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I. Mechanical Properties of an Interface 

A . SURFACE TENSION 

From a macroscopic point of view, the boundary between two fluid 
phases is regarded as a sharply defined mathematical surface. It is clear 
from either molecular or microscopic considérations that this assumption 
cannot rigourously apply. The interface between two phases is in reality 
a thin région of about 10~* cm thickness whose physical properties vary 
sharply from the bulk properties of one phase to the bulk properties of 
the other phase. 

A classical thermodynamic study for such Systems is too complicated, 
and, in fact, it is a matter of common observation that a fluid behaves as 
though it consisted of two homogeneous fluids separated by a stretched 
isotropic surface or membrane of infinitésimal thickness. Any local 
déformation of this membrane without variation of the area requires no 
mechanical work. The surface thus bas no rigidity and is called the 
surface of tension. Let us divide the surface of tension into two régions 
I and II by a curve / (Fig. 1). If, across an élément ôl, of /, the région I 

FiG. 1. Définition of svirface tension at a point P on a line AB in the surface. 
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exerts a force y ôl = ôf upon région II at a point P, then y is called the 
surface (or interfacial) tension at this point. 

The force ôf is tangential to the surface of tension, perpendicular to 
ôl, and indépendant of its orientation. The existence of a surface tension 
is, in fact, related to the thermodynamic instability of two phases in 
contact with one another, and thus to the free energy of contact. The 
contractile behavior of the transition layer minimizes this free energy and 
gives rise to the macroscopic expérimental quantity. The unit often used 
in the measurement of y is dyn cm~^. 

B . MECHANICAL EQUILIBRIUM 

In a gravity field g (z axis), we have 

dp^jdz = —Q'g; dp^ldz=—Q^g, (1.1) 

where and p^, q' and are, respectively, the hydrostatic pressures and 
the densities in the two phases a and /3 (Fig. 2). 

n z 

\ ^11 Phase /3 

V-

^ ^ ' ^ Phase a 

/ 
; 

FIG. 2. Two phases a and j5 separated by a surface whose normal n is directed 

from a to ^. 

It is easy to show that the condition of local mechanical equilibrium of 
the surface of tension is given by 

p<^-f = y{K^ + K^) + gr cos 0 (1.2) 

dy\dz=gr, (1.3) 

where F is the surface density, and the two principal curvatures 
of the surface, and Q the angle between the z axis and the perpendicular 
to the surface directed from a to )9. 
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Neglecting the gravity efïeet on y {F ^ 10~' g cm~^ and dyjdz = 10"'' 
dyn cm~^), (1.2) reduces to the classical Laplace formula 

P''-p'> = yiK, + K,), (1.4) 

with y uniform on the surface. 
Introducing the mean curvature defined by 

� ' " + ^ 1 (1.5) 

where and are the principal radii of curvature, (1.4) becomes 

p^-p^=2ylr^. (1.6) 

For a spherical surface of radius of curvature r, we then have 

p^—pâ=2ylr. (1.7) 

The fundamental équation (1.4) shows that, because of its surface tension, 
a curved surface maintains mechanical equilibrium between two fluids 
at différent pressure p" and 

Generally, because of the effect of gravity, p" — p^, and thus -\- K2, 
varies along the surface. In particular, p" = p^^ ii r = 00. Hence, a plane 
surface can exist only if the pressures of the fluids on the two sides are 
equal. 

C . APPLICATION OF THE LAPLACE FORMULA 

Consider a pure liquid forming a drop in thermodynamic equilibrium 
with its vapor. For mechanical equilibrium, 

pi-p^ = 2ylr. (1.8) 

For physicochemical equilibrium 

f^' = f^\ (1.9) 

where the superscripts / and v refer, respectively, to the liquid and vapor 
phases. For an equilibrium displacement, we obtain 

ôpi - ôp'' = ô{2ylr) (1.10) 

ôfii=ôiM\ (1.11) 
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The Gibbs-Duhem équation [Chapter 2A, Eq. (4.30)] may be appHed 
to each coexisting phase, so that at constant température (1.11) gives 

—ôp^ + ôp" = 0 (T constant). (1.12) 

Assuming the vapor to be a perfect gas and the liquid to be incompress-
ible, (1.10) and (1.12) give, after intégration, the well-known Kelvin 
équation 

HPVP") = (2y/0 �v^IRT, (1.13) 

where p" is the saturation vapor pressure of the macroscopic liquid phase 
(r —* oo). This équation shows that the vapor pressure increases as the 
droplet decreases in size. An example for water at 18° [(/ = 73 dyn cm->)] 
is given in Table I. 

TABLE I 

r (cm) p'- — p"' (bar) 

oo 1 0 

10-* 1.001 1.46 

10-' 1.011 14.6 

10-» 1.115 146 

The equilibrium of a drop initially satisfying (1.13) in an infinité 
volume of vapor of pressure p" is unstable. If, by a small fluctuation, a 
little liquid évaporâtes, the droplet decreases in size and its vapor pres-
sure exceeds that of the surrounding atmosphère: it will therefore con-
tinue to evaporate. Conversely, if a little vapor condenses, the vapor 
pressure of the droplet falls below that of the surroundings and further 
condensation will occur. This phenomenon leads to an explanation of 
the existence of supersaturated vapor (Dufour and Defay, 1963); this 
is a vapor which, in the absence of liquid, can exist at a given pressure 
greater than the saturation pressure p° corresponding to the given tem-
pérature T. 

D . EQUILIBRIUM OF A L I N E OF CONTACT 

The Laplace équation (partial derivatives of the second degree) dé-
termines the local form of the surface tension. Now let us consider the 
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FiG. 3. Equilibrium at a line of contact: Neumann's triangle. 

equilibrium of a line of contact formed by the interaction of three phases 
a, P, and à (Fig. 3). As the total force acting on an élément of line through 
P of length ôl is zéro, we find 

where y^^, y^^, and are the tensions related to the three surfaces, 
and the last term corresponds to a line tension rj (n is the normal and K 
the curvature of the line of contact). In fact, the value of this line tension 
is quite negligible (~10-* dyn). Equation (1.14) then reduces to the 
Neumann équation 

la/S/a^ + KsV^i + = 0- (1-15) 

This équation may be applied to a line of contact formed by two liquid 
phases a and /S and a solid surface ^ (Fig. 4). We obtain the Young 
équation 

cos = ŷ s — (1.16) 

where 6 is the contact angle of the surface «jS with the solid and y^j 

FIG. 4. Surface tension of a solid; the contact angle. 
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ŷ s the solid-fluid tensions. If ] y^^ — ŷ s | > Ya3 > no equilibrium position 
of the Une of contact can be found, and one of the two phases a or /9 
covers the whole area of the solid: the hquid is said to wet the solid 
perfectly. 

E . MECHANICAL WORK OF EXTERNAL FORCES 

Let us consider a two-phase System a and /9, with volumes F" and 
separated by a surface Q of area A. In the absence of any external force 
fields, the work received by the System is (Fig. 5) 

àr = -p" ÔV- - p» ÔV^ + Y ôA. (1.17) 

FIG. 5. Mechanical work done by a capillary System: piston subjected to surface 
tension. 

The piston is subjected to the pressure p" and p^ of the two fluids a and 
/3 with p'^ = and to the surface tension y of the surface Q. In Fig. 6, 
the piston is not subjected directly to the surface tension. The System 
comprises a spherical drop of liquid of volume V" separated from the 
vapor by the surface Q. The whole System is contained in a cylinder of 
total volume V = V" + V^. We have 

ôt = -p^ ÔV (1.18) 

ÔV=ÔV'' + ÔV^ (1.19) 

On the other hand, for a spherical surface a/3, 

ôV'' = 2rôA, (1.20) 

and thus, from (1.18)-(1.20), we again find Eq. (1.17). 

L 



2 5 2 

FiG. 6. Mechanical work done by a capillary System: piston not subjected to surface 
tension. 

