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S U M M A R Y
We present a theory for the computation of phase equilibria and physical properties of multi-
component assemblages relevant to the mantle of the Earth. The theory differs from previous
treatments in being thermodynamically self-consistent: the theory is based on the concept of
fundamental thermodynamic relations appropriately generalized to anisotropic strain and in
encompassing elasticity in addition to the usual isotropic thermodynamic properties. In this
first paper, we present the development of the theory, discuss its scope, and focus on its appli-
cation to physical properties of mantle phases at elevated pressure and temperature including
the equation of state, thermochemical properties and the elastic wave velocities. We find that
the Eulerian finite strain formulation captures the variation of the elastic moduli with com-
pression. The variation of the vibrational frequencies with compression is also cast as a Taylor
series expansion in the Eulerian finite strain, the appropriate volume derivative of which leads
to an expression for the Grüneisen parameter that agrees well with results from first principles
theory. For isotropic materials, the theory contains nine material-specific parameters: the val-
ues at ambient conditions of the Helmholtz free energy, volume, bulk and shear moduli, their
pressure derivatives, an effective Debye temperature, its first and second logarithmic volume
derivatives (γ 0, q 0), and the shear strain derivative of γ . We present and discuss in some detail
the results of a global inversion of a wide variety of experimental data and first principles
theoretical results, supplemented by systematic relations, for the values of these parameters
for 31 mantle species. Among our findings is that the value of q is likely to be significantly
greater than unity for most mantle species. We apply the theory to the computation of the shear
wave velocity, and temperature and compositional (Fe content) derivatives at relevant mantle
pressure temperature conditions. Among the patterns that emerge is that garnet is anomalous
in being remarkably insensitive to iron content or temperature as compared with other mantle
phases.
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1 I N T RO D U C T I O N

The tools and concepts of thermodynamics are an essential part of any model of planetary evolution, dynamics and structure. The relationship
between the internal heat and temperature of a planet as it cools, between temperature and the buoyancy that drives convection, and the
extent and consequences of gravitational self-compression are all governed by equilibrium physical properties and understood on the basis
of thermodynamics. Thermodynamics is powerful because its scope is so vast; applicable not only to planets but equally to black holes and
laboratory samples. This extreme generality also means that the theory must be supplemented with particular knowledge of the materials of
interest, values of key physical quantities, and their variations with pressure, temperature and bulk composition.

The materials and conditions of the interior of the Earth present several special challenges. The range of pressure is comparable to the
bulk modulus and to the pressure scale of valence band deformation, so that we expect phase transformations and alteration of chemical
bonding on very general grounds. At the same time, the range of pressure and temperature is not sufficient to stabilize either of two states
that are particularly well understood: the ideal gas and the free electron gas, both of which are important for understanding giant planets and
stars. The chemical composition of the terrestrial mantle is also relatively complex with at least five essential oxide components and 10 major
solid phases.

Knowledge of the physical properties of mantle minerals provides the essential link between geophysical observations and geodynamics.
For example, seismology does not measure energy or temperature; variations in velocity must be related to these geodynamically relevant
quantities via experimental measurements. At the same time, many geophysical observations are remarkably precise, placing extreme demands
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on the accuracy of any thermodynamic model of the mantle and the experiments or first principles computations that must be used to
constrain it.

The multiphase nature of the mantle is central to our understanding of its structure and dynamics. In the transition zone, gravitational
self-compression is accommodated mostly by solid–solid phase transformations. Many phase transformations occur over sufficiently narrow
intervals of pressure that they are seismically reflective; the comparison of the depth of these reflectors to the pressure of phase transformations
gives us one of our most powerful constraints on the composition of the deep interior. Because the pressure at which they occur depends on
temperature, phase transformations may also contribute to laterally heterogeneous structure and influence mantle dynamics (Anderson 1987).

Birch (1952) recognized that the unique features of Earth meant that approximate theories, such as the Thomas–Fermi–Dirac model, were
not sufficiently accurate or meaningful to teach us about the terrestrial interior. His work emphasized the importance of careful experimental
measurements of physical properties at elevated pressure and temperature, a programme that continues with great vigour and that has made
great strides since Birch’s day in precision and scope. Solid state theory has also undergone major advances over the past several decades, and
modern first principles computations have started to play a role in uncovering the physics of mantle phases at high pressure and temperature,
and in making quantitative predictions.

The remarkable advances in experimental and theoretical mineral physics have motivated us to an interim synthesis of mantle thermo-
dynamics in the form of a new thermodynamic model and a summary of relevant data. In developing our model, we have borne in mind
the need to capture self-consistently and on an equal footing the physical properties of phases, including those that are geodynamically
important and geophysically observable, and the equilibria among these phases. The model should be complete in the sense that it accounts
for anisotropic properties such as the elastic moduli as well as the usual isotropic thermodynamic properties. Because the relevant range of
pressure, temperature and composition is so vast, extrapolation will likely be an essential part of our understanding of mantle thermodynamics
for some time. The model should then be sufficiently compact, with a limited number of free parameters, to permit extrapolation with a degree
of robustness that may be readily evaluated. It should also be sufficiently flexible as to allow for ready incorporation of additional components,
phases and physical behaviour as we continue to learn more about the behaviour of Earth materials at extreme conditions.

In this first paper, we derive the thermodynamic theory and present salient expressions and results that illustrate the scope of our approach,
focusing on the physical properties of mantle phases. The second paper will focus on phase equilibria.

2 O U R A P P ROA C H A N D P R E V I O U S W O R K

There have been many previous syntheses of portions of mantle thermodynamics, but none of the scope that we contemplate. Such studies
can be divided into two classes on the basis of their primary motivations: (i) to understand phase equilibria (Berman 1988; Fei & Saxena
1990; Holland & Powell 1990; Ghiorso & Sack 1995) and (ii) to understand physical properties (Weidner 1985; Duffy & Anderson 1989).
Those focused on phase equilibria typically do not include an account of elastic constants other than the bulk modulus, while those focused
on physical properties, including descriptions of the equation of state, or the elastic moduli, typically do not permit computation of phase
equilibria.

With the advent of seismic tomography, there has been increasing interest in the development of models that can relate seismic observations
to material properties of multiphase assemblages. The key difference between these studies and the theory presented here is our adherence
to thermodynamic self-consistency. Thermodynamic self-consistency between phase equilibria and physical properties is exemplified by the
Classius–Clapeyron equation, which relates the pressure–temperature slope of phase boundaries to the density and entropy of the phases
involved. The physical properties of each phase are also subject to the Maxwell relations. Hybrid models, where a model of physical properties
is supplemented by an account of phase equilibria from an independent source, are not self-consistent (Ita & Stixrude 1992; Cammarano
et al. 2003; Hacker et al. 2003). Supplementing phase equilibrium calculations with higher order derivatives of physical properties that do
not satisfy the Maxwell relations also violates self-consistency. For example, the model of Sobolev & Babeyko (1994) does not satisfy the
relationship between the temperature dependence of the bulk modulus and the pressure dependence of the thermal expansivity. The model
of Mattern et al. (2005) is thermodynamically self-consistent, but does not permit computation of the shear modulus. The model of Kuskov
(1995) is self-consistent in the calculation of phase equilibria, density and bulk sound velocity, but the shear modulus is computed from an
independent model.

