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The effect of counterion binding on the surface tension and surface potential of ionic surfactant solutions
is accounted for theoretically. It turns out that no every couple of surfactant and counterion adsorption
isotherms are thermodynamically compatible. To solve the problem, we develop a formalism which enables
one to obtain the counterion adsorption isotherm corresponding to a given surfactant adsorption isotherm.
Further, these adsorption isotherms are integrated to obtain the respective expression for the surface
tension. The results are extended to the case when the solution contains ionic-nonionic surfactant mixtures
and electrolytes of various valency. The integral, which takes into account the electrostatic interactions,
is solved analytically for aqueous solutions containing 1:1, 2:1, 1:2, and 2:2 electrolytes. It is demonstrated
that the derived equations can be applied to process experimental data for the surface tension as a function
of the surfactant and salt concentrations. As a result one determines the adsorptions of surfactant and
counterions and the surface electric potential. The derived equations can also be applied to calculate the
surface elasticity of ionic surfactant adsorption monolayers and the diffusion relaxation time in the kinetics
of adsorption.

1. Introduction
1.1. Motivation of the Study. We have been motivated

to undertake this study challenged by some problems in
the field of adsorption kinetics and surface rheology. To
extend our theoretical study1 on adsorption kinetics of
ionic surfactants, we needed an equilibrium adsorption
isotherm which accounts for the existence of an electric
double layer and counterion binding. It turned out that
none of the available theoretical isotherms could satisfy
these requirements. Another problem is related to the
experimental results for the surface (Gibbs) elasticity,
defined as

where σ and Γ1 denote surface tension and surfactant
adsorption. The values of EG determined for the same
solutions by means of dynamic methods, viz. the oscillating
drop method2 and the maximum bubble pressure method,3
are several times (and even orders of magnitude) smaller
than the values of EG obtained by differentiating the
respective equilibrium surface tension isotherm in ac-
cordance with eq 1.1. Moreover, such a great difference
between the values of EG determined by “dynamic” and

“static” methods appears only for solutions of ionic
surfactants. In contrast, for nonionic surfactants it has
beenestablished3,4 that the “dynamic”and“static”methods
give very close values of EG. The adsorption layers of ionic
surfactants differ from those of nonionics mostly due to
effects related to the surface electric potential and the
counterion binding. Therefore, one reason for the con-
troversial values of EG could be the nonadequate account
of these effects in the available thermodynamic theories
of ionic surfactant adsorption.

The counterion binding alters the interactions in
surfactant adsorption monolayers and the average surface
charge density. This effect has been widely investigated
for micellar surfactant solutions because of the pronounced
influence of salt on the critical micelle concentration (cmc)
and on the size and shape of micelles.5-9 Below we focus
our attention on the experimental studies of counterion
binding to planar surfactant adsorption layers at liquid
interfaces.

1.2. Experimental Studies on Ionic Surfactant
Adsorption. Van Voorst Vader10 has established that
the counterions affect the value of the saturation adsorp-
tion as determined from the slope of the surface tension
isotherm in the surfactant concentration range just before
the cmc. A comprehensive experimental study of ionic
surfactant adsorption has been carried out by Tajima et

* To whom correspondence should be addressed. E-mail:
kralchevsky@hotmail.com.

† University of Sofia.
‡ Colgate-Palmolive Research and Development, Inc.
§ Colgate-Palmolive Co.
(1) Vlahovska, P. M.; Danov, K. D.; Mehreteab, A.; Broze, G. J. Colloid

Interface Sci. 1997, 192, 194.
(2) Tian, Y.; Holt, R. G.; Apfel, R. J. Colloid Interface Sci. 1997, 187,

1.
(3) Arnaudov, L. N.; Horozov, T. S.; Vakarelsky, I. Y.; Danov, K. D.;

Mehreteab, A.; Broze, G. Extension of the Maximum Bubble Pressure
Method to Surface Rheology Measurements. Langmuir, to be submitted.

(4) Horozov, T. S.; Kralchevsky, P. A.; Danov, K. D.; Ivanov, I. B. J.
Dispersion Sci. Technol. 1997, 18, 593.

(5) Rathman, J. F.; Scamehorn, J. F. J. Phys. Chem. 1984, 88, 5807.
(6) Berr, S. S.; Coleman, M. J.; Marriot, J.; Johnson, J. S., Jr. J. Phys.

Chem. 1986, 90, 6492.
(7) Rosen, M. J. Surfactants and Interfacial Phenomena, 2nd ed.;

Wiley: New York, 1989.
(8) Clint, J. Surfactant Aggregation; Chapman & Hall: London, 1992.
(9) Alargova, R. G.; Danov, K. D.; Kralchevsky, P. A.; Broze, G.;

Mehreteab, A. Langmuir 1998, 14, 4036.
(10) van Voorst Vader, F. Trans. Faraday Soc. 1960, 56, 1067.

EG ) -Γ1
∂σ
∂Γ1

(1.1)

2351Langmuir 1999, 15, 2351-2365

10.1021/la981127t CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/10/1999



al.,11-13 who measured independently σ and Γ1 for various
salt concentrations. To measure directly Γ1, radiotracer
experiments have been performed with tritiated sodium
dodecyl sulfate (TSDS). By using thermodynamic con-
siderations, the adsorption of counterions Γ2 and that of
nonamphiphilic coions Γ3 have also been determined. Here
and hereafter we use the subscripts 1 for surfactant ions,
2 for counterions, and 3 for coions. The results obtained
in ref 13 confirm the assumption of other authors10,14 that
Γ3 ≈ 0; that is, the adsorption of coions is negligible
compared to that of surfactant ions and counterions.
Moreover, the validity of the Gibbs adsorption isotherm15

was confirmed by comparing data for the independently
measured σ and Γ1. The existence of saturation adsorption
(constancy of adsorption) in a wide concentration range
was confirmed by the direct measurement of Γ1.11-13

Another method for direct determination of surfactant
adsorption Γ1 is neutron reflection, which has been shown
to be particularly powerful for both measuring surface
excess and studying the structure of a surfactant layer at
the air-water interface.16-19 In ref 18 the adsorption of
dodecyl sulfates of the alkali metals at their cmcs was
measured; it was established that Γ1 at the cmc is markedly
larger for the less hydrated counterions (Rb and Cs) as
compared to the more hydrated ones (Li, Na). This finding
is consonant with the expectation that the Cs+ ion should
bind to the amphiphilic layer much more strongly than
Li+. The exact position of the bound counterions in the
adsorption layer cannot be determined by neutron reflec-
tion experiments because the scattering lengths of metal
counterions are too small for them to be determined
accurately.18

Direct measurement of counterion adsorption (binding)
can be achieved also by radiochemical techniques, as
demonstrated by Cross and Jayson.20 These authors
studied the binding of Ca2+ to SDS adsorption monolayers
by using CaCl labeled with 45Ca. Competitive binding of
Na+ and Ca2+ ions was established. The adsorption of
Ca2+ initially increases with the rise of SDS concentration
and then decreases for higher surfactant concentrations.20

This effect could be attributed to the preferential binding
of Ca2+ to submicellar and micellar aggregates. Similar
results have been reported by Alargova et al.21 for anionic
surfactant solutions containing Na+ and Al3+ ions.

Another group of experimental methods, which bring
information about the counterion binding, is related to
the determination of the surface electric potential ψs.
Johnson et al.22 determined ψs from the force between
surfactant coated silica surfaces measured by means of
an atomic force microscope. These authors also carried
out electrophoretic measurements of the ú-potential. The

results for solutions of hexadecyltrimethylammonium
bromide (CTAB) + KBr show that 89-95% of the electric
charge of the adsorbed surfactant ions is neutralized by
bound Br- counterions. A similar value, θ ≈ 86%, was
obtained for the occupancy of the adsorption layer of
sodium dodecyl dioxyethylene sulfate (SDP2S) by bound
Na+ counterions.21 The maximum value of the occupancy
of the Stern layer by bound Ca2+ counterions directly
measured in ref 20 is also about 85%. Most complicated
is the case of amphoteric surfactants (betaines),23 when
both cations (H+) and anions (Cl-) can bind to the
surfactant adsorption layer depending on the value of the
pH. The measurement of the surface Volta (∆V) potential
is another method bringing information about the inter-
facial ionization state; this method can be applied to both
air-water and oil-water interfaces; see for example ref
24.

In summary, using various experimental techniques,
one could measure the surface tension σ, the surfactant,
counterion, and coion adsorptions Γ1, Γ2, and Γ3, and the
surface potential ψs.

1.3. Theoretical Studies on Ionic Surfactant Ad-
sorption. The widely accepted model of the electric double
layer (EDL), originating from the works by Gouy,25

Chapman,26 and Stern,27 is illustrated in Figure 1. Davies
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Figure 1. Sketch of the electric double layer in the vicinity of
an adsorption monolayer of ionic surfactant. (a) The Stern layer
consists of adsorbed (immobilized) counterions, whereas the
diffuse layer contains free ions involved in Brownian motion.
(b) Near the charged surface there is an accumulation of
counterions and a depletion of co-ions, their bulk concentrations
being equal to c∞.
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and Rideal28 have hypothesized that in some cases the
bound counterions, belonging to the Stern layer, could (at
least partially) enter among the surfactant headgroups,
whereas in other cases the counterions could be expelled
from the space among the headgroups to form an adsorp-
tion layer parallel to that of the headgroups. To explain
the effect of electrolyte on the surface tension of ionic
surfactant solutions, Davies29 considered the adsorbed
surfactant to form a two-dimensional gas of mobile ions
exerting additional surface pressure due to electrical
repulsion. Thus, he arrived at the following expression28,29

where Γ∞ is the maximum possible value of Γ1 corre-
spondingtoclosepackingof theheadgroupsof theadsorbed
surfactant molecules, σ0 is the surface tension of the pure
solvent, k is the Boltzmann constant, T is temperature,
e is the elementary electric charge, ε is the dielectric
permittivity of the solvent (water), and I is the total bulk
ionic strength of the solution (in cm-3),

Zi is the valency of the ith ionic species, and ci∞ is its bulk
concentration. For a noncharged surface (ψs ) 0), eq 1.2
reduces to the known isotherm of Volmer.30 The physical
meaning and the application of the Davies isotherm, eq
1.2, became a subject of discussion in the literature.31

Hachisu derived the Davis equation in three different ways
in order to confirm its validity.31 However, the comparison
of the Davies equation with experimental data shows only
qualitative, but not quantitative, agreement.11,32 To fit
their data for TSDS, Tajima et al.11 proposed a semiem-
pirical modified version of the Davies equation.