Remark. For a multiphase system, (1.17) must be rewritten in the 
form 

ôr = -Y.P'' àV- + ^ y-» bA'^». (1.21) 

F . APPLICATION OF THE MECHANICAL WORK RELATION 

At constant température, we know that the free energy of a closed 
System is equal to the work received by the System (see Chapter 2A, 
Section III). For a two-phase System, 

(bF)rn=-p''bV--fbVi'^ybA. (1.22) 

Let us now consider a supersaturated vapor of pressure p'' in an infinité 
volume. The free energy of formation of a droplet phase of size r is 
equal to 

AF = -(\nr''\'h){p^ - p") + Anr^y, (1.23) 

where/) ' is the pressure in the droplet. From Eqs. (1.23) and (1.7), we 
thus obtain 

AF = 4:rrV/3 = \yA, (1.24) 

where A is the area of the drop. The présence of a "germ" enables the 
condensation of this vapor. The germ is a droplet whose radius r can be 
calculated by Kelvin's équation. For water at 18°C, the free energy of 
formation of a germ AF^ (homogeneous nucleation) is given in Table II 
(Dufour and Defay, 1963). 
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T A B L E II 

p^lp" r ( cm) ^i="g(erg) AFJkT 

1.011 10-' 3 X 10 » 0.75 X 10» 

1.115 10-« 3 X 10 " 0.75 X 10* 

As we know, the probabiHty of obtaining a germ is given by the ex-
pression exp[—AFJkT]; we observe that the formation of a germ is 
not probable. A droplet lying on a soHd surface may constitute a germ, 
but the free energy of formation is lower. For a spherical cap of radius 
r, we obtain (Fig. 7): 

Volume of the liquid: 

Surface liquid-vapor: 

Surface liquid-solid : 

Laplace's équation: 

Young's équation: 

f 7ir^(l — I cos 0 + 5 cos' 6) = V 

2nr\\ — cos ^) = A 

nr''%\v?% = A' (1.25) 

pi — py = Zyjr 

- P'')v + yA + {y" - y'-')A'. (1.26) 

By combining thèse différent équations, we obtain the relation 

AF = |7rrV(è - | cos 6 - è cos^ 6). (1.27) 

A comparison between (1.27) and (1.24) for the same radius r leads to 
the conclusion that the condensation of vapor takes place preferentially 
on solid surfaces or on dust (heterogeneous nucleation). 

Remark. If 6 = n, we find the value corresponding to homogeneous 
nucleation. If 6 = 30°, the free energy of formation is equal to one 
tenth of the corresponding energy of homogeneous nucleation. 

FIG. 7. Drop laid on a solid surface. 
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n . Pressvire Tensor in Surface Layers 

A . INTRODUCTION 

From the molecular point of view, there exists, between two contiguous 
homogeneous phases in equilibrium, a zone of finite thickness with 
which the density, composition, and pressure tensor vary rapidly from 
the values characteristic of one phase to those characteristic of the other. 
A microscopic formulation of the surface tension may be introduced with 
the aid of the pressure tensor (Bakker, 1928; Kirkwood and Bufï, 1949; 
Ono and Kondo, 1960, p. 134). In order to clarify thèse ideas, we shall 
fîrst recall the force acting on a volume élément of a fluid. We have 
(a) external local forces: the force X and the torque C per unit volume; 
and (b) the internai forces expressed by the pressure tensor in rectangular 
coordinates : 

/ P p p \ 

I XX XV ^ xz \ 
(2 .1) 

The motion équation of a fluid élément is then given by 

J ÔVq dtaldt = J ÔVX - J � P, (2.2) 

where co is the velocity, di>)ldt the accélération, and — ^A � P is the force 
acting on the surface élément ôA by the adjacent fluid {ôA is directed 
along the external normal). 

Application of Green's formula gives the well-known Euler équation 

Q diùjdt = X - F � P, (2.3) 

where 

� P = + ^ 7 ^ - + ^ ^ - ) + � � ) + � �)� (2 .4) 

Now, we assume that the external local torque C is zéro, and thus that 
the tensor P is symmetrical. The mechanical equilibrium condition of a 
fluid is given by [see Eq. (2.3)] 

F . P = X. ( 2 .5 ) 

We shall restrict our development to Systems for which X = 0, and thus 
(2.5) reduces to 

F . P = 0 . (2 .6) 
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The influence of an electric field on the pressure tensor has been 
studied in great détail by Defay and Sanfeld (1967) (see also Sanfeld 
(1968)). 

B. PRESSURE TENSOR IN A PLANE LAYER 

Let us first consider rectangular axes x, y, and z, where the z axis is 
normal to the interface. The System is homogeneous in the directions x 
and y and the pressure tensor is 

/pTi^) 0 0 
p = P(^) = 0 Pt{z) 0 

\ 0 0 p^{z)/ 

(2.7) 

where the normal pressure acts on a face parallel to the interface and 
the tangential pressure p^ acts on a face perpendicular to the interface. 

/3 P-,U)=p «- /3 

P^(z)<p C I 
Surface 
loyer 

a p^(z) = p a a 

Surface 

of tension 

FiG. 8. Real System and équivalent model with tension surface. 

Outside the surface layer, in the isotropic régions a and of the two 
fluids, p^ = p.j.. The local mechanical equilibrium condition (2.6) here 
reduces to 

dp^jdz = 0. (2.8) 

The normal pressure pi^ is thus independent of z, so that, in the transition 
région, the normal pressure is equal to the scalar hydrostatic pressure p 
of the homogeneous phases. In contrast, there is no such condition for 
pT. The tangential pressure may even take on négative values (Fig. 8). 

The pressure déficit {p — Pt} in the surface layer manifests itself 
macroscopically as a tension exerted by the fluid on the walls of the 
container. 
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The équivalence of the two models shown in Fig. 8 yields the expression 

jpT:{z)dz= j p d z - y ( 2 .9 ) 

or 

y = n p - P'ri^)} d^^^ (2.10) 

where the région of intégration is, in fact, the surface layer. 
A second condition of équivalence can be expressed by the equality 

of the momentum forces. This détermines the height Zq of the surface 
of tension 

^zp'j:{z) dz = j zp dz — yz^; (2-11) 

thus, 

^0 = ( l / y ) J ^ { ^ - M ^ ) } dz = i z { p - p^{z)} dzl j {p - p^{z)} dz. 

(2.12) 

We note here that the value of y is defined independently of the position 
of the surface of tension. Hence, for any transformation for which the 
interface remains plane, the height z at which y is applied has no practical 
importance. However, this is not the case for curved surfaces. 

C . PRESSURE TENSOR IN A SPHERICAL LAYER 

In spherical coordinates, the pressure tensor is a function of the radius 
of the spherical surface involving the point under considération: 

fpTir) 0 0 \ 

p = P ( r ) = 0 p-rir) 0 . (2.13) 

\ 0 0 p^{r)l 

In the bulk of the homogeneous phases, P is isotropic and independent 
of r; in phases a and /?, we have 

P = p^'l and P = p^\, 

where I is the unit tensor. In the transition région, pT; and p^^ vary with r, 
and here the mechanical equilibrium condition (2.6) gives (Bakker, 1928) 

-dp^ldr = 2ip^ - p^)lr. (2.14) 

Equation (2.14) may be rewritten 

d{r^p^)jdr = 2pjr. (2.15) 
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We shall now compare our System with the model surface of tension 
(Fig. 9). The mechanical forces and momentum equilibrium may be 
expressed by 

ôd J p-rr dr = 06 J'* p'r dr + ôd p'>r dr - ÔOyR (2.16) 

06 j pir^ dr = Ô6 j'^p-r^ dr + 06 j^pi'r^ dr - ôdyR', (2.17) 

where R détermines the position of the surface of tension and where the 
intégrais are limited to the thickness of the layer. Let us define the 
quantity p"'^ by the following relations: 

pccff ^ pce if r < R 
(2.18) 

= pff a r > R. 

Thus, we obtain the two fundamental équations 

y={llR) f{p''^-p.,{r)}rdr (2.19) 

R = J {(p^/> - p,,(r)y dri J {^^^ - p.,ir)}r dr. (2.20) 

The knowledge of R is thus necessary to calculate y. It is easy to verify 
that thèse équations are consistent with the Laplace relation 

y = {p^ - P')R12. (2.21) 

Remark. For /? ^ co, it is easy to show that (2.19) and (2.20) reduce 
to (2.10) and (2.12). 
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m . Gibbs's Surface Model 

A . T H E GIBBS DIVIDING SURFACE 

Let us now consider a point P in a transition layer separating two homo-
geneous phases a and P (Fig. 10). In the vicinity of P, we find other points 
P', P", P'", ... équivalent to P (the intensive properties are identical 
at each of thèse points). Thus, we obtain a surface of uniform properties 
which includes P, P ' , P " , . . . . Through each point of a line perpendicular 
to the layer, there exists a surface of uniform properties. Ail thèse surfaces 
are parallel with one another and are characterized by the coordinate A 
measured along a normal to the layer. 

Loyer 

FIG. 10. Transition layer separating two homogeneous phases a and p. 

In order to describe the macroscopic properties of the layer, Gibbs 
replaces the heterogeneous transition régions by a geometrical dividing 
surface which coïncides with one of the surfaces of uniform properties. 
The dividing surface is thus in the interfacial région between the homo-
geneous phases a and fi. In this model, the Gibbs surface is a two-
dimensional phase without thickness but with well-defined physico-
chemical properties (Defay et al., 1966). We restrict our study to a two-
phase c-components equilibrium system without external field. 

