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The Thermodynamics of Unsynunetrical Electrolyte Mixtures: 

Enthalpy and Heat Capacity 

Kenneth S. Pitzer 

Department of Chemistry and Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 

(Abstract) 

There is a purely electrostatic contribution 

to the thermodynamic properties of electrolytes 

for the mixing of ions of different charge but 

the same sign. The previous treatment, which was 

limited to activity or osmotic coefficients, is 

extended to enthalpies and heat capacities and 

applied to the measurements of Cassel and Wood 

on the heat of mixing in the systems NaCl-BaC1 2  

and NaCl-Na2SO4. 
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Introduction 

For electrolytes involving unsymmetrical mixing of ions of different 

charges of the same sign there is a higher-order limiting law. Friedman 1  

derived this law by the cluster integral method which was developed for elec-

trolytes by Mayer. 2  A method of practical application to unsymmetrical mixtures 

of realistic concentration was developed by the writer. 3  While the limiting 

law alone is inadequate, it was shown that one could define a new function, 

valid at finite molalities. With this function an anomaly in the thermo-

dynamics of HC1-A1C1 3  was removed. This new function has the same character 

as the limiting law; it depends only on the charges on the ions, and solvent 

properties, i.e., dielectric constant and density, as well as the temperature. 

The Debye-HUckel limiting law has these characteristics. The new function 

becomes zero for mixing ions of the same charge. 

Cassel and Wood4  measured heats of mixing of NaCl with BaCl 2  and of NaCl 

with Na2SO4  in dilute aqueous solution with the intent of testing the corres-

ponding limiting law for heat of unsymmetrical mixing. While they found a 

significant effect of the right sign as the ionic strength approached zero, 

they were unable to verify the law quantitatively. Even between ionic 

strengths of 0.02 and 0.05 mol kg their slope was less than half the 

theoretical limiting value. In this paper we extend to enthalpies the de-

rivation of the unsymmetrical mixing function derived earlier 3  for free 

energy, and obtain good agreement with Cassel and Wood's measurements. 

Friedman and Krishnan 5  have made calculations in the HNC approximation 

with parameters specifically chosen for the NaCl-BaCl 2  system and at the 

molalities of measurement. They obtained reasonable agreement. However, 

their calculations are much more complex and less general than the method 
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The heat of mixing is, of course, related to the temperature dependence 

of activity and osmotic coefficients for mixed electrolytes, and in a companion 

paper Roy, et al. 
,6 
 present new and precise measurements of the activity 

coefficient of HC1 in HC1-LaC1 3  mixtures at several temperatures. 

The appropriate equations for the heat capacity of unsymmetrical 

mixtures are derived, although these do not appear to be any experimental 

data at present for which this effect would be significant. The molecular-

level implications are also discussed. 

Equations for Unsymmetrical Mixed Electrolytes 

It was shown3  that this limiting law for unsymmetrical mixing could easily 

be Incorporated in the general equations for mixed electrolytes of Pitzer and 

Kim; 7  these equations comprise a Debye-Hückel term together with virial co-

efficients for short range interparticle forces. In most cases it is suffi-

dent to include only second and third virial coefficients for binary and 

ternary interactions, and one deletes the third virial coefficient if all 

three ions are of the same sign. The higher-order mixing function appears as 

a term in the second virial coefficient for unlike ions of the same sign. 

The terms in the equations arising from short-range forces are evaluated 

empirically. The more important terms, which are for ions of opposite sign, 

are evaluated from data on solutions of a single solute. Very small terms 

for the difference in short range forces between pairs of unlike ions of the 

same sign as compared to the averages for pairs of like ions must be evaluated 

from the data for mixtures. Since ions of thesame sign are seldom close 

enough, to one another for short-range forces to arise, these terms are ex-

pected to be small and are often negligible. For for ions of different charge 

of the same sign, there is this small but significant effect of the long-range 

electrical forces. 
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A most impressive application of the equations for mixed electrolytes 

is found in the work of Harvie and Weare 8  on the mineral solubilities 

related to the many components of seawater. They found that these 

higher-order electrostatic terms were essential in the interpretation of 

the solubility of CaSO4  in NaCl or in seawater. 