Lucassen-Reynders32 developed a different theoretical
approach based on a model expression for the chemical
potential of the adsorbed molecules due to Butler:33

Here µi
s is the standard chemical potential of the ad-

sorbed molecule, ωi is the excluded area per adsorbed
molecule, and xi

s and γi
s are respectively the molecular

fraction and the activity coefficient in the adsorption layer.
Equation 1.4 is a surface analogue of the expression for
the chemical potential of molecules in the bulk of an
incompressible liquid solution (with the pressure p instead
of -σ and the excluded volume vi instead of ωi). Comple-
menting eq 1.4 with a convention about the sum of all
adsorptions, Lucassen-Reynders has developed a theo-
retical model which compares well with the experiment.32

Recently Vaughn and Slattery34 demonstrated that this
theoretical model, along with an assumption that the
surfactant is ionized in the solution but not at the surface,
agrees well with a set of data for σ versus surfactant and
salt concentrations. Fainerman and Miller35 extended the

approach of Lucassen-Reynders to describe aggregation
in the surfactant adsorption monolayer.

Borwankar and Wasan36 pointed out two major draw-
backs of the Lucassen-Reynders treatment: (i) The
interface is treatedasbeingan electroneutral surfacephase
between two electroneutral uniform bulk phases. Thus,
the existence of the electric double layer is ignored. (ii)
The approach of Lucassen-Reynders is not compatible with
the kinetic theory of ionic surfactant adsorption. Under
dynamic conditions the surface and the bulk of the solution
are out of equilibrium. For that reason the equilibrium
relationships between surface and bulk properties, stem-
ming from the approach of Lucassen-Reynders, are not
applicable to the problems of adsorption kinetics.36 On
the other hand, in the case of adsorption under diffusion
control, there is a local equilibrium between the surface
layer (adsorbed surfactant + bound counterions) and the
“subsurface”, that is, and the nonadsorbed ions in the
plane x ) 0; the latter represents the subsurface boundary
of the diffuse EDL (see Figure 1b and refs 1 and 37). That
is the reason why the kinetic theory of adsorption demands
an equilibrium thermodynamic relation between adsorp-
tions and subsurface concentrations to be available.

To overcome these obstacles, Borwankar and Wasan36

developed another approach, in which adsorptions are
assigned to the dividing surface and the electric double
layer is considered to be a part of the aqueous phase. They
arrived at the following surfactant adsorption isotherm:
36

where â is a parameter accounting for the interaction
between the adsorbed surfactant molecules, K is the
adsorption constant, c1s and c1∞ are respectively the
subsurface and bulk concentration of the surfactant ions,
Z1 is their valency, and γ( is the activity coefficient.
Equation 1.5 has the form of the Frumkin38 isotherm, the
new moment being that it is expressed in terms of the
subsurface concentration c1s. Further, Borwankar and
Wasan36 derived a surface tension isotherm,

following the approach of Hachisu.31 Note the coincidence
of the electric terms (those containing ψs) in eqs 1.2 and
1.6. Is was demonstrated36 that eqs 1.5 and 1.6 agree well
with various sets of experimental curves σ versus c1∞ for
oil-water and air-water interfaces. The latter fact
evidences that the underlying thermodynamic model is
more adequate. Nevertheless, it has one shortcoming:

The counterion binding is completely neglected in ref
36. This assumption is in conflict with numerous
evidences13,20-22 that the occupancy of the Stern layer by
bound counterions can be above 80% for a planar adsorp-
tion layer. As a consequence, the theory from ref 36 can
predict considerably higher values of the surface potential

(28) Davies, J. T.; Rideal, E. K. Interfacial Phenomena; Academic
Press: London, 1963.

(29) Davies, J. T. Proc. R. Soc. London, Ser. A 1951, 208, 224.
(30) Volmer, M. Z. Phys. Chem. 1925, 115, 253.
(31) Hachisu, S. J. Colloid Interface Sci. 1970, 33, 445.
(32) Lucassen-Reynders, E. H. J. Phys. Chem. 1966, 70, 1777.
(33) Butler, J. A. V. Proc. R. Soc. London, Ser. A 1932, 135, 348.
(34) Vaughn, M. W.; Slattery, J. C. J. Colloid Interface Sci. 1997,

195, 1.
(35) Fainerman, V. B.; Miller, R. Langmuir 1996, 12, 6011.

(36) Borwankar, R. P.; Wasan, D. T. Chem. Eng. Sci. 1988, 43, 1323.
(37) Dukhin, S. S.; Kretzschmar, G.; Miller, R. Dynamics of Adsorption

at Liquid Interfaces; Elsevier: Amsterdam, 1995.
(38) Frumkin, A. Z. Phys. Chem. 1925, 116, 466.

σ0 - σ )
kTΓ∞Γ1

Γ∞ - Γ1
+ x8εI(kT)3

πe2 (cosh
eψs

2kT
- 1) (1.2)

I )
1

2
∑

i

Zi
2ci∞ (1.3)

µi ) µi
s - σωi + kT ln γi

sxi
s (1.4)

Γ1

Γ∞ - Γ1
exp(-2â

Γ1

Γ∞
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than those measured in the experiment; see for example
section 9 below. Moreover, the account of counterion
binding is a prerequisite for development of a quantitative
theory of the dynamic surface tension of the ionic
surfactant solution; see ref 39.

1.4. Aim and Structure of the Paper. Our aim in the
present paper is to explicitly take into account the effect
of counterion binding in the equilibrium thermodynamics
of surfactant adsorption. This would allow a further
application of the results in the theory of adsorption
kinetics. In particular, our goal is to create a theoretical
description which would enable one to determine the
surfactantadsorption Γ1(c1∞,c2∞), thecounterion adsorption
Γ2(c1∞,c2∞), and the surface potential ψs(c1∞,c2∞) by process-
ing only a set of data for the surface tension σ versus the
surfactant and salt concentrations c1∞ and c2∞. With that
end in view, in section 2 we consider the condition for
thermodynamic compatibility between the surfactant and
counterion adsorption isotherms. In section 3 we rearrange
the Gibbs adsorption equation to separate the contribu-
tions from the adsorption and diffuse layers. Next, in
section 4 we derive the contribution of the diffuse electric
layer to the surface tension. In section 5 we combine the
results to obtain the surface tension isotherm; an inde-
pendent hydrostatic derivation of the diffuse layer con-
tribution is given as well. Section 6 is devoted to the
connections between the surfactant and counterion ad-
sorption isotherms. Further, we consider the special cases
of solutions of one surfactant and two salts (section 7) and
two surfactants and one salt (section 8). The derived
theoretical expressions are compared with a set of
experimental data in section 9 below, where the numerical
procedure of data processing is also described.

1.5. Activities and Activity Coefficients. We have
to note in the very beginning that at higher ionic strengths
(higher than 0.1 M) one should take into account the
interaction between the ions through the activity coef-
ficients. As demonstrated by Lucassen-Reynders32 and
Borwankar and Wasan,36 a good agreement between
theory and experiment can be achieved by using the
following expression for the activities ai∞ of the ionic species
in the bulk of solution:

where ci∞ is the bulk concentration of the respective ion
and the activity coefficient γ( is to be calculated from the
known semiempirical formula40

stemming from the Debye-Hückel theory. When the
solution contains a mixture of several electrolytes, then
eq 1.8 defines γ( for each separate electrolyte, with Z+
and Z- being the valencies of the cations and anions for
this electrolyte but with I being the total ionic strength
of the solution defined by eq 1.3. Note that the logarithm
in eq 1.8 is decimal, di is the diameter of the ion, and A,
B, and b are parameters whose values can be found in the
book by Robinson and Stokes;40 A and B are tabulated for
various temperatures in Appendix 7.1 therein. For ex-
ample, if the temperature is 25 °C and the ionic strength
I is given in moles per liter (M), the parameters values,

which compare very well with experimental data for NaCl
solutions, are40 A ) 0.5115 M-1/2, Bdi ) 1.316 M-1/2, and
b ) 0.055 M-1.

It should also be noted that once the bulk activity ai∞
of a given ion is determined, one can calculate the activity
ai(x) of this ion at each point of the electric double layer
from the rigorous expression41

where x is the distance from the Stern layer (Figure 1b)
and ψ(x) is the electric potential at this point. Equation
1.9, representing a Boltzmann type equation, is a corollary
from the condition for uniformity of the respective (electro)-
chemical potential throughout the electric double layer
formed in the vicinity of the interface; see refs 41 and 42.

Below, we will work in terms of activities, which can be
considered as effective concentrations of the ionic species.
For ionic strengths I < 0.1 M the activities are practically
equal to the respective concentrations.

2. Counterion Adsorption and the Euler
Condition

In the case of adsorption of an ionic surfactant at the
interface between two fluid phases, the Gibbs adsorption
equation can be expressed in the form31,43-46

where

The summation in eq 2.1 is carried out over all solutes,
including the surfactant ions, counterions, and coions. As
before, σ is the surface tension of the solution, ai∞ is the
activity of the ith species in the bulk of solution, and Γh i
is the total adsorption of the respective species, which
includes contributions from the adsorption in the Stern
layer Γi and from the diffuse electric double layer:

see also Figure 1. For ionic species one has Λi * 0 because
of the nonzero difference between the ionic concentration
in the double layer ci(x) and that in the bulk of solution
ci∞. For counterions Λi > 0, whereas for coions (including
the surfactant ions) Λi < 0; see Figure 1b.