B. SURFACE QUANTITIES 

We consider a closed surface generated by a moving normal to the 
dividing surface ^ (Fig. 11). The closed surface is of such an extent that 
it includes portions of the homogeneous bulk phases a and /9. The Helm-
holtz free energy of matter enclosed by the closed surface can be ade-
quately described by relations of the type 

F= F'' + F<^ + F", (3.1) 
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Loyer 

s 

FiG. 11. Dividing surface s in a surface layer. 

where F" is the surface free energy, F" the energy of région a, and F^ 
the energy of région /3. If V" and are the volumes of phases a and (i, 
/ / and / / the free energy densities, / / the surface free-energy density, 
and A the area, we may write 

F- = V-f-, F» = F"/ / , F" = A f f . (3.2) 

In gênerai, F", V^, A, and dépend on the particular choice of the 
surface s of coordinate X. Another dividing surface of coordinate X -\- dX 
gives the variations 

dV- = AdX\ dV»=-AdX; dA = {K, + K^)A dX, (3.3) 

where -\- is the mean curvature of the surface s, assumed to have 
the same value at each point of the surface. Since the total free energy F 
is independent of the choice of the dividing surface, we obtain 

/ / - / / + {K, + K,)f- + df/ldX = 0. (3.4) 

A similar expression may be written for the entropies: 

- s/ + {K, + K,)s/ + ds/ldX = 0. (3.5) 

However, if is the total number of molécules of species y in the System 
and C^" and C^^ the concentrations in the two phases a and fi, we find 

Tiy = V + « / + n/ (3.6) 

n/=V-C/, n/=V^C/, n/= AF^, (3.7) 

where n^" is the number of molécules adsorbed on the dividing surface 
and Fy is the spécifie adsorption. Similarly, we obtain 

- C / + {K, + K,)r^ + drjdX = 0. (3.8) 
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C . FREE ENERGY AND SURFACE WORK 

For infinitésimal variations ôT, . .., ôfiy, . . . and an external work 
ôr, the variation of free energy is given by [see Chapter 2A, Eq. (4.14)] 

ÔF=-SôT+'ï:/i^ôny+ôr, (3.9) 

where ôr corresponds to displacements of the boundaries of the System 
and of the interface. In the case of the particular dividing surface s, 
we have 

ôr = -p" ÔV" - ÔV^ + yôA + A{C,* ÔK^ + C* ÔK^), (3.10) 

where y is a tension which opposes the expansion of the layer, Cj* and 
Cj* are the rigidity coefficients which oppose a variation of the curvature. 
Substituting (3.10) in (3.9), 

ÔF=—SÔT+Y. ix^ ôn^ - p- ÔV - p^ ÔV/" +yôA 
Y 

+A{C* ÔK, + C* ÔK,). (3.11) 

Let us now consider a virtual variation which corresponds to the choice 
of a new surface s' {s and s' are parallel); we may write 

ÔV- = A ÔX, ôVi> = -A ÔX, ÔA = {Kl + K^)A ÔX, (3.12) 

ÔKi = -K^^ ÔX, ÔK^ = -K^^ ÔX. (3.13) 

The real system being unmodified, = 0; thus, we obtain the relation 

p ^ - f = f{K, + K,) - C*K,' - C*K,\ (3.14) 

which must be satisfied whatever the dividing surface. 
If ^ 1 and K2 are constant on the surface ^ and if the intensive variables 

T,p'^,p^, y, ..., jUy, . . . are given, it is easy to show that (Euler's 
theorem) 

F =-E, fiyti^ - p'V-- p^V^ + yA. (3.15) 
y 

The invariance of F in comparison with the dividing surface then gives 

p^-pi> = y{K, + K^) + dfldX. (3.16) 

A comparison with the expression for F obtained in the previous section 
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yields the following relations: 

^ ' " = S/^>,< + ( 3 . 1 7 ) 
y 

U = i:i^yry+Y- (3.18) 
y 

D . PRIMARY RôLE OF THE DIVIDING SURFACE 

If Ki = K2, then Ci* = C^*; this is the spécial case of a plane inter-
face. Since the thickness of the transition layer is always small with 
respect to the principle curvature radii, Cj* and C^* are approximately 
equal to C*, the coefficient corresponding to a plane interface. Equa-
tions (3.11) and (3.14) then become 

dF= -SdT+'E, (J'y driy - dV- - pf dV + y dA 
y 

+AC*d{K, + K^) (3.19) 

and 

p^-p^= y{K, + K,) - C*iK,' + (3.20) 

In comparison with the Laplace formula (1.4) for to the surface tension, 
it appears that the particular unrigid dividing surface (C* = 0) coïncides 
with the surface of tension. If is the coordinate of this particular 
dividing surface, then y = y(Ao), and the variations of free energy will be 

dF= -SdT+Y^H^dn^- p- dV- - p" dV + y dA. (3.21 ) 
X 

From (3.16) and (3.20), we obtain 

dyIdX = -C*{K,^ + K^) =p^^p^-^ y{K, + K,)- (3.22) 

thus, on the surface of tension 

dyjdX = 0, d'^yldX'' = yiKj^ + K^^) > 0. (3.23) 

It follows that, for the surface of tension, y{X) is minimum. This remark-
able property was used by Gibbs (1928) in his fundamental work. On 
difïerentiation of (3.22), we see that 

dC*ldX = - y + C*[{K, - K,y{K, + K,)I{K,' + K,')]. (3.24) 
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For a plane or spherical interface, Eq. (3.24) reduces to 

dC*ldX=-y. (3.25) 

The ratio C*/y is more or less equal to lO"' cm and we deduce therefore 
that a variation of k of an amount of a few angstrôms is sufficient to 
modify the sign of C*. 

E . THERMODYNAMIC RELATIONS 

We shall adopt here the surface of tension as the dividing surface. 
As we saw, 

dF= -SdT+^Hydn^- p- dV" - f dVi> + ydA; (3.26) 
y 

hence, 

y = {dFldA)ry.v^„. (3.27) 

We can divide each of the extensive quantities F, S, and tiy into three 
parts: 

F= F" + F^ + F" 

S= 8" + S" (3.28) 

Tiy = n/ + n/ + «/. 

For the two volume phases 

dF-" = —S'' dT - dV'' - S /ij, dn^' 

' (3.29) 
dF» = - S ^ d T - f dV^ - I ^ f i y driy», 

Y 

and thus 

= S » dT+ydA + T./^y dn/. (3.30) 
y 

The interface may thus be considered as a two-dimensional phase of 
area A and free energy F", with 

(dF<'\ ( dF" \ ( dF'X 



2C. Thermodynamics of Surfaces 263 

Furthermore, from (3.30), we have 

Qpa Qpa Qfa Qfa 

dn- dn/ dV- 9 F" 
0. (3.32) 

This property is only true for extensive variables. 
Indeed, the surface phase is nonautonomous ; it dépends directly on 

the intensive properties of the neighboring phases; for example, the 
dependence between F" and n^" is given by 

Let us now consider the spécifie surface free energy / " defined by 

fa = pajjl^ (3.34) 

By difïerentiation, we obtain 

dF" F" 
df = ^ - ^ d A . (3.35) 

From (3.35) and (3.30), we have 

-S" d T + - ^ u dn" + y d A 
~y y 

Y 

-^ÔA. (3.36) 

The variation of Uy" may be expressed in terms of spécifie adsorption Fy-. 

dn^" = AdFy + Fy dA. (3.37) 

If driy'^ in Eq. (3.36) is replaced by the value given by (3.37), we obtain 

df = s-dT+^ (ly dF^ + {dA\A\y + S ii^F^ - /"), (3.38) 
y 

where the spécifie entropy ^ is given by the ratio S'^\A. Because / " is not 
function of A, 

df<^ =-s^ dT + J: fiy dFy (3.39) 

/« = y + S/^>,r„ (3.40) 

with 
Y 

s-=-{df''ldT)r (3.41) 

^y={dfldFy)rr,. (3.42) 



264 A. Sanfeld 

Then, from the differential of (3.40) and (3.39), there follows the well-
known Gibbs équation 

dy=-sfdT-Z d/i^. (3.43) 
y 

Thus, 
s"=~idYldT), (3.44) 

r , = ~{dyld^t,)r,, (3.45) 

1 
where the subscript fi^ indicates that the derivative is taken keeping al 
the /Li's except /Uy constant. This can, however, be achieved only if the 
System has at least c + 1 degrees of freedom T,/j.i, .. 

