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In this work, we provide new examples of Anti-de Sitter black holes with a planar base manifold
in four-dimensional Critical Gravity by considering nonlinear electrodynamics as a matter source.
We find a general solution characterized by the presence of only one integration constant where,
for a suitable choice of coupling constants, we can show the existence of one or more horizons.
Additionally, we compute its nonzero thermodynamical quantities through a variety of techniques,
testing the validity of the first law of thermodynamics as well as a Smarr formula. Finally, we analyze
the local thermodynamical stability of the solutions. To our knowledge, these charged configurations
are the first example with Critical Gravity where their thermodynamical quantities are not zero.

I. INTRODUCTION

Since its introduction in the late nineties, the idea of
the Anti-de Sitter / Conformal Field Theory (AdS/CFT)
correspondence [1] has gained momentum in different
areas due to its potential to shed light on phenomena
that range from superconductivity to quantum comput-
ing. This correspondence has also generated the need for
the study of theories other than General Relativity due
to two main reasons: first, the necessity to have theo-
ries that exhibit desired symmetries and properties that
match the non-relativistic systems in the context of the
correspondence and, secondly, the possibility that these
enhanced theories may support a variety of thermody-
namically rich AdS black holes, whose holographic role
will be to introduce the non-relativistic behavior at finite
temperature.
In this context, quadratic curvature gravities have been

very successful in providing a plethora of new black hole
configurations [2–7]. A notable example within these the-
ories in 2+1 dimensions is New Massive Gravity [8], a
parity-even, renormalisable theory that, at the linearized
level, is equivalent to the unitary Fierz-Pauli theory for
free massive spin-2 gravitons, where AdS solutions have
been previously found [9, 10]. A four-dimensional ana-
logue to this theory is Critical Gravity (CG) [11], which
is a ghost-free, renormalizable theory of gravity with
quadratic corrections in the curvature1. A particular-
ity of CG is that its vacuum admits an AdS black hole
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1 In general, a theory with quadratic corrections in curvature will
propagate massive scalar and spin-2 ghost fields. In CG, the

solution given by

ds2 = −r2

l2

(

1− Ml3

r3

)

dt2 +
l2

r2
dr2

(

1− Ml3

r3

)

+
r2

l2
(

dx2
1 + dx2

2

)

, (1)

where M is an integration constant. However, as em-
phasized by the authors in [11], this solution is massless
and has a vanishing entropy. This is also highlighted in
[12, 13] in four and six dimensions, where the entropy,
as well as global conserved charges of their black holes
solutions, vanish identically.
Because of the interest of obtaining black hole solutions

that can be framed in the context of the gauge/gravity
correspondence, in this work we aim to find new AdS
black hole configurations that can be supported by CG
and exhibit non-vanishing thermodynamical properties.
To achieve this, a nonlinear electrodynamics (NLE)
source is employed [14]. The origin of NLE dates to 1912,
the year in which Mie G. explored this formalism for the
first time [15]. Some years later, in the thirties, and
motivated in part to avoid the well-known singularity of
the field of a point particle, Born and Infeld [16–18] pro-
posed new research , giving rise to the Born-Infeld (BI)
theory [19–21]. Given the complexity to carry out an
extension of BI towards solutions of nonlinear equations,
this formalism had a stage of stagnation for almost three
decades. Nevertheless, around the sixties, J. F. Plebánski
presented an outstanding work for NLE in a medium, in
which the theory is developed through an antisymmet-

relation between the coupling constants and the cosmological
constant leads to a theory in which the scalar field is zero and
the spin-2 field becomes massless and with vanishing energy.
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ric conjugate tensor Pµν (known as of Plebánski ten-
sor) and a structure-function H = H(P,Q), where P and
Q are the invariants that are formed with the antisym-
metric conjugate Plebánski tensor. Here, the structure-
function H(P,Q) is associated with the Lagrangian func-
tion L(F,G), that depends on the invariants quadratics
constructed from the Maxwell tensor Fµν , which can be
determined by a Legendre transformation. At the end
of the eighties, H. Salazar, A. Garćıa, and J. Plebánski
found solutions for the equations of NLE coupled to grav-
ity using the formalism [14], in which the BI theory ap-
pears as a special case [22]. Some of the benefits pro-
vided by the Plebánski formalism is the ability to obtain
regular black hole solutions [23–27], Lifshitz black hole
configurations that exist for any value of the dynamic
exponent z > 1 [28], and recently an exact solution of a
massive, electrically and magnetically charged, rotating
stationary black hole has been found [29–31]. In General
Relativity, NLE has been a valuable tool in order to build
exact black hole configurations, some of which exhibit
non-standard asymptotic behavior in Einstein’s gravity
or in its generalizations, as can be verified in [32–38]. It
is relevant to mention that, in these works, charged black
hole solutions that come from nonlinear theories possess
interesting thermodynamic properties [39–44]. All the
above shows NLE as an interesting and motivating study
field that we aim to explore with the addition of CG. As
such, our action of interest will be given by:

S[gµν , Aµ, P
µν ] =

∫

d4x
√
−g(LCG + LNLE) , (2)

with

LCG =
1

2κ

(

R− 2Λ + β1R
2 + β2RαβR

αβ
)

,

LNLE = −1

2
PµνFµν +H(P ) ,

where Λ is the cosmological constant. As stated above,
CG allows for the massive spin-0 field to vanish if the
coupling constants β1 and β2 are restricted to obey the
relations

β2 = −3 β1, β1 = − 1

2Λ
. (3)

Moreover, the Lagrangian density LNLE describes the
nonlinear behavior of the electromagnetic field Aµ with
field strength Fµν := ∂µAν − ∂νAµ. The introduction of
Pµν , which is an antisymmetric secondary field function
of the original field Fµν , arises from the need to establish
a relationship between standard electromagnetic theory
with Maxwell’s theory of continuous media.
The source, described by the structure function H(P )

is, of course, real and depends on the invariant formed
with the conjugated antisymmetric tensor Pµν , which is
P := 1

4PµνP
µν , . In general, the structural function also

depends on the other invariant Q = − 1
4Pµν

∗Pµν where
∗ represents the Hodge dual. Here, this invariant is zero
because we are interested in static configurations.