If surfactant is absent, then Γ1 ) Γ2 ) 0, and Λi < 0 for
all nonamphiphilic ionic species. As known, the latter
negative adsorptions of ions at the water interface lead
to an increase of the surface tension of salt solutions in
comparison with that of pure water; see for example refs
47 and 48.
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For example let us consider a solution of an ionic
surfactant which is a symmetric (Z1:Z1) electrolyte in the
presence of an additional common symmetric (Z1:Z1)
electrolyte (salt). For example, this can be a solution of
sodium dodecyl sulfate (SDS) in the presence of NaCl. We
denote by c1∞, c2∞, and c3∞ the bulk concentrations of the
surface active ions, counterions, and coions, respectively.
For the special system of SDS with NaCl, c1∞, c2∞, and c3∞
are the bulk concentration of the DS-, Na+, and Cl- ions,
respectively. The requirement for the bulk solution to be
electroneutral implies c2∞ ) c1∞ + c3∞. The multiplication
of the last equation by γ(, which is the same for all
monovalent ions, see eq 1.8, yields

In view of eq 2.4 the Gibbs adsorption equation 2.1 can
be presented in the form

where

Note that the differentials on the right-hand side of eq 2.5
are independent (one can vary independently the con-
centrations of surfactant and salt), and moreover, dσ is
an exact (total) differential. Then the cross derivatives
must be equal, viz.

Equation 2.7 is usually called the Euler condition.41 If eq
2.7 were not satisfied, then the surface tension σ,
calculated by integrating eq 2.5, would depend on the path
of integration. In other words, the equilibrium surface
tension σ would depend on whether the surfactant or the
salt is first dissolved in the aqueous phase, which would
be nonsense. Consequently, a surfactant adsorption
isotherm, Γ1 ) Γ1(a1∞,a2∞), and a counterion adsorption
isotherm, Γ2 ) Γ2(a1∞,a2∞), are thermodynamically com-
patible if they satisfy eq 2.7; see also eqs 2.2 and 2.6.

For example, it is not obvious whether the Langmuir
surfactant adsorption isotherm36

and the known Stern counterion adsorption iso-
therm27,28,49-51

are thermodynamically compatible. Here Γ∞ denotes the
maximum possible value of Γ1, K is an adsorption
parameter, θ denotes the occupancy of the “Stern layer”

by adsorbed counterions (see Figure 1a), Kst is a constant,
and a1s and a2s are the subsurface activities of surfactant
ions and counterions, which are related to the respective
bulk activities as follows:

Equation 2.10 is a special case of eq 1.9 for x ) 0; see
Figure 1. Here and hereafter the subscript s denotes
quantities related with the surface of the solution.

As already mentioned, Borwankar and Wasan36 have
demonstrated that one can successfully fit interfacial
tension data for ionic surfactants if the surfactant
adsorption Γ1 is related to the subsurface surfactant
activity a1s by means of the Langmuir isotherm (eq 2.8).
Our purpose below is to establish the form of the counterion
adsorption isotherm, which is thermodynamically com-
patible with eq 2.8. With that end in view we will first
derive the compatibility condition (stemming from the
Euler equation 2.7) in a form convenient for application.

3. Transformations of the Gibbs Equation
In general, we consider a solution of various species (i

) 1, 2, ..., N), both amphiphilic and nonamphiphilic. As
before, we will use the index 1 to denote the surfactant,
whose adsorption determines the sign of the surface
electric charge and potential. It is convenient to introduce
the dimensionless surface potential

Φs thus defined is positive irrespective of whether the
surfactant is anionic or cationic. In terms of Φs, eq 2.10
takes the form

A substitution of ai∞ from eq 3.2 into eq 2.1 yields

Since the solution as a whole is electroneutral, one can
write31,45,46

From eqs 2.2 and 3.4 one obtains the following expression
for the surface electric charge density Fs:

Further, in view of eqs 2.2, 3.2, and 3.4, one can transform
eq 3.3 to read

With the help of eqs 1.9, 2.3, and 3.5, one can bring eq 3.6

(48) Ono, S.; Kondo, S. In Handbuch der Physik; Flügge, S., Ed.;
Springer: Berlin, 1960; Vol. 10.

(49) Vassilieff, C. S.; Tenchov, B. G.; Grigorov, L. S.; Richmond, P.
J. Colloid Interface Sci. 1983, 93, 8.

(50) Grimson, M. J.; Richmond, P.; Vassilieff, C. S. In Thin Liquid
Films; Ivanov, I. B., Ed.; Marcel Dekker: New York, 1988; p 289.

(51) Derjaguin, B. V. Theory of Stability of Colloids and Thin Liquid
Films; Plenum PresssConsultants Bureau: New York, 1989; Chapter
VII.

a2∞ ) a1∞ + a3∞ (2.4)

dσ ) -kT(G1 d ln a1∞ + G2 d ln a2∞) (2.5)

G1 ≡ Γ̃1 -
a1∞

a3∞
Γ̃3; G2 ≡ Γ̃2 +

a2∞

a3∞
Γ̃3 (2.6)

∂G1

∂ ln a2∞
)

∂G2

∂ ln a1∞
(2.7)

Γ1

Γ∞
)

Ka1s

1 + Ka1s
(2.8)

θ ≡ Γ2

Γ1
)

Ksta2s

1 + Ksta2s
(2.9)

ais ) ai∞ exp(-
Zieψs

kT ) (2.10)

Φs ≡ Z1eψs

kT
(3.1)

ais ) ai∞ exp(-ziΦs) zi ≡ Zi

Z1
(3.2)

-
dσ

kT
) ∑

i)1

N

Γ̃i d ln ais + (∑
i)1

N

ziΓ̃i) dΦs (3.3)

∑
i)1

N

ziΓ̃i ) 0 (3.4)

F̃s ≡
Fs

Z1e
) ∑

i)1

N

ziΓi ) -∑
i)1

N

ziΛi (3.5)

-
dσ

kT
) ∑

i)1

N

Γi d ln ais + ∑
i)1

N

Λi d ln ai∞ - (∑
i)1

N

ziΛi) dΦs

(3.6)
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in the form

where

Below we will employ the Poisson-Boltzmann equation
to transform the last two terms in eq 3.7.

4. Contribution of Diffuse Double Layer to the
Surface Tension

The Poisson equation relating the distribution of the
electric potential ψ(x) and electric charge density F(x)
across the diffuse double layer can be presented in the
form52

Combining eqs 1.9, 3.9, and 4.1, one obtains

with

As usual, the x-axis is directed along the normal to the
interface, the latter corresponding to x ) 0. To obtain eq
4.2, we have expressed the bulk charge density in terms
of effective concentrations, that is, activities, F(x) ) ∑iZieai-
(x), rather than in terms of the net concentrations, F(x) )
∑iZieci(x). For not-too-high ionic strengths there is no
significant quantitative difference between these two
expressions for F(x), but the former one considerably
simplifies the mathematical derivations; moreover, the
former expression has been combined with eq 1.9, which
is rigorous in terms of activities (rather than in terms of
concentrations). Integrating eq 4.2, one can derive

where the boundary conditions Φ|xf∞ ) 0 and (dΦ/dx)xf∞
) 0 have been used. Integrating eq 4.4, along with eq 3.8,
one can deduce

From eq 4.5 one obtains

where δ denotes a variation of the respective thermody-
namic parameter corresponding to a small variation in
the composition of the solution. Further, with the help of
eqs 3.8 and 4.2, one obtains

As is known,51,52 the gradient of the electric potential at
the surface is related to the surface charge density F̃s by
means of the equation

(x ) 0 corresponds to the boundary diffuse-Stern layer).
Then combining eqs 4.5, 4.7, and 4.8, one obtains

A substitution of eq 4.9 into eq 4.6 yields

Finally, the substitution of eq 4.10 into the Gibbs
adsorption equation 3.7 leads to

where, as before, σ0 is the surface tension of the pure
solvent. The definition of F, eq 4.5, can be presented in
an alternative form:

Combining eq 4.4 with eq 4.12, one obtains a convenient
expression for calculating F:

The integral in eq 4.13 can be solved numerically for every
mixture of electrolytes in the solution. As shown below,
the integral can be solved analytically for a 1:1 ionic
surfactant in the presence of salts which are 1:1, 2:1, 1:2,
or 2:2 electrolytes.

(52) Overbeek, J. Th. G. In Colloid Science; Vol. 1; Kruyt, H. R., Ed.;
Elsevier: Amsterdam, 1953; J. Colloid Sci. 1953, 8, 420.

-
dσ

kT
) ∑

i)1

N

Γi d ln ais + ∑
i)1

N

Λ̃i dai∞ + F̃s dΦs (3.7)

Λ̃i ≡ Λ̃i

ai∞
) ∫0

∞
[exp(-ziΦ) - 1] dx (3.8)

Φ(x) ≡ Z1eψ(x)
kT

(3.9)

d2ψ
dx2

) - 4π
ε

F (4.1)

d2Φ

dx2
) -

1

2
κc

2F̃ ) -
1

2
κc

2∑
i)1

N

ziai∞ exp(-ziΦ) (4.2)

F̃ ≡ F
Z1e

, κc
2 ≡ 8πZ1

2e2

εkT
(4.3)

(dΦ

dx )2

) κc
2∑

i)1

N

ai∞[exp(-ziΦ) - 1] (4.4)

F ≡ 1

κc
2
∫0

∞(dΦ

dx )2

dx ) ∑
i)1

N

ai∞Λ̃i (4.5)

δF ≡ ∑
i)1

N

Λ̃i δai∞ + ∑
i)1

N

ai∞ δΛ̃i (4.6)

∑
i)1

N

ai∞δΛ̃i ) -∫0

∞∑
i)1

N

ai∞zi exp(-ziΦ) δΦ dx

) -∫0

∞
F̃ δΦ dx ) 2

κc
2∫0

∞d2Φ
dx2

δΦ dx

) - 2
κc

2(dΦ
dx )x)0

δΦs - 1
κc

2∫0

∞
δ(dΦ

dx )2
dx (4.7)

(dΦ
dx )x)0

) -1
2
κc

2F̃s (4.8)

∑
i)1

N

ai∞ δΛ̃i ) F̃s δΦs - δF (4.9)

2 δF ≡ ∑
i)1

N

Λ̃i δai∞ + Fs δΦs (4.10)

d(σ0 - σ

kT
- 2F) ) ∑

i)1

N

Γi d ln ais (4.11)

F ≡ - 1
κc

2∫0

Φs(dΦ
dx ) dΦ (4.12)

F )
1

κc
∫0

Φs{∑
i)1

N

ai∞[exp(-ziΦ) - 1]}1/2 dΦ (4.13)
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Another useful expression can be derived combining
eqs 3.5, 4.4, and 4.8:

In the special case, when both surfactant and salt are 1:1
electrolytes and there is only one type of counterion (ai∞
) 0 for i g 4), then eq 2.4 holds and eq 4.14 reduces to the
known Gouy equation:25,28

In view of eq 3.5, one notes that eq 4.14 (or eq 4.15)
expresses a connection between the surface charge density
and the surface potential.

