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Thermodynamics of deposition flux-dependent
intrinsic film stress
Amirmehdi Saedi1,w & Marcel J. Rost1

Vapour deposition on polycrystalline films can lead to extremely high levels of compressive

stress, exceeding even the yield strength of the films. A significant part of this stress has a

reversible nature: it disappears when the deposition is stopped and re-emerges on

resumption. Although the debate on the underlying mechanism still continues, insertion of

atoms into grain boundaries seems to be the most likely one. However, the required driving

force has not been identified. To address the problem we analyse, here, the entire film system

using thermodynamic arguments. We find that the observed, tremendous stress levels can be

explained by the flux-induced entropic effects in the extremely dilute adatom gas on the

surface. Our analysis justifies any adatom incorporation model, as it delivers the underlying

thermodynamic driving force. Counterintuitively, we also show that the stress levels

decrease, if the barrier(s) for adatoms to reach the grain boundaries are decreased.
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D
uring the growth of a polycrystalline film on a substrate,
the film usually develops a significant amount of internal
stress. If the film temperature is high enough to reach

Volmer–Weber-type growth conditions1,2, the film stress during
deposition follows a compressive–tensile–compressive evolution,
as is indicated with stages I, II and III in Fig. 1. During stage I, the
nucleated islands develop a compressive stress due to surface
tension effects3,4. Stage II occurs during film closure when
the three-dimensional (3D) islands coalesce and form grain
boundaries (GBs). At this stage, the film free energy can be
further lowered by GB zipping, which in turn delivers tensile
stress5,6. Without sufficient mobility (low temperature or high
deposition flux) the film remains tensile on further growth. In
contrast, a maximum tensile stress develops for Volmer–Weber-
type growth of high-mobility materials, which occurrence
coincides approximately with the moment the film closes. From
this moment on, the stress turns once again towards compressive
values (stage III)7. Surprisingly, a significant part of the
compressive stress has a reversible nature: on interrupting the
deposition flux (Fig. 1), the film stress jumps to less compressive
values and the original compressive stress state before
interruption is almost fully restored when the flux is switched
on again. These stress jumps can be as large as B150MPa and
the time constant of the stress variation on resuming the
deposition is in the order of 20 s (refs 8,9).

In the last 20 years several mechanisms have been proposed
aiming to explain the observed effects: (1) pre-coalescence surface
tension continuation combined with ongoing grain growth10;
(2) surface roughness development during deposition combined
with step–step interactions2; (3) adatom insertion into GBs11–13;
(4) interaction of adatoms with surface and each other9;
(5) inside bundling–outside grooving of GBs14; (6) depth
changes in the GB grooves15; and so on. Whereas several of
these mechanisms rely on kinetically limited processes, the GB
adatom insertion model suggests that the compressive stress is
generated via adatoms that are forced into the GBs by the
enhanced chemical potential (CP) of the surface that is set-up by
the deposition flux. By switching off this flux, the CP should drop,
which should lead to an outflow of the excess atoms from the GBs
and, thereby, to a relaxation of the compressive stress11. Recent
experiments confirmed that GBs are prerequisite for the existence
of the reversible stress jumps16. However, more questions arise, as
the time constant of the stress relaxation on interruption seems to
be temperature-independent17. On the other hand, surface stress
effects9 are expected to be too low in magnitude18 to explain the
reversible stress jumps. While the discussion on the mechanism(s)
still continues, at a more fundamental level, the underlying driving
force behind the effect has never been addressed.

In this paper we derive the magnitudes and the changes of the
CP on the surface next to the position of the GBs and show that
this indeed forms the driving force for any adatom insertion
model. From a thermodynamic point of view, the most
fundamental question has never been addressed, probably due
to conceptual difficulties in calculating the CP of the surface
during the growth: ‘how can a flux (change) as low as B0.1
monolayer per second (ML per s) lead to stress jumps as high as
B150MPa?’ Our study focuses exactly on this question and we
show not only that these low fluxes can generate such huge
stresses but also that the driving force for the stress jumps is
decreased, if it is easier for the adatoms to diffuse towards and
into the GBs.