The field equations that result from the variation of
the action (2) are

∇µP
µν = 0, (4a)

Fµν =
∂H
∂P

Pµν = HPPµν , (4b)

Eµν := Gµν + Λgµν +KCG
µν − κTNLE

µν = 0, (4c)

where the tensors KCG
µν and TNLE

µν are defined as follows:

KCG
µν = 2β2

(

RµρR
ρ
ν − 1

4
RρσRρσgµν

)

+ 2β1R
(

Rµν − 1

4
Rgµν

)

+ β2

(

�Rµν +
1

2
�Rgµν

− 2∇ρ∇(µR
ρ
ν)

)

+ 2β1(gµν�R−∇µ∇νR),

TNLE
µν = HPPµαP

α
ν − gµν(2PHP −H) ,

with β1 and β2 given previously in (3). Note that equa-
tion (4a) represents the nonlinear version of Maxwell’s
equations, while the constitutive relations are encoded in
(4b) and Einstein’s equations are given by (4c).
These equations of motion (4a)-(4c) will lead us to find

new AdS black hole configurations in CG coupled with
non-linear electrodynamics in section II. Then, in section
III, we will show the analysis and characterization of said
solutions in terms of the maximum number of horizons.
In section IV, the thermodynamical quantities and local
stability of the solutions are calculated, and the first law
of thermodynamics as well as the Smarr formula are veri-
fied. Finally, in section V we present our conclusions and
perspectives of this work.

II. SOLUTION TO THE EQUATIONS OF
MOTION

We start the search of new AdS black hole solutions
by considering the following asymptotically AdS metric
ansatz

ds2 = −r2

l2
f(r)dt2 +

l2

r2
dr2

f(r)
+

r2

l2
(

dx2
1 + dx2

2

)

, (5)

where t ∈ (−∞,+∞), r > 0, the planar coordinates both
are assumed belong to a compact set, this is 0 ≤ x1 ≤ Ωx1

and 0 ≤ x2 ≤ Ωx2
, and the gravitational potential must

satisfy the asymptotic condition

lim
r→+∞

f(r) = 1.

In our case, we propose the structure function H, deter-
mining the nonlinear electrodynamics, to be given by

H(P ) =
(α2

2 − 3α1α3)l
2P

3κ
−2α1(−2P )1/4

lκ

+
α2

√
−2P

κ
, (6)
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where α1, α2 and α3 are coupling constants.
For the purposes of this article, we consider purely elec-

trical configurations, such that Pµν = 2δt[µδ
r
ν]D(r). If

we replace the previous ansatz in the nonlinear Maxwell
equation (4a) we obtain

Pµν = 2δt[µδ
r
ν]

M

r2
. (7)

Therefore, the electric invariant P is negative definite,
since we only consider purely electrical configurations,
which reads

P = −M2

2r4
, (8)

where M is a constant of integration related to the elec-
tric charge, and H(P ) from (6) is a real function. The
electric field is obtained from the constitutive relations
(4b), E ≡ Ftr = HpD. Using expression (6) for H(P ),
the electromagnetic field strength results in

Fµν = 2δt[µδ
r
ν]E(r)

= 2δt[µδ
r
ν]

(

rα1

lκ
√
M

− α2

κ
− l2M

(

3α1 α3 − α2
2

)

3κ r2

)

.

(9)

Notice that in order to recover the AdS spacetime asymp-
totically, the cosmological constant must take the follow-
ing value,

Λ = − 3

l2
. (10)

Let us bring our attention to the fact that the difference
between the temporal Et

t and radial diagonal Er
r compo-

nents of the mixed version of Einstein’s equations (4c) is
proportional to the following fourth-order Cauchy-Euler
ordinary differential equation

r4f (4) + 12r3f ′′′ + 36r2f ′′ + 24rf ′ = 0. (11)

Therefore, the solution of the gravitational potential is

f (r) = 1− C1
l

r
+ C2

l2

r2
− C3

l3

r3
, (12)

where the fourth integration constant is fixed to comply
with the asymptotic behaviour limr→+∞ f(r) = 1. Ad-
ditionally, if we replace the expressions in (12) and (8)
in the equations of motion (4c) we obtain an equation to
determine HP , which can be later integrated to obtain
H(P ), given previously in (6). Finally, the remaining
equations of motion are satisfied if the previous integra-
tion constants Ci’s from (12) are fixed in terms of the
charge-like parameter M through the structural coupling
constants as follows

C1 = α1

√
M , C2 = α2M , and C3 = α3M

3/2 , (13)

where the αi’s are in the appropriate units in order to
the integration constants Ci’s be dimensionless. The ad-
dition of the NLE yields to a rich structure for the metric

function f obtained previously in (12)-(13), where the
uncharged case is recovered when α1 = α2 = 0. This
also shows that the linear Maxwell field scenario (that
is H(P ) = P ) is not allowed, which reinforces the ne-
cessity to explore other charged theories such as NLE.
Moreover, from a physical perspective, this new struc-
ture for the metric function f constructed via CG and
NLE (2), will allow us to explore solutions with different
numbers of horizons, in addition to nonzero thermody-
namic quantities, as we will see bellow. These solutions
are, to our knowledge, the first example of solutions in
four-dimensional CG where their thermodynamic param-
eters do not vanish.