Practically all of the applications to date of these higher-order 

electrostatic terms have been to activity or osmotic data at 25 °C. In 

the present paper we extend the derivations to the enthalpy and the heat 

capacity. 

The general form of a virial equation for the excess Gibbs energy 

of electrolytes is9  

nRT = f() + I X mim?i (I)  + 	i.Jk 	
(1) 

where n is the number of kg of solvent and f(I) is a general function 

of the ionic strength I related to the electrical forces and containing 

the Debye-HUckel limiting law. The expression selected 9  for f(I) is an 

extended form 

f(I) = -A(4I/b)n(l+bI" 2 ) 	(2) 

= - (27N d /1000)1'2 3/2 	
(3) 

ow 

= e/DkT 	 (4) 

where A is the Debye-HUckel parameter and b is a parameter given the 

value 1.2 kg 
1/2 

 mol
-1/2 

 for all solutions. Expansion of the logarithm 

in (2) gives the limiting law as the leading term. In equation (4) e is 

the charge on the electron, D the dielectric constant of the solvent 

while k and T have the usual meanings. In SI units 47 must be inserted 

ri1 



in the denominator of equation (4) with c the vacuum permitivity. 

The quantities X..(I) are the second virial coefficients for pair- 
Ij 

wise interaction between ions (or other solute particles) i and j and 

are functions of I. The ionic strength dependence may be neglected for 

the third virial coefficients
ijk

*Higher order coefficients can be 

added but are not ordinarily needed. 

The virial coefficients depend on the short-range forces, effective 

in the solvent, between solute particles. For ions the individual co-

efficients cannot be measured; hence one defines the measurable coeff i-

cients which are for electrically neutral combinations. We repeat here 

only the expressions for the second virial coefficients since the higher 

order electrical terms are at that level. 

B 	= X 	 + I zx/2zMX MM + IzM/2zXIAx)cMX 

em =X - (zN I 2 zM)X M -  (zN/2zN)A NN (6)
MN 

- Here M, N are ions of one sign and X is an ion of the opposite 

sign. The B terms appear for pure electrolytes, hence they can be 

evaluated empirically from pure-electrolyte data. The 0 terms arise for 

mixtures and can be evaluated from simple, common-ion mixtures such as 

HC1-NaC1 or NaCl-Na 2 SO4 . Since the A's depend on the ionic strength, 

so, in principle, do the B's and 0's. The empirical expressions chosen 

for this ionic strength dependence of the B's are given elsewhere. 7°  

For the 0's it is found that the ionic strength dependence is negligible 

except for the special electrostatic effects to be discussed below. 

Before proceeding further it is convenient to rewrite equation (1) 

in terms of the measurable coefficients B and 0 and the corresponding 

third virial coefficients C and i which are given in various papers70 
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ex 

	

flRTI)+2m c  m  a ca 
[B 	+(Emz)C ca] 

w 	ca 

+I I m m JO , + m 

	

cc 	cc 	a cc 
a 

	

+
a a 	aa 	c 
m JO , + m 1 )caa / 2 l 	 (7) 

aa 	C 

Here the sums are over the various cations c, C' and the various anions 

a,a' while the quantity (mz) is just the total electrical positive (or 

negative) charge molality, i.e., Emz. 

The theoretical basis for this formulation is found in the cluster-

integral method introduced for electrolytes by Mayer 2  and applied with 

generality by Friedman) Since the theoretical infrastructure is exten-

sive, it will not be repeated here. Including only interactions between 

pairs of solute ions, Friedman obtains the following equation for the 

excess Helmholtz energy. 