Results
Basic thermodynamic description. To derive our model, it is
important to realize that the film is under growth conditions and
therefore naturally not in equilibrium. However, as long as the
growth conditions do not change, it can be treated in steady state,
like the famous Growth–Wulff construction19. The enhanced
surface CP with respect to equilibrium sets up an adatom current
to steps, which finally leads to the film growth. This also means
that the CP on the surface varies locally and that positions
connected to each other will try to balance their difference. If
atom transport is sufficiently active on the timescale of
consideration, one can approximate adjacent positions to be in
equilibrium. Therefore, for constant small deposition fluxes and
the absence of kinetic limitations, thermodynamic equilibrium
can be assumed between the positions on the surface immediately
next to grain boundaries (s/GB), the GBs and the grain interiors
(g). This assumption is further underpinned by the small number
of total additional atom that have to be incorporated in the GBs.
For the surface we solve rate equations to determine the CP
immediately next to the GBs and we further treat this position,
the GBs, and the grain interior to be in equilibrium.
Thermodynamic equilibrium certainly does not hold for the
transition between the flux on and off states, but is justified a few
tens of seconds after the flux change (see above). Therefore, at
constant or zero flux, a change of the CP of the surface next to the
GBs, will finally change the CP of the GBs with the same amount,
which in turn will change the CP of the grains:

Dms=GB � DmGB � Dmg ) Dms=GB � Dmg ð1Þ

This core equation enables us to bypass the determination of the
CP of the GBs, as well as the absolute CP values on the surface
and within the grains.

Chemical potential of the surface. The free energy of a surface
depends on the formation and interaction energies of a myriad of
surface features such as terraces, steps, kinks, step adatoms,
adatoms and so on. As the surface morphology evolves during
deposition, the population of these features changes accordingly.
However, it is known that the reversible, compressive stress can
develop within seconds after starting the flux even with rates as
low as 0.1 ML per s. Obviously, the population of point-like
features, like adatoms, step adatoms and kinks, can (and will)
change abruptly on the arrival of flux on the surface, but extended
surface features, like terraces and step edges, do not change sig-
nificantly within such short timescales, as they consist of a large
number of atoms20. For example, the surface roughness is directly
linked to changes in the appearance, distribution and amount of
steps and terraces. The compressive–tensile–compressive
behaviour is usually observed under step-flow growth mode
conditions, where changes in the surface roughness are known to
happen very slowly21,22. This means that the gradual increase in
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surface roughness (and hence the extended surface features)
during deposition will only have a long time effect on the surface
CP via the Gibbs–Thomson relation. Since the reversible stress
jumps occur in a matter of seconds, we safely can ignore these
long-term changes in our analysis. Moreover, in contrast to the
adatoms that live in a two-dimensional (2D)-space on the
terraces, the step adatoms and step kinks are confined to the
one-dimensional space on the step edges. This causes the rate, at
which the step adatoms and kinks meet and annihilate each other,
to be significantly higher than the adatoms on the terraces. As a
result, the increase in adatom population on the terraces, on
starting the deposition, is orders of magnitude higher than that of
kinks or step adatoms23. The conclusion is that the surface CP
change, which is responsible for the almost instantaneous stress
jumps, is mainly dominated by a change in the adatom density.
Consequently, we can neglect all other contributions, as they
would lead only to higher-order correction terms in determining
the surface CP variations:

Dms ¼Dmadatom þO Dmstep adatom; Dmkink; Dmstep; ::
� �

�D
@Uadatom

@N
þ

@Uadatom int:

@N
�T

@Sadatom
@N

� � ð2Þ

The first term in the brackets, qUadatom/qN, accounts for the
surface temperature-dependent change in average energy
(potential and kinetic) of individual adatoms. Given by the
radiation of the evaporator and the kinetic energy of the arriving
atoms, the increase in film temperature is o10K for Cu, Ag and
Au (ref. 24), which corresponds to B2.6meV per film atom
according to the classical Dulong–Petit limit of the heat capacity
in solids. As these materials all have an excellent thermal
conductivity, the surface and the bulk temperatures are virtually
identical. Since we finally have to compare only the CP variation
of the surface and the grains, we can safely neglect this term,
as we would have to add the same value to both sides of
equation (1).