5. Surface Tension Isotherm of Ionic Surfactant
in the Presence of Salts

5.1. Integration of the Gibbs Adsorption Equation.
Let the indices 1, 2, and 3 have the same meaning as in
section 2 above. In addition, let i ) 4, 6, 8, ..., N - 1 denote
counterions of other dissolved nonamphiphilic salts and
i ) 5, 7, 9, ..., N denote the respective co-ions. As discussed
above, one can expect that co-ions do not bind to the
similarly charged surfactant headgroups in the adsorption
layer; that is

Then eq 4.11 reduces to

The number of the differentials on the right-hand side of
eq 5.2 is equal to the number of chemical compounds
(electrolytes) dissolved in the solution; that is, it is equal
to the number of independent thermodynamic parameters
which one can vary at constant temperature and outer
pressure. Then the Euler condition for the cross derivatives
can be applied to eq 5.2 to yield

Integrating eq 5.3, one obtains

where we have introduced the notation

To determine the integration constant in eq 5.4, we have
used the condition that for a1s ) 0 (no surfactant in the
solution) we have Γ1 ) 0 (no surfactant adsorption) and
Γi ) 0 for i ) 2, 4, 6, ... (no binding of counterions at the
headgroups of adsorbed surfactant). The integral J in eq

5.5 can be taken analytically for all popular surface tension
isotherms; see Table 1. Differentiating eq 5.5, one obtains

A substitution of eqs 5.4 and 5.6 into eq 5.2 yields (after
integration) the surface tension isotherm in the form

where F and J are determined by means of eqs 4.5 and
5.5, respectively. Expressions for J, corresponding to
various adsorption isotherms, are listed in Table 1;
expressions for F can be obtained by integrating eq 4.13
(see eqs 7.10, 7.16, 7.22, and 7.27 below).

In the special case when both surfactant and salt are
1:1 electrolytes, eq 2.4 holds and ai∞ ) 0 for i g 4. Then
eq 4.13 can be easily integrated to yield

The “electric” term 2F in eq 5.8 is in fact identical with
the respective term obtained by Davies; see for example
ref 28. Therefore, if the expression for J, corresponding
to the Volmer isotherm (see Table 1), is combined with
eqs 5.7 and 5.8 (with γ( ) 1), one recovers the isotherm
of Davies, eq 1.2. Alternatively, if the expression for J,
corresponding to the Frumkin isotherm (see Table 1), is
combined with eqs 5.7 and 5.8, one obtains the isotherm
of Borwankar and Wasan, eq 1.6.

5.2. Hydrostatic Derivation of the Electric Term.
The term 2F on the right-hand side of eq 5.7 represents
the contribution of the diffuse part of the electric double
layer to the surface tension. Indeed, if there is no electric
double layer, then (dΦ/dx) ≡ 0 and eq 4.5 gives F ) 0.

∑
i)1

N

ziΓi )
2

κc

{∑
i)1

N

ai∞[exp(-ziΦs) - 1]}1/2 (4.14)

Γ1 - Γ2 ) 4
κc

xa2∞ sinh(Φs

2 ) (4.15)

Γ3 ) Γ5 ) Γ7 ) ... ) ΓN ) 0 (5.1)

d(σ0 - σ

kT
- 2F) ) Γ1 d ln a1s + ∑

i)2,4,6...

Γi d ln ais (5.2)

∂Γi

∂ ln a1s
)

∂Γ1

∂ ln ais
i ) 2, 4, 6, ... (5.3)

Γi ) ∂J
∂ ln ais

i ) 2, 4, 6, ... (5.4)

J ≡ ∫0

a1sΓ1(â1s,a2s,a4s,...)
dâ1s

â1s
(5.5)

Table 1. Most Frequently Used Surfactant Adsorption
Isotherms and Respective Surface Tension Isotherms

Surfactant Adsorption Isotherm

Henry Ka1s )
Γ1

Γ∞

Langmuir Ka1s )
Γ1

Γ∞ - Γ1

Freundlich
Γ1

ΓF
) (Ka1s)

m

Volmer Ka1s )
Γ1

Γ∞ - Γ1
exp( Γ1

Γ∞ - Γ1
)

Frumkin Ka1s )
Γ1

Γ∞ - Γ1
exp(-

2âΓ1

kT )
van der Waals Ka1s )

Γ1

Γ∞ - Γ1
exp( Γ1

Γ∞ - Γ1
-

2âΓ1

kT )
Surface Tension Isotherm, Eq (5.7): σ ) σ0 -kT(J + 2F)

Henry J ) Γ1
Langmuir J ) -Γ∞ ln(1 - Γ1/Γ∞)
Freundlich J ) Γ1/m
Volmer J ) Γ∞Γ1/Γ∞ - Γ1)
Frumkin J ) -Γ∞ ln(1 - Γ1/Γ∞) - âΓ1

2/(kT)
van der Waals J ) Γ∞Γ1/(Γ∞ - Γ1) - âΓ1

2/(kT)

Γ1 ) ∂J
∂ ln a1s

(5.6)

σ0 - σ
kT

) J + 2F (5.7)

2F )
8xa2∞

κc
[cosh(Φs

2 ) - 1]
)

4xa2s

κc
[1 - exp(-

Φs

2 )]2

(1:1 electrolyte) (5.8)
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Following Davies28,29 and Hachisu,31 one can express the
surface pressure πs ≡ σ0 - σ in the form

where the subscripts a and d denote contributions from
the adsorption and diffuse layer, respectively. Comparing
eqs 5.7 and 5.9, one can write

From eqs 4.5 and 5.10 it follows that

One can independently deduce the diffuse layer con-
tribution σd from a general expression for the pressure
tensor Pik given by Landau and Lifshitz:53

Here δik is the Kronecker symbol (the unit tensor), E )
-∇ψ is the electric field in the continuous medium, and
p is an isotropic hydrostatic pressure.

In the case of a diffuse electric double layer (Figure 1)
p depends on the distance from the interface because of
the varying composition:

Here p0 is the pressure of pure solvent in chemical
equilibrium with the solution. The components of the
pressure tensor, acting along the normal and tangent to
the interface (Figure 1), are

Using the Poisson-Boltzmann equation and eq 5.13, one
can verify that PN is constant across the electric double
layer, as it should be at hydrostatic equilibrium.48 The
surface tension can be expressed by means of the Bakker
hydrostatic formula:54

In view of eqs 5.9 and 5.16, one can write

As before, the plane x ) 0 is located at the boundary
between the Stern and diffuse layers (see Figure 1).
Combining eqs 5.14, 5.15, and 5.17, one derives the

following expression for the diffuse double-layer contribu-
tion:

Using eqs 3.9 and 4.3, one can check that eq 5.18 is
equivalent to eq 5.11. This result confirms the validity of
the expression (eq 4.5) for the electrostatic contribution,
2F, in the surface tension isotherm, eq 5.7.

Note that σd, as given by eq 5.18, is always negative.
Moreover, the form of eq 5.18 is not sensitive to the number
and valency of electrolytes dissolved in the solution, as
well as to the presence or absence of counterion binding.
On the other hand, the latter factors influence the
magnitude of both (dψ/dx) and σd; this influence is
quantified in section 7 below.

Note also that in view of eqs 5.9 and 5.10 the Gibbs
adsorption equation 4.11 can be represented in the form

The comparison between eqs 2.1 and 5.19 shows that the
Gibbs adsorption equation can be expressed either in terms
of σ, Γ̃i, and ai∞ or in terms of σa, Γi, and ais. Our theoretical
considerations in sections 3, 4, and 5 prove that these two
forms of the Gibbs adsorption equation are equivalent.

6. Connections between the Surfactant and
Counterion Adsorption Isotherms

6.1. Parameters in the Surfactant Adsorption
Isotherms. The parameter K in the adsorption isotherms
in Table 1 (except that in the empirical Freundlich
isotherm) can be related to the standard chemical
potentials of a surfactant ion in the bulk, µ1

(0), and at the
interface, µ1s

(0); see for example ref 55:

where δ1 is a parameter of the order of the thickness of
the adsorption layer and Γ∞ is the maximum possible
surfactant adsorption corresponding to a close packing of
the surfactant headgroups. The other parameter, â, which
enters the Frumkin and van der Waals adsorption
isotherms (Table 1) is related to the energy of interaction
between two adsorbed molecules u(r); in the case of the
Frumkin equation, â is the interaction parameter in the
Bragg-Williams lattice model;56 in the case of van der
Waals equation, the following expression holds:56,57

where r denotes distance and rc is the intermolecular
center-to-center distance at contact, that is, u(r) f ∞ for
r < rc. In fact, Γ∞ and â account for the hard-core and
long-range interactions, respectively. The conventional
electrostatic interactions are not expected to contribute
to â insofar as they are taken into account in the framework

(53) Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous
Medium; Pergamon Press: Oxford, 1960.

(54) Bakker, G. Kapillarität und Oberflächenspannung; Handbuch
der Experimentalphysik, Band 6; Akademische Verlagsgesellschaft:
Leipzig, 1928.

(55) Shchukin, E. D.; Pertsov, A. V.; Amelina, E. A.Colloid Chemistry;
Moscow University Press: Moscow, 1982 (in Russian).

(56) Hill, T. L. An Introduction to Statistical Thermodynamics;
Addison-Wesley: Reading, MA, 1962.

(57) Gurkov, T. D.; Kralchevsky, P. A.; Nagayama, K. Colloid Polym.
Sci. 1996, 274, 227.