Our approach, which we have emphasized in our previous work (Stixrude & Bukowinski 1990; Ita & Stixrude 1992; Stixrude &
Bukowinski 1993), is based on the concept of fundamental thermodynamic relations (Callen 1960). We take advantage of three important
properties of these functions. First, if a thermodynamic potential is expressed as a function of its natural variables, it may be considered a
fundamental thermodynamic relation, i.e. it contains all possible thermodynamic information. Secondly, the various thermodynamic potentials
are related to one another by Legendre transformations. This means that any of the thermodynamic potentials may be chosen as the fundamental
relation and will be equally complete as any other. We will make use of the Gibbs free energy and the Helmholtz free energy, which are related
by the Legendre transformation

G(P, T ) = F (V, T ) + P(V, T )V . (1)

Finally, we take advantage of the first-order homogeneity of thermodynamic functions by writing the fundamental relation in Euler rather
than in differential form. This allows us to avoid the limitations of integration along paths that can lead far outside the stability field in mantle
applications.
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Consideration of elasticity leads us to an essential generalization of textbook thermodynamics. The salient property of the mantle is that
it is solid and able to support deviatoric stresses. Elastic waves are then not limited to the bulk sound velocity as in the case of most fluids; our
thermodynamic formulation must also encompass shear elasticity. This requires tensorial generalization of familiar concepts such as pressure
and volume, and their relationships to entropy and temperature.

3 T H E O RY

We generalize eq. (1) to one appropriate for crystals. For a solid phase consisting of a solid solution of s species (end-members or phase
components),

G(σi j , T ) =
s∑
β

xβGβ (σi j , T ) + xβ RT ln aβ, (2)

where Gβ is the Gibbs free energy of pure species β, aβ is the activity, R is the gas constant and the stress is related to the pressure by

σi j = −Pδi j + τi j , (3)

where τ i j is the deviatoric stress. We will assume that the quantity RT ln f β is independent of stress and temperature, where f β is defined by
aβ = f β x β and x β is the mole fraction. This assumption permits non-ideal enthalpy of solution but neglects the contribution of non-ideality to
other physical properties, such as the volume or entropy, because such contributions are small compared with uncertainties in these properties
at mantle pressure and temperature (Ita & Stixrude 1992). We have also neglected surface energy, which may be significant for very small
grains (∼1 nm).

Physical properties are related to derivatives of G; those that we will discuss further include the entropy S, volume V, heat capacity CP,
isothermal bulk modulus K, thermal expansivity α and the elastic compliance tensor sijkl:

S = −
(

∂G
∂T

)
P

=
s∑
β

xβSβ − xβ R ln aβ, (4)

V =
(

∂G
∂ P

)
T

=
s∑
β

xβ Vβ, (5)

1

K
= − 1

V

(
∂2G
∂ P2

)
T

= 1

V

s∑
β

xβ Vβ

1

Kβ

, (6)

CP = −T

(
∂2G
∂T 2

)
P

=
s∑
β

xβCPβ, (7)

V α = −
(

∂S
∂ P

)
T

=
(

∂2G
∂ P∂T

)
=

s∑
β

xβ Vβαβ, (8)

si jkl = − 1

V

(
∂2G

∂σi j∂σkl

)
σ ′,T

= 1

V

s∑
β

xβ Vβsi jklβ . (9)

The subscript on the derivative defining the compliance means stress components except those involved in the derivative are held constant.
The elastic moduli are related to the foregoing by

c = s−1 : (10)

ci jkl = 1

V

(
∂2G

∂Si j Skl

)
P,T

= 1

V

(
∂2F

∂Si j Skl

)
S′

i j ,T

− Pδ
i j
kl �= 1

V

s∑
β

xβ Vβci jklβ, (11)

where Sij is the Eulerian strain tensor, discussed further below. The cijkl are the stress–strain coefficients of Wallace (1972); these are the
appropriate elastic constants for the analysis of elastic wave propagation under hydrostatic pre-stress. The second equality relates the moduli
to the Helmholtz free energy to which we will turn below. The second strain derivative of the volume is V δ

i j
kl , with

δ
i j
kl = −δi jδkl − δilδ jk − δ jlδik, (12)

and δ i j is the Kronecker delta. The inequality in eq. (11) emphasizes that the elastic moduli of a solid solution can only properly be related to
those of its component species via eqs (9) and (10). The adiabatic bulk modulus KS , adiabatic elastic constant tensor cSi jkl and isochoric heat
capacity CV are computed from the quantities already given (Davies 1974; Ita & Stixrude 1992).

We will be particularly interested in the bulk modulus and the shear modulus G, which for an isotropic material obey the following
relations (Nye 1985):

3K = 3

si jklδi jδkl
= ci jklδi jδkl

3
, (13)
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G = 1

s44
= 1

2(s11 − s12)
= c44 = c11 − c12

2
, (14)

where we have adopted the Einstein summation convention and used Voigt notation in eq. (14). The first equality in eq. (13) holds for materials
of any symmetry. From eq. (9),

1

G
= 1

V

s∑
β

xβ Vβ

1

Gβ

. (15)

For anisotropic phases, a class of materials that includes all crystals, the shear modulus is interpreted as that of an isotropic polycrystalline
aggregate upon which rigorous bounds can be placed (Watt et al. 1976).

To specify the form of the Gibbs free energy of the species, Gβ , we follow previous work and make use of the Legendre transformation
(eq. 1). The Helmholtz free energy may be written

F (Ei j , T ) = F0(0, T0) + Fc(Ei j , T0) + Fq (Ei j , T ) − Fq (Ei j , T0), (16)

where the terms are respectively the reference value at the natural configuration and the contributions from compression at ambient temperature
(the so-called cold part), and lattice vibrations in the quasi-harmonic approximation. These contributions are expected to be most important
for mantle phases. We will discuss other contributions that are more important for phase equilibria in Paper II including anharmonic, magnetic,
electronic and disordering contributions. The E i j is the Eulerian finite strain relating the natural state at ambient conditions with material
points located at coordinates ai = (a1, a2, a3), to the final state with coordinates xi:

Ei j = 1

2

(
δi j − ∂ai

∂xk

∂a j

∂xk

)
. (17)

Thermodynamic quantities are related to the Sij (eqs 4–11), which relate the final state to the initial or pre-stressed state with coordinates Xi:

Si j = 1

2

(
δi j − ∂ Xi

∂xk

∂ X j

∂xk

)
. (18)

We assume that the initial state is one of hydrostatic stress, appropriate to the interior of the Earth, and that the final state differs slightly from the
initial state, corresponding to the small amplitude of seismic waves. Our point of view differs slightly from that adopted by Davies (1974). We
view the natural configuration as that at ambient pressure and temperature, whereas Davies (1974) assumed a different natural configuration
for each temperature, such that the pressure is zero for each natural configuration. Our natural configuration therefore corresponds to the
master configuration of Thurston (1965).

We adopt the following form for the Helmholtz free energy (eq. 16):

ρ0F = ρ0F0 + 1

2
b(1)

i jkl Ei j Ekl − 1

6
b(2)

i jklmn Ei j Ekl Emn + 1

24
b(3)

i jklmnop Ei j Ekl Emn Eop + . . .

