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Synopsis

From the thermodynamics with internal variables we will derive the temperature equation for
viscoelastic fluids. We consider the type of storage of mechanical energy, the dissipation of
mechanical energy, the compressibility of the fluid, the nonequilibrium heat capacity and thermal
expansion, and deformation induced anisotropy of the heat conduction. The well-known stress
differential models that fit into the thermodynamic theory will be treated as an example. Adapting
a power-law scaling of the shear moduli on temperature and density, as is usual in rubber elasticity,
we will derive an approximation of the temperature equation in measurable quantities. This equation
will be compared with experimental results. ©1998 The Society of Rheology.
@S0148-6055~98!00105-9#

I. INTRODUCTION

For viscoelastic fluids many differential and integral stress models have been proposed
in the literature, see, for example, Larson~1988!. As already shown by Leonov~1992!
most of the differential stress models fit into the thermodynamic theory with internal
variables. However, although the thermodynamics is well suited to describe nonisother-
mal effects and although many practical flows are highly nonisothermal, relatively little
attention has been paid to nonisothermal effects. Even in the original thermodynamical
derivation of the Leonov model@Leonov~1976!#, the attention was focused on the stress
constitutive equation. Also in later articles one has mainly focused on the stress equation.
If a temperature equation was discussed, just a simple temperature equation was consid-
ered, i.e., with the heat production equal to the stress work, with isotropic heat conduc-
tion and for incompressible fluids.

Nevertheless, some nonisothermal topics received some attention in recent years. A
viscoelastic fluid can both dissipate and store or release energy, so that the dissipation
does not equal the stress work. The dissipation of various viscoelastic fluid models has
been discussed by Leonov~1992! and Peters~1996!. However, it is interesting to recon-
sider these expressions, because some of them are in error.

A topic that is closely related to the dissipation is the type of storage of mechanical
energy, see Braun~1991!, Astarita and Sarti~1976! and Sarti and Esposito~1977/1978!.
Mechanical energy can be stored in the form of internal energy or in the form of entropy.

a!Author to whom correspondence should be addressed. Present address: CESAME, Division of Applied Me-
chanics, Universite´ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
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A complete storage as internal energy gives no reversible heat production, only dissipa-
tion. If it is completely stored as entropy, the calculation of the dissipation is superfluous,
because then the sum of reversible heat production and dissipation equals the stress work.

Another reversible heat production source is caused by pressure changes. This effect
has been discussed by Flaman and Veltman~1988! for injection moulding experiments.
During compression the temperature of the fluid rises and it drops during expansion.

The deformation induced anisotropy of the heat conduction is another interesting
nonisothermal effect of polymeric fluids. Experiments of Hellwegeet al. ~1963! already
showed that with increasing orientation of the polymeric fluid, the thermal conductivity
in the direction of orientation increases and the thermal conductivity perpendicular to the
orientation decreases. More recently, the anisotropy has been derived from microrheo-
logical modeling by van den Brule~1990!.

In this article we derive the temperature equation for compressible viscoelastic fluids.
We start with a brief description of the thermodynamics, including the constitutive equa-
tions and their relation to well-known stress models. Next we will determine the connec-
tion between the requisite thermodynamical quantities like mechanical dissipation, free
energy, pressure and entropy and show how they are related to the stress models. Based
on this, we then obtain the temperature equation with the above-mentioned nonisothermal
effects. By approximating the nonequilibrium coefficients~heat capacity and thermal
expansion!, we will derive an approximate temperature equation with measurable coef-
ficients. Finally, we will compare this equation with experimental results.

II. THERMODYNAMICS OF VISCOELASTIC FLUIDS

A. General

In a fixed bounded spaceV the balance equations for a system without sources are
@see, for example, Birdet al. ~1960!#:

ṙ 5 2r¹•v, ~1!

rv̇ 5 ¹•s, ~2!

ru̇ 5 s :d2¹•fq , ~3!

wherer is the fluid density,v the velocity,d the Euler rate-of-deformation tensor defined
by d 5 (L1LT)/2, with LT 5 ¹v. The constitutive equations needed for the~symmet-
ric! total stresss, the heat fluxfq and the internal energyu can be obtained with the help
of the balance of entropy from the thermodynamics.

