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The generalized Trotter formula is used to map the two-dimensional spin-l/2 XY 

model onto several three-dimensional Ising models with complicated many-spin in- 

teractions. This hierarchy of Ising-like models is studied by means of analytic and 

Monte Carlo techniques. We demonstrate that the sequence of these Ising models can 

be used to calculate accurately the thermodynamics of the two-dimensional spin-l/2 XY 

model. By calculating the specific heat, spin correlation functions, susceptibilities and a 

disorder parameter, we address the question of the nature of the phase transition in the 

two-dimensional spin-l/2 XY model. 

I. Introduction 

Although it is well-known that there cannot exist 

long-range order in the two-dimensional spin-l/2 

XY model at non-zero temperature [1], high-tem- 

perature series expansions [2, 3] suggest the exis- 

tence of critical behavior. For classical versions of 

the model (planar rotator models) it is well-estab- 

lished that although there is no spontaneous magne- 

tization there is a phase transition at non-zero tem- 

perature [-4, 51. This phase transition is attributed to 

the existence of topological excitations in the system 

and has been studied extensively [6-13]. The physi- 

cal picture is that apart from the usual spin waves 

also topological defects (spin vortices) are important. 

At sufficiently low temperature vortex anti-vortex 

pairs are bound and it is the unbinding of pairs of 

these defects with increasing temperature that causes 

a phase transition to take place. 

Whether or not the same physical picture can be 

extended to the two-dimensional spin-l/2 XY model 

is an open question. It is known that in two dimen- 

sions nonuniversal behavior is not unusual [14]. In 

particular it has been suggested that for this type of 

models the universality class depends on the spin 

[2, 3]. Therefore results for the classical 2D planar 
model should not be taken as a criterion for the 

calculations of the two-dimensional spin-l/2 XY 
model [2]. In comparison with the classical model, 

much less is known about the quantum model main- 

ly because most techniques which have been success- 

fully applied to the classical model become much 

less reliable when extended to the spin-l/2 case [15- 
21]. 

We will calculate the thermodynamic properties of 

the two-dimensional spin-l/2 XY model by exploit- 

ing the formal analogy between d-dimensional quan- 

tum spin systems and (d+l)-dimensional Ising-spin 

models [223. Using the generalized Trotter formula, 

Suzuki showed that Z = T r  exp(-/~H)=lim,,~ooZ m 
where 

Z m - T r  exp - Hi, J , (1.1) 

will be called the m-th approximation to the par- 

tition function Z, Hi, a is any two-site spin-l/2 Ham- 

iltonian chosen such that H =  ~ H~,j and the pro- 
<i j)  

duct in (1.1) runs over some ordered set of nearest- 

neighbor bonds of the lattice [22]. For the two- 

dimensional spin-l/2 XY model on a square lattice 

we have 

Hi,  j = - J ( ~  G~ 4- ffYi aY), (1.2) 

where a i is the Pauli spin-operator at site i(cr~a~ 

=i6j,ke~e~cr~) and the exchange interaction J can 

always be taken to be one [2]. For convenience we 



210 H. De Raedt et al.: Thermodynamics of the Two-Dimensional Spin-l/2 XY Model 

will assume periodic boundary conditions in all our 

calculations. Our goal is to calculate the thermody- 

namic properties of the approximation (1.1) and to 

study the convergence of the results as a function of 

m. It is important to note that in general the results 

for Z m and the related approximants for the thermo- 

dynamic quantities depend on the particular order 

chosen for the product of operators in (1.1). Al- 

though in the limit m~oo  results are independent of 

m, a careful examination of the different possibilities 

is desirable, as it turns out that some orderings are 

easier to handle than other ones, and because the 

rate of convergence may depend on the choice of 

ordering. 

We will carry out this program in two steps. First 

we will discuss the properties of a class of m = l  

approximations. This type of approximation for the 

partition function of spin-l/2 Heisenberg model was 

introduced by Suzuki who called it the pair-product 

model [23]. As pointed out by Suzuki the mathe- 

matical properties of the pair-product model are 

very similar to that of the original quantum model. 

Suzuki analysed the pair-product model for the 

Heisenberg model by using the Bethe approximation 

and Pad6 approximation techniques [23]. Hubbard 

has reviewed the application of similar approxi- 

mations to the 3D Hubbard model [24]. We will 

discuss a large class of pair-product approximations 

for the two-dimensional spin-l/2 XY model that can 

be solved rigorously and we will refer to this ap- 

proximation as the independent pair approximation 

(IPA) [25]. The IPA yields results which are not in 

conflict with known rigorous results. This is due to 

the fact that even in the IPA no essential model 

property (such as rotational spin-symmetry) of the 

two-dimensional spin-l/2 XY model is lost. 

Secondly we will go beyond the m = 1 approximation 

by choosing a quite different scheme of ordering of 

the two-site Hamiltonians Hi, j than the one that was 

used to solve the m = l  approximation analytically. 

In going beyond the m= 1 approximation we have 

not found it possible to analyse the approximations 

analytically and we have to resort to Monte Carlo 

simulation techniques E26] in order to obtain 

numerical results. Brief reports on parts of the work 

presented in this paper can be found in [27]. 

II. Independent Pair Approximation 

In order to prove that it is possible to solve particu- 

lar m = l  approximations rigorously we make a 

graphical construction [25] that maps these repre- 

sentations onto a rigorously solvable two-dimension- 

al lattice model, a staggered 8-vertex model (SEV). 