+ ρ0kT
∑

λ

ln

{
1 − exp

[
−hνλ(Ei j )

kT

]}
− ρ0kT0

∑
λ

ln

{
1 − exp

[
−hνλ(Ei j )

kT0

]}
, (19)

which is the generalization to anisotropic strain of that used in our previous work (Ita & Stixrude 1992). The cold part is a Taylor series
expansion in the Eulerian finite strain, Eij, and the quasi-harmonic part is exact as written and includes a sum over all vibrational modes λ,
with the dependence of the frequencies νλ on strain made explicit. The density ρ = 1/V and k is the Boltzmann constant. Two comments on
notation: (i) the choice of sign conforms to standard usage because Eij is positive on expansion, while the isotropic finite strain f, discussed
below, is usually defined positive on compression; (ii) the parenthetical superscripts, also used by Davies (1974), provide a convenient way of
distinguishing among the coefficients when alternating between standard and Voigt notation.

We find the equation of state and the elastic constants by taking the appropriate strain derivatives of eq. (19) and evaluating in the initial
state:

ρ0F = ρ0F0 + 1

2
b(1)

i ikk f 2 + 1

6
b(2)

i ikkmm f 3 + 1

24
b(3)

i ikkmmoo f 4 + . . . + ρ0�Fq , (20)

P = −1

3
σi jδi j = 1

3
(1 + 2 f )5/2

[
b(1)

i ikk f + 1

2
b(2)

i ikkmm f 2 + 1

6
b(3)

i ikkmmoo f 3 + . . .

]
+ γρ�Uq , (21)

ci jkl = (1 + 2 f )7/2

[
b(1)

i jkl + b(2)
i jklmm f + 1

2
b(3)

i jklmmoo f 2 + . . .

]
− Pcδ

i j
kl

+
[
γi jγkl + 1

2
(γi jδkl + γklδi j ) − ηi jkl

]
ρ�Uq − γi jγklρ�(CV T ). (22)

In deriving eqs (20)–(22), we have made use of the strain–strain derivatives relating Eij to Sij (Thomsen 1972) and have assumed that the finite
strain in the initial state is isotropic with

Ei j = − f δi j , (23)

f = 1

2

[(
ρ

ρ0

)2/3

− 1

]
, (24)
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Fq ,Uq are the quasi-harmonic free energy and internal energy, and the � notation indicates the change in these quantities from the reference
temperature.

The coefficients appearing in eqs (20)–(22) may be found by evaluating eq. (22) and its pressure derivatives at ambient conditions,

b(1)
i jkl = ci jkl0, (25)

b(2)
i jklmm = 3K0

(
c′

i jkl0 + δ
i j
kl

)
− 7ci jkl0, (26)

b(3)
i jklmmoo = 9K 2

0 c′′
i jkl0 + 3K0

(
c′

i jkl0 + δ
i j
kl

) (
3K ′

0 − 16
) + 63ci jkl0, (27)

from which we may determine the scalar coefficient by applying the Einstein summation convention,

b(1)
i ikk = 9K0, (28)

b(2)
i ikkmm = 27K0

(
K ′

0 − 4
)
, (29)

b(3)
i ikkmmoo = 81K0

[
K0 K ′′

0 + K ′
0

(
K ′

0 − 7
) + 143

9

]
. (30)

Previous studies have formed an alternative expression for the cold contribution to the elastic constants by combining eqs (21) and (22),
eliminating the cold pressure P c. In order to maintain thermodynamic self-consistency, we retain all terms in the elastic constants and pressure
that originate from the same order in the free energy expansion (eq. 20). The expression for the cold part of the moduli to third order is then

ci jkl = (1 + 2 f )5/2

{
ci jkl0 + (3K0c′

i jkl0 − 5ci jkl0) f +
[

6K0c′
i jkl0 − 14ci jkl0 − 3

2
K0δ

i j
kl (3K ′

0 − 16)

]
f 2

}
. (31)

To illustrate the thermodynamic consistency of eq. (31), we evaluate the bulk modulus via eq. (13),

K = (1 + 2 f )5/2

[
K0 + (3K0 K ′

0 − 5K0) f + 27

2
(K0 K ′

0 − 4K0) f 2

]
+ (γ + 1 − q)γρ�Uq − γ 2ρ�(CV T ), (32)

which agrees with the expression to third order derived from a purely isotropic thermodynamic analysis (Ita & Stixrude 1992). The shear
modulus evaluated from eq. (31),

G = (1 + 2 f )5/2

[
G0 + (3K0G ′

0 − 5G0) f +
(

6K0G ′
0 − 24K0 − 14G0 + 9

2
K0 K ′

0

)
f 2

]
− ηSρ�Uq , (33)

differs from that found in previous studies (Sammis et al. 1970; Davies & Dziewonski 1975) that truncated eq. (31) after the linear f term,
resulting in elastic constants that are thermodynamically inconsistent with the pressure and the Helmholtz free energy at order f 2. In eq. (33),
we have introduced the quantity ηS , which we now discuss further.

The quasi-harmonic parts of eqs (20)–(22) involve the anisotropic generalization of the Grüneisen parameter and its strain derivative,

γi j = − 1

νλ

∂νλ

∂Si j
, (34)

ηi jkl = ∂γi j

∂Skl
, (35)

where we have adopted the Grüneisen approximations that γ i j and η ijkl are the same for all vibrational modes λ. For an isotropic material,

γi j = γ δi j , (36)

ηi jkl = γ qδi jδkl + ηS

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
, (37)

where

γ = V

(
∂ P

∂U

)
V

, (38)

q =
(

∂ ln γ

∂ ln V

)
(39)

and ηS is the shear strain derivative of γ . In deriving eq. (33), we have assumed that the η tensor is isotropic and can be divided into volume
(γ q) and shear (ηS) sensitive parts according to eq. (37).

We assume that the frequencies follow a Taylor series expansion in the Eulerian finite strain (Leibfried & Ludwig 1961; Thomsen 1972;
Davies 1974),

ν2
λ = ν2

λ0

[
1 − a(1)

i j Ei j + 1

2
a(2)

i jkl Ei j Ekl + . . .

]
, (40)
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where we have again invoked the Grüneisen approximations. Taking the appropriate strain derivatives, evaluating at isotropic finite strain and
suppressing the vibrational mode index, λ,

ν2 = ν2
0

[
1 + a(1)

i i f + 1

2
a(2)

i ikk f 2 + . . .

]
, (41)

γi j = 1

2

ν2
0

ν2
(2 f + 1)

[
a(1)

i j + a(2)
i jkk f

]
, (42)

ηi jkl = 2γi jγkl − γ jkδil − γikδ jl − 1

2

ν2
0

ν2
(2 f + 1)2a(2)

i jkl , (43)

which reduce for an isotropic material to

γ = 1

6

ν2
0

ν2
(2 f + 1)

[
a(1)

i i + a(2)
i ikk f

]
, (44)

ηV = γ q = 1

9

[
18γ 2 − 6γ − 1

2

ν2
0

ν2
(2 f + 1)2a(2)

i ikk

]
, (45)

ηS = −γ − 1

2

ν2

ν2
0

(2 f + 1)2a(2)
S . (46)

The coefficients are related to values at ambient conditions as follows:

a(1)
i j = 2γi j0, a(1)

i i = 6γ0,

a(2)
i jkl = 4γi j0γkl0 − 2γ jk0δil − 2γik0δ jl − 2ηi jkl0,

a(2)
i ikk = −12γ0 + 36γ 2

0 − 18q0γ0,

a(2)
S = −2γ0 − 2ηS0. (47)

We will also examine an alternative expression for the volume dependence of the frequencies that has been used extensively in the
literature:

ν = ν0 exp

(
γ0 − γ

q

)
, (48)

γ = γ0

(
ρ

ρ0

)−q

, (49)

where q is typically taken as constant, although variable q, via a further logarithmic volume derivative (q ′), has also been discussed (Jeanloz
1989).

