is positive and less than 60 3mof over the whole concentration range.
We did not attempt to find the best set of parameters and, apparently, none would exactly fit the H
curve over the whole concentration range. For this purpose, it is necessary to consider an additional

positive H contribution. The latter may be ascribed to "conformational" changes, similar to those noted

in (benzene or cyclohexane + n-alkanes). It is difficult, if not impossible, to quantify the different
contributions from the H values alone. The curves H(DIS), H(QUAC) and H(CONF) in Fig. 9 are an
estimate of the dispersive, quasi-chemical, and "conformational" contributions respectively.

The complexity of the mixture can be better shown by considering the experimental C,m curve (Fig. 10),

Curve EXP) and comparing it with curves calculated in terms of contact interactions only. As a first

approximation, the interchange enthalpies, Cae,2, are assumed independent of the temperature, i.e., all
Cae,3 = 0. In the random-mixing approximation, C,m = 0 in the whole concentration range
(Fig. 10, Curve A). The quasi-chemical curve B in Fig. 10 corresponds to curve B in Fig. 8. Both curves A

0.5
XI
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Fig. 9. Molar excess enthalpy H for (2,5,8-trioxanonane + heptane) against
x(2,5,8-trioxanonane), represented schematically by DISQUAC +
H(CONF). DISQUAC parameters as for curve C in Fig. 8. Points,
experimental values (Ref. 32)

and B differ considerably from the experimental curve. Curves C, D, and E in Fig. 10 were calculated
with different sets of parameters using the DISQUAC approach. S-shaped curves are predicted for this
system with DISQUAC, but not the double-minimum experimental curve. The latter may be obtained by

adding to the quasi-chemical C,m (Curve QUAC in Fig. 11) and/or by assuming that C2 is temperature
dependent.

(Di-n-propyl ether + n-heptane) is another (n-ether + n-alkane) system for which accurate Cm data are
available. The experimental C,m is negative over the whole concentration range and has a single
minimum (see Fig. 2 in Ref. 33). Using the set of parameters listed in Fig. 11, we obtain, indeed, a single
minimum negative C,m, but not exactly the experimental curve. It should be stressed that all these
calculations are very preliminary and are reported here only because the results seem quite promising.

(Cyclic ethers + alkanes). Experimental G and H data are available for two cyclic ethers, oxane and
1,4-dioxane. Due to the more exposed position of the oxygen atom(s), there is less steric hindrance in
cyclic ethers than in n-ethers and the molecules seem more oriented. A satisfactory description is
obtained in the quasi-chemical approximation with z=24 (Ref. 40). However, as shown in Fig. 12, the

curves of (oxane + heptane) (Curve C7) or + tetradecane (Curve C14) are slightly broader than calculated,
indicating the presence of at least two contributions, quasi-chemical and dispersive. The effect is even

stronger with 1,4-dioxane (Fig. 13). Quasi-chemical calculations of solid-liquid equilibrium diagrams
(Ref. 40) for (oxane + n-alkanes) are in relatively good agreement (Fig. 14) with experiment, the
deviations being much larger in the case of (1,4-dioxane + n-alkanes) (Fig. 15).
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The C,m values of (cyclic ethers + alkanes) reveal the same type of complexity as found in (n-ethers +
n-alkanes). In (oxane + cyclohexane) (Fig. 2 in Ref. 46), C,m has a single minimum very similar to
(di-n-propyl ether + n-heptane). On the contrary, (1,4-dioxane + cyclohexane) (Fig. 2 in Ref. 46) has a
double minimum, similar to (2,5,8-trioxanonane + n-heptane). In (1,4-dioxane + n-alkanes) the Cm
curves also have a double minimum separated by a maximum (see Fig. I in Ref. 47). The minimum at low
concentrations decreases and the maximum increases with increasing chain length of the n-alkane. Model
calculation with DISQUAC, using the parameters for (2,5,8-trioxanonane + heptane) (Fig. 11), yields
S-shaped C,m curves changing with the chain length of the n-alkane in qualitative agreement with the
observations. The second minimum at high ether concentrations and the rapid decrease of the C,m with
increasing chain length of the n-alkane should be attributed in part to "conformational' effects and in
part to the temperature dependence of The latter may also explain the double minimum of the

C,m of (l,4-dioxane + cyclohexane). Additional C,m measurements are needed for (cyclic ethers +
branched alkanes).
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Fig. 10. Molar excess heat capacity C,m for Fig. 11.
(2,5,8 -trioxanonane + heptane) against

x(2,5,8-trioxanonane). Points, experi-
mental values (Ref. 32). Curve A, random-

mixing calculation; Curve B, quasi-
chemical calculation with coefficients
given in Fig. 8; Curves C, D, and E,
DISQUAC calculations.