The resulting SEV satisfies the free-fermion con- 

dition and consequently it belongs to the class of 

staggered 8-vertex models that have been solved 

analytically [28]. The construction parallels the one 

used to map the checkerboard representation of one- 

dimensional spin-l/2 models onto an 8-vertex model 

[29]. The IPA to the partition function reads 

Z 1 = T r  I ]  exp(-f lHi , j )  , (2.1) 
(i j) 

To proceed further it is necessary to choose a repre- 

sentation for the states in which we will evaluate the 

trace. In this section we will work with states of 

products of single spin states, whereby each single 

spin states is chosen to be an eigenstate of the z- 

component of the spin operator. Obviously there are 

two such eigenstates per site and we can label the 

eigenstates by means of Ising spin variables. We use 

the notation a~lSl)=SilSi). As each spin of the 

square lattice interacts with four neighbors it is clear 

that by inserting resolutions of the identity we will 

end up with 4L 2 Ising spins (L is the linear size of 

the square). 

As shown in Fig. 1 we may place the four Ising spin 

variables on the corners of a small square that con- 

tains the corresponding quantum spin. Now we have 

to find a way to order the two-site operators such 

that all bonds are taken into account exactly once. 

Let us start by considering the two-site operator 

acting on the spins on site 1 and 2 (see Fig. 1). If we 

label the Ising spin variable by the number of the 

site enclosed by the elementary square and one of 

the letters a,b,c,d the matrix element for the bond 

1-2 can be denoted by (Sl,aS2,,,lexp(-flH1,2)lS1, b 
�9 S2,b, ). As we are inserting resolutions of the iden- 

tity it is obvious that the next time we encounter an 

interaction in which for instance the spin at site 2 

participates, we have to use either $2, ., or $2, b, in the 

bra respectively ket of the corresponding matrix ele- 

ment. For  example, if we take the interaction 2 3 

into account it yields the matrix element 

($2,  b, S3,a,, ] exp( - fill2, 3)IS2,c' Ss,b"). 

The notation used so far becomes very clumsy after 

taking a few bonds into account but one does not 

need to keep track of all the indices. To this end we 

introduce the convention that if we add a matrix 

element to the product under construction, we draw 

two arrows, pointing to the Ising spins that appear 

in the ket of the matrix element, on the edges of the 

squares that cross the bond (dashed lines in Fig. 1). 

Now the rule of successively using the Ising spins of 

a particular square is replaced by the requirement 

that the orientation in which the arrows run over 
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m -- ~1 o 

Fig. 1. The effective Ising lattice model for the m-1  approxima- 
tion to partition function of the 2D spin-l/2 XY model. The 
original lattice is given by the dashed lines. The Ising spins live 
on the corners of the squares that surround the original lattice 
points. The equivalent staggered 8-vertex lattice consist of sub- 
lattices A and B 

the squares cannot  be changed. Note  that  once one 

of the Ising spins of a square is used in a bra  or ket 

the or ienta t ion on the square is fixed�9 Using this 

no ta t ion  we can walk over  the lattice and  add  more  

and  more  exponents  of two-site Hami l ton ians  to the 

list such that  at the end there are exactly four ar- 

rows on each square (in the case of periodic bound-  

ary conditions). Then  all Ising spins have been used 

twice (once in a bra  and once in a ket) and the path-  

sum representa t ion  has been found. It  is not difficult 

to convince oneself  that  this const ruct ion can be 

made  for m a n y  (but not  all) different orderings un- 

der the condi t ion tha t  L is even. 

As for the one-dimensional  case [29] we turn the 

Ising model  into a vertex model  by drawing diag- 

onals in the squares between (instead of on) the 

e lementary  squares  on which the Ising spins live, 

using the same convent ion  for put t ing arrows on the 

lines th rough  the corners  and  a t taching the appro-  

priate weights to the vertex configurations.  F r o m  

Figs. 1, 2 and the matr ix  representa t ion  for the two- 

body  ope ra to r  exp ( -fiHi, j) 

< Si, Sjl e x p ( -  fiHi,~)lSi, S j) 

~ ?2~a 0 0 

= e _ ~  J 0 cosh2fiJ sinh2fiJ 
~00  s inh2f i J  e o s h 2 f i J  

0 0 

J t  I - 1  - 1 >  �9 I 1 - 1 )  

' I - 1  1 ) '  

e2# I 1 1) 

(2.2) 

031 032 033 03~ 

W5 036 037 038 

Fig. 2. The eight vertex configurations and their corresponding 
weights 

it follows that  the resulting vertex model  is a SEV 

with weights given by 

C01 = CO'l= co2 = CO~ = 1, 

(03 = co3 = (04 = co4 = sinh 2fiJ, 

co s = (.o 7 = o) 6 = co~ = cosh 2fiJ, 
t t 

607 - -0 )5  = 0 ) 8  = 0 ) 6  = 0 ~  

(2.3 a) 

(2.3b) 

(2.3c) 

(2.3d) 

where coi(co'~) are the weights on the sublatt ice A(B). 
The general solution for the s taggered 8-vertex mod-  

el is not  known but  a r igorous closed form ex- 

pression for the free energy can be derived if the 

vertex weights obey the free-fermion condi t ion [-28]. 