Our development follows closely that of Davies (1974). The cold contributions in eqs (20)–(22) are equivalent to those derived in that
study, as are the quasi-harmonic terms evaluated at zero strain. Our approach differs in the treatment of the strain dependence of the quasi-
harmonic terms. While Davies (1974) included the quasi-harmonic contribution only in its effect on the lowest order coefficient in the finite
strain expansion, our approach is more akin to the Mie–Grüneisen formulation that we have used in our previous work, retaining the complete
quasi-harmonic term separately from the cold contribution.

4 T E S T S O F T H E T H E O RY

One of the most important developments since the work of Davies (1974) is that the theory may now be tested extensively against experimental
data and first principles calculations. We will examine the choice of finite strain variables (Eulerian versus Lagrangian), the degree of anisotropy
in the Grüneisen and η tensors, the choice of volume dependence of the Grüneisen parameter, q, and ηS , and the choice of the form of the
vibrational density of states.

The rationale for testing our thermodynamic theory against first principles calculations, as well as experiments, is three-fold:

(i) first principles calculations are independent of experiments (no free parameters) and yet agree well with measurements where compar-
isons are possible;

(ii) these quantum mechanical calculations are completely independent of the thermodynamic development outlined above and free of the
approximations that underly it, such as finite strain theory;

(iii) first principles calculations have explored the behaviour of the shear modulus and the Grüneisen parameter over a much wider range
of pressure and temperature than experiments.

The differences between alternative finite strain formulations or different approximations for q only become apparent at large compressions.
Also for this reason, we focus our tests of these aspects of our thermodynamic development on phases of the lower mantle.
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Figure 1. (Bold lines) Eulerian third-order finite strain versus (thin lines) Lagrangian third-order finite strain expressions compared with (symbols) first
principles results from Karki et al. (1997) for the isothermal bulk modulus (K) and the shear modulus (G) of MgSiO3 perovskite. For the purposes of this
comparison, the finite strain curves were calculated using values of K 0 = 259, G 0 = 175, K ′

0 = 4.0 and G ′
0 = 1.7 taken from the first principles study.

4.1 Finite strain variables

The Eulerian finite strain expansion is substantially superior to the Lagrangian (Fig. 1) in representing the bulk and shear moduli. First
principles theoretical results for MgSiO3 perovskite are described by a third-order Eulerian finite strain expansion to within 1 per cent for the
shear modulus and 3 per cent for the bulk modulus. Use of the thermodynamically self-consistent expression (eqs 32 and 33) is important:
neglect of the f 2 term leads to values of the shear modulus that are 8 per cent greater at high pressure. For the bulk modulus, the third-order
expansion deviates systematically at the highest pressures indicating either a significant fourth-order term, or systematic inaccuracies in the
first principles theoretical results. The agreement with the third-order Lagrangian finite strain expansion is poor by comparison: disagreements
reach 34 and 24 per cent for shear and bulk moduli respectively at the highest pressures.

Our findings are consistent with previous studies of the equation of state. The rapid convergence of the Eulerian equation of state may
be rationalized by recognizing that for K ′

0 = 4, a value typical of a wide range of solids, the third-order term vanishes. The convergence of
the Eulerian expansion for the elastic constants may be understood in a similar way (Karki et al. 2001). The coefficients of the third-order
term vanish when

c′
i jkl0 = 7

3

ci jkl0

K0
− δ

i j
kl . (50)

Experimental and first principles theoretical values deviate from this trend by amounts that are similar to measured deviations of K ′
0 from 4. For

some minerals, the fourth-order term appears to be significant. For example, accurate description of the acoustic velocities of orthopyroxene
(Webb & Jackson 1993; Flesch et al. 1998) and of forsterite (Zha et al. 1998), require fourth-order terms in the Eulerian finite strain expansion,
although in the case of forsterite, a third-order expansion suffices within the thermodynamic stability field.

4.2 Anisotropy of γ and η tensors

Analysis of available experimental data suggests that the anisotropy of the Grüneisen tensor, when it is permitted by symmetry, is small. The
individual components of the Grüneisen tensor may be related to experimentally measured quantities via (Davies 1974):

γi j = cSi jklαkl

ρCP
. (51)

All the quantities appearing on the right-hand side are available at elevated temperature for three non-cubic mantle species: forsterite, fayalite
and corundum. For all three materials, the individual components of γ are indistinguishable within mutual uncertainty, despite substantial
anisotropy in the thermal expansivity tensor α i j and cijkl: components differ by no more than 0.2 (2), 0.3 (5) and 0.03 (26) for the three
species respectively (estimated two-sigma uncertainties in parentheses). We can understand why γ is more isotropic than either of the tensorial
quantities on the right-hand side of eq. (51) by observing that the crystallographic direction with greatest thermal expansion tends to correspond
to the direction with the softest longitudinal elastic constant.

Available experimental data suggest that anisotropy in η ijkl may be resolvable for some species and not for others (Fig. 2). There are four
cubic species for which the elastic constants have been measured at high temperature. Assuming isotropic η ijkl, with individual components
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Figure 2. Elastic moduli of cubic crystals from (symbols) experiments and (lines) finite strain theory with elements of the isotropic eta tensor given by eq. (37).
Shading represents propagated uncertainties in the calculated curves. See Table 1 for parameter values, uncertainties and experimental references.

Table 1. Anisotropic properties of cubic phases.

c11 c12 c44 c′
11 c′

12 c′
44 η11 η12 η44 Ref.

Spinel 292.2 (52) 168.7 (52) 156.5 (10) 5.59 (10) 5.69 (10) 1.44 (10) 6.5 (10) 1.0 (8) 2.7 (6) 1,2
Pyrope 298.0 (30) 107.0 (20) 93.0 (20) 5.36 (40) 3.21 (30) 1.29 (30) 2.8 (7) 0.7 (6) 1.0 (3) 3,4
Grossular 318.9 (30) 92.2 (20) 102.9 (20) 6.29 (10) 5.42 (10) 2.12 (10) 3.7 (5) −1.2 (5) 2.4 (2) 1,5
Periclase 299.0 (15) 96.4 (10) 157.1 (20) 9.05 (20) 1.34 (30) 0.84 (30) 5.4 (3) 0.7 (3) 2.3 (2) 1,4

References: 1, Anderson & Isaak (1995); 2, Yoneda (1990); 3, Sinogeikin & Bass (2002b); 4, Sinogeikin & Bass (2000); 5, Conrad et al. (1999).
Units: GPa for elastic moduli, others dimensionless. Uncertainties of last reported digits in parentheses.

given by eq. (37) and parameters from Table A1, and experimentally measured elastic moduli and pressure derivatives (Table 1), we find perfect
agreement with the high-temperature data for spinel and pyrope. For periclase, the agreement is excellent up to a temperature of approximately
1300 K, where c11 and c12 begin to show substantial curvature. For grossular, isotropic η ijkl disagrees systematically with the experimentally
determined trend. For this mineral then, anisotropy is apparently resolvable. We have determined best-fitting anisotropic values for grossular
as follows: η11 = 5.7, η12 = −2.8, η44 = 0.8, which may be compared with the isotropic values in Table 1.