0.5
XI

Molar excess heat capacity C,m for
(2,5,8-trioxanonane + heptane) against
x(2,5,8-trioxanonane). Points, experi-
mental values (Ref. 32). Curve DIS
and QUAC calculated with =

12.00, C2 = 22.00, C3 = 0,

C'C = 2.425, CC = 2.556,

CC= 0, (z=2). Curve CONF is an
estimate of the "conformational"
contribution to C,m, Curve CALC is
the sum of curves DISQUAC + CONF.



Fig. 12. Molar excess enthalpy, H, of (oxane + heptane) (Curve C7) or +
tetradecane (Curve Cl4) against x(oxane). Points, experimental data
(Refs. 41,42). Curves calculated with the quasi-chemical model (z=24)

using the coefficients Cae,1 = 15.74 and Cae,2 =18.07 (C7) or 17.50
(C14) (Ref. 40).

Fig. 13. Molar excess Gibbs energy, G, and enthalpy H, of (1,4-dioxane +

heptane) against x(1,4-dioxane). Points, experimental data,
(Refs. 43,44), and H, (Refs. 4 1,42).
chemical model (z=24) using the
Cae,2 = 19.97 (Ref. 40).

Fig. 14. Solid-liquid phase diagram of (oxane + octane). Points, experimental
temperature, TCDi, against x(oxane) (Ref. 45). Curves L1 and L2
calculated with the quasi-chemical model (z=24) using the coefficients
Cae,i = 15.74 and Cae,2 =17.97. Lldare the ideal solubility curves
(Ref. 40).

Fig. 15. Solid-liquid phase diagram of (1,4-dioxane + tetradecane). Points,
experimental temperature, TDi, against x(1,4-dioxane) (Ref. 45).Curves

Li and L2 calculated with the quasi-chemical mode1.z=24) using the
coefficients Cae,i = 13.72 and Cae,2 = 18.34. Lj are the ideal
solubility curves (Ref. 40).
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(n..Alkanones + n-alkanes). The excess Gibbs energy, G, and enthalpy, H, of (2-propanone + n-alkanes)
have been successfully correlated using the quasi-chemical approach with a coordination number z=l0 and

coefficients Cak,1 = 8.514 and Cak,2 = 10.66 (Ref. 35). Higher alkanones have been equally well
correlated by making reasonable corrections for the steric effect of the alkyl groups (Ref. 36).

A careful examination of the H against x curves showed, however, that the experimental curves are
always broader and flatter than the calculated ones, especially at lower temperatures (Fig. 16). Thus, the
same behavior is observed with alkanones as with ethers.

Molar excess heat capacity C,m for

(2-propanone + hexane) against
x(2-propanone). Curve A, quasi-
chemical calculation with the
coefficients of Fig. 16; Curve B,
quasi-chemical calculation with the
coefficients of Fig. 16 but Cak,3 0;
Curve C, DISQUAC calculation with

coefficients = 3.044, C2
4.065, CjC= 5.934, CC= 9.029
(z=4) and C3 = C= 0,

Another anomaly is the large positive value of Cak,3 required to account for the temperature dependence
of H. No direct calorimetric C,m values are available for (2-propanone + n-alkanes) but the
measurements of Schafer and Rohr (Refs. 48,49) indicate that C,m 4 3Kmof' at x2 = 0.5. Assuming

that Cak,3 0 the classical quasi-chemical model gives a rather small S-shaped C,m curve (Fig. 17).
DISQUAC, with the coefficients specified in Fig. 17, gives C,m 4 3K'mof' at xj 0.5, the
temperature dependence resulting simply from the Boltzmann factor.
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Fig. 16. Molar enthalpy H for (2-propanone + Fig. 17.
hexane) against x(2-propanone). Points,
experimental values (Ref s. 48,49). Curves
calculated with the quasi-chemical model