The second term qUadatom int./qN corresponds to the interac-
tion energy between the individual adatoms given by (combina-
tions of) van der Waals, electrostatic (dipole), elastic and
electronic (substrate-mediated) effects25. We safely can ignore
this term, as scanning tunneling microscopy (STM) experiments
at B15K have shown that the absolute value of the interaction
energy drops below 0.1meV for two Cu adatoms separated more
than 60Å on a Cu(111) surface26. This is equivalent to an adatom
density (fractional coverage) of o6.0� 10� 4 ML, and as it will
be shown in the following, we never reach such densities during
the deposition.

The third term �T� qSadatom/qN involves the entropic effects
of the 2D adatom gas. In general, depending on the adatom
mobility, adatoms can be assumed to be confined on discreet
lattice sites (adatom lattice gas) or to be delocalized behaving as a
2D van der Waals surface gas (2D adatom gas)27 (Supplementary
Note 1). As these two models naturally set the lower and upper
limits for the adatom gas entropy, we calculated the boundary
values of the CP for copper in Fig. 2a (Supplementary Fig. 1).
Although the absolute values differ more than 0.3 eV, both
models show a linear behaviour in this logarithmic plot below
0.01 ML such that the following approximation holds for the CP
variations:

D �T
@S

@N

� �

� kBT ln y2=y1ð Þ ð3Þ

Adatom density on terraces. To calculate the adatom densities
during deposition and interruption, Fig. 2b shows a simplified
model of the film surface, in which we define the position of the
first lattice row next to the ascending step edge as the origin of a
terrace with width w in lattice units. By solving the differential
equation for mass conservation, the adatom density at site n on
the terrace, yn, can be derived as a function of deposition flux
F (Supplementary Note 2 and Supplementary Figs 2, 3 and 4):

yn ¼ yeq þ
Fw anþ 1ð Þ swþ 2ð Þ

2nd aswþ aþ sð Þ
�

Fn2

2nd
ð4Þ

where yeq¼ exp (�Eform/kBT), vd¼ v0 exp(�Ediff/kBT),
a¼ exp (�DEatt/kBT) and s¼ s0 exp (�DEES/kBT), in which n0,
Ediff, Eform, DEatt, s0 and DEES are the diffusion rate prefactor,
diffusion barrier, adatom formation energy from a kink site of the
step, the attachment barrier, correction prefactor for hop over the
step and the Ehrlich–Schwoebel barrier, respectively (Fig. 2b)27,28.
Note that at zero deposition flux, the adatom density at each
position n of the terrace is equal to the equilibrium density yeq.
For constant deposition with DEES � DEatt, s � a, the adatom
density is highest close to the end of the terrace (Fig. 2b), whereas
the maximum shifts to the middle of the terrace for low values of
DEES (Fig. 2c). Note that the maximum of the adatom density is
only exactly at the end of the terrace for EES¼N.

Combining equations (2)–(4), one can calculate Dms as a
function of deposition flux for any site n on the terrace.

Chemical potential of the grains. Considering an in-plane
isotropic biaxial film (sx¼sy and sz¼ 0), it can be proven for the
right-hand side of equation (1) that the CP within the grains is
proportional to its total internal stress level sg (Supplementary
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Note 3 and Supplementary Fig. 5):

Dmg ¼ �

Z s0rs þDsrevrs

s0rs

Oijdsij ¼ �OxDsx �OyDsy � �
2
3
ODsg ð5Þ

where O is the atomic volume29.

Derivation of the stress jumps. Motivated by the fact that stress
emergence has to be GB-related16, it is crucial to derive the stress
jumps using the Dms immediately next to the GBs. Combining the
above equations at position n¼w, the predicted upper limit for
the reversible stress jumps based on pure thermodynamics is
given by

Dsrevj j �
3
2
kBT

O
ln 1þ

Fw awþ 2ð Þ

2nd aswþ sþ að Þyeq

� �

ð6Þ

It has been shown for gold at room temperature that step-flow
growth is the underlying atomic process for polycrystalline film
growth in the Volmer–Weber regime21. On the basis of the
so-called Zeno effect, terraces closer to the GB get progressively
decreased in their width during deposition, which leads to an
enhanced surface curvature at the GB vicinity, as sketched in
Fig. 2c, top21,30. This results in a deviation from the macroscopic
equilibrium surface of an annealed polycrystalline film31.
Although not mentioned in ref. 21, this deviation changes only
slightly back over 1 h on stopping the deposition while keeping
the film at room temperature. The same effect, which is due to the
existence of a significant Ehrlich–Schwoebel barrier, has also been
observed on Cu(111)20. For our study, we, therefore, safely omit
Gibbs–Thompson correction terms associated with macroscopic
surface curvature variations.