For  the two-dimensional  sp in- l /2  X Y  model  this 

happens  to be the case and the SEV app rox ima t ion  

to the free energy per site of the two-dimensional  

sp in- l /2  XY model  reads 

1 2",'z 2re 

�9 In [4(1 + yZ)2 _4y2(cos  0 + cos 4)2], (2.4) 

where y = s i n h 2 f i J .  F r o m  (2.4) we already see that  

the critical point  mus t  be at y =  1 ( T j J ~ 2 . 2 7 )  since 

then the integrand diverges for 0 = ~ b = 0 .  A more  

detailed analysis reveals that  the specific heat  has a 

logar i thmic divergence at the Ising model  critical 

t empera tu re  s inh(2J/T~)= 1. It  can be shown that  the 

free-fermion condi t ion remains  satisfied if we add a 

field h = h e  z and  as can be expected on physical  

grounds,  it follows that  there is no spontaneous  out- 

of-plane magnet iza t ion  (M Z=0)  nor  a divergence in 

the out-of-plane susceptibili ty [25]. Thus  the rigor- 

ous solution of the simplest  app rox ima t ion  to the 

par t i t ion function of the two-dimensional  sp in- l /2  

XY model  yields results which are not  in conflict 

with all known r igorous results on the model.  The  

fact that  the specific heat  of  the SEV app rox ima t ion  
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to the two-dimensional spin-l/2 XY model is loga- 

rithmically divergent is in qualitative agreement with 

experimental results on CoC1/-6H/O,  an example of 

a 2D spin-l/2 XY magnet [30]. Recently a similar 

anomaly in the specific heat has also been observed 

in BaCo/(AsO4)2, a prototype of a two-dimensional 

spin-l/2 XY model on a honeycomb lattice [31]. 

III. Monte Carlo Simulation 

A. Theory 

On the basis of the IPA it is impossible to answer 

the question whether the obtained critical behavior 

is not an artifact of the m = l  approximation, or 

whether it is due to choosing a particular ordering 

of the exponential operators in (5.5). We now exam- 

ine the problem of extending the calculation to 

m> 1 and other orderings. Extending the staggered 

8-vertex formulation to m > l  is possible but it is 

certainly not the most promising approach if we 

have to use the Monte Carlo simulation method. As 

two out of eight vertex configurations are forbidden 

(see (2.3d)) it is not possible to employ a simple 

Monte Carlo scheme for changing the vertex config- 

urations in an unbiased way. In this respect we 

would face at least the same difficulties as those 

encountered in simulations of one-dimensional 

quantum spin models [32-34]. We will not go into 

details about this because an extensive discussion of 

the fundamental and technical problems that arise in 

simulations of 1D spin-l/2 models (XY and Heisen- 

berg models) can be found in [33] but only empha- 

size the fact that the higher the model symmetry, the 

harder it is to construct a correct and efficient simu- 

lation algorithm. In addition to this we would have 

to find an efficient scheme to deal with the com- 

plicated three-dimensional lattice structure. In view 

of all this we consider extensions of staggered 8- 

vertex formulations for m > 1 as being impractical. 

It is not hard to trace back the reason for the 

problems that appear in the 8-vertex type formu- 

lation. By working with a representation in which a~ 

is diagonal, conservation of magnetization per two- 

site block requires that most of the elements of the 

two-site interaction matrix (2.2) are zero. Con- 

sequently it is difficult to find simple spin-flip algo- 

rithms satisfying these constraints and being able of 

generating all allowed configurations. In the case of 

the XY model (in zero external field h = 0) there is a 

representation of the spin-states such that eight out 

of the sixteen elements are strictly positive. Applying 

two successive cyclic permutations of the spin-com- 

ponents we find that the XY model turns into a XZ 

model 

H= - J  ~ (a:[a~.+a~a}). (3.5) 
(i j )  

Since a cyclic permutation is a unitary transfor- 

mation the partition function does not change. It is 

straightforward to show that for the XZ model the 

two-site interaction matrix is given by 

T(S,, Sj; S,, Sj)= ( S, Sj, exp [~(a~ a~ + a~ ~)] 1S,$2) 

= bssj s.sj(�89 sinh 2Km)'/2 exp(KmS, S~ + fiJ SiSjt, 
' ~ m / 

(3.2) 

where Km=�89 ). From (3.2) it is clear 

that by making a rotation in spin space we have 

found a representation that does not suffer from the 

drawbacks of the representation used in previous 

simulations of 1D spin-l/2 system [32-34]. 

The remaining problem is to split up the Hamil- 

tonian such that the labor involved in keeping track 

of all two-site interactions is not too exhaustive. We 

decompose the Hamiltonian as H=Hh+H v where 

Hh(v) is a sum of non-interacting horizontal (vertical 

XZ chains. Then we can either choose the checker- 

board or real-space partitioning to break-up the XZ 

chains into two-site blocks [22, 29, 32, 35]. In this 

last step we do the same as for the one-dimensional 

models, i.e. we sum out intermediate states [35] and 

instead of 4mL 2 Ising-spin variables (4 per quantum 

spin because each quantum spin interacts with four 

other quantum spins) we have reduced the total 

number of variables by a factor of two. It is clear 

that this analytic reduction of the number of degrees 

of freedom is an essential step in the development of 

an efficient algorithm. 