πs ) πa + πd ) σ0 - σa - σd (5.9)

πa ) σ0 - σa ) kTJ; πd ) -σd ) 2kTF (5.10)

σd ) - 2kT
κc

2 ∫0

∞(dΦ
dx )2

dx (5.11)

Pik ) (p + εE2

8π )δik - ε

4π
EiEk (i, k ) 1, 2, 3)

(5.12)

p ) p(x) ≡ p0 + kT∑
i

ci(x) (5.13)

PN ) p(x) - ε

8π(dψ
dx )2

(5.14)

PT ) p(x) + ε

8π(dψ
dx )2

(5.15)

σ ) ∫-∞

+∞
(PN - PT) dx (5.16)

σ ) σa + σd; σa ≡ ∫-∞

0
(PN - PT) dx;

σd ≡ ∫0

+∞
(PN - PT) dx (5.17)

σd ) - ε

4π∫0

∞(dψ
dx )2

dx (5.18)

dσa ) -kT∑
i)1

N

Γi d ln ais (T ) constant) (5.19)

K )
δ1

Γ∞
exp(µ1

(0) - µ1s
(0)

kT ) (6.1)

â ) -πkT∫rc

∞[1 - exp(-
u(r)
kT )]r dr ≈ -π∫rc

∞
u(r)r dr

(6.2)
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of the double-layer theory. When â is negligible, the
Frumkin and van der Waals surface tension isotherms
reduce to the Langmuir and Volmer isotherms, respec-
tively (see Table 1). (As known,56 the Frumkin and
Langmuir isotherms correspond to the statistical model
of localized adsorption, whereas the van der Waals and
Volmer isotherms correspond to nonlocalized adsorption.)
The comparison between theory and experiment shows
that surface tension data for ionic surfactants at an oil-
water interface can be fitted with â ≈ 0; on the other
hand, the data for the same surfactant at an air-water
interface agree with theoretical fits with â > 0; see for
example refs 28 and 36. The fact that â > 0 for an air-
water interface is attributed to the excess van der Waals
attraction between the surfactant hydrocarbon tails in
the air;28,36 note that there should be no such excess
attraction if the nonaqueous phase is a liquid hydrocarbon
(oil).

Since â is related to van der Waals interactions between
the surfactant tails, then â is not expected to depend on
the subsurface concentration of ions. On the other hand,
in general the adsorption constant K could depend on the
subsurface concentration of the counterions, K )
K(a2s,a4s,...). Then the dependence of Γ1 on ais, i ) 2, 4, 6,
..., comes from K(a2s,a4s,...) for the surfactant adsorption
isotherms in Table 1. Moreover, note that for each of these
isotherms Γ1 depends on the product Ka1s; that is, Γ1 )
Γ1(Ka1s). Then eq 5.5 can be transformed to read

Differentiating eq 6.3, one can bring eq 5.4 into the form

which holds for each of the surfactant adsorption isotherms
in Table 1. Note that eq 6.4 is valid for a general form of
the dependence K ) K(a2s,a4s,...).

6.2. Stern Isotherm of Counterion Adsorption. Let
us consider a linear dependence K ) K(a2s,a4s,...); that is

where Ki (i ) 2,4,6,...) are constants. The substitution of
eq 6.5 into eq 6.4 yields

Equation 6.6 is in fact a general form of the Stern isotherm
for a solution containing several types of counterions (i )
2, 4, 6, ...) which exhibit a competitive binding to the
headgroups of adsorbed surfactant molecules. Since eq
6.6 is a corollary from the Euler condition, eq 5.3, it turns
out that eq 6.5 is the necessary and sufficient condition
for thermodynamic compatibility of the Stern isotherm of
counterion adsorption (binding) with either of the sur-
factant adsorption isotherms in Table 1.

In the special case, when there is only one type of
counterions (ais ) 0 for i g 4), eqs 6.5 and 6.6 reduce to

Equation 6.8 is equivalent to eq 2.9, with Kst ) K2/K1. One
can conclude that a given isotherm from Table 1, say the
Langmuir isotherm, eq 2.8, is thermodynamically com-
patible with the Stern isotherm, eq 6.8, only if the
adsorption parameters K, K1, and K2 in these isotherms
are related by means of eq 6.7.

The constants K1 and K2 have a straightforward physical
meaning. Indeed, in view of eqs 6.1 and 6.7, one can write

where ∆µ1
(0) has the meaning of the standard free energy

of adsorption of surfactant from an ideal dilute solution
to an ideal adsorption monolayer in the absence of
dissolved nonamphiphilic salt; the thickness of the
adsorption layer δ1 is about 2 nm for SDS or DTAB. Note
that the Langmuir and the Stern isotherms, eqs 2.8 and
2.9, have a similar form, which corresponds to a statistical
model considering the interface as a lattice of equivalent,
distinguishable,and independentadsorptionsites,without
interactions between bound molecules.56 Consequently,
an expression analogous to eq 6.9 holds for the counterion
adsorption parameter Kst ) K2/K1:

where δ2 is the thickness of the Stern layer (ca. the
diameter of a hydrated counterion) and ∆µ1

(0) has the
meaning of the standard free energy of adsorption
(binding) of a counterion from an ideal dilute solution in
an ideal Stern layer (no interactions between adsorbed
counterions). In summary, the parameters K1 and K2 are
related to the standard free energies of surfactant and
counterion adsorption.

6.3. Complete Set of Equations. Our final goal is to
obtain a full set of equations for calculating the surface
tension as a function of the bulk surfactant and salt
concentrations, σ ) σ(a1∞,a2∞,a4∞,...). In general, let us
consider a solution containing n types of counterions,
denoted by i ) 2, 4, ..., 2n. In such a case we have 2n +
4 unknown variables: σ, Φs, a1s, Γ1; a2s, a4s, ..., a2n,s; and
Γ2, Γ4, ..., Γ2n. These unknown variables are to be
determined from a set of 2n + 4 equations, which are the
following. Equation 3.2 for i ) 1, 2, 4, ..., 2n and eq 6.6
provide 2n + 1 equations. The remaining three equations
are eqs 4.14 and 5.7 and one surfactant adsorption
isotherm from Table 1, say the Langmuir isotherm, eq
2.8. The procedure of calculations and its application to
the interpretation of experimental data are described in
section 9 below.

The above general set of equations is specified below
for surfactant solutions containing salts of various valency.

7. Solution of One Ionic Surfactant and Two
Salts

7.1. Basic Equations. Here we consider solution of an
ionic surfactant containing two added salts, which will be
termed below salt I and salt II. For example, this can be
a solution of sodium dodecyl sulfate (SDS) + NaCl +
MgSO4. Another example can be cetyltrimethylamonium
bromide (CTAB) + KBr + Na2SO4. It is assumed that the
counterions dissociated from the ionic surfactant and salt
I are the same (these are Na+ ions in the first example and
Br- in the second example). (The case of ionic surfactant
+ only one salt can be deduced as a special case setting

K1 )
δ1

Γ∞
exp(∆µ1

(0)

kT ) (6.9)

K2

K1
)

δ2

Γ∞
exp(∆µ1

(0)

kT ) (6.10)

J ≡ ∫0

Ka1sΓ1(X) dX
X

(6.3)

Γi ) Γ1
∂ ln K
∂ ln ais

(i ) 2, 4, 6, ...) (6.4)

K ) K1 + ∑
i)2,4,6,...

Kiais (6.5)

Γi

Γ1
)

Kiais

K1 + K2a2s + K4a4s + ...
(i ) 2, 4, 6, ...) (6.6)

K ) K1 + K2a2s (6.7)

Γ2

Γ1
)

K2a2s

K1 + K2a2s
(6.8)
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to zero the concentration of the other salt in the equations
derived below.)

Wewilluse the followingsubscripts todenote thevarious
solutes: 1, surfactant (amphiphilic) ion; 2, counterion of
the surfactant and salt I; 3, coion of salt I; 4, counterion
of salt II; 5, co-ion of salt II. As before, we denote by Zi,
Γi, ai∞, and ais (i ) 1, ..., 5) the valence, adsorption, bulk,
and subsurface activities of the respective species; their
bulk concentrations are denoted by ci∞. The following
relationships hold in the system under consideration:

see eq 2.4. Note that a1∞, a2∞, and a3∞ are to be calculated
from eqs 1.7 and 1.8 with |Z+Z-| ) Z1

2. In addition,
concerning salt II, one can write |Z4|c4∞ ) |Z5|c5∞. The
multiplication of the last equation by γ(, which for salt
II is determined by eq 1.8 with |Z+Z-| ) |Z4Z5|, yields

As before, we assume that co-ions do not adsorb at the
interface; that is, Γ3 ) Γ5 ) 0. The adsorption of counterions
can be described by means of the Stern isotherm, eq 6.6,
which in the present case reduces to

The surfactant adsorption Γ1 can be expressed by means
of one of the adsorption isotherms in Table 1, in which the
adsorption parameter K is related to the constants K1, K2,
and K4 as follows:

cf. eq 6.5. The surface tension isotherm is given by eq 5.7.
To determine the term F in eq 5.7, let us consider the
expression

which enters both eqs 4.13 and 4.14. With the help of eqs
3.2, 7.1, and 7.2, one can bring eq 7.5 into the form

Below we specify the expression for F, eq 4.13, and the
form of the Gouy equation, eq 4.14, for several special
cases.

7.2. All Solutes (Surfactant, Salt I, and Salt II) Are
1:1 Electrolytes. In this relatively simple case

Then eq 7.6 reduces to

Substituting eq 7.8 into eq 4.14, one obtains the Gouy
equation in the form

Γ2 and Γ4 are to be substituted from eq 7.3; expressions
for Γ1 are available in Table 1, in which the parameter K
is determined by eq 7.4. The substitution of eq 7.7 into eq
4.13 yields

Equation 7.10 is to be substituted in eq 5.7 to obtain the
surface tension isotherm. For a4s ) 0 (no salt II in the
solution) eqs 7.9 and 7.10 reduce to eqs 4.15 and 5.8, as
must be expected. Note also that if the ionic components
2 and 4 are identical, say Na+ (like in the case of SDS +
NaCl + NaBr), then eqs 7.9 and 7.10 lead again to eqs
4.15 and 5.8 with ΓNa ) Γ2 + Γ4 and aNa∞ ) a2∞ + a4∞, as
should be expected.

Setting a2∞ ) a1∞ in the above equations, one obtains
the respective expression for the special case of one ionic
surfactant and one electrolyte of different counterions (K2
* K4). The substitution a4s ) 0 and a2∞ ) a1∞ corresponds
to the simplest case of ionic surfactant solution without
salt.