For a plane surface, the highest possible variance corresponds to Systems 
where there are no chemical reactions among the components and where 
the surface has only one phase on it. For a plane surface, it is impossible 
to vary separately ail the c + 1 variables T, [i^, ..., fi^. It follows that 
the Gibbs équation (3.43) does not enable the adsorption Fy to be deter-
mined on a plane surface. A détermination of the adsorption is theoreti-
cally possible on a curved surface, for, in this case, the variance is c + 1 
(for the variance of a capillary system, see Section IV). 

F . PLANE SURFACE AND RELATIVE ADSORPTIONS 

For a plane surface, the variables T, fi^, . . - , He cannot be varied in-
dependently. We shall therefore examine the way in which fi^ varies as a 
function of T, /u^, ..., n^-

The Gibbs-Duhem équations for the two bulk phases may be written 

(3.46) 
dp^ = s/dT+^C/diiiy, 

y 

where s/ and s/ are the entropy densities of phases a and fi. 

Moreover, for a plane surface, the mechanical equilibrium gives 

= P', (3.47) 

so that we obtain for the variation of fi^ 

df^r = - ' \ d T - ^ _ \ dfjiy. (3.48) 
'-'1 ' ^ l y>2 "--1 



2C. Thermodynamics of Surfaces 265 

We may now replace dfii in the Gibbs équation (3.43) to give 

dy=-{s-),dT~^r^,d^i^, (3.49) 
y>2 

where the quantities {s")i and F^^ are, respectively, the relative surface 
entropy and the relative adsorption defined by 

( ^ ) l = ^ — A OL ^ Q 0 
' ' (3.50) 

p 7-1 7-1 '~̂ > 

Written in this form, the Gibbs équation is very much more useful, 
since the variables T, fi^, .. fi^ can be completely independent. It is 
therefore possible to détermine the relative surface entropy and relative 
adsorption by determining experimentally the differential coefficients 

(^), = - ( ^ ) (3 .5„ 

r . . = - ( ^ ) . (3.52) 

Example. The liquid phase consists of a saturated solution of nitrogen 
(subscript 2) in water (subscript 1) and the gaseous phase of nitrogen 
and water vapor. At moderately low pressures, the fugacity of nitrogen 
may be equated to the partial pressure , so that, at constant température, 

dfi^ = RTdp,lp,. (3.53) 

The variation of the surface tension will be 

dy = -r,,{RTIp,) dp, (3.54) 

and 
r,,= -ip,IRT)dyldp,. (3.55) 

Suppose that we find that at 17°C the surface tension falls by 0.1 dyn cm'^ 
when the pressure is increased from 1 to 2 atm. Then, taking the mean 
p r e s s u r e a s 1.5 atm, we have (Defay et al., 1966, Chapter VII) 

A , ~ 0.62 X 10-" mol cm-\ 
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Other examples can be found in the book by Defay and co-workers 
(1966, Chapter VII). 

G . INFLUENCE OF CURVATURE ON THE SURFACE TENSION 

We restrict our discussion to spherical surfaces and to one-component 
Systems. At constant température, 

dp- = C' dix, dp» = C dfj,, dy = -F dfi. (3.56) 

For the surface of tension, the difïerential form may be written 

dp- - dp/^ = (2/r) dy + 2y t/(l/r). (3.57) 

From (3.56) and (3.57), we get 

r - ^ rC- o - ^ C^) d{lny)ld{llr) 
2 ^ ' d{ylr) 2^ 1 + (1/r) ̂ (̂In y)/rf(l/r)-

(3.58) 

To détermine F, we must measure the variation of y with the curvature 
of the surface. From an expérimental point of view, we are limited to radii 
>10~^ cm, and, in this range, it is impossible to observe a variation of y. 

By intégration of (3.58) for small values of we obtain 

where yp is the surface tension of corresponding plane surface. 

Example. Let us consider a drop of radius equal to 10~' cm. 

If C — C'' = 10̂ 2 molécules cm^^ and F= molécules cm-^ we 

find a relative variation for y of about 0.01%. 

H . SURFACE ACTIVITY 

Every dissolved substance which modifies the surface tension of the 
solvent is called a surface-active agent. Thèse substances tend to ac-
cumulate in the surface layer. They are made up primarily of a polar or 
an ionic soluble group and of an insoluble part (for example, an aliphatic 
chain). The Gibbs équation gives the relation between the relative adsorp-
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tion of the surface-active agent (index s) and the slope of the y - Q curve, 

»yldC,= -r,,kTIC,. (3.60) 

The surface activity of a substance is defined as the initial value 
—{dyjdC^)c of the slope of the curve against in the bulk phase 
(Fig. 12). 

Traube showed that the surface activity is directly related to the length 
of the molécule. For différent normal alcohols, he found that the surface 
activity was about three times higher than the previous value each time 
the chain was increased by one —CHj— group. Détergents are surface-
active agents at water-solid interfaces. They lower the surface tension of 
the interface and allow the wetting of the solid. 

65 

5 0 

3 5 

Ŝ ^̂ SCT̂  Formic ocid 

—~..Acetic acid 

—Propionic ocid 

\ ^ u t y r i c acid 

\ j sova l e r i an i c ocid 

0.18 0 . 3 5 0 . 5 0 

Mole/l 

FIG. 12. Surface tension as a function of the concentration of the dissolved substance. 

Remark. It is well known that many surface-active agents are capable 
of profoundly affecting the state of dispersion of the particles of a disperse 
phase (sohd, liquid, or gaseous) in a liquid médium. If the tendency for 
spontaneous mutual adhésion to occur among the disperse particles in a 
System is diminished by the addition of a surface-active agent, we can 
say that it has a "deflocculating" action; if, on the other hand, the ten-
dency toward mutual adhésion is increased, then the surface-active agent 
can be conveniently referred to as a "flocculating agent." This problem is 
important in colloid chemistry (Frens, 1968). 

file:///jsovalerianic
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IV. Phase Rule 

Consider a System of c independent components and <p bulk phases 
separated by ï surfaces, each comprising one or several surface phases 
(for a treatment of the phase rule in cases where there may be chemical 
reactions, see (Defay and Prigogine, 1951)). We dénote hy y) > s the 
total number of surface phases. 

The physicochemical state of the System considered is defîned by the 
intensive variables: T (uniform); Cj , . . . , Q (in each volume phase); 
Fi, ..., (in each surface phase); and r^, .. .,rf (curvature of each 
surface phase). The system is defined by 1 + c{(p + v) + V intensive 
variables. If we wish the system to be in equilibrium, we can no longer 
arbitrarily fix ail thèse variables, for, in equilibrium, they are limited by 
the following conditions: 

(a) On a given surface, the différent surface phases have the same 
surface tension. 

(b) The Laplace équation must be satisfied for each surface phase. 

(c) The chemical potential of each component has the same value for 
each bulk or surface phase. 

The total number of conditions is thus {rp — s) -\- yi -\- c{(p -\- f — 1), 
and the number of remaining independent variables at equilibrium, a 
number which we call the variance of the system (see Chapter 2A, 
Section V) is therefore 

w=l+c — (rp-s) (4.1) 

if we suppose, as above, that the only reactions within the system are 
transfer reactions. 

Example. For a two-phase (liquid-gas), one-component system, the 
variance is w = 2, which means that the vapor pressure of a liquid drop 
dépends on the température and on its radius. If the whole surfaces are 
plane, we have — 1 relations 

r = � � � />^ (4.2) 

and the radii are infinité. It is easy to show (Defay et al., 1966, Chapter 
VI) that, in this case. 

w = 2 c — (p — (y) — s) (plane interfaces). (4-3) 
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Finally, if each surface comprises only a single surface phase, y> = s, 
and we again find the classical phase rule (see Chapter 2A, Section V) 

w = 2 -\- c — (p. (4.4) 

V. Influence of Température on Surface Tension 

We shall limit the study of the dependence on the température of the 
surface tension to single molécules (rare gases or quasispherical molé-
cules). The surface tension decreases quite linearily with an increase in 
température from the triple point to the critical point. At the critical point, 
y = 0, = 0, and F = 0; thus, from the Gibbs équation, it follows that 

dyldT=0 (critical point); (5.1) 

the foUowing expérimental resuit is often used 

y ex (Te - T)", (5.2) 

where is the critical température and w is a coefficient with 1.20 < n 
< 1.25. 

In the triple point-boiling point région, where 0.5 < TjT^ < 0.7, 
Eq. (5.2) may be replaced by 

y oc (aT, - T), (5.3) 

with a ~ 0.93. Expérimental values of a are summarized (Fuks, 1967) 
in Table III . 

T A B L E III 

A Kr Xe CH, N . o> CO 

a 0.927 0.928 0.942 0.928 0.939 0.920 0.938 

Other empirical équations are found in the literature: 

1. Eôtvôs Equation 

riv^f' = b{T, - T), (5.4) 

where is the molar volume of the liquid and where the coefficient b 
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is quite independent of the nature of the substance considered (for 
nonassociated substance) (see Table IV). Nevertheless, Eq. (5.4) is not 
valid in the neighborhood of the critical point [see Eq. (5.1)]. 