To describe thermodynamically the relaxation phenomena of viscoelastic fluids we use
a set of~internal! state variables and~external! rate variables@see, for example, Kuiken
~1994! or Jongschaapet al. ~1994!#. As the mechanical state variables we will take the
density andK internal deformation tensorsbk . So we will not take into account possible
scalar internal variables describing the volume relaxation or internal vector variables
describing the relaxation of the heat flux. The internal deformation tensorbk has also
been used by Leonov~1976, 1987! to derive the Leonov model. It is also called the
conformation tensor or the configuration tensor, and in microrheology it corresponds up
to a scaling factor to the second moment^QQ&. However, in this article we will use the
nomenclature from the thermodynamics.

To derive the balance of entropy from the balance of internal energy, the Gibbs
equation for viscoelastic fluids, including compressibility and internal processes, is
needed:
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u̇ 5 Tṡ1
p

r2
ṙ1 (

k 5 1

K

Pk :ḃk , ~4!

wherep is the thermodynamic pressure andPk the conjugate forces of thekth internal
deformation tensorbk . See Kuiken~1994! or Jongschaapet al. ~1994! for an extensive
discussion of the Gibbs equation.

Instead of the internal energyu, it is advantageous to use the Helmholtz free energy
c 5 u2Ts, wheres is the entropy per unit mass. Substitution in the Gibbs equation~4!
gives

ċ 5 2sṪ1
p

r2
ṙ1 (

k 5 1

K

Pk :ḃk , ~5!

with the equations of state

s 5 2
]c

]T
U
r,b

, p 5 2
]c

]r21U
T,b

5 r2
]c

]r
U

T,b

, Pk 5
]c

]bk
U

T,bk8
, ~6!

where aux means a quantity at constantx. A ub means that allK internal deformation
tensorsbk are constant. Aub

k8
will be used if all K internal deformation tensorsbk are

constant except thekth internal deformation tensor. Combination of the balance of inter-
nal energy~3! and the Gibbs equation~4! gives the balance of entropy

rṡ 5 2¹•~T21fq!1Ps ,

~7!

T Ps 5 2T21fq•¹T1s :d2
p

r
ṙ2r (

k 5 1

K

Pk :ḃk ,

wherePs is the entropy production. The second law of thermodynamics states that the
entropy production must be nonnegative:Ps > 0.

For the evolution equation of the internal deformation tensor, we follow Leonov
~1976!:

,

bk 5 2bk•dirr,k2dirr,k•bk , ~8!

where ( )
,

5 ḃk2L–bk2bk•LT is the upper-convected derivative anddirr,k the irrevers-
ible rate-of-deformation tensor, which has to be specified by a constitutive relation.
Substituting Eqs.~1! and ~8! in the entropy production~7! gives

TPs 5 2T21fq•¹T1S s2 (
k 5 1

K

2rbk•Pk1pI D :d12r (
k 5 1

K

@Pk :~bk•dirr,k!#,

~9!

where the antisymmetric part ofL canceled out because of the isotropy of the material
(bk•Pk 5 Pk•bk).

A mode of the elastic stresste,k is defined analogously to Jongschaapet al. ~1994!
and Grmela and Carreau~1987!:
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te,k 5 2rbk•Pk 5 2rbk•
]c

]bk
U

T,r,bk8
. ~10!

Note that we have not used the Leonov constraint detbk 5 1. The Brownian force is not
included when this constraint is used and the constraint can be incorporated by using
Lagrange multipliers, see Grmela and Carreau~1987!. With Eq. ~10! the entropy produc-
tion ~9! can be written as the sum of products of thermodynamic fluxes and forces

TPs 5 2T21fq•¹T1tirr :d1 (
k 5 1

K

dirr,k :te,k , ~11!

where the irreversible stress is defined astirr 5 s2te1pI , with te 5 (k 5 1
K te,k .

B. Constitutive equations

In thermodynamics the constitutive equations for the thermodynamic fluxes have to be
specified by a linear combination of the forces. In our case the forces areT21¹T, d and
te,k . Using the Onsager–Casimir reciprocal relations and the Curie principle, see, for
example, de Groot and Mazur~1984! or Kuiken ~1994!, we have for the thermodynamic
fluxesfq , tirr anddirr,k

fq 5 T21Lqq•¹T, ~12!

tirr 5 Ldd :d1 (
l 5 1

K

Ldte,l
:te,l , ~13!

dirr,k 5 2Ldte,k

T :d1 (
l 5 1

K

Lte,kte,l
:te,l , ~14!

where the second and fourth order tensorsL may depend on the local state variablesr,
T andbk . We will restrict ourselves to the case whereLte,kte,k

only depends on thekth

internal deformation tensorbk andLte,kte,l
5 0 for k Þ l . Then Eq.~14! becomes

dirr,k 5 2Ldte,k

T :d1Lte,kte,k
:te,k . ~15!