7.3. The Surfactant and Salt I Are 1:1 Electrolytes;
Salt II Is a 2:1 Electrolyte. An example can be SDS +
NaBr + MgCl2. Another example can be CTAB + NaBr
+ K2SO4. In such a case one has

Then eq 7.6 reduces to

where

I1 is the ionic strength of this solution. In view of eqs 7.5
and 7.12, the Gouy equation, eq 4.14, takes the form

where

Γ2 and Γ4 are to be substituted from eq 7.3; expressions
for Γ1 are available in Table 1, in which the parameter K
is determined by eq 7.4. For λ f 0 (no salt II in the solution)
eq 7.14 reduces to eq 4.15. Further, having in mind eq 7.5,
we substitute eq 7.12 into eq 4.13; the result of integration
yields

Equation 7.16 is to be substituted in eq 5.7 to obtain the
surface tension isotherm. One can check that for λ f 0 (no
salt II in the solution) eq 7.16 reduces to eq 5.8.

Setting a2∞ ) ai∞ in the above equations (no salt I in the
solution), one obtains the respective expressions for the
special case of one 1:1 ionic surfactant and one 2:1
electrolyte.

Z1 ) Z3 ) -Z2 w a2∞ ) a1∞ + a3∞ (7.1)

|Z4|a4∞ ) |Z5|a5∞ (7.2)

Γi

Γ1
)

Kiais

K1 + K2a2s + K4a4s
(i ) 2, 4) (7.3)

K ) K1 + K2a2s + K4a4s (7.4)

S(Φ) ≡ ∑
i)1

5

ai∞[exp(-ziΦ) - 1] (7.5)

S(Φ) ) a2∞(eΦ - 2 + e-Φ) +

a4∞[e-z4Φ - 1 +
|z4|
|z5|

(e-z5Φ - 1)] (7.6)

z4 ) -z5 ) -1 (7.7)

S(Φ) ) 4(a2∞ + a4∞) sinh2(Φ2 ) (7.8)

Γ1 - Γ2 - Γ4 ) 4
κc

xa2∞ + a4∞ sinh(Φs

2 ) (7.9)

F ) 4
κc

xa2∞ + aa∞[cosh(Φs

2 ) - 1] (7.10)

z4 ) -2, z5 ) 1 (7.11)

S(Φ) ) a2∞(eΦ/2 - e-Φ/2)2 + a4∞(e2Φ - 3 + 2e-Φ)

) I1e
-Φ(eΦ - 1)2 + a4∞e-Φ(eΦ - 1)3

) I1e
-Φ(eΦ - 1)2(1 - λ2 + λ2eΦ) (7.12)

I1 ≡ a2∞ + 3a4∞; λ2 ≡ a4∞/I1 (7.13)

Γ1 - Γ2 - 2Γ4 ) 2
κcy

xI1(y
2 - 1)g1 (7.14)

y ≡ exp(Φs/2); g1 ≡ (1 - λ2 + λ2y2)1/2 (7.15)

F )
xI1

κc
[(y + 2

y)g1 - 3 + 1 - 3λ2

λ
ln |λy + g1

λ + 1 |] (7.16)
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7.4. The Surfactant and Salt I Are 1:1 Electrolytes;
Salt II Is a 1:2 Electrolyte. An example can be SDS +
NaBr + K2SO4. Another example can be CTAB + NaBr
+ MgCl2. In such a case one has

Then eq 7.6 reduces to

where

I2 is the ionic strength of this solution. In view of eqs 7.5
and 7.18, the Gouy equation, eq 4.14, takes the form

where

Γ2 and Γ4 are to be substituted from eq 7.3; expressions
for Γ1 are available in Table 1, in which the parameter K
is determined by eq 7.4. For ν f 0 (no salt II in the solution)
eq 7.20 reduces to eq 4.15. Further, having in mind eq 7.5,
we substitute eq 7.18 into eq 4.13; the result of integration
yields

Equation 7.22 is to be substituted in eq 5.7 to obtain the
surface tension isotherm. One can check that for ν f 0 (no
salt II in the solution) eq 7.22 reduces to eq 5.8.

Setting a2∞ ) a1∞ in the above equations (no salt I in the
solution), one obtains the respective expressions for the
special case of one 1:1 ionic surfactant and one 1:2
electrolyte.

7.5. The Surfactant and Salt I Are 1:1 Electrolytes;
Salt II Is a 2:2 Electrolyte. An example can be SDS +
NaCl + Mg SO4. Another example can be CTAB + NaBr
+ MgSO4. In such a case one has

Then eq 7.6 reduces to

where

In view of eqs 7.5 and 7.24 the Gouy equation, eq 4.14,
takes the form

Γ2 and Γ4 are to be substituted from eq 7.3; expressions
for Γ1 are available in Table 1, in which the parameter K
is determined by eq 7.4. For ø f 0 (no salt II in the solution)
eq 7.26 reduces to eq 4.15. Further, having in mind eq 7.5,
we substitute eq 7.24 into eq 4.13; the result of integration
yields

Equation 7.27 is to be substituted in eq 5.7 to obtain the
surface tension isotherm. One can check that for ø f 0 (no
salt II in the solution) eq 7.27 reduces to eq 5.8.

Setting a2∞ ) a1∞ in the above equations (no salt I in the
solution), one obtains the respective expressions for the
special case of one 1:1 ionic surfactant and one 2:2
electrolyte.

8. Solution of Two Surfactants and One
Electrolyte

Mixtures of an ionic surfactant and one nonionic
surfactant are often used in practice. In the present section
we consider a solution of ionic surfactant + salt + nonionic
surfactant (that is thesystemconsidered insection7above,
in which salt II is exchanged with a nonionic surfactant).
For example, this can be a solution of sodium dodecyl
sulfate (SDS) + NaCl + an arbitrary nonionic surfactant.
Another example can be cetyltrimethylamonium bromide
(CTAB) + KBr + an arbitrary nonionic surfactant. It is
assumed that the counterions dissociated from the ionic
surfactant and salt are the same (these are Na+ ions in
the first example and Br- in the second example).

As before, the ionic surfactant is a Z1:Z1 electrolyte and
the salt is a Z1:Z1 electrolyte. We will use the following
subscripts to denote the various solutes: 1, surfactant
(amphiphilic) ion; 2, counterion; 3, coion; 4, nonionic
surfactant. We denote by Γi, ai∞, and ais (i ) 1, ..., 4) the
adsorption,bulk,andsubsurfaceactivitiesof therespective
species; their bulk concentrations are denoted by ci∞. As
before, the requirement for the bulk solution to be
electroneutral implies a2∞ ) a1∞ + a3∞, cf. eq 2.4. As the
distribution of the molecules of the nonionic surfactant is
uniform, that is, it is not affected by the electric field, one
can write

In addition, as before, we assume that co-ions do not adsorb
at the interface; that is, we presume that Γ3 ≈ 0. For this
system eq 5.2 reduces to

z4 ) -1, z5 ) 2 (7.17)

S(Φ) ) a2∞(eΦ/2 - e-Φ/2)2 + 1
2

a4∞(2eΦ - 3 + e-2Φ)

) I2e
Φ(1 - e-Φ)2 - 1

2
a4∞eΦ(1 - e-Φ)3

) I2e
Φ(1 - e-Φ)2(1 - ν2 + ν2e-Φ) (7.18)

I2 ≡ a2∞ + 3
2

a4∞; ν2 ≡ a4∞/(2I2) (7.19)

Γ1 - Γ2 - Γ4 ) 2
κcu

xI2(1 - u2)g2 (7.20)

u ≡ exp(-Φs/2); g2 ≡ (1 - ν2 + ν2u2)1/2 (7.21)

F )
xI2

κc
[(u + 2

u)g2 - 3 + 1 - 3ν2

ν
ln |νu + g2

ν + 1 |] (7.22)

z4 ) -2, z5 ) 2 (7.23)

S(Φ) ) a2∞(eΦ/2 - e-Φ/2)2 + a4∞(eΦ - e-Φ)2

) 4a2∞ sinh2(Φ2 )[1 + ø2 cosh2(Φ2 )] (7.24)

ø2 ≡ 4a4∞/a2∞ (7.25)

Γ1 - Γ2 - 2Γ4 ) 4
κc

xa2∞ sinh(Φs

2 )[1 + ø2 cosh2(Φs

2 )]1/2

(7.26)

F ) 2
κc

xa2∞[qx1 + ø2q2 - x1 + ø2 +

1
ø

ln|øq + x1 + ø2q2

ø + x1 + ø2 |] (7.27)

q ≡ cosh(Φs

2 ) (7.28)

c4s ) c4∞ ≈ a4∞ ) a4s (8.1)

d(σ0 - σ

kT
- 2F) ) ∑

i)1,2,4

Γi d ln ais (8.2)
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Since one can vary independently the concentrations of
ionic surfactant, salt, and nonionic surfactant, then a1s,
a2s, and a4s are independent variables. The condition that
the left-hand side of eq 8.2 is a total differential leads to
the Euler condition that the cross derivatives are equal:

Using eq 8.3 for (i, j) ) (1, 4), one can derive

where we have introduced the notation

Table 2 contains explicit expressions for JM corresponding
to the most popular adsorption isotherms used for binary
surfactant mixtures, those of Langmuir, Volmer, Frumkin,
and van der Waals.56-58 To obtain the expressions in Table
2, it is assumed that the excluded area per adsorbed
molecule is the same for the two surfactants. Moreover,
in the Frumkin and van der Waals isotherms (Table 2)
the interaction parameters for the various couples of
adsorbed surfactant molecules are assumed to be equal:
â11 ) â14 ) â44 ) â. Since the betas are known to account
for the tail-tail attraction at the air-water interface (see
section 6.1 above), the latter assumption seems reasonable
when the hydrocarbon tails of the two surfactants have
equal length. (A general expression for the van der Waals
isotherm, which is not a subject of the above simplifica-
tions, can be found in ref 57.)

From eqs 8.3 and 8.4 one obtains

In eq 8.8 we have set the integration constant to zero,
which means that at zero surfactant adsorption there is
no counterion binding at the interface. The substitution
of eqs 8.4 and 8.8 into eq 8.2 yields (after integration) the
surfactant adsorption isotherm

As usual, σ0 is the surface tension of pure water;
expressions for JM are given in Table 2, and the term 2F
is given by eq 5.8.