Following the prescriptions outlined above it is 

nothing but a tedious exercise in manipulating in- 

dices to rewrite the m-th approximant to the par- 

tition function of the two-dimensional spin-l/2 XY 

model as a three-dimensional Ising model with com- 

plicated many-spin interactions. We find [27] 

L L 

Zm=c(sinh2K,,)mL22' 2' (I [I lqh(j,k) v(i,k), 

(3.3) 

where c is a numerical constant. The prime on the 

summation symbols means that the sums over the 

Ising spin variables are restricted by 2mL-5 con- 

straints that can be written as 

L L L 

~(k) __s(k) H ~(k) ~,(k+l)  -(k) ( k §  
1 , 1 - -  1,1 ~ , ~ , ~  l~ l-[ S~,jS~,j , (3.4a) 

i = 2  i = 2  2 = 2  
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L 

~(,k?j = S(ik,)i 1~ ~ ~(k).i,j, J > 1, 
i -1 

L 
~(k) ~(k) H ,~(k)~(k+ 1). 

i,l ~ i . 1  _~,j_~,j , i>1,  (3.4c) 
j=l 

L L L 

S(lk!* = S(11,)1 [ I  I I  Si,j(1)Si,j(k) [ I  S(1)1,iS(k)'1,;, k>  1. (3.4d) 
i = 2  j = l  j = 2  

For periodic boundary conditions and real-space 

split-up of the XZ chains h(], k) is given by 

h (], k) = c o s h  [gm(S(lk)j S(lk?j -1-... -~ S(lk,)j... S(kL]j ~(k?j... ~(~]j) 

_~ f lJ (s(k)j s(k) i s(k)j S(lk)j ~- A- S (k) S(k) g(k) .. ~(Lk) 2, j ) ]  
m . . . . .  "'" " 1,j"" L,j 1,j" 

~,"i,j--2,j-- 1,j"" L,j 2,j . . . .  1 , i ) '  (3.5) 

whereas for periodic boundary conditions and check- 

erboard break-up 

h (], k) = cosh [K m (S~k?; S(lk?j -~.. .  ~- s(kdj... S(kL]j S(lk]j... S(~?j)] 

-exp [fid:S(k) S (k) mS(k)S <k) m +S([)_ldS([]j] 
[ D /  ~" 1,j 2,j  ~ 3,j  4 , j  ~ ' ' "  

.exp[fiJm(~(k)~(k).~(k)~(k)_l_ . , ( k )  , (k)  ] 
\"2,j"3,j----4, j--5,j .... ~- LO 1,j]" (3.6) 

The corresponding expressions for v(i,k) are ob- 
e(k) _~(k) tained from h(j  k) by replacing the symbols j ~ o  

and S!k! *S!k+l} The 3D model (3.3) has compl i  GJ 1, l �9 
cated many-spin interactions and a coupling that 

depends on the lattice size in the Trotter direction 

(labeled by the superscript k). Note that starting 

from (3.4) we label the spins by x- and y-coordinates 

(i,j) whereas in the equations preceeding (3.4) we 

used only one index per lattice site in order to keep 

the notation simple. 

During a simulation we want to sample the energy 

( E = l i m E ~ ,  Em=-~?lnZm/3fi) ,  specific heat (C 

= lim C~, C~=- f l i~Em/~f l )  and spin correlation 
m~co 

functions that change drastically if the system under- 

goes a phase transition (assuming that there is one). 

It has been noted previously that in models that 

exhibit a phase transition without long-range order 

(such as the 2D XY model) it is more convenient to 

study disorder parameters than to look for quantities 

that describe the degree of order [14]. Moreover in 

models which are self-dual (such as the 2D Ising 

model) disorder and order are intimately related to 

each other. A correlation function that we have 

measured in our simulations is 

L 

D = L  -2 ~ (D,,(i,j)Db(i,j)), (3.7a) 
i,j--1 
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Da(i, j)=(1 -oixjfgx+ l,j+ l -oiz, joZ+ l,j+ l), (3.7b) 

and 

Db(i,j ) = (1 -- ~riXj+1 ai+ 10 - ~i=,j+l a~+ 1,j)" (3.7 c) 

In studies of the classical analogon, the planar ro- 

tator model, correlation function (3.7) gives infor- 

mation about the occurrence of vortex-like exci- 

tations [36J. Therefore we will call D a vortex de- 

tector although we do not know of any simple in- 

tuitive picture for vortex-like excitations in the 

quantum system. 

A definite advantage of working with the representa- 

tion (3.3) is that we can measure the thermal energy, 

specific heat and any spin-spin correlation function 

simultaneously. As we have taken the eigenstates of 

o-z,j as the representation for the states of the system 

it is obvious that it is easy to calculate correlation 

functions of the ((~izjO'iz,j,) type ,_,,j_,(Sik!s!,k).,,; correlation 

functions of 3D Ising model (3.3)). If we want to 

know (ai~,jai~,,S) things are much more complicated 

because o-i~,j changes the total magnetization of a 

state. Assume that the system is in a allowed state 

(i.e. the state has a weight which is strictly greater 

than zero). If we would have chosen to work with 

representations for which the matrix form of the 

two-body operator is of the type (2.2), applying the 

operator ai~,j@,; always yields a forbidden state (i.e. 