This corresponds to the assumption, usually made for multimode models, that the modal
stresses are decoupled. In Sec. III we will relate the fourth order tensorsLdd , Ldte,k

and

Lte,kte,k
to the various stress differential models. Due to the dependence ofLqq on bk ,

anisotropy of the heat conduction tensork can be taken into account. For experimental
evidence we refer to Hellwegeet al. ~1963!, Choyet al. ~1981! and Wallaceet al. ~1985!.
The most general isotropic model for the heat conduction tensor is~with decoupled
modes!:

k 5 2T21Lqq 5 (
k 5 1

K

~k0,kI1k1,kbk1k2,kbk
2!, ~16!

where k i ,k may depend on the invariants ofbk , the pressure and temperature. For a
one-mode model with constant coefficients andk2,k 5 0 this model reduces to the model
derived for Hookean dumbbells by van den Brule~1990!. The behavior ofk depends on
the stress model used. For a simple model fork with the coefficientsk i ,k independent of
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bk , all stress models that we discuss in Appendix A are able to predict the increase of the
thermal conductivity parallel to the direction of deformation. However, the decrease of
the thermal conductivity perpendicular to the deformation in steady shear can then only
be predicted by models with nonzero second normal stress difference. The equation for
the heat flux will not be discussed in more detail. For the behavior of the anisotropy for
various stress models see Wapperom~1996!.

Substitution of Eqs.~12!, ~13!, ~15! and ~16! in the entropy production~11! gives

TPs 5 ¹T•k•¹T1d:Ldd :d1 (
k 5 1

K

te,k :Lte,kte,k
:te,k . ~17!

Due to the restriction that the entropy production has to be nonnegative for independent
¹T, d and te,k , the tensorsLdd andLte,kte,k

have to be positive definite. We will

discuss these restrictions further in Sec. IV B. The cross terms withLdte,k
are nondis-

sipative, so the entropy production does not give any restriction on these tensors. Fur-
thermore, it is easy to check that fork0,k > 0, k1,k > 0 and k2,k > 0 the heat flux
contribution to the entropy production is positive, becausebk is positive definite. How-
ever, some less severe restrictions can be derived, see Wapperom~1996!.

III. STRESS MODELS IN THE LITERATURE

The total stresss is usually decomposed in a pressure part2pI and an extrastress
tensort that vanishes in equilibrium

s 5 2pI1t, ~18!

whereI is the unit tensor. The pressurep is then related to the density and the tempera-
ture only. The extrastress tensort consists of a Newtonian~solvent! contribution and the
polymer contributions containing different modes

t 5 2hsd1S hs,v2
2

3
hsD ¹•vI1 (

k 5 1

K

tk , ~19!

in which hs is the Newtonian shear viscosity,hs,v the Newtonian bulk viscosity andK
the number of modes. The modal stresstk is assumed to be a function of the internal
deformation tensor~configuration tensor! which fulfills an evolution equation, see, for
example, Leonov~1992!.

An extensive overview of differential stress models is given by Larson~1988!. For the
well-known differential models that we will consider next, the modal stress is related to
the internal deformation tensor with the help of the simple algebraic relation:

tk 5
Gk

12jk
~Bkbk2I !, ~20!

whereGk is the shear modulus of thekth mode, andBk may be a function of the first
invariantI 1,k . We give the values ofBk for various models in Appendix A. The moduli
are weak functions of the temperature and the density. For the parameterjk , which will
be explained shortly, we will exclude the valuejk 5 1. For all well-known differential
stress models it can be shown thatbk is positive definite, see Hulsen~1990! or Wapperom
and Hulsen~1995!.