3 	2iiz.z.9 
- - 	+ 	c.c.[ 	J 	(K,z,z.,...)] 	 (8) 

K 	
ij 

Here V is the volume, K IS the usual Debye-HUckel parameter, c. is the 

concentration and z. the number of charges (sign Included) on the 1th 

ion. The function J depends on the interionic potential and K. If the 

potential is 

V.. = U.+Z z.Q/r 
1J 	13 	iJ 

(9) 
s.1 

where the short-range potential u.,. is a function of interionic distance 

r, then J is 



	

2 	J00  
ij 	

K 

 z z.l 
ij 

-- [exp(q.,. - U. ./kT) - 	q 
- ij 	

1 
q  2 Ir 

2 ij 
2 dr 

13 	13 (10) 

with 
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qjj = _( zjz 9/r ) e_Kr 
	

(11) 

Ili 

The analogy between the terms on the right in equations (1) and (8) 

is apparent. Note, of course, that (8) contains no third virial or 

higher terms. Since the virial terms in (1) are to be determined 

empirically, they can absorb the small differences between concentrations 

and molalities, between the Helmholtz and Gibbs energies, etc. The first 

term in (8) is the Debye-Hückel limiting law and it is contained exactly 

in f(I) in (1). One could limit f(I) to that expression, but it proved 

more effective to use the extended form of equation (2). The additional 

terms in the expansion of the logarithm in (2) can be expressed as second 

virial terms with I dependence; hence there is no difference in principle 

arising from the difference in the initial terms of (1) and (8). 

The integral in equation (10) for the theoretical second virial 

coefficients cannot be evaluated, in general, without explicit knowledge 

of the short-range interionic potential ui.. Since that is not available 

these terms are ordinarily evaluated empirically. But for the particular 

case of ions of the same sign, an approximation yields useful results. 

Ions of the same sign repel one another strongly enough that they 

seldom approach one another closely; hence the short-range potential 

should have little or no effect. This can be seen mathematically in 



eq (10). If q.. is large and negative f or the range of r for which u.,. 

differs from zero, then the value of exp(q..) is extremely small through-

out this range. Thus, provided u.,. is positive (or if negative, is small), 

the effect of u.. will be negligible. 
13 

In view of this situation, we can evaluate the effect of electro-

static forces on the difference terms e without making any detailed
MN  

assumption about short-range forces. Let us write 

011N = S0 

	
+ E0 

MN 

	 (12) 

where the first term on the right arises from the combined effects of 

short-range forces acting directly or through the solvent, of the use of 

molalities instead of concentration, and of the difference in the Debye-

Hückel term in eq. (8) from that in (1). The second term E0 will be 

calculated from the corresponding terms of the cluster-integral theory 

with the omission of short-range forces. From the definition of 6.9 

we have 

E 	E  

011N = 	
E 

(zN/ 2 zM)  XMM - (zM/2zN) E XNN 	(13) 

E X 	 = 
ij 	i j 	ii 	 ii (z z /41)J 	with 	u 	= 0 	(14) 

= K 	
(1 + q.. +! 	j  q. - e)r2  dr 	(15) 

ij 	zz.9 	ij 	2 13 

0 

With the substititions 

y = Kr 	 (16)  

X = Z1Z. 

3 2K 
	 (17) 

q = -(x/y)e3 	 (18) 

E3 

'I 
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CO  

J(x) = 	(1 + q + 4 q2 - q)2 dy 	(19) 

In our working units 

x 
ij = 6z i j 

z.A 1 	 (20) 

where for ions of the same sign x. is always positive. Also 

E0 	
= (zNz.N/ 4I)[J(x) - 4 J(x) - 4 J(x)] 	(21) 

For enthalpies we need the temperature derivative of 0 and therefore 

of J while for heat capacities we need the second derivative. Thus we 

shall consider the evaluation of J, J', and J" where 

= Wax 
	

(22a) 

Ju = 	 (22b) 

For J the integrals of the second and third terms in the parentheses in 

eq (19) are straightforward with the results 

Jx-l+J2   

= 	- (J2 /x) +  

J 2J 

=-4_---  
 J

4   

x jw (1_e)y2dy  

= x 
CO  fo exp(q-y)ydy  

J 

= x_l . JT°  exp(q-2y)dy  

VIA 

IV 
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There are no simple Integrals for J 
2'  1

3  and 34  but they are readily evaluated 

numerically with modern computers. The resulting functions 3, 3', 3" are shown 

in figure 1 . The accompanying paper 

includes further comments on the evaluation of these functions. 