a state with zero weight in the partition function) if 

i=t = i' or j@j'. If however we are using representation 

(3.1-6) things are quite different. From (3.2) it fol- 

lows immediately that we can flip either the two 

Ising spins of the bra or the two Ising spins of the 

ket. Combined with the cyclic permumation proper- 

ty of the trace this leads to the condition that the 

number of spin flips within a row (column) must be 

even. Using the properties of the spin-l/2 operator 

algebra we can write 

( ai~,j @,;  ) = ( ai~,j ai ~, j, ai x;  ai~,, j, ), (3.8) 

but in general any string of (;x operators that takes 

us from site (i,j) to site (i',j') would do as long as the 

"path"  that brings us from site (i,j) to site (i',f) is 

made up of horizontal and vertical bonds. In prac- 

tice we use expressions 

. . . . .  ~n ~ ~ (3.9a) (ai, y i , , j , )=Z-1Trcri , j~ri , j ,e  ai , ;ac,; ,  

@~, j a/Y, j,) = Z -1 Tr a~,ja,~jai~,j, e-/~"o-~,; aix,j, @,; ,  

(3.9b) 

to "measure" all x - x  and y - y  correlation func- 

tions. From the correlation functions we also calcu- 
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late the ( q -  (0, 0)) in-plane structure factor 

L 

SII = L  -2 
i , j , i ' , j ' =  l 

((a,~jai~,,j,)+(a~i,2ai~, j,)), (3.10a) 

and the ( q -  (0, 0)) out-of-plane structure factor 

L 

Sz =L-2 ~ (~iJ@,j')" (3.10b) 
i , j , i ' , j ' =  l 

These structure factors can give us direct infor- 

mation about the existence of long-range correlations 

in the system. 

For quantum systems the static response of a physi- 

cal quantity described by the operator B on a small 

external perturbation described by an operator A is 

given by the static (Kubo) susceptibility 

XA, B--Sd2@XHA*e-*HB) --/3(A*>(B). (3.11) 
0 

As we are dealing with a quantum system, the re- 

lation ZA,~=/3( (A*B)- (At ) (B) )  which is valid for 

a classical system does not hold anymore unless 

A(B) is a conserved quantity (then A(B) commutes 
r 

with H). In our case ~ a~]j is a conserved quantity 
i , j = l  

and therefore we know )~• because we can calculate 

S• We have not yet found a practical method to 

calculate directly the in-plane static susceptibility X II 

of model (3.1). However there is a way to calculate 

bounds on )~ll" By making use of rigorous inequali- 

ties [37, 38] we can show that 

f(y)<Zll//3Sii __< 1, (3.12a) 

where the function f(y) is defined implicitly by 

y = x t a n h x -  -1 x x _ y y -/3JSII ((O-o,oO-o,1) (O-o,0O-o.1)), (3.12b) 

and 

f(y) = x -  1 tanh x. (3.12c) 

There are two limits for which (3.12) turns into the 

equal i ty  )~ll =/3SI1" The first (trivial) case is the high 

temperature limit /3~0. Second, if there is a critical 

temperature for which $ 1 1 ~ ,  then x ~ 0  and con- 

sequently f (y ) - ,1 .  It is well established that for the 

planar rotator model, which is the classical analogon 

of the two-dimensional spin-l/2 XY model, SII is 

divergent at and below the Kosterlitz-Thouless tran- 

sition temperature. Thus if the quantum SLI behaves 

qualitatively the the same as its classical counter- 

part, then below T~ we have XII =SII = oo. Moreover 
above To,/3 is relatively large, and consequently f 
will deviate little from 1. 

The above discussion applies to the infinite system. 

As we can only simulate finite systems we must 

verify explicitly how good the bounds on XI I are. For 

the two-dimensional spin-l/2 XY model, we can cal- 

culate all quantities that enter the right-hand side 

inequality of (3.12b) by means of the Monte Carlo 

technique and in this way we will get estimates for 

the bounds on )~IL' 

B. Simulation Technique 

At this point we have reformulated the problem of 

calculating the m-th approximant to the partition 

function such that we are in the position to apply 

the standard Metropolis Monte Carlo method [26]. 

It is well-known that this Monte Carlo technique 

cannot be used to calculate the (approximant to the) 

partition function itself [26] but it can be used to 

calculate estimators for the expectation values of 

observables. In practice we have to implement the 

Metropolis algorithm for the unnormalized proba- 

bility function 

f ( r  
-(k) ~ L L 

, ,  [[ (3 .13)  
k=l  j--1 i=1 

subject to the constraints (3.4). Note that due to the 

constraints (3.4a-d) there are (Ising) spin configura- 

tions that are forbidden and for which the above 

function must be set to zero. However, there are no 

spin configurations for which f < 0 ,  which relieves 

us from a fundamental problem usually encountered 

when applying Monte Carlo techniques to fermion 

systems. It is easy to see that we can flip any single 

Ising spin that does not appear in the left-hand side 

of (3.4) and (3.4) will tell us which other spins we 

have to change. Although several spins change at 

the same time (Monte Carlo step) we still call this a 

single-spin flip procedure. Since we change several 

spins at each step one might think that because of 

the highly non-local interactions in (3.13) or (3.14), 

one Monte Carlo step will take much computing 

time. This would certainly be the case if we would 

use one computer storage unit (i.e. a word) per spin 

variable because we would have to make several 

loops to update spins and calculate the transition 

probability. As we are simulating an Ising model we 

may as well use one bit to store an Ising spin and 

pack each row and column into one word. Then 

updating many spins in one row or column means 

that we can use masking operations (AND, OR and 

EXLUSIVE OR) on words. Boolean operations on 

integer variables are not supported by standard For- 

tran 77 compilers but most Fortran compilers (on 
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DEC, CDC and IBM machines) allow for this kind 

of operations and produce extremely efficient code. 