The evolution equation forbk has the form
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lk

h

bk 5 gk , ~21!

where the relaxation timelk may depend on the temperature and pressure, andgk

5 g0,kI1g1,kbk1g2,kbk
2 . The scalarsgi ,k may depend on the invariants ofbk and are

given in Appendix A. The temperature dependence of the relaxation time may be de-
scribed by a Williams–Landel–Ferry~WLF! or Arrhenius shift factor, see Ferry~1981!
or Tanner~1985!, and also its pressure dependence may be described by an exponential
shift factor, see Ferry~1981! or Kadijk and van den Brule~1994!. The mixed ~or
Gordon–Schowalter! convected derivative ofbk is defined by

h

bk 5 ḃk2~L2jkd!•bk2bk•~L2jkd!T, ~22!

in which jk is a parameter for which holds 0< jk < 2. The values 0, jk , 2 repre-
sent a sort of frictionless slip of the internal microstructure with respect to the macro-
scopic flow. In Sec. IV A we will show that the slip is indeed frictionless or nondissipa-
tive.

IV. THE RELATION BETWEEN THE STRESS MODELS AND THE
THERMODYNAMIC QUANTITIES

A. The thermodynamic fluxes d irr and tirr

Comparison of the model~21! with Eq. ~8! gives that the irreversible rate-of-
deformation tensor corresponds to

dirr,k 5 jkd2
1

2lk
bk

21
•gk . ~23!

Note that to include the slip parameterjk it is not necessary to modify the left-hand side
of the evolution equation~8! as done by Leonov~1992! and Jongschaapet al. ~1994!. It
can be included indirr,k . Comparing with the equation for the irreversible rate-of-strain
tensor~15!, and introducing the fourth order unit tensorI, leads to

Ldte,k
5 2jkI, Lte,kte,k

:te,k 5 2
1

2lk
bk

21
•gk , ~24!

which shows that the frictionless slip in the mixed convected derivative, represented by
the parameterjk , is indeed nondissipative@see Eq.~17!#. Comparing the constitutive
equations for the irreversible stress~13! and ~19!, and usingt 5 te1tirr , then gives

Ldd 5 2hsI1S hs,v2
2

3
hsD II , ~25a!

te,k 5
1

12jk
tk . ~25b!

Henceforth, we will neglect the compressible Newtonian contribution, so that the irre-
versible stress reduces to

tirr 5 t2te 5 2hsd2 (
k 5 1

K

jkte,k . ~26!
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B. The mechanical dissipation

With the results of Sec. IV A the entropy production~17! can be written as

TPs 5 2T21fq•¹T1Dm . ~27!

The first term represents the entropy production due to conduction of heat andDm is the
mechanical dissipation which consists of a Newtonian solvent and a viscoelastic part

Dm 5 2hsd:d1 (
k 5 1

K

Dm,k , ~28!

Dm,k 5 2
1

2lk~12jk!
~tk•bk

21!:gk , ~29!

where Dm,k is the modal mechanical dissipation. During deformation the mechanical
dissipationDm is smaller than the stress work and mechanical energy is stored. During
relaxation it is larger and then the stored mechanical energy is dissipated.

From the restriction that the entropy production has to be nonnegative for independent
¹T, d andtk , it follows thaths > 0. We examine the expression forDm,k for various
stress models in more detail in Appendix A. Furthermore we show that for all of these
models the dissipation is nonnegative, as it should be.

C. The free energy and related quantities

1. The free energy c and the elastic stress te

For models of the form~20!, it follows from Eqs.~10! and~25b! that the derivative of
the free energy with respect to an internal deformation tensorbk equals

]c

]bk
U

T,r,bk8
5

Gk

2r~12jk!2
~BkI2bk

21!. ~30!

With the help of]I 1,k /]bk 5 I and ]I 3,k /]bk 5 I 3,kbk
21 Eq. ~30! can easily be inte-

grated. For convenience we will split the free energyc in

c 5 c̄~r,T!1 (
k 5 1

K

ck , ~31!

where c̄(r,T) only depends on the density and the temperature and the modal free
energyck depends on thekth internal deformation tensorbk and possibly on the density
and temperature.