III. ANALYSIS OF THE SOLUTIONS

We have established that the introduction of non-linear
electrodynamics when considering CG, results in AdS so-
lutions of the form (5) where

f (r) = 1− α1

√
M

l

r
+ α2M

l2

r2
− α3M

3/2 l
3

r3
, (14)

provided that H(P ) and Λ are given by (6) and (10)
respectively. However, this set of expressions only rep-
resents a black hole solution if a horizon can be formed,
that is, if there exists rh > 0 such that f(rh) = 0.
To this effect, in the following subsections, we study

the conditions in which eq. (14) can vanish, through the
analysis of its asymptotic behavior as well as its maxima
and minima.
First, let us notice that when r → +∞, f(r) will

approach 1 asymptotically and, in this regime, f(r) ≃
1 − α1

√
M l

r . As a result, the sign of α1 will deter-
mine whether the function f(r) approaches the horizontal
asymptote from above or from below. Next, let us ob-

serve that when r → 0+, f(r) ≃ −α3M
3/2 l3

r3 , that is,
the sign of α3 will determine if the function f(r) starts
increasing from −∞ or decreasing from +∞ in the region
r ∈ (0,+∞).
Moreover, we can perform an analysis of the extreme

values of f(r). From the calculation of f ′(r) we find that
f(r) admits two extreme values which are located at

rext i =

√
M
(

α2 ±
√
α2

2 − 3α1 α3

)

l

α1
, (15)

where the nature of these extreme values (whether they
are a maximum or a minimum) will depend on the sign
of their evaluation in f ′′(r), that is

f ′′(rext i) = ± 2α4
1

√

α2
2 − 3α1α3

(
√

α2
2 − 3α1α3 ± α2)4Ml2

, (16)

with i = {1, 2}. Here, rext1 (resp. rext2) is associated
with positive (resp. negative) sign in equations (15) and
(16). Let us notice that from eqns. (15)-(16), the exis-
tence of real extreme values is limited to the fulfillment
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of the condition

α2
2 − 3α1α3 > 0. (17)

At this point, we are ready to analyze each case indepen-
dently.

A. Black holes with one horizon: The case α1 < 0
and α3 > 0

As previously mentioned, one can start by analyz-
ing the asymptotical behavior of the function f(r) in
eq. (14). If one considers the limit r → 0+, the dom-

inating term of f(r) is −α3M
3/2 l3

r3 . Assuming M > 0
and r > 0, then it is clear to see that for α3 > 0,
limr→0+ f(r) = −∞. On the other hand, if we ana-
lyze the regime r → +∞, we note that, in this limit,
the dominant term of f(r) is 1− α1

√
Ml/r which shows

that, as r increases, the function f(r) will asymptotically
approach a horizontal asymptote f(r) = 1. In short, for
the case α3 > 0, considering only positive values for r,
the function f(r) starts in the fourth quadrant and it
increases for small values of r, since the function f(r)
asymptotically approaches the value of 1 as r approaches
infinity, it must cross the horizontal axis, ensuring the
existence of an event horizon rh > 0. Moreover, if we
consider α1 < 0, the function f(r) will asymptotically
approach the horizontal asymptote f(r) = 1 from above.
Also, after analyzing the first and second derivatives of
f(r), we note that the choice for the sign of α1 < 0 and
α3 > 0 will result in the function f(r) displaying an ab-
solute maximum in the regime r > 0, and the existence
of a single horizon, regardless of the sign of α2, as seen in
Fig. 1. This analysis is deeply studied in the Appendix
A1.

FIG. 1. Gravitational potential f(r) associated to black holes
with a single horizon when α1 < 0, α3 > 0.

B. Black holes with up to two horizons: The case
α3 < 0

On the contrary, when α3 < 0, the gravitational po-
tential f(r) is initially decreasing in the region r > 0,
one can face three scenarios: having two horizons, the
extremal case of one horizon, or no horizon at all, which
does not represent a black hole. Landing on one case
or another depends on the relations between α1, α2 and
α3. Eq.(14) will represent the gravitational potential of
a black hole only provided that

4α3
1α3 − α2

1α
2
2 − 18α1α2α3 + 4α3

2 + 27α2
3 ≤ 0. (18)

When the strict inequality is met, the solution will have
two horizons (where the minimum f(rmin) < 0 is situated
at rmin > 0). Otherwise, when the equality is met, the
solution will correspond to an extremal configuration, in
which the minimum of f(re) = 0 is located at re > 0.
Moreover, according to eqn. (16), when α1 > 0, the
function f(r) will showcase a minimum; on the other
hand, when α1 < 0, the function f(r) will have both a
minimum and a maximum, as seen in Fig. 2. This study
is analyzed in Appendix A2.

C. Black holes with up to three horizons: The case
α1 > 0 and α3 > 0

Finally, when we consider the case α1 > 0 and α3 >
0. For very small but positive values of r, we notice
that the function f(r) is increasing from −∞ while, for
large values of r (that is r → +∞), the function f(r)
approaches the value of 1 from below. This ensures the
existence of at least one horizon (in the region r > 0).
However, under certain circumstances we observe that
this case can admit up to three horizons, exhibiting one
maximum and one minimum in the region r > 0. The
conditions that will determine which case we will land
in are detailed in the Appendix, but let us now state,
in advance, that when the conditions α1 > 0, α2 > 0,
α3 > 0 and α2

2 − 3α1α3 > 0 are met, we will have a
solution with three horizons. In Fig. 3, we show examples
of both cases for clarity. However, it is interesting to
remark that, this case also admits two horizons when the
maximum corresponds to the internal horizon or when
the minimum corresponds with the outer horizon, as seen
in Fig. 5. This scenario is fully explored in the Appendix
A3.