TABLE IV 

A Kr Xe CCI, C.H. C,Hi, 

b (ergs °K- ' ) 1.86 1.86 1.86 2.05 2.05 2.05 2.05 

2. The Parachor 

The concept of the parachor rests upon the équation of Kleeman 
(1910), Mac Leod (1923), and Sugden (1930), who found 

y l / 4 [ ( „ / ) - l _ ( ^ V ) - l ] = ( 5 . 5 ) 

where is the molar volume in the vapor phase and P is a con-
stant characteristic of each substance. The expérimental study of the 
critical région shows that 

(„i)-i _ („v)-i ^ - TY, (5.6) 

with 0.3 <P< 0.35. In the critical région, we then obtain the relation 

y oc ( n - T f o oc (Te - r)i-3«.i, (5.7) 

which is in a good agreement with (5.2). 

The Eôtvôs formula breaks down in the immédiate neighborhood 
of the critical point, and was modified by Nakayama, who replaced 
the factor v^'^ by j^'*, 

yyV^ = b{T~T,), (5.8) 

where y-'^ = ( f ' ) " ' ~~ (^')~*- Away from T^» J — î' '. and (5.8) reduces 
to (5.4). From (5.8) and (5.7), we again find (5.2) with n=\ + W 
~ 1.22 ± 0.02. Buff and Lovett (1968) recently obtained n = 1.27 
± 0.02. 
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VI. Properties of Monolayers 

A . INTRODUCTION 

The study of the properties of monolayers spread out on a liquid has 
been the subject of numerous publications since the beginning of the 
présent century (Davies and Rideal, 1961, Chapter 5; Gaines, 1966). 
Authors have, in particular, displayed great interest in the state équations 
deriving the various plausible formulations of surface pressure as well 
as of the chemical potential of the constituents in the layer. Monolayers 
are formed from molécules like higher fatty acids or polymers consisting 
of a hydrophobic and a hydrophilic part. Thèse molécules, insoluble in 
water, spread out as a film with its end, the COOH group, wetted by 
water (hydrophilic), and its long hydrocarbon chain (hydrophobic) 
tending to leave the substrate. The same phenomenon arises at the oil-
water interface. Interesting properties of monolayers can be investigated 
by pressure-area, surface-viscosity, and surface electrical-potential mea-
surements (Guastalla, 1947; Davies and Rideal, 1961). 

B. SURFACE PRESSURE 

The surface pressure of a monolayer is the lowering of surface tension 
due to the monolayer. The molécules contained in the monolayer may 
be regarded as exerting a two-dimentional osmotic pressure; there is a 
repulsion in the plane of the surface which is measured on a floating 
barrier acting as a semipermeable membrane perméable to water only 
(Guastalla, 1947). It is this pressure opposing the contractile tension of 
the clean interface that is called the surface pressure 77 

n = y , - y , (6 .1) 

where is the surface tension of the clean surface. The variation of 
77 with the area available to the surface-active material is represented by 
a IJ-Q curve, where Q is the area per molécule. 

Some measurements of this type are shown in Fig. 13 for a homologous 
séries of fatty acids. Qualitatively, the results are the same as for the 
isotherms of an imperfect gas condensing to a liquid. However, instead 
of changing température, which is difficult on a water surface, as the 
number of carbon atoms increases, the hydrophilic forces gain over the 
hydrophobic part of the molécule, and so the film has a great tendency 
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FiG. 13. Pressure-area phase diagram for a fatty-acid film spread on a water surface. 

to condense. The dashed curve in Fig. 13 is the idéal gas law in two 
dimensions, 

7 7 = AT/a. (6.2) 

If the film is dilute enough, that is, if the area per molécule a is large 
enough, the idéal behavior is approached. At higher densities, two-
dimensional condensation may take place. As the phase on the surface 
is further compressed, it is bound to break out of the two-dimensional 
film that is only one molécule thick. Ultimately, the surface film becomes 
thick enough so that it is properly treated as an ordinary three-dimensional 
phase. If molécules of the insoluble component are so tightly packed that 
further compression in the form of a film becomes impossible, then they 
pile up to form a crystal or a floating lens which grows steadily as the 
area of the surface is progressively decreased. 

C . SURFACE VISCOSITY 

A monolayer is résistant to shear stress in the plane of the surface just 
as, in bulk, a liquid is retarded in its flow by viscous forces. The viscosity 
of the monolayer may indeed be measured in two dimensions by flow 
through a canal in a surface or by its drag on a ring in the surface, cor-
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responding to the Ostwald and Couette instruments for the study of 
bulk viscosities. The relation between surface viscosity r]^ and bulk 
viscosity rj is given by 

Vs = V^, (6.3) 

where d is the thickness of the surface phase (about 10~' cm for many 
monolayers). From measurements of viscosities, it appears that hydro-
carbon chains are strongly oriented. 

Remark. A thermodynamic analysis of the surface potential was per-
formed by Koenig twenty years ago (Koenig, 1951), on the base of the 
Volta efïect. The air-water and oil-water surface potentials of mono-
layers in connection with the electrical double layer were developed in a 
great détail by Davies and Rideal (1961). 

D . GIBBS'S SURFACE MODEL 

Let us first consider a solution of electrolyte in contact with a vapor 
phase. On the plane interface, a monolayer is spread out. We call y(l , . . . , 
c) the constituents of the system, including the vapor and the liquid 
phases. We suppose that our system consists of laminae a = 1, . . . , oo 
each parallel to the interface, and containing constituents able to pass 
through it. 

Only lamina f) contains the monolayer, i.e., the insoluble nondissociated 
molécule (subscript 3) together with the insoluble ion of the dissociate 
molécule (subscript 2). For such an electrochemical system, Defay and 
colleagues (1966, Eq. (21.28)) have extended Gibbs's formulation outside 
thermodynamic equiUbrium, in the molar form 

Ady = -S dT + �E.V" dp, - Z i ^ / ï / - «3 dfi/ - n, d f i / , (6.4) 
a <z y=3 

where /ly" is the electrochemical potential of y in phase a, equal to the 
sum fiy" + Zyf'', where Zy is the charge of y and 99" the electrical potential 
in phase a ; ^ is the area of the plane interface ; is the external pressure 
(in the absence of gravity, p, is equal to the pressure in the bulk phase); 
5 is the total entropy of the system; and F" is the volume of lamina a. 

Let us now apply the Gibbs surface model to Eq. (6.4) for an insoluble 
monolayer R-H spread on a surface /9 of a dilute aqueous solution of 
hydrochloric acid. We assume that thermodynamic equilibrium is 
achieved. We first place the dividing surface under the monolayer, and 
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call V and V" the two volumes (the liquid and the vapor phase) de-
limited by this surface of area A; we get 

^9 M l/T' ' T/ 'T" " 
ri "R-H r _ "R- r _ } — y y ^3 (f- i-\ 

-« R-H — > -«R ^ i ï t l . 2 ~ ]4 � y^-^' 

At constant température and pressure, we may write 

('^y)r,Pe = ~ -^HjO ^^«HjO — -'̂ H+ <^"H+ — -^OH- <^i"0H- — ^Cl" «^"01-

- -TR-H ^ / ^ L H - TK- (^/R- , (6.6) 

where the n' are the chemical potentials in the bulk of the homogeneous 
liquid phase. The equilibrium condition may be written 

j"R-H = /ÏR- + /"H+ > /«HjO = /"H+ + /"'OH- � (6-7) 

If the surface layer is neutral as a whole, 

rH. = roH -4-rc , - + ri,-. (6.8) 

Combining (6.6), (6.7), and (6.8), we get 

dy = —r^fi djul^^o — Zr^i- dfi'u+ci' — -̂ R-H d/i^-ji, (6-9) 

where the total adsorptions are defined by 

rk,0 = ̂ H^O + rou- , = /̂ RH + ^R- (6-10) 

and 

dfiu+ + d/l'a^ = 2 d/j.^+a-. (6.11) 

On the other hand, we know that, at T and constant, the chemical 
potentials /̂ Ĥ Q and /<H+CI- appearing in Eq. (6.9) are not independent 
variables; actually, in the bulk phase, we may write 

Ck^o dfi'K^o + Ĉ +̂ d/i'n, + CU- dfi'on^ + Q i - d/l'c^- = 0 (6.12) 

and 

Cfi. = C ,̂H- + C é i - . (6.13) 

Now, combining Eqs. (6.7) and (6.11)-(6.13), we find that 

Cè.o dfi's^o + 2C6,- dfi'j^.ci- = 0, (6.14) 
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where 

CHJO = C'H^O + CoH-- (6 .15) 

Thus, from (6 .14) , in a dilute solution of HCl, 

CHJO > Cci- a n d < «̂'HJO < <^«'H+CI- � 

If /"ci- is net too small compared with PHJO > (6-9) then becomes 

dy = —IFci- d/x'ji+ci- — F^n ^/J'R-n (6.16) 

If the spread-out film is in a gaseous state, there are many water molécules 
in /?; PHJO is thus large for the référence surface, and /ci-<^/"H^O 
because the diffuse layer is not important. The term d/n'^^o may no 
longer be neglected. 