4.3 Volume dependence of γ, q and η

We find that eq. (44) provides an excellent description of the volume dependence of γ that is superior to the more usual assumption q =
constant (eq. 49). We compare to first principles theoretical results of MgSiO3 perovskite and MgO periclase (Fig. 3). The first principles
results show that γ decreases with compression and that the rate of decrease itself decreases with compression. This pattern means that q
is positive and that it decreases with compression. The decrease in q with compression is significant. If we assume that q is constant, we
underestimate γ by 20 per cent at 25 per cent compression. Previous theoretical and experimental studies have also found that q decreases with
compression (Agnon & Bukowinski 1990; Speziale et al. 2001). It is worth emphasizing that the finite strain formulation (eq. 44) requires no
additional free parameter to describe the volume dependence of γ and q beyond their values in the natural state.

To our knowledge, the volume dependence of η ijkl has not previously been analysed. For isotropic η, the volume dependence of ηV is
specified by the volume dependence of γ and q, because ηV = γ q. We find that (eq. 46) is able to reproduce the influence of compression
on dG/dT as determined by first principles calculations (Fig. 4). In contrast, if we assume that ηS is a constant, or that it is proportional to
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approximation for MgSiO3 perovskite (top) and MgO periclase (bottom). Bold lines show the Grüneisen parameter and thin lines show q. First principles results
are at 1000 K from (circles) Karki et al. (2000b) and (squares) Oganov & Dorogokupets (2003a) for periclase, and (circles) Karki et al. (2000a) and (squares)

Oganov et al. (2001a) for perovskite. For perovskite, V 0 = 168.27Å
3

per unit cell (Karki et al. 2000b), and for periclase V 0 = 77.24Å
3

per unit cell (Karki
et al. 2000b). Lines are calculated assuming the following values taken from the first principles calculations for the purposes of this comparison: γ 0 = 1.63
and q 0 = 1.7 for perovskite, and γ 0 = 1.60 and q 0 = 1.3 for periclase. In the case of periclase, the two first principles calculations disagree in the value of γ 0

but show the same functional form.

ηV , we find very poor agreement with the first principles results. The simple assumption that ηS scales with the volume, adopted by Stixrude
& Lithgow-Bertelloni (2005), is remarkably successful, at least in the case of MgSiO3 perovskite, in capturing the behaviour of the full
theory.

4.4 Vibrational density of states

A number of studies have shown that the Debye model is a useful approximation even when it does not capture the form of the vibrational
density of states in detail (Stixrude & Bukowinski 1990; Jackson & Rigden 1996; Shim & Duffy 2000). The reason that such a simple
one-parameter description can be successful is that thermodynamic properties do not depend on the vibrational density of states, but on
integrals over the vibrational spectrum. As a result, many thermodynamic properties are not sensitive to the detailed form of the vibrational
density of states, except at very low temperatures.

The idea that thermochemical properties are increasingly insensitive to the form of the vibrational density of states with increasing
temperature is captured by the theory of Barron et al. (1957), which yields the exact expression for the quasi-harmonic vibrational entropy
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per atom,

S = 3R

{
4
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θ (0)

T
+ 3B2

10 · 2!

[
θ (2)

T

]2

− 9B4

28 · 4!

[
θ (4)

T

]4

+ . . .

}
, (52)

where Bn are the Bernoulli numbers and the nth moment of vibrational density of states θ (n) is defined in such a way that all moments are equal
for a Debye spectrum. Similar expressions for the internal energy (enthalpy) and heat capacity show the expected approach to the Dulong–Petit
limit as 1/T → 0; only the entropy depends on the vibrational density of states to lowest order. For θ (n) ≈ 750 K and T ≈ 1000 K, the T −2

and higher order terms account for less than 1 per cent of the total.
We have found that thermochemical properties of many mantle phases differ insignificantly from those given by a Debye spectrum from

room temperature to mantle temperatures (Fig. 5). The comparison is based on an effective Debye temperature that is fit to the experimental
determination of the entropy at 1000 K and can thus be related to θ (0). Differences between the Debye and experimentally determined entropy
are less than 1.5 J mol−1 atom−1 K−1 for minerals with very non-Debye-like vibrational spectra (e.g. anorthite) to better than experimental
precision for Debye-like solids such as corundum.

More complex models of the vibrational density of states may provide a better match to thermochemical data, but at the cost of additional
free parameters that become increasingly uncertain at elevated pressure. The Kieffer (1980) model generally, although not always, matches
data better than the one-parameter effective Debye model (Fig. 5). In this study, we will prefer the simpler effective Debye model, although
our approach will accommodate additional experimental information on the full vibrational density of states as this continues to be gathered
(Chopelas 1999; Chaplot et al. 2002).

5 M O D E L A N D PA R A M E T E R E S T I M AT I O N

Based on our theoretical development and discussion, we explore further the properties of the following thermodynamic model of mantle
species: the fundamental relation (eq. 20) truncated after the cubic term for an isotropic material with vibrational density of states approximated
by the Debye model and volume dependence given by the finite strain expansion (eq. 41). The equation of state, and bulk and shear moduli
are calculated via strain derivatives of the fundamental relation (eqs 21, 32 and 33).

The model contains eight material-specific parameters that are required to compute physical properties: V 0, K 0, K ′
0, θ 0, γ 0, q 0, G 0, G ′

0

and ηS0. Most or all of these parameters are now constrained by experimental measurements for at least one species of most major mantle
phases. In order to compute phase equilibria, F0 and regular solution parameters will also be required and will be discussed at length in
Paper II.

We perform an iterative global least-squares inversion of experimental data for the values of the parameters of each mantle species
(Table A1, Appendix A). We supplement experimental measurements with the results of first principles calculations for properties that have
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not yet been measured experimentally. When neither experimental nor first principles results exist, we rely on systematic relationships, some
of which are summarized in Fig. 6. The global inversion is discussed in more detail in Appendix A.

To provide a means of gauging the robustness of the model parameters determined from the global inversion, we analyse: (i) the sensi-
tivity of various experimentally measured quantities to the values of the parameters, and (ii) the physics underlying each parameter and estimates
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of their most likely values. We focus our analysis on θ 0, γ 0, q 0 and ηS0 because it is difficult to measure these directly, although, as we will
show, each may be related to commonly measured quantities. The value of these illustrations is primarily heuristic and supplements the full
global inversion.

Before proceeding with our heuristic analysis, it is worth emphasizing the importance of functional form in the construction of a
thermodynamic model. It may be tempting to describe the T dependence of the elastic moduli as a Taylor series in T because the coefficients
may be thought of as being more directly related to experimental measurements than the thermal parameters of our model. Aside from the issue
of thermodynamic self-consistency, such a series is unlikely to converge rapidly for the same reason that a Taylor series expansion in V (P ,
T ) does not: the moduli depend linearly on temperature only over a limited range of T and the P–T cross-derivative as well as higher order
derivatives are non-zero. So, the choice of temperature derivatives of K and G as model parameters would necessitate at least four additional
model parameters to describe the non-linearity of the temperature dependence and the non-zero pressure–temperature cross-derivatives. We
have argued above and show further below that our formulation is able to capture both of these features of the P and T dependence of the
moduli without recourse to additional parameters. Our more compact formulation leads to extrapolation beyond the experimentally measured
regime that, while necessarily uncertain, is at least physically reasonable and non-divergent, as we have argued above.