The red dashed lines in Fig. 3 show the predicted stress jumps
derived via equation (6) for surface terrace widths between 1 and
500 atomic spacings and the existence of an Ehrlich–Schwoebel
barrier. It is striking that the obtained stress values exceed even
the experimental ones (crosses), and that we receive a rather good
agreement already for a terrace width with w¼ 1 atomic spacing.
Please note also that the experimentally observed stress values are
often above the compressive yield strength of copper, which is
B63MPa (ref. 32). To get a feeling for the numbers, the top
horizontal axis shows the adatom density at the end point (w¼ n)
for a terrace with a width of w¼ 500 (74 nm). Note that the
adatom density is o10� 4 ML even for fluxes as high as 100 ML
per s. This validates our dilute adatom gas assumption while
calculating the surface CP and justifies our steady-state
thermodynamic approach. Note also that it is surprising that a
dilute adatom gas of o10� 4 ML has the potential to induce
B1GPa stress in the film, which is more than both the yield and
the ultimate strength of copper. Please note that this stress can be
realized in the bulk only, if there exists a kinetically not limited
atomic mechanism that transfers the CP variation of the surface
to the grain interior. The curves are calculated for Cu(111) and
we have used T¼ 298K, O¼ 1

4 361:49 pmð Þ3, n0¼ 1012Hz,
Ediff¼ 0.040 eV (ref. 33), s0¼ 15 (ref. 27), DEES¼ 0.224 eV
(ref. 34), DEatt¼ 0 eV (DEattE0 for most metals at room
temperature) and Eform¼ 0.714 eV (ref. 35), for our calcu-
lations, which implies an adatom equilibrium density of
yeq¼ 8.6� 10� 13 ML at zero deposition flux.

It is known that stress relaxation mechanisms are active both
during the growth and after stopping the deposition, which
reduce the absolute intrinsic film stress36–38. Indeed, the
experimental stress values (black crosses) are in general lower
than the red dashed stress lines. However, if one considers that
the time constant of the stress relaxation processes is distinctively
larger than the time constant of the reversible jumps39, the
discrepancy between the observed and the predicted values for

typical surface terraces is too large to be explained by the stress
relaxation effects alone.

Stress jumps considering funnelling. As our derivation of the
stress jumps exceeds in general the experimental values, we turn
our attention to experiments on both Cu(111) and Ag(111) at
room temperature: these experiments revealed that the Ehrlich–
Schwoebel barrier of the lower step vanishes, if the distance
between two neighbouring steps becomes less than six atomic
spacings40,41. This effect opens a fast mass transfer channel for
terraces with wr5 called funnelling. The fast mass transport
region can extend up to 21 atomic sites (over five steps) away
from the GB. We account for this by setting the critical terrace
width to w¼ 5 and by assuming that the Zeno effect reduces the
width of the subsequent terraces by one atomic spacing. With this
approximations, the last six terraces next to a GB can be treated
as one single terrace with an effective width of weffC20, with
DEES¼ 0 (s¼ 1) (Fig. 2c, bottom). However, as intermediate step
edges given by the five steps can potentially act as adatom sinks,
we evaluate the stress jumps for effective terrace widths, weff,
ranging 1–20 atomic spacings (see blue lines in Fig. 3). As our
calculations define upper limits for the stress jumps, a funnelling
width of three spacings represents the best fit. This means that is
it enough, if only the last step (and not five) before the GB shows
funnelling. The fact that our result with the inclusion of
funnelling delivers a rather good fit with the experimental
values is a strong indication for the validity of the GB insertion
model, especially, as we calculate the CP on the surface exactly
next to the GBs. Note, however, that we do not address the exact
atomic pathway (for example, diffusion, exchange and so on), as
we evaluate only the thermodynamics.