IV. THERMODYNAMICS AND LOCAL
STABILITY OF THE SOLUTION

Given the structure of these new nonlinearly charged
black hole solutions in four dimensions, it is interesting
to explore their thermodynamics. As a first step, we will
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FIG. 2. The graphs represent the gravitational potential f(r)
when having a minimum. The black graphs represent two-
horizons black holes and the red graphs represent the extremal
configurations. Top: f(r) when α1 > 0, α3 < 0. Bottom: f(r)
when α1 < 0, α3 < 0.

consider the electric charge which reads

Qe =

∫

dΩ2

(r

l

)2

nµuνPµν =
MΩ2

l2
=

Ω2r
2
h

ζ2l4
, (19)

where rh is the location of the event (or outer) horizon

which can be expressed as rh = ζ
√
Ml, where ζ is a root

of the cubic polynomial

ζ3 − α1ζ
2 + α2ζ − α3 = 0; (20)

Ω2 is the finite volume of the compact planar base man-
ifold given by

∫

dx1dx2 =
∫

dΩ2 = Ω2 = Ωx1
Ωx2

, while
nµ and uν are the unit spacelike and timelike normals to
a sphere of radius r given by

nµ :=
dt√−gtt

=
l

r
√
f
dt, uµ :=

dr√
grr

=
r
√
f

l
dr. (21)

FIG. 3. Gravitational potential f(r) associated to black holes
when α1 > 0, α3 > 0. Top: solution with a single horizon
when the condition α2 > 0, α2

2 − 3α1α3 > 0 is not met.
Bottom: solution with three horizons when the condition
α2 > 0, α2

2 − 3α1α3 > 0 is met.

As a first step to calculate the electric potential we
must determine the 4-potential Aµ. We achieve this
by integrating eq. (9) and taking into account that
Fµν = 2∂[µAν]. As a result the only non-zero compo-
nent of the 4-potential is given by

At(r) =
r2α1

2
√
Mlκ

− α2 r

κ
+

l2M
(

3α1 α3 − α2
2
)

3κ r
, (22)
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where the integration constant in our case is null, and
the electric potential 2 is given by:

Φe = −At(r)
∣

∣

∣

r=rh
= − 3α1 r

2
h

2
√
Mlκ

+

(

α2
1 + α2

)

rh

κ

− α1 α2

√
Ml

κ
+

l2Mα2
2

3κ rh
,

=
rh
κ

(

α2 + α2
1 −

3

2
α1ζ

− α1 α2

ζ
+

1

3

α2
2

ζ2

)

. (23)

On the other hand, to compute the entropy we will con-
sider Wald’s formula [45, 46] which, in our case, yields
to

SW :=−2π

∫

H

d2x
√

|h|
(

δLgrav

δRµνσρ
εµν εσρ

)

,

=
2
(

3α1

√
Mrh − 2α2Ml

)

πΩ2

3 κ l
,

=
2Ω2π

κ

(rh
l

)2
(

α1

ζ
− 2α2

3ζ2

)

, (24)

where

δLgrav

δRαβγδ
=

1

4κ

(

gαγgβδ − gαδgβγ
)

+
β1

2κ
R
(

gαγgβδ − gαδgβγ
)

+
β2

4κ

(

gβδRαγ − gβγRαδ − gαδRβγ + gαγRβδ
)

,

with β1 and β2 subject to (3), and the integral is evalu-
ated on a 2-dimensional spacelike surface H (the bifurca-
tion surface) characterized by the fact that the timelike
Killing vector ∂t = ξµ∂µ vanishes, |h| denotes the deter-
minant of the induced metric on H , εµν represents the
binormal antisymmetric tensor constructed via the wedge
product of the unit normal vectors nµ and uµ from (21),
normalized as εµνε

µν = −2. Additionally, the Hawking
temperature takes the form

T :=
k

2π

∣

∣

∣

r=rh
=

3rh
4πl2

− α1

√
M

2πl
+

α2M

4πrh
,

=
rh
4πl2

(

3− 2α1

ζ
+

α2

ζ2

)

, (25)

where k is the surface gravity which reads

k =

√

−1

2
(∇µξν) (∇µξν).

Finally, to calculate the mass of these charged AdS
black hole configurations we will consider the approach

2 In this work we have used the same definition of the electric
potential as [42–44].

described in [47, 48], corresponding to an off-shell pre-
scription of the Abbott-Desser-Tekin (ADT) procedure
[49–51]. The choice of this method to calculate conserved
charges is ideal for CG due to the presence of quadratic
curvature terms in its gravitational action.
The main elements of the quasilocal method are the

surface term

Θµ = 2
√−g

[

(

δLgrav

δRµαβγ

)

∇γδgαβ − δgαβ∇γ

(

δLgrav

δRµαβγ

)

+
1

2

(

δLNLE

δ (∂µAν)

)

δAν

]

, (26)

and the Noether potential

Kµν =
√
−g

[

2

(

δLgrav

δRµνρσ

)

∇ρξσ − 4ξσ∇ρ

(

δLgrav

δRµνρσ

)

−
(

δLNLE

δ (∂µAν)

)

ξσAσ

]

. (27)

With all the above, using a parameter s ∈ [0, 1], we
interpolate between the charged solution at s = 1 and
the asymptotic one at s = 0, resulting in the quasilocal
charge:

M(ξ) =

∫

B

d2xµν

(

∆Kµν(ξ)− 2ξ[µ
∫ 1

0

dsΘν]

)

,

where ∆Kµν(ξ) ≡ Kµν
s=1(ξ)−Kµν

s=0(ξ) is the difference of
the Noether potential between the interpolated solutions.
For this particular case the mass reads

M =
α1α2M

3
2Ω2

9lκ
=

α1α2r
3
hΩ2

9l4κζ3
. (28)

Notice that for the Wald entropy SW (24), as well as the
mass M (28), the presence of the coupling constants α1

and α2 is providential, reinforcing the importance of the
non-linear electrodynamic as a matter source with this
gravity theory. In fact, when α1 = α2 = 0, the vector
potential At(r) (22) vanishes, recovering the well known
four-dimensional Schwarzschild- AdS black hole with a
planar base manifold in CG, whose extensive thermody-
namical quantities M and SW are null, while the Hawk-
ing Temperature is T = 3rh/(4πl

2).
Just for completeness, from eqns. (28), (24) and (19)

we have:

δM =
α1α2r

2
hΩ2

3l4κζ3
δrh,

δSW =
4Ω2πrh
κl2

(

α1

ζ
− 2α2

3ζ2

)

δrh,

δQe =
2Ω2rh
ζ2l4

δrh,

and together with the electric potencial Φe (23) as well
as the Hawking temperature T (25), a first law of the
black holes thermodynamics

δM = TδSW +ΦeδQe, (29)
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arises. Together with the above, through the thermody-
namical parameters (19), (23)-(25), we can express the
mass (28) as a function of the extensive thermodynami-
cal quantities SW and Qe in the following form

M(SW ,Qe) =

√
6
√
κSW

3/2
(

3 ζ2 − 2α1ζ + α2

)

12
√
Ω2π3/2

√
3α1ζ − 2α2 lζ

+
Q3/2

e l2ζΨ

9
√
Ω2κ

, (30)

with

Ψ = 6α2 + 6α2
1 − 9α1ζ −

6α2α1

ζ
+

2α2
2

ζ2
, (31)

where it is straightforward to verify that the intensive
parameters

T =

(

∂M
∂SW

)

Qe

, Φe =

(

∂M
∂Qe

)

SW

,

are consistent with the expressions (23) and (25) (where
the subindices stand for at constant electric charge Qe,
and at constant entropy SW respectively). Additionally,
under a rescaling with a nonzero parameter λ, equation
(30) becomes

M(λSW , λQe) = λ
3
2M(SW ,Qe),

yielding to a four-dimensional Smarr formula [52]

M =
2

3
(TSW +ΦeQe) , (32)

which corresponds to a particular case of the higher-
dimensional situation [40]

M =

(

D − 2

D − 1

)

(TSW +ΦeQe) , (33)

where D is the dimension of the space-time, highly ex-
plored in [53–55].
Given these thermodynamical quantities, it is inter-

esting to study this system under small perturbations
around the equilibrium. In our case, we will consider the
grand canonical ensemble, where the intensive thermody-
namical quantities are fixed. With this, we can express
the entropy, mass, and charge in functions of T and Φe

in the following form

SW =
32

3

l2T 2Ω2π
3ζ2 (3α1ζ − 2α2)

(3 ζ2 − 2α1ζ + α2)
2
κ

, (34)

Qe =
36Φ2

eκ
2Ω2

Ψ2ζ2l4
, (35)

M =
64

9

l2T 3Ω2π
3ζ2 (3α1ζ − 2α2)

(3 ζ2 − 2α1ζ + α2)
2 κ

+
24Φ3

eκ
2Ω2

Ψ2ζ2l4
. (36)

With this information, we are in a position to determine
the local thermodynamical (in)stability of this charged
black hole solution under thermal fluctuations through
the behavior of the specific heat CΦe

, given by

CΦe
=

(

∂M
∂T

)

Φe

= T

(

∂SW

∂T

)

Φe

=
64

3

l2T 2Ω2π
3ζ2 (3α1ζ − 2α2)

(3 ζ2 − 2α1ζ + α2)
2 κ

. (37)

Here we observe that for T ≥ 0 or in the same way,

Ψ1 := 3ζ2 − 2α1ζ + α2 ≥ 0, (38)

the specific heat becomes non-negative when

Ψ2 := 3α1ζ − 2α2 ≥ 0, (39)

which can be interpreted as a locally stable configura-
tion. Nevertheless, it is worth pointing out that, to have
a real and well-defined mass according to the expression
(30) as well as specific heat (37), only the strict inequal-
ities from (38) and (39) are considered . Therefore, here
we can conclude that the introduction of the nonlinear
electrodynamics to the CG action induces rich thermo-
dynamical properties. The comment on stability above
is consistent with the analysis of the Gibbs Free Energy
G(T,Φe) = M− TSW − ΦeQe, given by

G(T,Φe) = −32

9

l2T 3Ω2π
3ζ2 (3α1ζ − 2α2)

(3 ζ2 − 2α1ζ + α2)
2 κ

(40)

− 12Φ3
eκ

2Ω2

Ψ2ζ2l4
,

where its Hessian matrix Hab := ∂a∂bG(T,Φe), with
a, b ∈ {T,Φe}, satisfies the conditions

HTT = −64

3

l2TΩ2π
3ζ2 (3α1ζ − 2α2)