In this case, it seems to be more convenient to use the relative adsorp-
tion in such a way that the Gibbs dividing surface yields r^^o = 0. 
The values of V and V" are then différent from their values in the above 
cases, but the formulation remains valid and we may write, in terms of 
the relative adsorption r^u^o, the foUowing équation: 

dy = —2rci-,H,o <̂ i«H+ci- — /^R-H.H,o < "̂B-H- (6-17) 

Measuring y for given values of /B_H,H,O at constant température, 
pressure, and fia+a-y we then obtain the law 

Y = y ( ^ i - H . H . o ) . (6 .18) 

From the curve (6 .18) , we have 

dy _ dy d/4i_^ _ t ^/^-H iQ^ 

R-H,H,0 " '"R-H R-H,HjO R-H.HaO 

It is then possible to find the law /MR-H = /^B^H(/^R-H,H2O) for a given 

value of /<H+ci--
For example, if ( 6 .18 ) is a linear law of the form 

y = / - 0„rLH.H,o, (6.20) 

where 0^ is a function of T, p^, and /*H+CI- We obtain 

ôy/SrLn.H.o = -Sa, (6 .21) 
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and, f rom (6.19), 

(ea/n-H.H,o) ^rLH,H,0 = ^/^i-H � (6.22) 

Now integrating (6.22) 

/^^H = /«1H + 0a In ri_H.H,o (6.23 ) 

For différent values of fis+a- > it is now possible to know the variation 

of da v/ith /^H+ci-. 

Remark. It is possible that /«R-H is also a function of //H+CI--

E . VARIOUS EXPLICIT FORMULATIONS OF THE CHEMICAL POTENTIAL IN 

THE LAYER AND IN THE GiBBS DiVIDING SURFACE 

In absence of fields, for an idéal uncharged monolayer defined in the 
manner of Defay and Prigogine (see Defay et al. (1966), Chapter XII , 
§ 5), we may write for each y the expression: 

fi/ = C/{T, p) + RTln N; - yœ^, (6.24) 

where superscript c refers to the monolayer model and a to Gibbs' 
model. We also have 

y 

where coy is the partial molar area of y. 
When the surface is saturated by only one component, 

= ^ / V = l /Z^r . (6-26) 

where 7^̂ °° is the saturation adsorption in the layer and not the Gibbs 
adsorption related to a division surface. 

On the other hand, Wy may be a function of y, i.e., the value of 
may be slightly différent in a saturated than in a nonsaturated layer. In 
the molecular models, it is always assumed that cô  is a constant quantity. 
For a nonideal monolayer in the absence of field, Eq. (6.24) must be 
replaced by (Defay et al. (1966), Chapter XII , § S) 

^ " " = ( - 1 ^ ) +P^y'-y0^y, (6.27) 

where v^'^ is the molar volume of y in the layer. The term pVy" is small 
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compared to yco^. Equation (6.27) is valid for the solvent and also for 
the solutés. In the case of regular solutions, many authors give the 
explicit expressions of F'^ and yUy" (see, for example, Defay et al. (1966) 
Chapter XII, § 8). With the Gibbs model, we may write [see (Defay 
et al., 1966) (12.13) and (12.14)] 

n l \ 

For nonideal uncharged Systems in the absence of field, the use of the 
équation (Arcuri, 1966) 

= | / ( T , p) + RT l n / / i V / - yco^ (6.30) 

defines the activity coefficient /y". 

Remark. Many authors have shown that the monolayer model is 
very coarse. Indeed, Defay et al. (1966, Chapter XII, § 10) proved that 
this model is inconsistent with the Gibbs formula. It seems better, 
following Defay et al. (1966) and Ono and Kondo (1960, p. 159), to use 
the multilayer model (infinité laminae) for which Eq. (6.24) may be 
written for each lamina with varying from lamina to lamina. 

(6.28) 

(6.29) 

VII. Multilayer Model and Interfacial Orientation 

A . INTRODUCTION 

We know that, if a surface layer is many molécules thick, its composi-
tion may vary with position within the layer; this circumstance makes 
it physically reasonable to use the multilayer model developed by Defay 
and colleagues (1966), a model one could call intermediate between the 
continuons and the discontinuons models. The System is divided into 
uniform régions called phases; the nonuniform régions, such as the 
capillary layer, are subdivided into a number of laminae each sufficiently 
thin be considered as homogeneous. 

Our purpose here is to develop capillary theory based on the multilayer 
model with a view to deriving an explicit formulation of interfacial 
orientation. 
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Excluding ail microscopic fluctuation eff^ects, this work deals only 
with Systems for which orientation equilibrium occurs after the estab-
lishment of the difi^usion equilibrium. Ail transport of matter from one 
région to another may be treated as a transfer of one or several com-
ponents from one phase to another. 

The only entropy production sources are, on the one hand, the chemical 
reactions and the transport from one phase to another, and, on the 
other hand, the orientation of every component which occurs in the 
laminae. Thus, in addition to the classical chemical and transport afiin-
ities, we shall have orientation afiinities. 

In Defay's work (1966), the orientation of the components is not 
treated as an independent variable. This means that the molécules, 
while moving from one phase to another, are supposed to be always in 
instantaneous orientation equilibrium with the dipole structure of the 
successive laminae. 

If, on the contrary, the orientation equilibrium is reached after the 
diffusion equilibrium, orientation variables independent of diffusion 
variables should clearly appear in the thermodynamic formalism. This 
will enable us to show how the Gibbs formula may easily be extended to 
thèse Systems and, for illustrative purposes, we shall discuss a very simple 
example of surface orientation. 

Remark. The extension of our theory to electrocapillary Systems has 
also been made (Sanfeld, 1968, Chapter 14). 

B. THERMODYNAMICS OF A CLOSED CAPILLARY SYSTEM 

We adopt the multilayer model in which each lamina, within the surface 
layer is considered as a homogeneous phase of infinitésimal thickness. 
Let us now consider a System at uniform température and in mechanical 
equilibrium, unable to exchange molécules with the surroundings. In 
particular, for a System containing only one plane interface, the work 
dr donc on the system by its surroundings is given by (1.17): 

dT =—pe dV + y dA, (7.1) 

where pe is the external (uniform) pressure acting on the system, and 
F = 2 j P̂ " is the total volume equal to the sum of the volumes of the 
individual phases (bulk phases I and II and laminae). The équations, 
derived from the first and second laws of thermodynamics, have the form 
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[see Chapter 1 and Chapter 2A, Eq. (1.11)] 

dU = dQ-j:pe dV- + ydA (7.2) 
ex 

and 

dS = d^S + diS, (7 .3) 

with diS > 0. Because of the way in which the System has been defined 
(no thermal flux, no hydrodynamic motion), the only possible sources 
of entropy production are the chemical reactions, the diffusion of molé-
cules from one part of the System to another, and the orientation varia-
tions in each lamina within the surface layer. The variations in orienta-
tion are due to strong interactions between molécules or atoms belonging 
to the same lamina or to neighboring laminae. 

We now define the degree of advancement introduced by De Donder 
(1922) [see Eq. (2.1) Chapter 2A] for ail possible reactions (matter 
transport, i.e., passage of one or more components from one phase to 
another, chemical, and orientation reactions). We have 

«/ - nf = - -1^+1 + 2 v-,^, (7 .4) 
r 

<ml^y> - <mî^yy = lî,yo (7-5) 

<7«J..,> - « ^ > < ' = lî.,,g, (7.6) 

where "''^^y' and "fj*^ are, respectively, the degrees of advancement of 
the transport reactions of constituent y from phase a — 1 to phase a 
and from a to a + 1. The index r refers here to the chemical reactions, 
the superscript 0 to the time t = 0 (origin of f), and (wij.y) and (,mf.y} 
are the orientation variables, i.e., the mean projection and the mean-
square projection on the axes (î = 1, 2, 3) of the dipole moment per 
mole of y in the phase a. Let us remark that the distribution function 
of the orientation may be described by the six projections (,tn.x.y and 
<7n|.> only if we assume the classical approximation of a Gaussian dis-
tribution. The degrees of orientation fj.yo and fj.y^ are defined by 
(7 .5 ) a n d (7.6) . 