The equations for the excess enthalpy L = H 
ex

and heat capacity 

3 = C follow directly from differentiation of eq (7)• 

L 	
- AHI th(l+bI1 ' 2 ) - 2 11 m m [BL + (Emz)CL 

	

nRT2RT2b
ca ca ca 	ca 

w 

- 	in m10
L 
 , + 	m L ?a/2] 

cc' cc 
	cc 	a acc 

- 	mum, [0at  + 	m,/2] 	(29) 

- A3I Zn(1+bI 2) - 2 	m in [B3  + (Emz)C3  
2RTb 	 ca ca 	ca 

	

nRT 	 ca 
w 

- 	m m , [ e , + 	m 	, /21 
cc' cc 
	cc 	a acca 

- 	m m 	, + 	m 	,/21 

aa 
aa aa 	

C 
ccca 

(30) 

where 

BL = SB/aT, B3  = 	2B/T2  + (2/T)B/T  

= 	c/T, C3  = 	2c/T2  + (2/T)c/T  

= 	e/T, 6 = 3 26/T2  + (2/T)6/T  

= 	ip/T, = 2i/T2  + (2/T)p/T  

V 

Do not confuse 3, the excess heat capacity, with J(x) the function of 



eq (10) etc. The second virial coefficients B, BL, and B all have the 

ionic strength dependence given by 

B 	
= (0) + (2 
	/c 2I)[1(l+ a I½) exp(_ct I½)] 

ca 	ca 	ca 

- where c'. is a general parameter equal to 2.0 kg ½ mol
- 2  while (0)ca and 

(1)  

ca are parameters specific to the electrolyte c,a. 

Equations analogous to eq (12) apply to 6 and e and, with eq (20) 

and (21), yield 

E L 	ZMZN 1fXM\ 
,  

0HN 	41 	T / 	(xMN) - 2 	3T ) 

- 

	

(,x 
NN) 

Jt (x ) j 	 (35) 

2 
E j 	ZMZN 1( MN' J"(x) + 	

MN 	2 	
MN) J'(x ) e 	= 	I \ 	( T2 + f MN 	MN 41 	T / 	T 	MN 

2 	
2x 

\ [(- D'MM 
 ')" MM 	T ) 

___ 	__
J(x) + 	

T 	

• 	MM 
J'(XMM2 	T / 	 ] 2 	T  

2 

1 NN 	_ _ - 	
T ) J"(xMN) + (aN + 
	

) Jt(x)J} 	(36) 
T  

	

ax.. 	3z.zA, 

	

ij 	ijrt 1/2 

	

aT 	
2RT 

= 3Z.Z.AJ ½ 
	(38) 

	

BT2 	
T 9T 	

2RT2 

where A and A are the Debye-Hückel parameters for the enthalpy and heat 

capacity. These quantities are as defined by Bradley and Pitzer who 

give numerical values for a wide range of T and P; some earlier defini-

tions are larger by the factor 3/2. 
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Heat of Mixing 

We consider, with Cassel and Wood, the case of mixing solutions of a 

1-1 salt MX with a 2-1 salt NX 2 , each at ionic strength I. Assume a fraction 

y of the NX 2  solution and (l-y) of MX and a total weight of solvent n. Then 

the LH of mixing may be written 

2 = y(l-y)[h0+(l-2y)h1+..} 	(39) 

n RT I 
w 

and Cassel and Wood 4  report values for h0  and h1 . After appropriate substitu-

tion of the molalities and amounts of solution into eq (29), one obtains 

h0  =Q + Q2-2T E O  L 
 
MN/3 

	
(40) 

Q1 = T(2B/3 + 11 IC/9 - 2BI9 -ICx/3) 	(41) 