Discussion
Although we lowered the barriers for the atoms to diffuse towards
and into the GB, we receive lower stresses than without
funnelling. This seemingly counterintuitive behaviour demon-
strates that we are not addressing a certain atomic diffusion/
incorporation model, but calculate the thermodynamic driving
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force on the basis of the CP. Lowering the barriers for atoms to
diffuse towards and into the GB, decreases the adatom density
near the GB and results in a reduction of the driving force for the
atoms to diffuse into the GB. Evidently, the funnelling curves
predict the correct order of magnitude for the stress levels. By
setting (s¼ a¼ 1) in equation (4), one gets an estimate of the
adatom density at the GB vicinity n¼weff: for a deposition rate of
1 ML per s the adatom density is predicted to be lower than
10� 10 ML.

Finally, we address another hypothetical mechanism in
combination with the equilibrium situation between the surface
and the bulk. For materials with a low enough Ehrlich–Schwoebel
barrier and funnelling terraces, the CP distribution shows a
maximum around the middle of the terrace (Fig. 2c). In addition,
the CP at the end position of, for example, a large terrace in the
middle of the grain (with Ehrlich–Schwoebel barrier) is
significantly larger than the CPs of funnelling terraces that
connect to the grain boundaries. Pure thermodynamic considera-
tions imply that also these maxima tend to establish equilibrium
with the interior of the grain underneath. As the grain is
comparable to a single crystal, dislocation nucleation would be an
imaginable pathway to balance the CP differences. However, on
epitaxial films and single crystals the reversible stress jumps are
not observed16. The reason for this is a high nucleation barrier: a
critical stress of 1.3GPa has been determined to nucleate
dislocations in Cu at 300K (ref. 42). Such high absolute stress
values are neither observed experimentally nor does our model
predict an equivalent rise of the surface CP (except for large
terraces in combination with high deposition fluxes). Dislocation
nucleation is, therefore, kinetically limited. The overall picture is
that during the growth all points on the surface are in parallel
trying to balance their CPs with adjacent positions, as well as with
the grain underneath. However, in which way and by which rate
the CP of the grains will change clearly depends on the rates of
the pathways between all subsystems: surface, GB and bulk.
With a significant dislocation nucleation barrier and active GB
diffusion, as well as atom incorporation, the whole system quickly
evolves towards equilibrium via atom insertion in GBs. As a result
the CP difference between the grain and the surface CP maxima is
reduced, which effectively lowers the driving force for dislocation
nucleation making this latter process even less favourable.

If one intends to compare our results with experiments, it is
important to realize that we determine only the pure reversible
equilibrium jumps. For a proper comparison the experiments
should have no kinetic limitation of atoms going in/out of the
grain boundaries, should be performed long enough such that
equilibrium has reached (all GBs show the equilibrium density of
additional atoms), and no stress relaxation mechanisms should
occur. In this limit, we expect the stress jumps to be GB density-
independent. Kinetic limitations would immediately result in a
GB density dependence, as equilibrium will not be reached and
the rate towards equilibrium scales with the number of the
pathways and hence the GB density.

The deposition flux and temperature dependence is more
complex, as the growth mode (layer-by-layer, step-flow and
3D/rough growth) that determines the size of the terrace next to
the GBs also changes with deposition rate and mobility. If one, for
example, lowers the rate for a film that grows in 3D growth mode,
one might enter step-flow growth conditions in which effective
larger terraces (with higher adatom density) might communicate
with the GBs, such that the stress jumps are even higher instead
of lower.

Our analysis shows that entropic effects in the extremely dilute
adatom gas on the surface of a polycrystalline film during vapour
deposition are strong enough to cause plastic deformation in the
film. The predicted film stresses are even higher than the observed

ones. If we lower the barriers for atoms to diffuse towards and
into the GB by funnelling, the stresses decrease and the predicted
values perfectly match the experimental ones. With this we
deliver the, until now missing, thermodynamic driving force
for any GB atom insertion model. Further experimental research,
similar to15,21, is needed to clarify the exact atomistic
mechanisms and pathways behind this effect.
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