The use of this technique is necessary to get accept- 

able program performance but it is clear that simu- 

lation of the 2D XY model will take much more 

time than simulating a normal 3D Ising model (with 

nearest-neighbor interactions) of the same size. 

We have tested the single-spin flip algorithm by 

simulating small systems (up to 3 x 3) and have com- 

pared the data with results obtained from exact en- 

umerations and diagonalizations and found excellent 

agreement. In going to larger lattices (6 x 6) we ob- 

served that for high temperatures, the data deviated 

systematically from the high-temperature series re- 

sults [3, 16]. The Monte Carlo algorithm itself also 

signalled that something was going wrong because 

the acceptance rate became extremely small. From 

(3.14) or (3.15) it follows that if K m is large, and this 

happens if T - ,oo  or m--,oo, changing spins without 

keeping the prefactor of Km constant is very difficult. 

A simple way out of this problem is to flip the set of 

spins 

S!17 ~,!m.) ,~!17 -(ra) 
~ , j ,  . . . ,  ~ , j ,  - -~ , j ,  . . . ,  S i , j } .  

Such a multi-spin flip step keeps (3.4) intact and also 

requires less computing time. 

Combination of the single-spin flip procedure with 

the multi-spin flip procedure yields a Monte Carlo 

scheme that reproduces all known (i.e. small systems, 

high-T) results of the two-dimensional spin-l/2 XY 

model. In practice we found that the "classical" 

multi-spin flip step was the most important in the 

sense that it was sufficient to keep the ratio, single- 

spin flips over multi-spin flips, low (10 %). All data 

presented in this paper have been obtained from at 

least two independent runs of 10000 Monte Carlo 

steps per Ising spin each. The CPU-time required 

for such runs depends on the size of the system and 

on the number of quantities that we want to "mea- 

sure". Especially the calculation of spin-correlation 

functions is a very time-consuming procedure be- 

cause it requires of the order of L 4 operations 

(Monte Carlo itself requires of the order of L 2 oper- 

ations). Simulation of a L=16,  m = 8  ( 1 6 x 1 6 x 8 ,  

4096 Ising spins) system without calculating all spin 

correlations takes 90min of CPU-time on a CDC 

170/750. For  the largest systems (L=24,32,  m=4)  

for which we have calculated all spin correlation 

functions it was necessary to use a CYBER 205. Ef- 

ficient use of the vector processor for this type of 

problem was possible because the most CPU-in- 

tensive code, the calculation of the spin correlations, 

could be vectorized to a very high degree (for L =  32 

we gained a factor of about 65 compared to the 

program running in scalar mode). In this way the 

CPU time was effectively reduced to that of the 

Monte Carlo algorithm. A typical L=24,  (32), m = 4  

simulation takes approximately 50(100)min on a 

(one-pipeline) CYBER 205 machine. 

I V .  S i m u l a t i o n  R e s u l t s  

Guided by the rigorous m= 1 result (for a different 

ordering) that there is a phase transition at 

Tc/J~2.27, we first perform simulations of systems 

of different size for m = l .  In Fig. 3 we show m = l  

results for the energy per site, obtained from the IPA, 

checkerboard and real-space representation. We see 

that the results for the three different orderings are 

almost the same unless the temperature T/J<2.25 .  

Also the size dependence (for L > 6 )  is rather weak. 

At low temperature T/J = 1 the approximate energy 

E 1 is much lower than the rigorous lower bound 

Eo/JLa>-2.25 E39] but since the XZ real-space 

approach yields energies which are systematically 

higher than those of the checkerboard approxima- 

tion we decided to use the real-space approximation 

in most of our simulation. As in the 1D case, for the 

two-dimensional spin-l/2 XY model the real-space 

approximation is more accurate than the checker- 

board approximation [35]. In Fig. 4 we depict simu- 

lation data for the m = l  approximant (C1) to the 

specific heat. At K~K~ the specific heat exhibits a 

maximum that grows slowly with the lattice size. 

This is not inconsistent with the exact m = 1 solution 

/. 

I-ff 3 I 

�9 6x6 CBD 

�9 \ a12.12  Dcn 
m • 24.(" ~  

I I I I 

0 1 2 3 4 5 
T/J 

Fig.& Energy per site of the 2D spin-l/2 XY model in the m=l 
approximation. Solid line: rigorous staggered 8-vertex solution, 
full circles: checkerboard decomposition (CBD), full squares and 
open triangles: real-space decomposition (RSD) and broken line: 
high-temperature expansion 
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Fig. 4. Specific heat per site of the 2D spin-l/2 XY model in the 

m = t  approximation. Solid line: rigorous staggered 8-vertex so- 

lution, open circles, full squares and open triangles: real-space 

decomposition (RSD) 
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Fig. 6. Specific heat per site of the 2D spin-l/2 XY model. Solid 

line: rigorous staggered 8-vertex solution; broken Iine: high-tem- 

perature expansion. Comparison with the data of Fig. t shows 

that in the critical region the m-dependence is very weak 
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Fig. 5. The vortex correlation function in the m = l  real-space 

approximation 
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Fig. 7. Specific heat per site of the 2D spin-l/2 XY model ob- 

tained from simulations of systems of different size and m =4. The 

16x 16x4  data is not the same as the 16 x 16 x4 data shown in 

Fig. 6 

for the SEV which predicts a logarithmically diver- 

gent specific heat [25]. From our m = l  simulation 

data we may infer that the phase transition in the 

IPA is not the result of choosing a particular or- 

dering. The first simulation of the two-dimensional 

spin-l/2 XY model was reported by Suzuki et al. 