If the molecular orientation varies during the crossing from one lamina 

to another, then variables ""^ly", ^x,yO' ^iivQ ^^^y together during 
the crossing. 

Usually, in capillary theory, orientations and diff'usions are treated as 
independent variables, i.e., the orientation and diffusion occur simul-
taneously. Here, we consider the case of independent variables. An 
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extension of De Donder's équation (2.1) Chapter 2A for ail the possible 
reactions leads to 

T d i S = T . d^^ + S AX^o dèl,yO + 2 Al^yQ d^^,yQ, ( 7 . 7 ) 
Q ayi xyi 

where the sommation symbol S^y; represents the triple summation 
. The coefficient Ag is the chemical affinity of the reaction 

Q (i.e., passage and chemical reactions). The orientation affinities A^.yQ 
and Ax.yQ are related to dipole moments (m%.y)> and (mf:^}. 

From Eqs. (7.2), (7.3), (7.7) and from Chapter 2A Êqs. (1.7) and 
(1.18), we obtain 

d F = - S d T - - Z P e d V ' ' + y d A - ^ A , d^„ - 2 ^ : , , o d^l.yO 
a. Q xyi 

—'L/^liyqd^xyiQ- ( 7 . 8 ) 

ayi 

The free energy F can thus be expressed in terms of variables T, F"", A, 
fg, ^î.yo. and fî.^Q, where et = 1, 2, . . . ; y = 1, 2, . . . , c; and / = 1, 
2, 3. The derivatives of Fwith respect to one variable, ail others remaining 
constant, have the form 

and 

dF ^ dF ^ 

C'SxiyO "*x,yQ 

C . THERMODYNAMICS OF AN OPEN CAPILLARY SYSTEM 

The previous discussion leads to the conclusion that F is a function 
of the variables which détermine the physicochemical state of the phases, 
the mode of repartition of the components among the phases, and their 
orientation within each phase, 

F = F{T, A, n / , <m?,„>, « , » , (7.11) 

where the symbol represents n\ ''^, the number of moles of each com-
ponent in each phase of the System. The same will be true for an open 
System. Let us remark now that the orientation variables are intensive. 
If the System is subjected to a transformation in which ail n/, {tnl^y}, 
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and </wĴ y> remain constant, the free energy will vary in exactly the same 
way as it would in a closed System where ail | are constant. The three 
first équations (7.9) can thus be written 

dF 

dT 

where subscript x = V''n/A<jn%.yy(jn^y} 

dF 
(7.12) 

V 

where subscript y = J'«/^<>«J.y><ffîîJy> 

dF 

where subscript z = T'F^Ky°'<OTj.y><mjJy>. On the other hand, if the 
System is subjected to a transformation in which only (WîJ.J,) varies, 
the free energy will vary in exactly the same way as it would in a closed 
System where ail i are constant except Ij.yo- From (7.5), (7.6), and (7.10), 
we obtain 

dF dF 

> 

dF dF 
d(mll 

4" 

(7.13) 

Furthermore, we define the quantity 

where subscript z' = rF°'yîw/<»zî.y><7Mj^y>, as the chemical potential 
of component y in the phase a for a state where the mean orientations 
have given values. When thèse mean orientations take their equilibrium 
values, the chemical potential reduces to the classical équation (4.18). 
A derivative in which only n^'^ varies means that component y added to 
phase a takes the préexistent orientation in this phase. From (7.4), 
(7.9), and (7.14), we have 
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Equation (7.8) can thus be written 

dF = -SdT-'^p,dV'' + ydA + 'Z fJ-y dn/ 
ce OCy 

- S Al^^o d<mX,o> - S. A%^Q dinfl4). (7.16) 

The Function F is a homogeneous function of first degree in the variables 
F"", A, fiy", and thus, from Euler's équation 

F=-i:p,V'' + yA + ^ n^'ix^' (7.17) 
a ay 

where the chemical potentials /z "̂ dépend on the orientations [see Eq. 
(7.14)] and where the summation over a includes ail the bulk of both 
phases I and II and all the surface layers. 

By differentiation of this relation, and subtracting (7.16), we obtain 

Ady = ~SdT+Vdp^~^ n/ d/i/ 
xy 

- 2 ^x.yo rf<<y> - S Al^^ç d(mf^^y. (7.18) 
ayi ayi 

The above proof does not assume the existence of equilibrium with 
respect to the distribution of components among the surface layers, but 
does assume mechanical and thermal equilibrium. 

But if orientation phenomena are much slower than diffusion, we can 
reach a partial equilibrium state, and, for each component y, 

= f./ = (7.19) 

although the orientation affinities are différent from zéro. The superscript 
to fiy may then be dropped. 

From (7.18) and (7.19), we find, in the Gibbs model, 

dy^-s^dT-^ d^^ - S AZo ^ « y > - s AZQ d<m:ly, (7.20) 
y OLyi xyi 

where = Al.yfA. This is an extension of the Gibbs équation to 
chemical Systems where orientation reaches equilibrium a long time after 
the diffuse equilibrium. At the true equilibrium (diffusion and orienta-
tion), A*1,o = 0 and A*^Q = 0 and (7.20) reduces to the classical 
équation (3.43). 
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Let us now suppose that we maintain a constant température, pressure, 
and composition of the bulk phase, i.e., d/i^ = 0. The évolution of the 
surface from a state of partial equilibrium (i.e., from a state where the 
orientation is not in equilibrium) would be given, with the aid of (7.20), 

dY=-i: At:^ d « , > - 2 ^� .^ j d<:mZ>. (7.21 ) 
ayi ayi 

This formula implies that each fiy is constant during the transformation, 
i.e., that diffusion occurs quickly enough to ensure continually that the 
equality (7.19) holds, by balancing the influence of the change in orienta-
tion of the local yUy. 

D . EXAMPLES 

We consider a system in a real equilibrium state. A short perturbation 
(friction or motion laying down the molécules) is applied so as to avoid 
diffusion (in the bulk phase, the température, the pressure, and the 
composition are constant and we suppose ail the /x^ are uniform in the 
médium). Nevertheless, this perturbation is able to reverse the molecular 
orientation in certain laminae. When the perturbation cancels out, the 
System returns to equilibrium in agreement with (7.21). This case may 
be related to the viscosity flow of monomolecular solutions. 

From the expérimental point of view (Defay and Pétré, 1970), it is 
well known that the rate of adsorption of sebacic acid, azelaic acid, and 
diols at the interface air/aqueous solution is not only diffusion-controlled ; 
a barrier of potential energy between the substrate and the surface phase, 
related to the orientation of the adsorbed molécule, has to be taken into 
account in considering the rate of évolution to the equilibrium state. 

Now we suppose that only one component of the upper lamina orients 
itself at the interface. Equation (7.21) may then be rewritten 

dy = — (7.22) 

Let us suppose that initially (out of equilibrium) one half of the unde-
formable or rigid dipoles are directed vertically upward and the other 
half vertically downward, while, at equilibrium, ail dipoles turn vertically 
downward. If the axis is perpendicular to the surface of the layer, the 
rigid moments <imj.^y and <Wî| > may be written as m<cos /9,> and »i^<cos 
X fil), where m is the arithmetic value of the dipole moment and cos 
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the direction cosine of a unit vector on the axes of a dipole in comparison 
with the vertical axis x^. Furthermore, let us assume that AQ* varies 
only slowly with in such a way that contribution of the second 
intégral J[ AQ* d(m^y can be neglected. Integrating (7.22) from <cos /3i> 
= 0 to <cos /3i> = — 1 and <cos^ /3i> = 1 to <cos^ /3i> = 1, one then bas 

<^„*> = Ayjm, (7.23) 

where (,A^*y is the mean value of the surface orientation afHnity in the 
intégration and Ay the variation of the surface or interfacial tension due 
to the change of orientation. 

If, by way of a perturbation, ail the rigid dipoles are initially directed 
vertically upward and if, during equilibrium they turn downward, then, 
after intégration, Eq. (7.22) becomes 

<^o*> = ^yl2m. (7.24) 

A measurement of the surface tension for the two extrême positions of 
the orientations can give us a value of the mean affinity of orientation, 
as long as the dipoles are rigid and their moments are known. 