5.1 Parameter sensitivity

We anticipate that thermochemical quantities (CP ,S, H ) will be most sensitive to θ 0 as can be seen from the theory of Barron et al. (1957;
e.g. eq. 52). Dependence on γ 0 and q 0 will be much weaker because their only influence is via the effect of thermal expansion on θ and on the
correction from isochoric to isobaric heat capacity. Thermal expansion will be most sensitive to γ 0 as can be seen from eq. (21) and realizing
that, at temperatures where the thermal expansion is large, the thermal energy is near the Dulong–Petit limit. Thermal expansion will also
be influenced by q 0, because this parameter controls the rate at which γ varies upon expansion. High-temperature measurements of the bulk
modulus are also sensitive to q 0 (eq. 32). All of the properties discussed so far are independent of the value of ηS0 which influences only
shear elasticity (eq. 33). The shear modulus at elevated temperature is most sensitive to ηS0, and secondarily to γ 0 and q 0, and G ′

0. These
anticipated relationships are borne out by numerical calculation (Fig. 7).

5.2 Analysis of likely parameter values

We anticipate the value of θ 0 via eq. (52). We expect that the effective Debye temperature found by fitting to experimental measurements
of the entropy should be very similar to θ (0), which may be independently estimated from models of the vibrational density of states. For a
range of values of the vibrational entropy from 33 (stishovite) to 46 J mol−1 atom−1 K−1 (fayalite, assuming R ln 5 magnetic entropy per Fe),
we anticipate values of θ ≈ 1000–600 K. This range is similar to that found in previous studies of mantle minerals (Watanabe 1982; Ita &
Stixrude 1992).

The Grüneisen parameter is, from eq. (38),

γ = αKT

CV ρ
. (53)

We may anticipate values of γ 0, by plotting numerator against denominator (Fig. 8). The uncertainties in the numerator are sufficiently large
that the approximation CV ≈ 3R per atom does not increase the error significantly. From this analysis, we anticipate values that fall between
0.5 and 1.5, and uncertainties of order 0.1. This range is very similar to the range of Grüneisen parameters that have been proposed in the
literature for mantle phases (Watanabe 1982; Ita & Stixrude 1992).

The value of q 0 may be approximated (Anderson 1995):

q ≈ δT − K ′
0 + 1, (54)

where δT = −(αK )−1(∂K/∂T )P . Plotting δT against K ′
0, we anticipate values of q falling mostly within the range 1–3 (Fig. 8). Our analysis

shows that the precision of existing experimental data is sufficient to distinguish the value of q 0 from unity for many mantle species. The
expectation that q ≈ 1 is based on Hugoniot and other high-pressure data, primarily on materials atypical of the mantle (Carter et al. 1971;
Boehler & Ramakrishnan 1980). As Shim & Duffy (2000) have pointed out, static or dynamic equation of state data must cover a wide range
of P–T conditions in order to constrain q effectively. Values of q 0 > 2 have been found in previous analyses of shock wave data of stishovite
(Luo et al. 2002), and static P–V –T data for MgSiO3 perovskite (Stixrude et al. 1992; Shim & Duffy 2000) and ringwoodite (Katsura et al.
2004).

The value of ηS0 is most simply estimated by
ηS

γ
≈ δG − G ′

0, (55)

where δG ≡ −(∂G/∂T )P (αKT )−1. From a plot of δG versus G ′
0, we anticipate values of the ratio that fall mostly in the range 1–3 (Fig. 8). As

the equation shows, positive values mean that the non-dimensional temperature derivative of the shear modulus exceeds the non-dimensional
pressure derivative. On this basis, the shear modulus may be considered to be more sensitive to temperature than to pressure, i.e. ηS/γ >

0 means that δG = −(G/K ) (∂ ln G/∂ ln V )P is greater than G ′ = −(G/K ) (∂ ln G/∂ ln V )T . This pattern is similar to the bulk modulus
for which values of q > 1 also reveal a greater sensitivity to temperature than to pressure, i.e. that δT = −(∂ ln K/∂ ln V )P is greater than
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Figure 7. Experimental determinations of thermal expansion (Bouhifd et al. 1996), thermochemical quantities (Robie & Hemingway 1995), adiabatic bulk
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K ′ = −(∂ ln K/∂ ln V )T . The ability to compare the relative magnitude of temperature and pressure derivatives in this way is one advantage
of using δG as we have defined it here, rather than the alternative quantity � ≡ −(∂G/∂T )P (αG)−1, which is not as simply related to G ′.

6 A P P L I C AT I O N S

The shear wave velocity of mantle phases and its variation with temperature and composition form a foundation for interpretation of
seismological observations in terms of the thermal and chemical state of the mantle. We present estimates of each of these quantities for each
of the major mantle phases. Because this paper focuses on physical properties rather than phase equilibria and for the purposes of illustration,
we have simplified the chemical compositions of the phases as they would exist in the mantle. We have assumed that each phase has constant
composition with depth and we have considered only the most abundant end-members. Phases with Mg-Fe solid solution are assumed to have
X Fe = 0.1. We neglect the Al content of all phases except for garnet. We neglect the Ca content of garnet and majorite. We draw separate
curves for garnet (py-al solid solution) and majorite (Al-free Mg-Fe metasilicate composition) to illustrate the influence of the depth-dependent
change in composition that the garnet–majorite phase undergoes as it dissolves the pyroxenes. Uncertainties are formally propagated from
those shown in Table A1.

In the upper mantle and transition zone, we find that the change in shear wave velocity as a result of phase transformations exceeds the
influence of pressure on the velocity of any one phase (Fig. 9). This confirms the essential role that phase transformations play in producing
the anomalous velocity gradient of the transition zone. Comparison to seismological observations confirms the standard model of a homo-
geneous peridotite-like composition that produces a series of phase transformations with increasing depth: the velocity of the upper mantle
is spanned by that of olivine, opx and cpx, and garnet, in the shallow transition zone (410–520 km) by cpx, majorite and wadsleyite, and
in the deep transition zone (500–660 km) by Ca-perovskite, ringwoodite and majorite. Velocity in the lower mantle is spanned by those of
Mg-perovskite, magnesiowüstite and Ca-perovskite. Ca-perovskite is the fastest major mineral in the lower mantle; its velocity is exceeded
over part of the lower mantle only by stishovite (not shown), a minor phase that is not expected to be present globally. We caution that the first
principles calculations upon which our Ca-perovskite results are based on a cubic ground state structure, an assumption not supported by other
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values given by Anderson & Isaak (1995) at 1000 K or at the highest temperature reported if this is less than 1000 K. Solid symbols with error bars are our
own summary of experimental data as follows: αKT estimated as 〈α〉KT (〈T 〉) where 〈α〉 is the average value of α over a range of temperature from room
temperature to 1000 K or the maximum temperature reported, with midpoint 〈T〉 and KT from either P–V –T equation of state data or ultrasonic data in which
case the appropriate adiabatic to isothermal correction is performed. δT from P–V –T equation of state studies or from ultrasonic data in which case we apply
the correction δT ≈ δ S + γ , where γ is from Table A1. δG from ultrasonic measurements of G(T ). Error bars based on a nominal uncertainty of 10 per cent
in αKT , and reported uncertainties in dK/dT and dG/dT .
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Figure 9. Shear wave velocities calculated according to our theory and the parameters in Table A1 along a typical geotherm for (bottom) the whole mantle
and (top) an expanded depth scale to show details of the upper mantle. Uncertainties are propagated from parameter uncertainties shown in Table A1. We show
(dashed) the shear wave velocity in PREM (Dziewonski & Anderson 1981) for comparison. Phases are shown over the approximate depth range that they are
expected to occur in the mantle. Solid solutions are assumed to consist of Mg and Fe end-members with X Fe = 0.1. Garnet (0.9py + 0.1al) and majorite (mgmj +
2/15al − 2/15py) components are shown separately to emphasize the large variations in composition with depth expected for the garnet–majorite phase. The
geotherm along which the calculations are performed is the adiabatic portion of that given by Stacey (1992): we have removed the thermal boundary layers by
extending the adiabatic portion smoothly to the surface (1573 K) and to the core–mantle boundary (3015 K).

theoretical calculations (Stixrude et al. 1996; Akber-Knutson et al. 2002; Magyari-Kope et al. 2002) or experiment (Shim et al. 2002; Ono
et al. 2004). Knowledge of the shear wave velocity of Ca-perovskite is essential for evaluating the seismic visibility of Ca as a chemical
component in the lower mantle, and its potential influence on radial and lateral structure (Karato & Karki 2001).