Q2=-T(2 S0L 
	

+ 51 	 (42) 

h1  = TI(C/9 -C;/27 - 	xh18 	 (43) 

Here Q 1  is the array of 
ttpure  electrolyte" terms which are available from heat 

of dilution measurements. Silvester and Pitzer' 2  give these parameters for 

many electrolytes while Rogers and Pitzer 13  give revised values for Na 2SO4  

and Phutela and Pitzer 14  have recently made revisions for CaCl 2 . Q2  is the 

combination of cation niixing terms arising from short-range forces while the 

final term in 
E8L  is the electrostatic term for unsymmetrical mixing. 

MX 

On figures 2 and 3 are plotted for the NaCl-BaCl 2  and NaCl-Na2SO4  mixing 

systems the values of Q2 = (h0-Q1+2T E0L/3) as circles and the same quantity 
 MN 

without the E0 term as triangles. One expects a straight line with intercept 

-2T 
S0L  /3 and slope -5T px/l8. It is apparent that when the E0 term is in-

cluded the results do fall in good straight lines for both systems. The only 
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somewhat divergent point is that at I = 0.02 for NaC1-BaC1 2 ; the uncertainty 

must be quite large for the measurement on this very dilute system. The 

resulting parameters for the short-range-force terms are given on first two 

lines of Table I for these systems. 

With the values of 	from Table I one can calculate h 1 ; the results 
MNX 

are very small values which are not significant in relation to the experi-

mental uncertainty. Cassel and Wood find h1  to be zero at ionic strength 

0.5 mol kg 1  and above in agreement with our expectation. For very dilute 

solutions, however, Cassel and Wood find substantial values of h 1  which are 

apparently larger than the experimental uncertainty. 

Friedman and Krishnan 5  made calculations in the FINC approximation with 

parameters chosen especially for the NaC1-BaC1 2  system and found reasonable 

agreement for h0  but complete disagreement in sign as well as magnitude for 

h1 . They note, however, that their. HNC results in this case failed to satisfy 

certain self-consistency tests and may, therefore, be invalid. Thus we can 

only conclude that there is now no theoretical explanation of the h1  values 

of Cassel and Wood for very dilute solutions. If this effect is real, its 

explanation must come from triple or higher order electrostatic interactions. 

It is difficult to believe that such triple ion interactions can have a 

large effect in very dilute solutions; thus we reserve judgment as to the 

validity of these large h 1  values for very dilute solutions. 

Most measurements of heats of mixing do not extend below an ionic 

strength of about 0.5 mci kg 1 . Such data cannot give any clear confirmation 

of this higher order electrostatic term. It is, nevertheless, desirable to 

include the term in reducing the experimental data in order to obtain values 

of S 8 and 	of maximum accuracy. These parameters can then be used to 

predict properties in more dilute solutions. 

The experimental heat of mixing data for 6 additional systesms of the 
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MX - NX2  type yield fully consistent results when treated in this manner. The 

results and the references for these data are given on the third through the 

eighth lines of Table I. In the absence of data below 0.5 mol kg 1  these S0 

values are considerably less accurate than the values where the data extend 

to low concentration. There are also limited measurements for a few other 

systems which appear to be less consistent and therefore are not included in 

Table I. 

Since the higher order electrostatic term gives a non-linear effect 

primarily at low molality, one can omit this term for simplified calculations 

of reasonable accuracy. But the effective 0 should then be taken to be 
MN 

lower than 
S0L 

 by 3 x 10 kg mol K 1  while at the same time 	should 

be increased by 1.2 x 10 kg mol K . From the dashed lines on figures 

2 and 3 one notes that such effective 0 and 'p values can fit quite well above 

I = 1 mol kg 1 . Also, for many practical purposes these mixing terms are all 

unimportant for dilute solutions and in that case the term 
E0 
 can be neglected 

as well as the others. 