For models withBk 5 1, see Appendix A, the elastic stresses and the corresponding
modal free energies are:

te,k 5
Gk

~12jk!2
~bk2I !, ck 5

Gk

2r~12jk!2
~ I 1,k2 ln I3,k23!, ~32!

where the lnI3,k term in the free energy corresponds to the isotropic term in the elastic
stress and represents the free energy of noninteracting macromolecules as has been dis-
cussed by Carreau and Grmela~1991!. For a large internal deformation, if the lnI3,k term
can be neglected, we find 2rck . tr te,k 5 tr tk .
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For the Larson elastic stress@see, for example, Leonov~1992!#, where Bk 5 @1
1bk(I 1,k23)/3#21, we obtain

te,k 5 Gk~Bkbk2I !, ck 5 2
Gk

2r
S 3

bk
ln Bk1ln I3,kD , ~33!

whenbk Þ 0. For a large internal deformation, if the lnI3,k term can be neglected, we
find 2rck . tr tk ln@11bk(I1,k23)/3#. This term will be assumed ofO(tr tk) ~for
I 1,k 5 100 andbk 5 1 the logarithm equals 3.5).

For the finitely extensible nonlinear elastic using the Peterlin closure approximation
~FENE-P! model, see, for example, Wedgewood and Bird~1988!, the elastic stress and
the corresponding free energy are

te,k 5 Gk~Bkbk2I !, ck 5
Gk

2r
~bk ln Bk2ln I3,k!, ~34!

where Bk 5 bk /(bk132I 1k
) and bk a dimensionless constant. For a large internal

deformation, if the lnI3,k term can be neglected, we find 2rck . tr tkBk
21 ln Bk , with

Bk @ 1. This term is not larger thanO(tr tk).

Note that in equilibriumc reduces toc̄ for the neo-Hookean, the Larson and FENE-P

models. Out of equilibriumc2c̄ is nonnegative. This result follows after a decomposi-
tion on the principal axes. The resulting functionsx2 ln x21 for the neo-Hookean free
energy, 1/bk ln@11bk(x21)#2ln x for the Larson free energy, are nonnegative forx
. 0. For the FENE-P free energy it can be shown~with a decomposition on the principal

axes and the fact that the minimum ofI 1,k is on the line with equal principal values! that

bk ln Bk2ln I3,k has one local minimum in equilibrium, so thatc2c̄ > 0. We will

examine the free energyc̄ further in the remaining part of this section, because it is
related to the pressure and entropy.

Theoretically, all thermodynamic quantities related to the elastic part of the free en-
ergy can now be computed. However, depending on the complexity of the free energy
function, this may be rather complicated. Therefore, we make the following assumptions:

~1! The temperature and density dependence of the shear moduli are given by

Gk 5 Gk,refS T

Tref
D gkS r

r ref
D dk

, ~35!

wheregk anddk are constants. Temperature scaling is well known in rubber elasticity,
see, for example, Treloar~1975!. The values for a large number of polymers are given by
Mark ~1973, 1976!, including a discussion on reliability of the experiments. A value of
gk 5 1 corresponds to a set of free chains, as in the kinetic theory. However, the internal
rotation about bonds within the molecule is not entirely free, but is restricted by hindering
potentials arising from steric interactions. This effect can be taken into account by a
temperature dependence of the mean-square length of a set of free chains, which results
in the temperature scaling in Eq.~35!. It is claimed that because the effect is intramo-
lecular the value ofg is characteristic for a polymer, thus valid in the rubber state, fluid
state and for solutions. The value ofg is usually obtained from measurement of the force
on a sample as a function of temperature. Dependent on the material,g may be larger or
smaller than 1. A value ofg , 1 indicates that a small mean-square length is energeti-
cally favored, and a value ofg . 1 that the extended conformation is energetically
favored. The value ofg is often given in terms off e / f , the ratio of the internal energy
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contribution to the force and the total force, ord ln^r0
2&/d ln T with ^r 0

2& the mean-square
length of a set of free chains. These quantities are related to the temperature dependence
of the modulus byf e / f 5 d ln^r0

2&/d ln T 5 12g. Up to moderate elongation ratios (e
. 3), indeed, an almost constant ratiof e / f is found experimentally. A strong decrease

for large extension ratios is usually ascribed to strain-induced crystallization. However,
some caution does not seem superfluous, because for some polymers there is considerable
scatter in the experimental results, particularly between experiments at constant density
and at constant pressure. However, the range 0, g , 2 covers the list given by Mark
~1973! of tens of polymers, so that the value ofg 5 25 assumed by Gupta and Metzner
~1982! seems to be unrealistic. Note also that as long asG is the only temperature
dependent parameter in the free energy, the ratiof e / f is constant. However, ifbk
5 bk(T) in Eq. ~33! or bk 5 bk(T) in Eq. ~34! this does not hold anymore.