(z=10) using the coefficients Cak,1 8.514,
Cak,2 = 10.662, and Cak,3 = 8.133

(Ref. 35).
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Moreover, DISQUAC improves the shapes of the calculated H curves. The G curves also change but
this has little effect on the calculated liquid-vapor equilibrium phase diagrams. The liquid-liquid
equilibrium is a much more sensitive property and it appears that DISQUAC improves considerably the
shapes of the calculated coexistence curves (Fig. 18, Ref. 50).

Grolier and Benson (Ref. 52) have recently measured C,m for 2—butanone + or (3-pentanone + n-alkanes).

The experimental curves are S-shaped for the lower n-alkanes, but a second minimum appears with the
higher n-alkanes (see Fig. 2 in Ref. 52). Detailed calculations, as well as additional measurements of
C,m for (n-alkanone + branched alkane) are needed to explain the origin of the double minimum
(Patterson effect and/or temperature dependence of the coefficient).

It is interesting to note that the quasi-chemical contribution is relatively large (ca. 50 per cent) in the
case of alkanones, due to the polarity of the carbonyl group. The oxygen atom and the double bond of the
carbonyl group give rise to the dispersive contribution. In ethers, the oxygen atoms generate much less

nonideality, of essentially dispersive nature, than in alkanones, the electrostatic part being relatively
small (ca. 20 per cent).

(Chloroalkanes + alkanes). (1-chloroalkanes + n-alkanes) form a class of mixture in which the
electrostatic part, due to the C-Cl bond dipole, seems to predominate, the difference between the
dispersive forces of Cj and CH2 or CH3 probably making only a small contribution. This follows from the
relatively small nonideality in (tetrachloromethane (CCI4) + n-alkanes), similar to (cyclohexane +
n-alkanes). The random mixing model well describes G and H of (CCI4 +n-alkanes) (Ref. 13), the
data indicating the occurrence of the Patterson effect. No direct C,m values are available for (CCI4 +
branched alkanes), but C,m of (CCI4 + cyclohexane) (Ref. 53) as well as H(T) of (CCI4 +
2,2,4-trimethylpentane) (Ref. 54) indicate that most of the experimental C,m (Refs. 55, 56) is
"conformational". The H data for (1-chloroalkanes +n-alkanes) (Refs. 57,58) are well described by the
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Fig. 18. Liquid-liquid phase diagram of

(2-propanone + hexane). Points,
experimental measurements (Ref. 51). Full
curve calculated with the quasi-chemical
model using the parameters of Fig. 16
(Ref. 35); dashed curve, DISQUAC
calculation with the coefficients of Fig. 17
(Ref. 50).
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x(1 -chlorobutane). Curve calculated
with the classical quasi-chemical
model (z=4) using the parameters
Cad,1 2.455, Cad,2 = 3.850 and

Cad,3 0.
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classical quasi-chemical model (z=4) with coefficients Cad,l 2.455 and Cad,2 3.850 (Refs. 57-59). Fig.
19 represents C,m of (1 -chlorobutane + heptane), calculated with the same coefficients, assuming that
Cad,3 0. No experimental values are available for comparison.

The proximity of two groups in a molecule may considerably alter the interchange coefficients, as has
been shown for 0-0 groups in acetals (Ref. 60), S-S groups in disulfides (Ref. 61), N-N groups in diamines

(Ref. 39), Cl-Cl groups in a,o-dichloroalkanes (Ref. 57), etc. For example, the Cl/CH2 or Cl/CH3
interchange parameters for (l,2-dichloroethane + heptane) are Cad,l 1.771 and Cad,2 3.305 (z4).

The predicted interactional C,m 1.6 JKmof1 at xi = 0.5 is much larger than the experimental C,m
values (Ref. 62) of (1,2-dichloroethane + cyclohexane) (-2.09 J.K•mof1) or + methylcyclohexane (-1.03

J.K •mof1). Systematic C,m measurements for other a,w-dichloroalkanes Cl(CH2)m Cl (m=l, 2, 3, ...) ÷

normal or branched alkanes are needed in order to identify the different contributions, in particular the
effect qf hindered rotation in 1 ,2-dichloroethane (Ref. 62).

