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ABSTRACT 

The anisotropic Heisenberg ferromagnet formalism developed pre- 
viou.sly is examined to include an applied magnetic field for the isotropic 
case in the random phase approximation, Thermodynamic quantities 
such as magnetization, susceptibility and the derivative of magnetization 
with respect to temperature are studied near the Curie point. 

INTRODUCTION 

According to the Weiss  theory a ferromagnetic material possesses 
an internal field which is proportional to the magnetization. A s  the tem- 
perature of a ferromagnet is increased, the magnetization decreases 

becomes paramagnetic. The process by which this change from ferro- 
magnetism to paramagnetism occurs is referred to as the ferromag- 
netic phase transition. Investigations have shown that electrical, mechan- 
ical, and many thermodynamic properties of a material are altered when 
the material undergoes a phase transition. 

The effect of an external magnetic field is twofold: (1) the magnet- 
ization is increased above its zero field value and (2) the critical point 
disyppears Even though increasing temperature tends to destroy spin 
aliziement, the field causes some ordering to be present. Thus instead 
of dl abrupt change at the critical temperature there is a more gradual 
transition. 

at a temperature known as the Curie temperature T,, the material 
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This report is concerned with the investigation of the thermody- 
namic properties of the Heisenberg ferromagnet in an extern 
netic field. The quantities studies are the magnetization, suscepti- 
bility and the derivative of magnetization with respect to temperature. 

t of these can be used to calculate entropy and the magnetocaloric 
effect, which are useful for investigating various recently propo 
netic refrigeration systems. 1- 2 

Model 

The Heisenberg model is based on a solid where the magnetic elec- 
trons are in states localized about the lattice sites with an exchange in- 
teraction taking place between electron pairs. The model does not take 
into account itinerant electrons and is considered valid for insulating 
ferromagnets such as EuO but not f o r  conductors such as iron and nickele 
However, it appears that this model gives better results for conductors 
at low temperatures than those calculated from a band theory approach 
as shown by Argyle, Charap and Pugh. 
that the Heisenberg model with its surprising success does not take into 
account the spreading of the electronic energy levels into bands. 

and Tyablikov using the techniques of double-time, temperature depend- 
ent GreenOs functions. An excellent review of Green's functions and 
Tyablikov's application of them to ferromagnetism is given by D. N. 
Zubarev and references contained therein. 

It should be noted, however, 

The Heisenberg ferromagnet with spin 1/2 was analyzed by Bogolyubov 
4 
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The Hamiltonian for the Heisenberg model is 

where 
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is the Bohr magneton, g is the Lande g factor, Ho is the ap 
magnetic field which is assumed to be along the z-direction, Si is the 
spin operator for a spin at site i, and J.. is the exchange interaction 

1J 
between spins on sites i and j .  The sum is carried over all sites in 
the crystal. The exchange interaction is assumed to be a function only 
of the distance between sites. The self-exchange terms such as Jii o r  
J.. are zero. 

1 

PB 

I 3  

Calculation of Thermodynamic Quantities 

Since the thermodynamic quantities of interest are the magnetization 
of the system, one is interested in correlation functions of 

the form {iz&) and hence of the Green's function ((S+* S- )) 
g' m 

Starting with the GreenOs function ((S:; Si)) one can derive the 
I .  " 

correlation function in the random phase approximation. The results 
are: 

where 

and 

m 

The sum in equation (3) is over all N lattice vectors in the first 
Brillouin zone. 

The applied magnetic field is assumed sufficient to orient the net 
magnetization along the direction of the field. The field also induces 
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additional long-range order. The long-range order is thus due to the 
internal field and to the applied magnetic field. The thermal average 
of the z component of the spin, $3') , is defined as the magnetization 
per site and is a measure of this long-range order. 

The magnetization, Sz is calculated from the relation 

(SZ) = 

where 

1 
2 p  + arpj 

The sum in equation (7) must be evaluated over all values of k in 
the first Brillouin zone of the appropriate lattice. Except at the very 
low- and high- temperature limits, numerical methods are usually used. 
Such numerical solutions are, however, somewhat difficult. One of the 
purpose of this paper is to show that analytical solutions of equation ('7) 
are possible. 

Fo r  crystals with cubic symmetry, such as bcc, one can replace 
the sum which appears in equation ('7) by an integral. Using the same 
techniques developed by Flax and RaichGm8 one can obtain the magnet- 
i zati on : 

@Z) = -  1 
2A 

where 

P coth P - - 
P3 'I 1 

P 
+Goth P - - + 
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@BgHo - H' a =  - -  

and K(k) is a complete elliptic integral of first kind with 

r 
k2 =($l 

Equations (8) and (9) give $3') a function of temperature, magnetic field 
and magnetization. 

eral values of H' for a bcc lattice. When H t  equals zero there are 
no solutions for $3') above a critical temperature T,, that is, the 
Curie temperature. This is the point where long range order disappears 
and above which the spins are completely disordered. For non-zero 
the ferromagnetic transition occurs over a range of temperatures which 
forms a Curie region, s o  that the transition is smeared out and results 
in the appearance of a "tail. 