who only studied the rn= 1 case [32]. Their simula- 

tion data for the specific heat disagree with ours and 

is also in qualitative disagreement with our rigorous 

m =  1 solution. This is probabily due to the fact that 

the Monte  Carlo scheme employed by Suzuki et al. 

cannot generate all states of the effective 3D Ising 

model [32], 

The temperature dependence of the rn= 1 vortex- 

detector is shown in Fig. 5. It is clear that D 1 chang- 

es rapidly if T approaches T~ indicating that the 

system might exhibits a peculiar kind of disorder if 

T > T~. We find that for L > 8 the size dependence of 

D I is small. By increasing m we can improve the 

approximation systematically. From the m >  1 data 

shown in Figs. 6, 7 we conclude that for T/J > 2  the 

specific heat, which from point of view of conver- 
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Fig. 8. Minus the energy per site (full symbols) and specific heat 
per site of the 2D spin-l/2 XY model (open symbols) as a 
function of 1/m. Circles: T/J=1; squares: T/J=2 and triangles 
TM=2.25. The arrow gives Pearsons estimate of the groundstate 
energy 

gence is the most difficult quantity to calculate, de- 

pends weakly on the particular value of m. The 16 

x 16 x 4  data shown in Fig. 6 and 16 x 16 x 4  data 

shown in Fig. ? are not identical as they have been 

obtained from statistically independent runs of dif- 

ferent programs (scalar and vectorized code) on dif- 

ferent machines (VAX 11/780 versus CYBER 205). 

For  T/J>2 and L >  16 the size dependence of specif- 

ic heat per site is small. More convincing evidence 

that the convergence of the energy and specific heat 

is very good is given in Fig. 8. In the critical region 

(T/J~2.27) the m-dependence of physical quantities 

is very weak. Therefore it might be tempting to 

assume that to a good approximation the critical 

properties of the two-dimensional spin-l/2 XY mod- 

el are that of the m = 1 representation. Although our 

numerical data are not inconsistent with this as- 

sumption we take the point of view that the subtle 

~/m dependence of the approximants  could change 

the critical behavior. Furthermore it is obvious that 

it is impossible to prove or disprove by means of 

Monte  Carlo data whether or not a physical quan- 

tity is continuous or divergent. In particular it is 

impossible to decide from the simulation data that 

the specific heat diverges logarithmically. 

Simulation data for the approximant  D m are shown 

in Fig. 9. Again we see the very rapid change in 

disorder if T approaches T~. As for the energy and 

specific heat, in the critical region the m-dependence 

of D m is very weak. Within the statistical accuracy of 

the simulation we find that Dm~O if T--+0. This is in 

agreement with results of small-lattice calculations 

E40] although one should take into account that the 
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Fig. 9. The vortex correlation function, which measures the degree 
of disorder in the 2D spin-l/2 XY model, for lattices of different 
size and different m. In the critical region the m-dependence of 
this correlation function is very weak 

vortex operators used in [40] differ from the one 

used in the present work. In Fig. 10 we plot the 

results for the in-plane structure factor SII. If there 

are no long-range correlations in the system we ex- 

pect that this structure factor is independent of the 

number of sites (for a system of reasonable size). If 

there are long-range correlations (this does not im- 

ply long-range order), the structure factor should 

exhibit some functional dependence on the number 

of sites, i.e. it becomes extensive. From Fig. 10 we 

learn that the in-plane structure factor of the two- 

dimensional spin-l/2 XY model displays this be- 

havior very clearly. According to (3.12) we can cal- 

culate bounds on the out-of-plane static susceptibili- 

ty by evaluating the function f(y). In Table 1 we 

collect some typical results. As anticipated pre- 

viously, in the critical region f (y)~ 1 and therefore 

we may claim to have calculated )~11 with the same 

accuracy as SII. The out-of-plane structure factor S• 
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Fig. 10. The in-plane structure factor SII of the 2D spin-i/2 XY 

model for lattices of different size as a function of the tempera- 

ture. Solid lines are merely guides to the eye 

T a b l e  1. Typical (m=4) results for the quantities entering (3.12) 

from which we obtain bounds on the out-of-plane susceptibility 

ZII : f(Y) --<ZII/flSII --< 1 

y y 
T L SII (aXo,oa~,l) (ao,oao, 1) y=x tanhx  f(y) 

2.00 12 59.8 0.49 -0.09 0.019 0.994 

16 101.7 0.48 -0.09 0.011 0.996 

24 226.6 0.48 -0.09 0.005 0.998 

32 424.3 0,49 -0.09 0,003 0.999 

12 30.3 0.41 -0.08 0.028 0.991 

16 55.7 0.40 -0.07 0.015 0.995 

24 124.5 0.39 -0.06 0.006 0,998 

32 180.6 0.39 -0.06 0.004 0.999 

12 9.4 0.28 -0.04 0.051 0.983 

16 10.7 0.28 -0.04 0.043 0.986 

24 10.2 0.28 -0.04 0.038 0.985 

32 12.1 0.28 -0,04 0.038 0.987 

2.30 

2.75 

which is always an intensive quantity, is rather small 

(less than 1) and increases slowly with temperature 

(at least for 2__<T/J<5). This is consistent with the 

picture that in the two-dimensional spin-l/2 XY 

model, the spins are forced in the XY-plane (XZ- 
plane in the representation that we use for our simu- 

lations). 
We will now examine the possibility of extracting 
additional information about the critical properties 

of the two-dimensional spin-l/2 XY model by mak- 

t/3 
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Fig. 11. Log-log plot of SII as a function of L 2 indicating that for 