(3 ζ2 − 2α1ζ + α2)
2
κ

≤ 0,

HΦeΦe
= −72Φeκ

2Ω2

Ψ2ζ2l4
≤ 0,

|Hab| = HTTHΦeΦe
− (HTΦe

)
2

=
1536Ω2

2 T π3 (3α1ζ − 2α2)κΦe

l2 (3 ζ2 − 2α1ζ + α2)
2
Ψ2

≥ 0,

if T,Φe ≥ 0, this is if (38)-(39) and

Ψ =
α1α2

ζ
− Ψ1Ψ2

ζ2
≥ 0, (41)

hold, where Ψ was defined previously in (31) and in order
to have a well-defined Gibbs free energy (40), we consider
only the strict inequality from (41). As an example, for

ζ = 1, which implies that rh =
√
Ml, we have that the

strict inequalities (38)-(39) and (41) are satisfied when
the constants α1 and α2 belong to the region R repre-
sented in the Figure 4.
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FIG. 4. Representation of the region R, where the constants
α1 and α2 satisfy the strict inequalities (38)-(39) and (41)
with ζ = 1.

Additionally, it is interesting to note that for this new
charged black hole, we can analyze its response under
electrical fluctuations, represented by the electric per-
mittivity ǫT at a constant temperature, which reads as
follow:

ǫT =

(

∂Qe

∂Φe

)

T

=
72Φeκ

2Ω2

Ψ2ζ2l4
,

which is a non-negative quantity if the strict inequality
(41) holds, ensuring local stability [39, 56].

V. CONCLUSIONS AND DISCUSSIONS

In this work we propose a nonlinear electrodynamics in
the (H, P )-formalism, which allows us to obtain charged
configurations of AdS black holes in four dimensions with
a planar base manifold in CG. These configurations have
only one integration constant, given by the charge-like
parameter M , and being parameterized by the structural
coupling constants (13). As was explained at the be-
ginning, to our knowledge, these planar configurations
are the first example of solutions in four-dimensional CG
where their thermodynamic quantities do not vanish.
With respect to the metric function, the structural cou-

pling constants play a very important role in the charac-
terization of these charged solutions and when analyzing
condition (17), we conclude that there are five different
cases: one represents a black hole with three horizons,
two cases represent black holes with two horizons and
the other two are single horizon configurations.
Also, in order to find these new charged black holes, the

introduction of nonlinear electrodynamics to CG allows
us to obtain nonzero thermodynamic properties, thanks
to the contributions given by α1 and α2. Together with

the above, these configurations satisfy the four dimen-
sional Smarr relation (32) as well as the First Law (29).
Additionally, the Critical-Gravity-non-linear electrody-
namics model enjoys local stability under thermal fluctu-
ations, thanks to the non-negativity of the specific heat
CΦe

as well as the Gibbs Free Energy G analysis if (38)-
(39) and (41) are satisfied. Supplementing the above,
the non-negativity of the electric permittivity ǫT shows
that our solution is also a locally stable thermodynamic
system under electrical fluctuations. It is interesting to
note the behavior of ǫT for these charged configurations,
as it is a non-negativity quantity if Φe > 0, unlike other
solutions found in the literature (see for example [54]).
Some natural extensions of this work may include, the

exploration of other gravity theories with quadratic con-
tributions. In this sense, a theory that also showcases
critical conditions, is given in [57] where the square of
the Weyl tensor and the square of the Ricci scalar play
the main roles in the action, in the absence of the Ein-
stein Gravity. Another interesting scenario would be to
study the higher dimensional case [58], where now the
CG Lagrangian takes the form

L = R− 2Λ + β1R
2 + β2RαβR

αβ

+ β3RαβµνR
αβµν ,

and that the coupling constants are tied as [59]

β1 = − β2

2(D − 1)
=

2β3

(D − 1)(D − 2)
=

1

4Λ(D− 3)
,

where the four dimensional case (2)-(3) can be recovered
impossing D = 4 together with the transformation

(β1, β2, β3) 7→ (β1 − β3, β2 + 4β3, 0).

Given the power of the non-linear electrodynamics as
a matter source to find new solutions with a planar
base manifold, it would be interesting to study charged
black holes where their event horizons enjoy spherical
or hyperbolical topologies. It would also be interest-
ing to study charged black hole configurations with non-
standard asymptotically behaviors, such as Lifshitz black
holes, which were first explored for the uncharged case
with CG in [60]. For spherically symmetric metrics, it
is possible, as was shown in [61], to obtain a general-
ization of the Smarr relation as well as the first law
of black hole mechanics, being understood from a dual
holographic point of view and related to the black hole
chemistry [62–64], where now the cosmological constant
Λ takes the role as a dynamical variable, unlike the ex-
pression found in (32) where we explored charged planar
black holes and Λ does not appear in an active way.
Finally, from a physical motivation, these nonzero ex-

tensive thermodynamical quantities will allow us to ex-
plore, from a holographic point of view, the connection
between black holes and quantum complexity [65, 66], as
well as the effects on shear viscosity [67–69], where the
mass M and the entropy SW take a providential role.



9

ACKNOWLEDGMENTS

The authors would like to thank Daniel Higuita, Julio
Méndez, Eloy Ayón-Beato and Julio Oliva for useful dis-
cussion and comments on this work. The authors thank
the Referee for the commentaries and suggestions to im-
prove the paper.

Appendix A: Analysis of extrema of the black hole
solutions

In this work, we find that CG admits black hole so-
lutions provided the existence of a non-linear electrody-
namics described by eq. (6), and that these solutions are
characterized by the gravitational potential (14), where,
in our context, r > 0. However, the nature of these so-
lutions and, in particular, the number of horizons that
they will exhibit, will depend on the signs and relations
between the constants αi’s. In this appendix, we make
an analysis of the extrema of the function f(r) to give a
general classification of the solutions. Let us recall, from
expression (15), that the existence of extreme values is
limited to the fulfillment of the condition (17). Let us
notice that when α1 and α3 have opposite signs, the con-
dition above is met immediately, regardless of the value
or sign of α2. That is, the existence of extreme values
is assured. Let us then, start by analyzing both cases in
detail.