Remarks. (1) If we assume that only one of variables fj.^o varies, ail 
others being kept constant in Eq. (7.8), and that, moreover, <w2̂ j> varies 
from 0 to —(,tn^^y «cos (}} varies from 0 to — 1), we find 

AF = A(A*J(m,;>. (7.25) 

Putting (7.25) in (7.23), we get 

(AFy = A Ay. (7.26) 

(2) It is easy to compare now the mean affinity (yîo*)//' with RTjim}, 
where F is the number of moles per cm^. At 15°C, RT ~2.Z x W 
ergs mol"'. Let us choose, for example, a binary liquid whose surface 
is covered by 10"*° mol cm-^ of the surfactants. We suppose now that, 
if one half of the surface molécules of the surfactants are turning, the 
expérimental value of Ay is 5 dyn cm- ' . Since the variation of the mean 
affinity per mole is only due to the surfactant in the upper lamina (we 
exclude the variation of the other component), it is easy to see from 
Eq. (7.23) that <^o*>/^ is of order of magnitude 2.1RTl(m}. 

(3) The influence of orientation terms on the Lippmann electro-
capillary équation has recently been studied (Sanfeld, 1968). 
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Vni. Capillary Condensation 

A. THE BUBBLE 

In order to interpretate the condensation of a vapor in the pores of a 
solid and thus the capillary condensation, we shall first treat the problem 
of the bubble. 

Let us combine Eqs. (1.10) and (1.12) in such a way that 

Then we neglect the molar volume of the liquid compared with v" 
and assume that the vapor behaves as a perfect gas. Equation (8.1) then 
becomes 

On integrating (8.2) assuming is constant, we obtain 

where p° is the normal vapor pressure (vapor pressure corresponding to 
a plane surface). Thus, the larger the curvature of the bubble, the smaller 
is the vapor pressure p". This équation explains the low vapor pressure 
exhibited by a liquid held in a porous solid whose walls are wetted by the 
liquid. When the pores are very small, then the liquid is separated from 
its vapor by a concave meniscus of small radius of curvature. Equation 
(8.3) aiso explains the superheating of liquids above the normal boiling 
point. Thus, for a bubble of vapor to form in water subjected to a pressure 
of 1 atm, it is necessary, because of the Laplace équation (1.7), for the 
pressure in the interior of the bubble to be greater than 1 atm. However, 
while the vapor pressure of a plane surface of water at 100°C is 1 atm, 
that of a concave surface will be less. Consequently, no bubbles can 
exist at 100°C and it is necessary to beat the water to above 100°C to 
achieve boiling. Powders or other impurities which favor the formation 
of large bubbles diminish the degree of superheating. 

B. CAPILLARY CONDENSATION 

(8.1) 

(8.2) 

The Kelvin équation (8.3) provides a ready interprétation of the 
condensation of a vapor in the pores of a solid. We consider the idealized 
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problem in which ail the pores are supposée! to be cylinders of the same 
radius r. We suppose that the pores are partially fiUed with a liquid in 
contact with its own vapor (Fig. 14) and assume furthermore that the 
walls of the pores are completely wetted by the liquid. So long as the 
menisci are away from the mouths of the pores, ail the menisci will have 
hemispherical surfaces of radius r. The vapor pressure of the liquid in 
the pores is given by (8.3); this value, denoted by />/, is less than the 
normal vapor pressure p°. Consequently, liquid can exist in a porous 
médium in equilibrium with unsaturated vapor. If the vapor pressure is 
increased slightly, condensation will occur in ail pores in which the 

FIG. 14. Condensation in capillary pores of uniform size. 

meniscus has not yet reached the mouth of the pore. In pores where the 
meniscus has reached the mouth of the pore, further condensation would 
resuit in an increase in radius of curvature of the surface (Fig. 15); 
condensation in this pore therefore ceases when the radius of curvature 
reaches the equiUbrium value corresponding to the pressure {>PT') 

which is being maintained in the vapor. Thus, condensation will proceed 
in the partially filled pores, and be halted in the filled pores, until a 
point is reached at which ail the pores are similarly filled and the liquid 
in them has everywhere the radius of curvature corresponding to p^. 
Further increase in p" results in condensation in ail the pores and the 
flattening of the menisci, which become plane when p" = p". The vapor 

FIG. 15. Variation of curvature of meniscus in a nearly filled pore approaching 

saturated vapor pressure. 
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is now saturated and any further increase in is immediately offset by 
condensation of bulk liquid. 

Thus, when an evacuated porous solid, in which ail the pores are of 
equal size, is exposed to a vapor whose pressure is steadily increased, 
the following phenomena are to be expected (cf. Fig. 16). First, from 
O to A, vapor will be adsorbed by the whole solid surface. The shape 
of this curve may be explained in gênerai terms by the theory of Bru-
nauer et al. (1938) (see also Brunauer (1944)) in which it is supposed 
that the vapor forms, in succession, several adsorbed layers on the solid. 

FIG. 16. Isotherm for adsorption of FiG. 17. Isotherm for adsorption of 

vapor by an idéal porous body. vapor by real porous body. 

At A, capillary condensation commences, and the amount of liquid 
adsorbed increases at constant p"'' = p, up to the point at which ail the 
pores are just fiUed (S). Between B and C, further condensation causes 
the menisci to flatten until, at C, they are plane, the vapor is saturated, 
and condensation of bulk liquid can take place. 

Real solids clearly do not have pores of the same size. Small pores 
will fill first and the largest will not begin to fill until the menisci in the 
smallest pores have aiready begun to flatten. It is for this reason that, 
for real solids (Fig. 17), the idéal vertical section AB becomes the oblique 
section AEB. 

Furthermore, real solids are not aiways perfectiy wetted, and their 
wettability may dépend on various circumstances, such as the présence 
of an adsorbed layer of inert gas other than the vapor being studied. 
This problem has been developed in an exhaustive way by many authors 
(de Boer, 1953; Defay et al., 1966). 
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IX. Siu-face Tensions of Crystals 

The surface tension, regarded as a mechanical force, poses some very 
complicated problems in the case of soUds. In particular, its direct 
measurement is impossible except in spécial circumstances in which the 
molécules of the solid have a certain mobility, as, for example, in metals 
at températures very close to their melting points. 

But, generally, if a rectangular crystalline sheet is stretched by a force 
applied to two of its sides, it is clear that the tensor in the sheet is aniso-
tropic. 

0 

FIG. 18. Equilibrium of a crystal immersed in a fluid (superscript f) (liquid or vapor). 

Nevertheless, the growth of a crystal face is possible by déposition of 
fluid molécules on its faces. The external mechanical work received by 
the System is 

dr = -p^ dV^ - dV + S y'» dA^, (9.1 ) 

where the quantities y*, y^, .. .,y^ are the surface tensions, respectively, 
of phases 1, 2, . . . , /S, and the superscript/ indicates fluid. As the work 
dr is equal to the work donc by the piston on the fluid (Fig. 18) 

dr = -pf dV = -pf{dV^ + dV) = dV^ - p' dV + - p^) dV\ 

(9.2) 

where we suppose the existence of a pressure />' within the crystal far 
from the surface régions. For some internai point O, we draw a line 
normal to each face /S (Fig. 19). The change in volume is, to the first 
order in small quantities, equal to 

dV = 2 d¥. (9.3) 
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FiG. 19. Geometrical variables defining the size and shape of a crystal. 

Furthermore, 

thus 

F» = 2 ^A^''; (9.4) 

t̂ F» = è S Ai^ d¥+ hY. h» dA^. (9.5) 

0 (S 
From (9.2), (9.3), and (9.5), we obtain 

dx = -p^ dV^ - dV + S (/>' - ^0 dA». (9.6) 

By comparison of (9.6) and (9.1), we may assume that 

y^=\{p^-p')¥. (9.7) 

Thus, one possible equilibrium form of a crystal is that for which 

(9.8) 
Al 

I L r 

This form, in which the distance of each face from O is proportional to 
the surface tension of that face, is called the Wulfî form, and the set of 
relationship (9.8) are called Gibbs-Wulfï relations. 

The concept of an isotropic pressure p" in the interior of a crystal is 
self consistent provided that those faces for which the tensions are larger, 
are the most remote from the point O. In every crystal which is in the 
equilibrium form, there exists a point O such that the Wulff relations 
are satisfîed. 
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Let us remark that (9.7) has a form like Laplace's équation. Moreover, 
if, in the démonstration of the Kelvin relations, (1.13), we use (9.7) in 
place of (1.8), we find the vapor pressure of a WulfF crystal 

l n ^ = - i ^ ^ (9.9) 
p° RT W ^ ' 

Small crystals have a larger vapor pressure than big ones. In the same 
vapor, big crystals grow while the small ones vanish. In the same way, 
in a liquid phase, small crystals are more soluble and disappear, to the 
benefit of big ones. 

Remark. The surface tension of crystals and the thermodynamics of 
deformed elastic bodies have been studied in a more exhaustive way by 
many authors (see, for example, Gibbs (1928), Rice (1936), Herring 
(1953), Chez (1968), Defay et al. (1966)). 
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