One of the most remarkable patterns in the temperature and compositional derivatives is the large difference between garnet–majorite
and other phases (Fig. 10). The compositional derivative for garnet and majorite (and cpx) is only a third that of olivine and opx, while the
temperature derivatives of garnet and majorite are approximately half that of olivine and opx. The contrast in compositional derivatives can
be traced directly to the shear modulus of Mg and Fe end-members of the phases: while the shear modulus of fayalite is 40 per cent less
than that of forsterite, that of almandine is actually slightly greater than that of pyrope, partially offsetting the effect of the greater density of
almandine on VS . The contrast in temperature derivatives can be related to experimental measurements of dG/dT of the dominant species: 8
and 9 MPa K−1 for pyrope and majorite, respectively, compared with 15 MPa K−1 for forsterite (Anderson & Isaak 1995; Sinogeikin & Bass
2002b). One consequence of the unusual properties of garnet is that the influence of temperature and iron content will be very sensitive to
bulk composition. More garnet-rich compositions, such as basalt, will be much less sensitive to variations in temperature or iron content than
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Figure 10. Variation of the shear wave velocity with respect to (top) temperature and (bottom) composition calculated from our theory and parameters of
Table A1. Uncertainties are propagated from parameter uncertainties shown in Table A1.

garnet-poor bulk compositions such as harzburgite. The dependence of the shear modulus of garnet on composition has been discussed in
terms of the unique coordination state of Mg/Fe in garnet (eightfold) as compared with most other mantle minerals (sixfold) (Jackson et al.
1978; Leitner et al. 1980).

7 C O N C L U S I O N S

When Davies (1974) developed the quasi-harmonic theory of the elastic moduli, little was known experimentally of the properties of mantle
minerals at elevated pressure or temperature. The rapid growth in our knowledge in the intervening years has now made it possible for the
first time to test many of the assumptions made by Davies (1974), and in the foundational studies of Leibfried & Ludwig (1961) and Thomsen
(1972). In particular, the Eulerian finite strain description of the cold contribution, known for some time now to be unsurpassed as a description
of the equation of state, appears to perform equally well in the case of the elastic moduli, although reliable results at compressions sufficiently
large for definitive tests are still few. Thermal properties revolve around the Grüneisen parameter, γ , the volume dependence of which has
been the topic of speculation for decades. The Eulerian finite strain expansion for the vibrational frequencies appears to be able to reproduce
the proper behaviour of γ with a minimum of free parameters. The Grüneisen parameter is properly a second-rank and its strain derivative
η ijkl a fourth-rank tensor. Experimental data are currently on the verge of being able to resolve the anisotropy of these two tensors.

Another important property of the theory of Davies (1974) is that it is readily incorporated within the framework of a fundamental
thermodynamic relation. Not only the elastic moduli, but all other thermodynamic properties, including the Gibbs free energy and phase
equilibria, may be computed from a single functional form. We have illustrated here the scope of the our theory as applied to physical
properties and will illustrate further applications to phase equilibria in Paper II.
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A thermodynamically self-consistent theory of the kind we have presented is an important complement to experimental measurement
and first principles theory. Extrapolation and interpolation will always be an essential part of our understanding of the mantle because the
range of pressure, temperature and composition is so vast. Perhaps more importantly, a semi-empirical thermodynamic theory provides a
formal framework in which to view intensive studies of individual phases and species. We have sought to illustrate this aspect of the theory
via an interim synthesis of available information.
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Our estimates of the parameters and their uncertainties are given in Table A1. Values of many of the parameters are similar to those given in
Ita & Stixrude (1992) except for those phases not included in the earlier study (anorthite, spinel) and for which the values were previously
unknown (hpcpx). New to this study are values of G 0, G ′

0 and ηS0, and values of q 0 constrained by experimental measurements, as opposed
to our previous assumption that q ≈ 1 for all species. All parameter values are considered better estimates than in our previous work primarily
because of the vast expansion in the experimental and first principles theoretical database in the intervening years.

Our strategy for estimating the parameters is based on an iterative global least-squares inversion to a wide variety of experimental data.
Cases for which no experimental data exist are discussed further below. We proceed as follows, beginning from initial guesses at the values
of all parameters based on our previous studies.

V 0 is set equal to the ambient volume as measured by X-ray diffraction. Properties of fictive end-members (e.g. Fe-wadsleyite, Mg-
diopside) are linearly extrapolated from the measured range.

K 0 is set equal to the value of the isentropic bulk modulus as measured by Brillouin or ultrasonic techniques, corrected for the difference
between isothermal and isentropic values,

K0 = KS (P0, T0)[1 + α(P0, T0)γ0T0]−1, (A1)

where the correction factor is calculated self-consistently via our thermodynamic model. If Brillouin or ultrasonic measurements of K are not
available, we make use of equation of state data. We have not undertaken a re-analysis of room temperature equation of state data. Instead, we
set K 0 equal to the value of the isothermal bulk modulus reported in the experimental study.

K ′
0 is set equal to the value measured by Brillouin or ultrasonic techniques, corrected for the difference between isothermal and adiabatic

values from the isothermal pressure derivative of eq. (A1). When Brillouin or ultrasonic measurements of K ′
0 are not available, we make use

of equation of state data. In this case, it is important that the values of K 0 and K ′
0 are consistent with each other because of the well-known

trade-off between these quantities when fitting to equation of state data. If K 0 is taken from a Brillouin or ultrasonic study, we determine the
value of K ′

0 by fitting to the equation of state data while keeping the value of K 0 fixed at the Brillouin/ultrasonic value (Bass et al. 1981). If
K 0 is determined from an equation of state study, the value of K ′

0 is taken from the same fit from the same experimental study.
θ 0 is determined by requiring that the model reproduce the experimentally determined third law vibrational entropy at 1000 K, or at

the highest measured temperature if this is less than 1000 K. We account for the following non-vibrational contributions to the entropy: (i)
magnetic, assumed to be R ln 5 per Fe; and (ii) disorder, which we include for spinel and hercynite by assuming an inverse spinel fraction of
25 per cent and ideal entropy of mixing. The entropy is unmeasured for several important phases (e.g. wadsleyite, perovskite). For these, we
retain the value from our previous work (Ita & Stixrude 1992; Stixrude & Bukowinski 1993; Stixrude & Lithgow-Bertelloni 2005). We will
return in Paper II to the use of phase equilibria data to constrain θ 0.