The density scaling withdk 5 1 corresponds to the kinetic theory. The density scaling
with dk Þ 1 corresponds to the extra factor introduced by Tobolsky and Shen~1966! for
rubber elasticity, resulting from the dependence of^r 2&0 on the density. They have
supposed that this effect is caused by intermolecular forces. The parameterdk is then a
constant that depends on the chemical structure of the chains. The value ofdk can be
obtained from volume dilatation, force-pressure or thermoelastic measurements. Al-
though sometimes considerable scatter exists between results of various workers, the
deviations fromdk 5 1 do not seem to be large. Natural rubber values are found in the
range 0.75, d , 1.28, and for polyvinylalcohold 5 1.2 is reported, see Shen and
Croucher~1975!. For the approximation of terms in the next sections we will assume 0
, dk , 2.

~2! The parameterbk in the Larson andbk in the FENE-P free energy are constant, for
reasons of simplicity.

Due to the second assumption the free energy can be written as

c 5 c̄~r,T!1 (
k 5 1

K

ck 5 c̄~r,T!1 (
k 5 1

K
Gk

2r
fk~bk!, ~36!

where the functionsf k are independent of density and temperature.

2. The thermodynamic pressure p

With the assumption Eq.~35! for the moduli, the thermodynamic pressurep of Eq. ~6!
can easily be obtained by differentiation of Eq.~36!

p 5 r2
]c

]r
U
T,b

5 p̄~r,T!1 (
k 5 1

K

~dk21!rck , ~37!

wherep̄(r,T) 5 r2]c̄/]ruT,b . This result shows that the thermodynamic pressurep is

only independent of the internal deformation tensors ifdk 5 1. With respect top̄ the
pressure increases ifdk . 1 and decreases ifdk , 1 when the material is deformed. For
the free energy term holds,rck 5 O(tr tk). For the assumption 0, dk , 2, the sum-
mation may be of the same order as the trace of the stress. This may give a considerable
contribution to the pressure then, because values of trt 5 O(106) Pa are not unusual.

For the relation between the density and the thermodynamic pressure~in equilibrium!
the Tait equation, see van Krevelen and Hoftyzer~1976!, is often used for polymeric
fluids:
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r21~p̄,T! 5 r0
21@12c ln~11p̄/B!#, ~38!

wherer0
21

5 r21(0,T), c is a constant andB depends exponentially on the temperature
B 5 b0 exp@2b1(T2273)#. Equation~38! is equivalent to

p̄~r,T! 5 BSexpF1cS12
r21

r0
21DG21D. ~39!

The order of magnitude of the various coefficients is about 23108 Pa, b0 , 4
3108 Pa, 431023 K21 , b1 , 731023 K21 andc . 0.1. The exponent is still be-
tween 1 and 3 for pressures lower than 0.1 GPa. Accurate values for various polymers
can be found in the books by Tanner~1985! and van Krevelen and Hoftyzer~1976!.

The corresponding free energyc̄ can easily be obtained by integrating the equation of
state for the pressure:

c̄~r,T! 5 c̃~T!1cBr0
21 expF1cS12

r21

r0
21DG1Br21, ~40!

wherec̃(T) is a function of temperature only.

3. The entropy s

With the assumption Eq.~35! for the moduli, the entropy can easily be calculated by
differentiation of Eq.~36!

s 5 2
]c

]T
U
r,b

5 s̄~r,T!2 (
k 5 1

K

gkT21ck , ~41!

where s̄(r,T) 5 2]c̄/]Tur . Becauseck is positive, it depends ongk whether the
entropy increases (gk , 0), decreases (gk . 0) or remains constant (gk 5 0) with
increasing internal deformation.

Differentiating c̄ in Eq. ~40! with respect to the temperature gives for the entropys̄:

s̄~r,T! 5 Bb1r
211BFcb1r0

212Sc1
r21

r0
21D dr0

21

dT GexpF1c S12
r21

r0
21DG1s̃~T!, ~42!

wheres̃ 5 2dc̃/dT is a function of temperature only.