The molecular-level explanation of this correcting term for unsymmetrical 

mixing is quite simple. The radial distribution function Implied by the 

Debye-HUckel limiting law is 19  

gij =1+q -  = 1 	( 
1 3ij 	

z.z.9/r) exp(-Kr) 	(44) 

This linearized expression can become negative if q 1 . < -1 which is pos-

sible, even in water, for multiply charged ions at short but reasonable 

distances. But a negative distribution function is physically impossible. 

The correcting term, at the level of binary interactions, is 

14 

exp(q 1  - u1 ./kT) - 1 - q 1 	(45) 



For like-charged ions we can again ignore the short-range potential u... 

Thus the correction consists simply in replacing the linearized expression 

1 + q by the exponential exp(q) which cannot become negative. 

The "higher order" term just removes the falsely negative portion 

of the Debye-HUckel distribution. More precisely it replaces the linear 

approximation by the exponential distribution. In the effect on the total 

free energy, this is the removal of a falsely negative distribution for a 

positive energy; hence the absolute effect is a positive contribution. 

When the difference is taken for mixing, the dominant contribution comes 

from the pure component with the most highly charged ions. Thus the net 

effect is a negative contribution to the Gibbs energy of mixing, with E0 

negative. 

For the heat of mixing one has H = -T2 [(G/T)/T] and one finds a 

positive contribution to iH of mixing (but negative E0L) 
	

In turn this 

decreases the remaining enthalpy to be ascribed to the short-range-force 

contribution as is apparent from figures 2 and 3. 

This falsely negative distribution implied by the Debye-HUckel 

limiting law can yield false predictions of phase separation in highly 

unsymmetrical electrolytes and plasmas. This was discussed recently on 

a somewhat different basis. 2°  

The contribution of this higher order electrostatic effect to the 

heat capacity of unsymmetrical mixed electrolytes is probably no more 

, 

than the experimental uncertainty with current calorimetry. Thus for 

I = 1.6 mol kg and equal mixing of 1-1 and 2-1 salts, the contribution 

to C /R is 0.12 at 298 K or 0.7 at 473 K for a solution with 1 kg of 

water. Since the 6 and 	values can be adjusted to include a linear 

E 	 E 
contribution from 0J 
	

seems unlikely that the 
0J 
 term is needed for 

15 



results at the present level of precision. This effect might be 

detectable, however, by heat capacity measurements especially 

designed to reveal it. 
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TABLE I. Heat of Mixing Parameters 
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System 

NaC1-BaC12  

NaC1-Na2 504  

LiC1-MgC1 2  

L1C1-CaC1 2  

NaG 1-MgC 12 

NaC1-CaC1 2  

KC1-MgC12  

KC1-CaC12  

S 0 L 
MN 

kgmol 
-1 
 K 

 -1 
 

-2.5 

0.6 

0.5 

0.3 

-6.4 

-5.7 

0.7 

2.0 

10 4 L 
MNX 

2 	-2 -1 
kg mol K 

2.4 

-0.7 

0.1 

0.2 

3.0 

3.1 

3.4 

3.4 

Reference 

4,16 

4,18 

15 

16 

15,18 

16 

15 

16 



WA 

log J 

MI 

log J' 

-2 

-3 
log J" 

-4L4 

-2 
	

-I 	0 	I 	2 	3 

log x 

Figure 1. The functions J, J', and J". 
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0.4 
NaCI -BaCl 2  

0.2 

F 
1* 

0 	 I 	 2 	 3 

H 

Figure 2. The interaction from short-range-forces for mixing ions of the same sign, 
Q2 of eq (1+2), calculated including (circles) and excluding (triangles) 
the higher order unsymmetrical mixing term for electrostatic forces. The 
system is NaCl-BaC12. 
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NaCI - Na 2SO4  

0.1 
	An 

- 

AO 
	

. 

0 	 I 	 2 	 3 

I 

Figure 3. The interaction from short-range forces for mixing ions of the same sign, 

Q2 of eq (42), calculated including (circles) and excluding (triangles) 
the higher order unsymmetrical mixing term for electrostatic forces. The 
system is NaC1-Na2SO4. 
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