γ 0 is determined via a least-squares fit to thermal expansion data, via eq. (21).
q 0 is determined by a least-squares fit to measurements of the bulk modulus at high temperature, via eq. (32), or, if these are not available,

to measurements of the pressure–volume–temperature equation of state, via eq. (21).
G 0 and G ′

0 are set equal to their values as determined by in situ Brillouin or ultrasonic measurements.
ηS0 is determined by a least-squares fit to measurements of the shear modulus at high temperature via eq. (33).
The global inversion is iterated to self-consistency. Iteration is necessary because some measured quantities are sensitive to more than

one parameter: for example, the thermal expansion is influenced by γ 0 and q 0 (Fig. 7), as well as K 0 and K ′
0. We have found that the inversion

converges rapidly, typically after three iterations.
We have estimated unknown parameters on the basis of systematics. We assume that K 0, γ 0, q 0, K ′

0 and G ′
0 are approximately constant

across isostructural series so that if constraints exist for one end-member of a phase, but not the others, we assume that the same values apply
to all end-members of that phase. In those cases where the entropy is known for only one species of a phase, we estimate the Debye temperature
of the other phases by scaling to the elastic Debye temperature. If K ′

0 is unknown or poorly constrained, we have assigned K ′
0 = 4.

The other systematic relationships that we have used are illustrated in Fig. 6. We use the VS density-systematic

VS ≈ a(m) + bρ (A2)

to estimate G 0 for several mantle species particular iron-bearing end-members. We have found a positive correlation between G ′ and the ratio
G/K that we use to estimate G ′

0 when necessary. This correlation, based only on mantle species, is consistent with the negative correlation
between G ′ and K/G that has been discussed in previous studies on the basis of a wide range of solids (Duffy & Anderson 1989). We note a
motivation for the relationship between G ′ and G/K that has apparently not been discussed before, via truncation of the finite strain expansion.
If we set the coefficient of the third-order term to zero in the shear modulus expansion, we find

G ′
0 = 7

3

G0

K0
+ 1, (A3)

G ′
0 = 5

3

G0

K0
, (A4)

for eqs (22) and (33), respectively. Most experimental data fall in between these two trends. Finally, we have found a significant correlation
between dG/dT and G, which we use to estimate values of dG/dT and thus ηS0 when no measurements of G at high temperature exist.
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üs

ti
te

Fe
O

12
.0

6
15

2
(1

)
4.

9
(2

)
45

5
(1

2)
1.

28
(1

1)
1.

5
(1

0)
47

(1
)

0.
7

(1
)

0.
8

(1
0)

1,
5,

62
–6

4

It
al

ic
iz

ed
en

tr
ie

s
ar

e
fr

om
sy

st
em

at
ic

s.
R

ef
er

en
ce

s:
1,

S
m

yt
h

&
M

cC
or

m
ic

k
(1

99
5)

;2
,B

as
s

(1
99

5)
;3

,A
ng

el
et

al
.(

19
88

);
4,

R
ob

ie
&

H
em

in
gw

ay
(1

99
5)

;5
,F

ei
(1

99
5)

;6
,Y

on
ed

a
(1

99
0)

;7
,F

iq
ue

te
ta

l.
(1

99
9)

;8
,A

nd
er

so
n

&
Is

aa
k

(1
99

5)
;9

,A
no

vi
tz

et
al

.(
19

93
);

10
,H

ar
ri

so
n

et
al

.(
19

98
);

11
,Z

ha
et

al
.(

19
96

);
12

,R
ob

ie
et

al
.(

19
82

);
13

,B
ou

hi
fd

et
al

.(
19

96
);

14
,Z

ha
et

al
.(

19
98

);
15

,K
ni

tt
le

(1
99

5)
;1

6,
S

in
og

ei
ki

n
et

al
.(

19
98

);
17

,Z
ha

et
al

.(
19

97
);

18
,F

ei
et

al
.(

19
92

);
19

,L
ie

ta
l.

(2
00

1)
;2

0,
Je

an
lo

z
&

T
ho

m
ps

on
(1

98
3)

;2
1,

S
in

og
ei

ki
n

et
al

.(
20

01
);

22
,M

ao
et

al
.(

19
69

);
23

,J
ac

ks
on

et
al

.(
19

99
);

24
,F

le
sc

h
et

al
.(

19
98

);
25

,T
hi

eb
lo

te
ta

l.
(1

99
9)

;2
6,

K
ru

pk
a

et
al

.
(1

98
5)

;2
7,

Ja
ck

so
n

et
al

.(
20

03
);

28
,Z

ha
o

et
al

.(
19

95
);

29
,F

ri
si

ll
o

&
B

ar
sc

h
(1

97
2)

;3
0,

H
ug

h-
Jo

ne
s

&
A

ng
el

(1
99

7)
;3

1,
H

ug
h-

Jo
ne

s
(1

99
7)

;3
2,

S
ki

nn
er

&
B

oy
d

(1
96

4)
;3

3,
L

ev
ie

n
&

P
re

w
it

t(
19

81
);

34
,Z

ha
o

et
al

.(
19

98
);

35
,H

as
el

to
n

et
al

.(
19

87
);

36
,T

ri
ba

ud
in

o
et

al
.(

20
01

);
37

,S
hi

nm
ei

et
al

.(
19

99
);

38
,H

ug
h-

Jo
ne

s
et

al
.(

19
96

);
39

,S
hi

m
et

al
.(

20
00

);
40

,W
an

g
et

al
.(

19
96

);
41

,K
ar

ki
&

C
ra

in
(1

99
8)

;4
2,

D
as

il
va

et
al

.(
19

99
);

43
,G

ie
sk

e
&

B
ar

sc
h

(1
96

8)
;4

4,
S

in
og

ei
ki

n
&

B
as

s
(2

00
0)

;4
5,

T
hi

eb
lo

te
ta

l.
(1

99
8)

;4
6,

S
in

og
ei

ki
n

&
B

as
s

(2
00

2b
);

47
,S

in
og

ei
ki

n
et

al
.(

19
97

);
48

,Z
ha

ng
et

al
.(

19
99

);
49

,O
ne

il
le

ta
l.

(1
98

9)
;5

0,
C

on
ra

d
et

al
.(

19
99

);
51

,S
in

og
ei

ki
n

&
B

as
s

(2
00

2a
);

52
,W

ei
dn

er
et

al
.(

19
82

);
53

,A
nd

ra
ul

te
ta

l.
(2

00
3)

;5
4,

L
iu

et
al

.(
19

99
);

55
,S

in
og

ei
ki

n
et

al
.(

20
04

);
56

,W
en

tz
co

vi
tc

h
et

al
.(

20
04

);
57

,S
hi

m
&

D
uf

fy
(2

00
0)

;5
8,

Fi
qu

et
et

al
.(

20
00

);
59

,K
ie

fe
r

et
al

.(
20

02
);

60
,K

ub
o

&
A

ka
og

i(
20

00
);

61
,T

ho
m

ps
on

et
al

.(
19

96
);

62
,J

ac
ks

on
et

al
.(

19
90

);
63

,J
ac

ob
se

n
et

al
.(

20
02

);
64

,S
to

le
n

et
al

.(
19

96
).

C© 2005 RAS, GJI, 162, 610–632



632 L. Stixrude and C. Lithgow-Bertelloni

Uncertainties are set to experimental uncertainties, or to the difference between different experimental values if two or more studies of
comparable probable accuracy disagree. If the full elastic constant tensor is available, we set uncertainties in G and K to the larger of quoted
experimental uncertainties, and the difference between Voigt and Reuss bounds (Watt et al. 1976). For those parameters that are determined
via least-squares fits to experimental data, the uncertainty is set to the error in the inverted parameter. For parameters that are estimated based
on systematics, we have assigned large nominal uncertainties.

C© 2005 RAS, GJI, 162, 610–632