Since â is related to the van der Waals interactions
between the surfactant tails, then â is not expected to
depend on the subsurface concentration of the counterions
a2s. On the other hand, in general the adsorption constants
K1 and K4 (see Table 2) could depend on the subsurface
concentration of the counterions Ki ) Ki(a2s), i ) 1, 4.

Then the dependence of Γ1 and Γ4 on a2s comes from K1
and K4 for all surfactant adsorption isotherms in Table 2.
Moreover, note that for each of these isotherms Γi (i ) 1,
4) depends on the products K1a1s and K4a4s; that is, Γi )
Γi(X1,X4), and Xi ≡ Kiais. Then eq 8.5 can be transformed
to read

Differentiating eq 8.10, one can bring eq 8.8 into the form

which holds for each of the surfactant adsorption isotherms
in Table 2. Note that eq 8.11 is valid for a general form
of the dependencies Ki ) Ki(a2s), i ) 1, 4.

From a physical viewpoint one can expect that the
counterions do bind only to the headgroups of the ionic
surfactant in the adsorption layer and do not bind to the
headgroups of the nonionic surfactant. In such a case one
can assume

where K0 and K2 are constants. The substitution of eq
8.12 into eq 8.11 yields

Equation 8.13 is in fact the Stern isotherm of counterion
adsorption for the considered solution containing salt and
ionic and nonionic surfactants. Since eq 8.13 is a corollary
from the Euler condition, eq 8.6, it turns out that eq 8.12
is the necessary and sufficient condition for thermody-
namic compatibility of the Stern isotherm of counterion
adsorption with either of the surfactant adsorption
isotherms in Table 2.

For a solution of ionic and nonionic surfactant without
added salt, one can use eq 8.13 with a2∞ f a1∞ to describe
the adsorption of the counterions dissociated from the
dissolved ionic surfactant.

On the other hand, the results of this section can be
easily generalized to the case of a solution containing ionic
and nonionic surfactants and two nonamphiphilic salts.
One can prove that the surfactant adsorption isotherm is

(58) Lucassen-Reynders, E. H. Anionic SurfactantssPhysical Chem-
istry of Surfactant Action; Marcel Dekker: New York, 1981.

∂Γi

∂ ln ajs
)

∂Γj

∂ ln ais
i * j; i, j ) 1, 2, 4 (8.3)

Γi )
∂JM

∂ ln ais
i ) 1, 4 (8.4)

JM ≡ ∫(0,0)

(a1s,a4s)(Γ1

a1s
da1s +

Γ4

a4s
da4s) (8.5)

∂Γ2

∂ ln ais
)

∂Γi

∂ ln a2s
)

∂
2JM

∂ ln a2s ∂ ln ais
; i ) 1, 4 (8.6)

∂

∂ ln ais
(Γ2 -

∂JM

∂ ln a2s
) ) 0; i ) 1, 4 (8.7)

Γ2 )
∂JM

∂ ln a2s
(8.8)

σ0 - σ
kT

) JM + 2F (8.9)

Table 2. Surfactant Adsorption and Surface Tension
Isotherms for a Mixture of Two Surfactants:

Components 1 and 4a

Adsorption Isotherms for Surfactant Mixture

Langmuir Kiais )
Γi

Γ∞ - Γ
, i ) 1, 4

Volmer Kiais )
Γi

Γ∞ - Γ
exp( Γ

Γ∞ - Γ), i ) 1, 4

Frumkin Kiais )
Γi

Γ∞ - Γ
exp(- 2âΓ

kT ), i ) 1, 4

van der Waals Kiais )
Γi

Γ∞ - Γ
exp( Γ

Γ∞ - Γ
- 2âΓ

kT ), i ) 1, 4

Surface Tension Isotherm, Eq (8.9): σ ) σ0 -kT(JM + 2F)
Langmuir JM ) -Γ∞ ln(1 - Γ/Γ∞)
Volmer JM ) Γ∞Γ/(Γ∞ - Γ)
Frumkin JM ) -Γ∞ ln(1 - Γ/Γ∞) - âΓ2/(kT)
van der Waals JM ) Γ∞Γ/(Γ∞ - Γ) - âΓ2/(kT)

a The notation Γ ) Γ1 + Γ4 is used.

JM ≡ ∫(0,0)

(K1a1s,K4a4s)(Γ1

X1
dX1 +

Γ4

X4
dX4) (8.10)

Γ2 ) Γ1

∂ ln K1

∂ ln a2s
+ Γ4

∂ ln K4

∂ ln a2s
(8.11)

K1 ) K0 + K2a2s; ∂K4/∂a2s ≡ 0 (8.12)

Γ2

Γ1
)

K2a2s

K0 + K2a2s
(8.13)
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given again by eq 8.9, in which the electric term F is given
by a counterpart of eq 7.10, 7.16, 7.22, or 7.27, depending
on the type of valency of the second salt. (To avoid
misunderstandings, we should note that the subscript 4
denotes salt II in section 7, but it denotes nonionic
surfactant in section 8.)

9. Comparison of Theory and Experiment
9.1. Experimental System and Numerical Task.

Below we illustrate the application of the theory to the
interpretation of a set of experimental data. We chose the
data of Tajima et al.11,12 for the surface tension versus
surfactant concentrations at two concentrations of NaCl:
c3∞ ) 0 and c3∞ ) 0.115 M; see Figure 2. The ionic surfactant
is TSDS, which is a 1:1 electrolyte.

Our goal is by processing this set of data for the
interfacial tension σ ) σ(c1∞,c2∞) as a function of the bulk
concentrations of surfactant ions c1∞, and counterions c2∞
to determine the surfactant adsorption Γ1(c1∞,c2∞), the
counterion adsorption Γ2(c1∞,c2∞), and the surface potential
ψs(c1∞,c2∞). We compare the calculated values of these
parameters with the respective values obtained by means
of the theory by Borwankar and Wasan,36 which does not
take into account the effect of counterion binding.

To fit the data, we will make use of the Frumkin
isotherm (see Table 1)

which is appropriate for air-water interfaces, as discussed
in section 6.1 above. The parameter K is given by eq 6.7,
that is, K ) K1 + K2a2s, and the counterion adsorption is
determined by the Stern isotherm, eq 6.8. Combining eq
5.8 with the Frumkin surface tension isotherm in Table
1, one obtains

One sees that the theoretical model contains four pa-
rameters, â, Γ∞, K1, and K2, which are to be determined

from the best fits of the experimental data. These four
parameters can really be obtained from the best fit only
if the set of data contains experimental points for σ )
σ(c1∞,c2∞) for both high and low surfactant concentrations
and for both high and low salt concentrations; the data by
Tajima et al.11,12 satisfy the latter requirement, and that
is the reason why it has been chosen. On the other hand,
our experience with other sets of data shows that if this
requirement is not satisfied, the merit function (see eq
9.3 below) exhibits a flat shallow minimum, and therefore
it is practically impossible to determine the best fit.

9.2. Procedure of Calculations. We apply the derived
set of equations to fit experimental data for the surface
tension as a function of both surfactant and salt concen-
trations.

(1) As input data we have experimental points for the
interfacial tension σ ) σ(c1∞,c2∞). The activities a1∞ and
a2∞, corresponding to a given couple (c1∞,c2∞) are calculated
from eqs 1.7 and 1.8; κc is a known parameter, which is
defined by eq 4.3.

(2) We assign tentative values of â, K1, K2, and Γ∞, which
are to be determined as adjustable parameters from the
best fit of the data.

(3) We give a tentative value of the dimensionless surface
potential Φs; a value in the interval 0 < Φs < 10 is
appropriate.

(4) From eq 2.10 we calculate a1s and a2s.
(5) From eqs 6.6, 6.8, and 9.1 we calculate Γ1 and Γ2.
(6) The calculated values of Γ1(Φs) and Γ2(Φs) are then

substituted in eq 4.15, which becomes an implicit equation
for determining Φs; the latter is solved numerically.

(7) The theoretical value of the surface tension σ(c1∞
(m),

c2∞
(m);â,K1,K2,Γ∞), corresponding to a given couple of ex-

perimental concentrations (c1∞
(m),c2∞

(m)), is then calculated
from eq 9.2.

(8) The adjustable parameters â, K1, K2, and Γ∞ are
determined by means of the least squares method, that
is, by numerical minimization of the merit function

where σ(m) is the experimental value of σ, corresponding
to the concentrations c1∞

(m) and c2∞
(m), and the summation in

eq 3.16 is carried out over all experimental points (c1∞
(m),

c2∞
(m),σ(m)); N is their total number.

To see how important is the effect of counterion
adsorption, we compare the same experimental data with
the theoretical model by Borwankar and Wasan,36 in which
Γ2 ≡ 0 (that is equivalent to K2 ≡ 0) and K ≡ K1 ) constant.
Correspondingly, when fitting the data with the theory
from ref 36, at steps 2 and 8 we have a single constant K1
(K2 ≡ 0). Thus we can use the above procedure of
calculation, in which step 5 is changed as follows:

(5′) From eq 9.1 (with K ≡ K1 ) constant) we calculate
Γ1 and we set Γ2 ≡ 0 (K2 ≡ 0).

9.3. Numerical Results and Discussion. The ex-
perimental data for σ(c1∞) for two different fixed NaCl
concentrations are obtained by Tajima et al.;11,12 see the
symbols in Figure 2. To calculate the surface pressure πs
) σ0 - σ, which is plotted in Figure 2, we determined σ0
by linear extrapolation of the experimental dependence
σ versus c1∞ for the lowest surfactant concentrations down
to c1∞ ) 0. The continuous lines in Figure 2 are the best
fits of the whole set of data by means of our theoretical
model (section 9.2); the two curves correspond to 0.0 and

Figure 2. Plots of the surface pressure at the air-water
interface σ0 - σ versus the surfactant (TSDS) concentration c1∞
for two fixed NaCl concentrations: 0 and 0.115 M. The symbols
are experimental data from refs 11 and 12; the continuous and
dotted lines represent the best fits by means of our theory and
that from ref 36, respectively.