The cause of the 'Yailq' is that the long-range order persists through 
the effect of the applied magnetic field. The higher the field, the greater 

Figure 2 shows a plot of (Sz) as a function of H t  for  several values 
of r for  a bcc lattice. A s  is seen from the figure the magnetization has 
a nonlinear dependence on the magnetic field near the Curie point 
(T = 0,3588). This nonlinearity in the transition region can be attributed 
to the exchange interaction. This behavior persists as the temperature 
is increased for  small magnetic field strengths. For  high field and 

Figure 1 shows a plot of $3') as a function of temperature for  sev- 

the broadening of the transition. 
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high temperature the magnetization curve becomes linear. This has 
10 been experimentally verified for  many ferromagnetic substances. 

MAGNETIC SUSCEPTIBILITY 

The magnetic susceptibility x is defined as 

Using equations (8) through (14) together with equation (15) one obtains 

where 

Av = ( ~ ) ~ ‘ 3 2  + coth P - - 1 + 
P 

a ( 1 + 2 x )  P = - +  
2 2 

and 
, 

For a given ferromagnetic material the spontaneous magnetization 
can occur only below a critical temperature Tc. Well  above the Curie 
temperature, such materials are found experimentally to behave para- 
magnetically, and have a susceptibility which follows the Curie - Weiss  
law, namely 

C X =  
(T - 6)  
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in which C is the Curie constant and 8 is called the paramagnetic 
Curie temperature. 8 is usually somewhat higher than Tc. 

A plot of 1/x as a function of r from equation (16), is shown in 
figure 3. As required the curve becomes linear at temperature suffi- 
ciently far above the Curie point. The nonlinearity in the neighborhood 
of the Curie point agrees qualitatively with experiment. l1 Below the 
Curie temperature, Tc, ferromagnetic materials show a marked in- 
crease in susceptibility. 

CALCULATION OF THERMODYNAMIC QUANTITIES 

For an adiabatic process, where there is no change in entropy 

where CHp is the magnetic specific heat. Since ( a S ' / a ~ ) ~ ,  is negative 
for  a ferromagnet, an increase in field produces an increase in tem- 
perature; moreover., the increase is expected to be largest near the 
critical point. This is known as the magnetocaloric gff'ect. 

The entropy, which is a measure of the order of the system, can 
be calculated from 

The change of magnetization with respect to the reduced temperature at 
constant applied field can b"e derived from equations (8) and (9) as follows: 

? (23) 
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( ~ ) *  
where 

2 -csch p 1 
2 

P 7  
+- 

7 

5! 

47 

2 3 1  p - - +- CSCh 
47 2p4 

C 2  1 (z) =A[]" +(f)csch P - - - 2 2 csch P Goth P 
Pr 87 

@ )  

2 - 2P csch P coth P2 - csch 
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and 

E(k) is a complete elliptic integral of the second kind (28) 

Figure 4 shows a plot of (a (S ' ) /~T)~ ,  as a function of temperature 
for several values of H' for a bcc lattice. These derivatives have not 
previously been obtained analytically. 

CONCLUSIONS 

The thermodynamic properties of the Heisenberg ferromagnet in a 
magnetic field have been investigated theoretically by using a random 
phase approximation. Expressions are derived from which the thermo- 
dynamic parameters can be calculated. The derivative of the magnet- 
ization with reduced temperature is obtained for use in the calculation 
of the magnetocaloric effect and entropy. The analysis predicts that: 

is smeared out. This results in the appearance of a tail in the mag- 
netization versus temperature curve. Increasing the magnetic field 
increases the broadening of the transition. 

at the Curie point. When the temperature is raised, the nonlinearity 
remains in the weak field region, but in the strong field region the mag- 
netization becomes linear with field. 

3. Well above the Curie point the susceptibility follows the Curie - 
Weiss  law (< proportional to temperature). In the immediate neigh- 
borhood of the Curie point, however the dependence of -1  on tempera- 
ture  is nonlinear. These results are in qualitative agreement with ex- 
pe si rn en t * 

1. In the presence of a magnetic field the ferromagnetic transition 

2, There is a nonlinear dependence of the magnetization upon field 
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Figure 1. - Magnetiza- 
t ion as a function of 
temperature. 
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Figure 3. - Reciprocal 
of susceptibility as a 
function of reduced 
temperature. 
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Figure 2 - Magnetization as a function of reduced magnetic field. 
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Figure 4. - Partial derivative of mag- 
netization with respect to reduced 
temperature for constant reduced 
magnetic field as a function of re- 
duced temperature. 