1. Case α1 < 0, α3 > 0

Upon inspecting eqn. (16) when considering α1 <
0, α3 > 0, we notice that rext1 corresponds to a mini-
mum and rext2 corresponds to a maximum. Moreover,
from (15) , we notice that for these values of α1 < 0 and
α3 > 0, the maximum will always be on the interval r > 0
(while the minimum will be in the region r < 0). Com-
bining this information with the asymptotical behavior of
f(r), we can conclude that for the case α1 < 0, α3 > 0,
the black hole will always have one horizon, as seen in
Figure 1.

2. Case α1 > 0, α3 < 0

Likewise, the condition (17) is always met when α1 > 0
and α3 < 0, regardless of the sign of α2. This means
that, in this case too, there will always be extreme values.
Again, studying the second derivative of f(r) evaluated
in the extreme values (see eqn. (16)), we notice that
rext1 and rext2 correspond to a minimum and a maximum
respectively, and that for these values of αi, the minimum
will always be on the interval r > 0 and the maximum in
the region r < 0 (under our analysis, we suppose that r >
0). If we additionally consider the asymptotical behavior
of f(r) (which states that f(r) will be decreasing for small

positive values of r), we find that for this case the black
hole will have a minimum. This means that f(r) can
display up to two horizons, as seen in Figure 2 Top black
curve.
For this solution to display both horizons, the strict

inequality in (18) must be met, while the strict equality
would correspond to the extremal black hole (Figure 2
Top red curve). On the contrary, if the condition (18)
is not met, there will be no horizon and f(r) will not
represent the gravitational potential of a black hole.
Having established the configurations that arise when

α1α3 < 0 , let us now analyze the case in which α1 and
α3 have the same sign.

3. Case α3 > 0, α1 > 0, α2 > 0

When analyzing the expression (16) that encode the
concavity at the extreme values, we notice that the con-
dition (17) is not always met for the intervals of interest
of α1 and α2 and α3. Therefore, it is important to make
a separate analysis. If the condition (17) is met we no-
tice that rext1 corresponds to a minimum and rext2 cor-
responds to a maximum. Moreover, we notice that for
these values of αi, both extrema will always be on the
interval r > 0 (the maximum followed by the minimum).
This will result in having three horizons (see Fig. 3 Bot-
tom). A natural question can be wether there can be a
combination of αi such that the maximum or the min-
imum coincides with one of the horizons, thus resulting
in having only two horizons in total. In order to obtain
an affirmative answer to that question, one must impose
that one of the following conditions is met:

0 = 1− α1

√
M

l

rext1
+ α2M

l2

rext12
− α3M

3/2 l3

rext13
,

0 = 1− α1

√
M

l

rext2
+ α2M

l2

rext22
− α3M

3/2 l3

rext23
,

which is equivalent to imposing:

α3 = −α2
1α2 + 2α2

1η± − 6α2
2 − 6α2η±

9α1
, (A1)

with η± =
α2

1

3 − α2 ± 1
3

√

α4
1 − 3α2

1α
2
3.

Choosing η+, in condition (A1), would correspond to
the case in which the minimum coincides with the outer
horizon, while choosing η− would correspond to the case
in which the maximum coincides with the inner horizon.
Both cases correspond to solutions with two horizons and
are displayed in Figure 5.
On the contrary, if the condition (17) is not met, then

f(r) will not display extreme values. Due to the asymp-
totic behavior of f(r) (which states that for small posi-
tive values of r, f(r) will be increasing, and that it will
approach one asymptotically as r −→ +∞), f(r) will
represent the gravitational potential of a black hole with
a single horizon as seen in Fig. 3 Top.
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FIG. 5. Gravitational potential f(r) associated to black holes
when α1 > 0, α2 > 0, α3 > 0 with two horizons when the
conditions 3α1α3 − α2

2 > 0 and (A1) are met.

4. Case α3 > 0, α1 > 0, α2 < 0

In a similar way, the condition (17) is not necessarily
met when α3 > 0, α1 > 0, α2 < 0. When the choice of
the αi allows the condition (17) to be met, then f(r) dis-
plays a minimum at rext1 < 0 and a maximum rext2 < 0
corresponds to a maximum. That is, for these values of
αi, both extrema are on the interval r < 0 of no physi-
cal significance. However, we can still obtain important
information from the asymptotic behaviour of f(r). As
mentioned above, the signs of α1 and α3 will imply that
the function f(r), in the interval r > 0 will start increas-
ing from −∞ and approach one asymptotically from be-
low, representing a black hole with a single horizon (see
Fig. 3 Top).
On the other hand, if the condition (17) is not met,

f(r) will not display extreme values at all. Since the
asymptotic behavior of f(r) is the same as above, this
configuration will also represent a black hole with a
single horizon with the shape seen on Fig. 3 Top.