DISCUSSION

The many systems investigated since 1978 (Ref. 13) prove that the pseudo-lattice group contribution
approach, even in its crudest, "rigid" version, is fundamentally adaptable to the prediction of
thermodynamic properties of dense (liquid) mixtures of organic molecules. At present, it is probably the
only approach through which such systems become tractable.

For nonpolar molecules, the random-mixing approximation gives satisfactory results, the main
discrepancies being due to "conformational" effects in mixtures containing long-chain molecules.

DISQUAC is a straightforward extension of the classical quasi-chemical model and appears to be more
adequate than the latter for (polar ÷ alkane) systems. The "quasi-chemical" contribution in such systems
is the more important, the more polar the functional group. The "dispersive" contribution is relatively
small for simple, polar functional groups, such as chlorine (e.g., in 1 -chloroalkanes). It increases for
oxygen (in ethers) and we expect it will be still larger for fluorine (e.g., in I -fluoroalkanes). Larger
dispersive contributions occur with more complex functional groups, such as carbonyl (e.g., in alkanones,
alkanals and alkanoates). We expect to find a still larger dispersive contribution, in addition to the strong

quasi-chemical one, with functional groups such as cyano (in nitriles), nitro (in nitroalkanes), and sulfonyl
(in sulf ones).

Previous applications of the classical quasi-chemical model have shown that the best z is not the same for

different pairs of groups. For example, z=4 for Cl/CH2 or Cl/CH3 groups in (chloroalkane ÷ alkane)
(Ref. 57), z=1O for CO/CH2 or CO/CH3 groups in (alkanone + alkane) (Ref s. 35,36), etc. Therefore, the
application of the theory to systems containing more than two types of groups would raise serious
difficulties. With DISQUAC we may, at least in principle, treat all the quasi-chemical contacts with a

unique, rather small, value of z, adjusting adequately the corresponding dispersive contributions.
Extensive calculations are needed in order to establish the limits of applicability of DISQUAC and the
best common value if any, for z.

The non-athermal associated solution model, though developed on an essentially different basis than
DISQUAC, gives nearly the same numerical results as the latter, for weakly associating substances. In the
absence of any extra-thermodynamic evidence for the formation of specific kinds of associates A1B, the
DISQUAC model is to be preferred.
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Recent very accurate C,m measurements appear to be extremely useful for detecting "conformational"
and/or orientational effects in mixtures and for assessing the quality of different theoretical models. The
few examples considered in this paper seem to support the DISQUAC model.

The deviations from ideality in mixtures of polar molecules with nonpolar but polarizable molecules, e.g.,
benzene, or with polar molecules are in general much smaller than for the same (polar molecules +
alkanes). These deviations are calculated as the difference between large quantities, so the predictions
are usually made with a large relative error. Many systematic studies are needed in order to test
DISQUAC for such systems and to establish the ratio of dispersive to quasi-chemical contributions for

polar/polarizable or polar/polar contacts.

The first step in refining the rigid pseudo-lattice theories is to include equation-of-state terms. Since
1978 several "free volume" models have been proposed but the only one that has been more carefully
tested is the older theory of Flory (Ref. 63). Although the equation-of-state of Flory is not strictly valid,
not even for single-component non-polar systems, it has the merit of being able to demonstrate the
significance of equation-of-state contributions. Recent studies have shown that the theory of associated
solutions, extended by including Flory-type free volume effects, gives reasonable values for the excess
volumes of (alkanol + alkane) (Refs. 64,65).

The Flory theory has also been extended to account for conformational effects by assuming that the

interchange energy parameter xi is temperature dependent (Ref. 66). However, this theory assumes that
xj is temperature (and/or pressure) dependent and this is inconsistent with the given equation-of-state. A
satisfactory quantitative interpretation of "conformational" effects, as a function of molecular structure,

temperature and concentration, is necessary for the accurate prediction of thermodynamic properties,
especially of C,m. This can probably be achieved only by computer simulation studies.
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