Ka1s )
Γ1

Γ∞ - Γ1
exp(-

2âΓ1

kT ) (9.1)

σ0 - σ
kT

) -Γ∞ ln(1 -
Γ1

Γ∞
) -

âΓ1
2

kT
+

8xa2∞

κc
[cosh(Φs

2 ) - 1] (9.2)

Ψ(â,K1,K2,Γ∞) )

{1

N
∑
m)1

N

[σ(m) - σ(c1∞
(m),c2∞

(m);â,K1,K2,Γ∞)]2}1/2

(9.3)

Ionic Surfactant Adsorption Langmuir, Vol. 15, No. 7, 1999 2363



0.115 M NaCl. The merit function Ψ, defined by eq 9.3,
was minimized numerically by variation of the four
parameters â, K1, K2, and Γ∞; their values, corresponding
to the best fit, are given in Table 3, where the minimum
value Ψmin of the merit function in eq 9.3 is also given. The
data for all surfactant and salt concentrations were
processed simultaneously to determine â, K1, K2, and Γ∞.
Substituting in eq 6.9 K1 ) 156 m3/mol and 1/Γ∞ ) 37.6
Å2 (see Table 3), one estimates the standard free energy
of adsorption to be ∆µ1

(0) ) 12.8kT per SDS molecule, that
is 31.3 kJ/mol, which seems to be a reasonable value.
Likewise, substituting in eq 6.10 K2/K1 ) 8.21 × 10-4 m3/
mol, 1/Γ∞ ) 37.6 Å2 (see Table 3), and δ2 ≈ 7 Å, one
estimates the standard free energy of counterion binding
to be ∆µ2

(0) ) 1.64kT per Na+ ion, that is 4.04 kJ/mol,
which also seems to be a reasonable value. The value of
the parameter â is positive, which indicates attraction
between the hydrocarbon tails of the adsorbed surfactant
molecules.

Figure 3 shows calculated curves for the adsorptions of
surfactant Γ1 (the full lines) and counterions Γ2 (the dotted
lines) versus the TSDS concentration c1∞, obtained by
means of our model. These curves show the variation of
Γ1 and Γ2 along the two experimental curves in Figure 2.
In Figure 3 one sees that both Γ1 and Γ2 are markedly
greater when NaCl is present in the solution; only for the
highest studied TSDS concentrations (just below the cmc)
are the adsorptions in the presence and absence of salt
close to each other. The highest value of Γ1 for the curves
in Figure 3 is 4.30 × 10-6 and 4.20 × 10-6 mol/m2 for the
solutions with and without NaCl, respectively. The latter
two values compare well with the saturation adsorptions
measured by Tajima11,12 by means of the radiotracer
method, viz. Γ1 ) 4.33 × 10-6 and 3.19 × 10-6 mol/m2 for
the solutions with and without NaCl, respectively; the
agreement is especially good for the solution with NaCl.

In Figure 3 one sees that the counterion (Na+) adsorption
Γ2 is always smaller than the surfactant adsorption Γ1.
This is visualized in Figure 4, where the occupancy of the
Stern layer θ ) Γ2/Γ1 is plotted versus the surfactant
concentration for the curves in Figure 3. Especially strong
is the increase of the occupancy for the solution without
NaCl as a function of the surfactant concentration: Γ2/Γ1
rises from 0.15 up to 0.74 and then exhibits a tendency
to level off. As it could be expected, the occupancy Γ2/Γ1
is higher for the solution with NaCl; even at the TSDS
concentration 10-5 M the occupancy is about 0.40; for the

higher surfactant concentrations it levels off at Γ2/Γ1 )
0.74 (Figure 4). The latter value of Γ2/Γ1 agrees with the
data of other authors13,20-22 (see the Introduction), who
have obtained values of Γ2/Γ1 up to 0.70-0.90. Once again
this fact shows that the counterion adsorption must not
be neglected. Note that in the model of Borwankar and
Wasan36 Γ2/Γ1 ≡ 0 by presumption.

The model of Borwankar and Wasan36 also agrees well
with the data in Figure 2 (see the dotted lines therein);
the respective values of the parameters of the fit are given
in Table 3. One sees that our best fit (the continuous lines)
agrees better with the data than that from ref 36, although
the differences are not so great. The difference between
the two fits can be quantified by the minimal value of the
merit function, which is Ψmin ) 0.69 mN/m for our fit and
Ψmin ) 1.06 mN/m for the fit from ref 6 (see Table 3). The
value of the interaction parameter â is 5 times greater for
the model from ref 36; in other words this model requires
a stronger attraction between the adsorbed surfactant
molecules, which is to counterbalance the stronger elec-
trostatic repulsion in the absence of bound counterions.
The values of Γ∞ given by the two models are close (see
Table 3).

The differences between our model and that from ref 36
show up when one compares the values of the surface
electric potential ψs, (see Figure 5). The curves in Figure
5 correspond to the same TSDS concentration ranges and
to the same NaCl concentrations as those in Figure 2. For
the solutions with salt our model predicts surface poten-
tials varying in the range |ψs| ) 55-95 mV, whereas for
the same solutions the model from ref 36 predicts |ψs| )
80-165 mV (see Figure 5) (note that ψs has a negative
sign). Similar is the situation with the solutions without
NaCl. This difference between the predictions of the two
models is understandable, because the neglecting of the
counterion binding in ref 36 leads to a higher calculated
surface potential |ψs|. The latter fact can be used to verify
which model is closer to reality by electrophoretic mea-
surements of the ú-potential of air bubbles in the respective
solutions.

For the surfactant solutions without NaCl the plot of
|ψs| versus c1∞ exhibits a maximum (Figure 5), which can
be attributed to the competition of two effects: (i) an
increase of surface charge with the increase of surfactant
adsorption Γ1 and (ii) a decrease of the surface potential
with the increase of the ionic strength of the solution.
Effect i is predominant for the lower c1∞, whereas effect

Figure 3. Plots of the calculated adsorptions of surfactant
Γ1/Γ∞ (the full lines) and counterions Γ2/Γ∞ (the dotted lines)
versus the surfactant (TSDS) concentration c1∞. The lines
correspond to the best fits of the data in Figure 2 obtained by
means of our model; see section 9.2.

Figure 4. Plots of the calculated occupancy of the Stern layer
by adsorbed counterions Γ2/Γ1, versus the surfactant (TSDS)
concentration c1∞ for two fixed NaCl concentrations: 0 and 0.115
M. The lines correspond to the best fits of the data in Figure
2 obtained by means of our model; see section 9.2.
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ii gets the upper hand for the higher c1∞, for which Γ1 is
almost constant. In contrast, the plots of |ψs| versus c1∞
at practically fixed ionic strength (0.115 M, Figure 5) are
monotonic, because effect ii does not appear.

10. Concluding Remarks
This work is a theoretical study on thermodynamics of

ionic surfactant adsorption from aqueous solutions in the
presence of nonamphiphilic salts. The fact that the
surfactant adsorption is accompanied by counterion
binding and variation of the surface electric potential is
taken into account. The Euler equation, eq 5.3, provides
a condition for thermodynamic compatibility of a given
couple of surfactant and counterion adsorption isotherms.
To verify whether the couple of the known Langmuir and
Stern isotherms, eqs 2.8 and 2.9, is thermodynamically
compatible, we investigated the problem of how to obtain
the counterion adsorption isotherm corresponding to a
given surfactant adsorption isotherm. The Gibbs adsorp-
tion equation is analytically integrated to obtain an
expression for the surface tension, eq 5.7, which contains
contributions from the adsorption layer J (see Table 1)
and from the diffuse electric double layer 2F (see eq 4.13).
The expression for F is then specified for ionic surfactant
solutions containing 1:1, 2:1, 1:2, and 2:2 electrolytes. In
section 8 the results are extended to the case when the
solution contains an ionic-nonionic surfactant mixture
and salt.

One of the most important results in this study is the
derived condition for thermodynamic compatibility be-
tween the surfactant adsorption isotherm (each of the
isotherms in Tables 1 and 2) and the Stern isotherm of
counterion binding, eq 6.6. In general, this compatibility
condition takes the form of a linear dependence of the
surfactant adsorption parameter on the subsurface ac-
tivities of the counterions, see eq 6.5; eqs 6.7, 7.4, and 8.12
give the explicit form of this dependence for various specific
cases. Note that counterion adsorption isotherms, which
are different from the Stern isotherm, could be generated
if a nonlinear expression for the adsorption parameter(s)
K is substituted in eq 6.4 or 8.11. Another important
conclusion is that the Gibbs adsorption equation can be
presented in two alternative forms, cf. eqs. 2.1 and 5.19.

As an illustrative example of application of the theo-
retical model, the latter is used to interpret data by Tajima
et al.11,12 for the surface tension of TSDS solutions versus
surfactant and salt concentrations. The fact that this set
of data covers a wide range of surfactant and salt
concentrations allowed us to determine the four param-
eters of the model, â, K1, K2, and Γ∞ (see Table 3), from the
best fit. The parameter values thus obtained are reason-
able. They allow one to predict the values of σ, Γ1, Γ2, and
ψs for every surfactant and salt concentrations below the
cmc. The calculated Γ1, corresponding to the experimental
curves, is markedly higher for the higher NaCl concen-
tration (Figure 3). The calculated occupancy of the Stern
layer rises up to 74% for the higher surfactant and salt
concentrations (Figure 4); in other words, the counterion
adsorption (binding) can be considerable and should not
be neglected. Its neglect leads to markedly greater
calculated values of the surface electric potential (see
Figure 5).

In summary, the derived equations can be applied to
process experimental data for the surface tension as a
function of the surfactant and salt concentrations. As a
result one can determine the adsorptions of surfactant
and counterions, as well as the surface electric potential
and charge density, for various salt and surfactant
concentrations. Further, the derived equations can be
applied to calculate the Gibbs elasticity of ionic surfactant
adsorption monolayers and the diffusion relaxation time
in the kinetics of adsorption.39
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Table 3. Parameters of Fits of the Data for TSDS in Figure 2 by Means of Our Theoretical Model (Section 9.2) and That
from Ref 36

theoretical model K1 (m3/mol) K2 (m6/mol2) Γ∞ (× 10-6 mol/m2) 2âΓ∞/kT Ψmin (mN/m)

our model (section 9.2) 156 0.128 4.42 0.800 0.69
model from ref 36 399 (0) 4.52 4.00 1.06

Figure 5. Plots of the calculated surface potential of the air-
water interface |ψs| versus the surfactant (TSDS) concentration
c1∞. The continuous and dotted lines correspond to the best fits
of the data in Figure 2 by means of our theory and that from
ref 36, respectively.
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