5. Case α1 < 0, α3 < 0, α2 < 0

Let us now consider the scenario in which all the αi

are negative, which means that the condition (17) may or
may not be met. As such, it is important to make a sepa-

rate analysis, as in the previous cases. If the condition, is
met we notice that rext1 corresponds to a minimum and
rext2 corresponds to a maximum. Moreover, we notice
that for these values of αi, both extrema will always be
on the interval r > 0 with the minimum followed by the
maximum. A quick analysis of the asymptotic behavior
shows that, even though we have more extrema than in
previous cases, the maximum number of horizons will be
two. The reason for this is that, while the function f(r)
starts decreasing in r > 0, then showcases a minimum
and then a maximum, there is not additional crossing
of the horizontal axis (since f(r) will approach one from
above as r approaches infinity). For clarity, see Fig. 2
Bottom.
Additionally, we can determine when this solution will

display two, one or no horizons through the inequality
(18). If the strict inequality is met, f(r) will represent
the gravitational potential of a black hole with two hori-
zons (Fig. 2 Bottom black curve), while the case in which
the equality is met strictly would correspond to the ex-
tremal case (Fig. 2 Bottom red curve). On the contrary,
if the condition (18) is not met, a horizon will not be
formed and f(r) will not be associated to a black hole
configuration.
Lastly, if the condition (17) is not met, then, f(r)

will not display extreme values. Due to the previously
mentioned asymptotic behavior of f(r), there will be no
rh > 0 such that f(rh) = 0. As a result, this case will
not correspond to a black hole solution either.

6. Case α1 < 0, α3 < 0, α2 > 0 (no solutions)

Finally, if the condition (17) is met and α1 < 0, α3 <
0, α2 > 0, the analysis of expressions (15)-(16) yields to
rext1 being a minimum and rext2 corresponding to a max-
imum. However, this same set of equations shows that
both extrema will be on the interval r < 0 of no physical
significance (that is, f(r) will not display extreme val-
ues in the interval r > 0). Furthermore, the asymptotic
behavior of f(r) shows that, for small positive values of
r, f(r) decreases from infinity and eventually approaches
one from above as r approaches infinity. This asymp-
totic behavior implies that, unless there are maxima and
minima in between these regions of r, the function f(r)
will not cross the horizontal axis in r > 0. Since we have
established that all the extreme values are in the region
r < 0, there is no rh > 0 such that f(rh) = 0 (all inter-
sections will occur at r < 0). As a result, this case will
not showcase any horizons and thus, does not correspond
to a black hole solution.
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Quant. Grav. 37 (2020) no.7, 075016 doi:10.1088/1361-
6382/ab7694 [arXiv:2002.10520 [hep-th]].

[44] M. Bravo-Gaete and M. Hassaine, Phys. Rev. D 91
(2015) no.6, 064038 doi:10.1103/PhysRevD.91.064038
[arXiv:1501.03348 [hep-th]].

[45] R. M. Wald, Phys. Rev. D 48, no. 8, R3427 (1993)
doi:10.1103/PhysRevD.48.R3427 [gr-qc/9307038].

[46] V. Iyer and R. M. Wald, Phys. Rev. D 50, 846 (1994)
doi:10.1103/PhysRevD.50.846 [gr-qc/9403028].

[47] W. Kim, S. Kulkarni and S. H. Yi, Phys. Rev. Lett. 111,
no. 8, 081101 (2013) [arXiv:1306.2138 [hep-th]].

[48] Y. Gim, W. Kim and S. H. Yi, JHEP 1407, 002 (2014)
[arXiv:1403.4704 [hep-th]].

http://arxiv.org/abs/0909.1347
http://arxiv.org/abs/1001.2361
http://arxiv.org/abs/1101.5891
http://arxiv.org/abs/2012.08551
http://arxiv.org/abs/1806.09516
http://arxiv.org/abs/0901.1766
http://arxiv.org/abs/0905.1259
http://arxiv.org/abs/0905.1545
http://arxiv.org/abs/1101.1971
http://arxiv.org/abs/1707.00341
http://arxiv.org/abs/2105.02924
http://arxiv.org/abs/gr-qc/9911046
http://arxiv.org/abs/gr-qc/9911084
http://arxiv.org/abs/hep-th/9911174
http://arxiv.org/abs/gr-qc/0009077
http://arxiv.org/abs/hep-th/0403229
http://arxiv.org/abs/1403.5985
http://arxiv.org/abs/2112.06302
http://arxiv.org/abs/2201.10682
http://arxiv.org/abs/2203.12809
http://arxiv.org/abs/hep-th/0701058
http://arxiv.org/abs/0803.2946
http://arxiv.org/abs/0812.2038
http://arxiv.org/abs/1304.5206
http://arxiv.org/abs/1301.3648
http://arxiv.org/abs/1211.1612
http://arxiv.org/abs/1106.5181
http://arxiv.org/abs/0909.1365
http://arxiv.org/abs/1306.4501
http://arxiv.org/abs/2102.06213
http://arxiv.org/abs/1410.6181
http://arxiv.org/abs/2002.10520
http://arxiv.org/abs/1501.03348
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/1306.2138
http://arxiv.org/abs/1403.4704


12

[49] L. F. Abbott and S. Deser, Nucl. Phys. B 195, 76 (1982).
doi:10.1016/0550-3213(82)90049-9

[50] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002)
doi:10.1103/PhysRevLett.89.101101 [hep-th/0205318].

[51] S. Deser and B. Tekin, Phys. Rev. D 67, 084009 (2003)
doi:10.1103/PhysRevD.67.084009 [hep-th/0212292].

[52] L. Smarr, Phys. Rev. Lett. 30 (1973), 71-73 [er-
ratum: Phys. Rev. Lett. 30 (1973), 521-521]
doi:10.1103/PhysRevLett.30.71

[53] M. Bravo-Gaete, S. Gomez and M. Has-
saine, Phys. Rev. D 92 (2015) no.12, 124002
doi:10.1103/PhysRevD.92.124002 [arXiv:1510.04084
[hep-th]].

[54] M. Bravo-Gaete, C. G. Gaete, L. Guajardo and
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