T/J<2.5, SIE ~aL 2b(T) to a good approximation if we disregard the 

L=8 data(o:  T/J=2, x:  T/J=2.1, m: T/J=2.2, A: T/J=2.3, +:  

T/J=2.4, v: T/J=2.5, o: T/J=2.75, n: T/J=3, zx: T/J=3.25, v: 

T/J = 3.5) 

ing assumptions about the size dependence of Sli. 

The strong size dependence of S N for T/J<2.4 (see 
Fig. 10) indicates that Sil  ~aL 2b(r] [9]. In Fig. 11 we 

present a log-log plot of Stl as a function of L 2. This 

plot suggest that we should exclude our data for the 

smallest lattice (L=8) from this type of analysis. 

Least-square fits of the remaining data reveal that 

Sii  ~aL  2b(r) gives an excellent description of the data 

for T/J<=2.4 (coefficient of determination >0.99). 

Analysis of high-temperature series for the two-di- 

mensional spin-l/2 XY model favours a phase tran- 

sition with conventional power law critical singulari- 

ties [3]. We can test whether our data are com- 
patible with this behavior by using finite-size scaling 

[41], i.e. we assume that 

zll = IJ~ G(L~/qT- ~I To- 1), (4.1) 

where G is the so-called scaling function, 7 is the 
susceptibility exponent and v is the correlation- 

length exponent. According to the high-T series 

T j J~ l . 56 ,  7~2.50 and v~1.43 [3]. Using these 
numbers (4.1) yields a function G which does not 

seem to have any scaling properties at all. Adjusting 

the critical temperature to the SEV result 
(Tc/d~2.27) gives the results depicted in Fig. 12. In 
all our finite-size scaling plots based upon (4.1) we 

only used data for T >  T c as the data for T<  T~ did 
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Fig. 13. The scaling function G (see (4.1)) obtained by assuming 

that the exponents ~ and v are that of the 2D Ising model 

of exponents gives a "nicer" scaling function G than 

the former one. We have made a number of this 

type of scaling plots and we find that we can always 

find a nice looking scaling plot if we choose 7 and v 

such that 1.75 < 7Iv < 2 and 1 < v < 1.5 (we have con- 

fined our search for scaling to the intervals 

1 .5<7/v<3,  0.5_<v<3). We have also calculated G 

by using critical exponents ? =  oo, v=oo ,  7 / v = 2 - t / ,  

and r/= 1/4 of the classical planar rotator  model [7] 

and we find that G is not a scaling function. Al- 

though our data for T > T  c can be fitted with (4.1), 

this scaling ansatz cannot be used to extract from 

the Monte Carlo data reliable estimates for the criti- 

cal exponents of the two-dimensional spin-l/2 XY 

model. 

Analysis of Monte Carlo data of the classical planar 

rotator  model reveals that, in contrast with usual 

second-order phase transitions, the specific heat has 

a maximum well above the temperature where the 

correlation length diverges [11, 12]. Our Monte 

Carlo results for the two-dimensional spin-l/2 XY 

model suggest that the estimate of the critical tem- 

perature based upon the position of the specific-heat 

peak agrees with the 2D Ising model value 

(sinh 2J/Tc= 1) and also agrees with the critical tem- 

perature obtained from the behavior of the in-plane 

structure factor and the vortex detector. 

By construction our technique cannot be used to 

calculate T = 0  properties because the Trotter-Suzuki 

formula requires that we have to take the limit 

rn~oo before we let T ~ 0 .  Nevertheless we can carry 

out simulations in the low-temperature regime and 

try to extrapolate the results to T = 0 .  In Table 2 we 

give some results for the thermal energy of 8 x 8 

systems for temperatures down to T/J=0.5. The value 

of m has been taken such that the systematic error 

due to the Trotter  formula is hidden in the statistical 

noise on the data. Estimating the groundstate energy 

by fitting a straight line through the data points 

yields EMc/JL2=-2.21_+0.01 which is well within 

the bounds -2 .25  <Eo/JL 2 <= -2 .18  [39]. 

Table 2. Energy per site of a 8 x 8 two-dimensional spin-l/2 XY 

model as a function of temperature. The statistical error have 

been determined by comparing different, independent runs 

not show any sign of scaling behavior of the type 

(4.1). As G looks like a scaling function we might be 

tempted to say that our data are compatible with 

the critical exponents estimated from the high-T se- 

ries. In Fig. 13 we show G obtained by assuming 2D 

Ising model exponents, i.e. 7=7 /4  and v = l .  Com- 

paring Figs. 12 and 13 it seems as if the latter choice 

T rn E m 

0.5 32 

1.0 16 

1.1 16 

1.2 16 

1.3 16 

1.4 16 

1.5 16 

-2 .142  _+0.007 

-2 .138 _+0.008 

-2.119_+0.004 

-2 .104+0 .005  

- 2.093 4- 0.005 

-2 .070+0 .002  

- 2.043 -+ 0.001 
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