V. THE TEMPERATURE EQUATION

In this section we will transform the balance of entropy into the temperature equation
for viscoelastic fluids. Therefore, we have to evaluate the change of entropy. If we
consider the entropy as a function of the temperature, the thermodynamic pressure and
the internal deformation tensorss 5 s(T,p,bk), the change of entropy can be written as

ṡ 5
]s

]T
U
p,b

Ṫ1
]s

]p
U

T,b

ṗ1 (
k 5 1

K
]s

]bk
U

p,T,bk8
:ḃk 5

cp,b

T
Ṫ2

aT,b

r
ṗ1Dsb , ~43!

which defines the heat capacity at constant pressure and internal deformationcp,b , the
thermal expansion coefficientaT,b and the entropy differenceDsb . Substitution of the
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entropy change~43! in the local entropy balance~7! with the viscoelastic entropy pro-
duction ~27!, gives thetemperature equationfor viscoelastic fluids

rcp,bṪ2TaT,bṗ1rTDsb 5 TPs2T¹•~T21fq! 5 Dm2¹•fq . ~44!

In the remaining part of this section we will discuss the expressions forcp,b , aT,b and
Dsb . These quantities can be obtained by differentiation of the entropy, Eqs.~41! and
~42!. We will relate them to measured, or more easily measured, quantities.

A. The thermal expansion coefficient aT,b

The reason why we have calledaT,b the thermal expansion coefficient is that it is also
related to the temperature derivative of the density:

2r21aT,b 5
]s

]p
U
T,b

5 2
]r21

]T
U

p,b

, ~45!

which follows easily from the compatibility relation for the free enthalpyg 5 u2Ts
2p/r, see, for example, Kuiken~1994!. To evaluate the thermal expansion coefficient,
we note that

2r21aT,b 5
]s

]p
U
T,b

5 S ]s

]r21

]r21

]p D U
T,b

5 r21kT,b

]s

]r21U
T,b

, ~46!

wherekT,b is the isothermal compressibility which is discussed in Appendix B. There we
have shown thatkT,b is approximately independent of the internal deformation tensors
and that this dependence vanishes exactly fordk 5 1. The remaining derivative of the
entropy can be obtained by differentiation of the entropy~41!:

]s

]r21U
T,b

5 2b1p̄1B
r21

cr0
22

dr0
21

dT
expF1cS12

r21

r0
21DG1rT21 (

k 5 1

K

gk~dk21!ck ,

~47!

so that this term, and also the thermal expansion coefficientaT,b , is only independent of
the internal deformation tensors, i.e., reduces to the equilibrium valueaT,b

eq , if dk 5 1.

Furthermore, we note that the derivative]s/]r21uT,b is, for not too high values ofp̄,
dominated by the second term on the right-hand side which isO(106) Pa K21. The first
term plays a role for pressures ofO(108) Pa. Forgk and (dk21) 5 O(1) the last term
on the right-hand side isO(T21 tr t) < O(104) Pa K21. So aT,b is approximately
independent of the internal deformation andaT,b 5 aT,b

eq is a good approximation out of

equilibrium. Furthermore, neglecting the lower order terms results inaT,b 5 aT,b
eq

5 r0dr0
21/dT. Experimental data of the thermal expansion coefficient in equilibrium

indicateaT,b
eq . 0.16/Tg , see van Krevelen and Hoftyzer~1976!, so that the order of

magnitude is about 1024 K21 , aT,b
eq , 1023 K21.

B. The entropy difference Ds b

The derivative of the entropy inDsb can be obtained by differentiation of the entropy
~41!. We will split the derivatives in two parts:

1009TEMPERATURE EQUATION



]s

]bk
U

T,p,bk8
5

]s

]bk
U

T,r,bk8
1Ds , ~48!

Ds 5
]s

]r21U
T,b

]r21

]bk
U

p,T,bk8
. ~49!

For the first term we find with the help of Eqs.~41! and ~10!

]s

]bk
U

T,r,bk8
5 2

gk

T

]ck

]bk
U

T,r,bk8
5 2

gk

2rT
bk

21
•te,k . ~50!

As for rubbers, the entropy derivative at constant density is related to the temperature
derivative of the stress. For viscoelastic fluids this relation becomes

]s

]bk
U

T,r,bk8
5 2

]

]TS ]c

]bk
U

T,r,bk8
D U

r,bk

5 2
1

2r
bk

21
•

]te,k

]T
U

r,bk

, ~51!

so that this term can be obtained from stress-temperature measurements.
From Appendix B we find thatDs can be approximated by

Ds .
~dk21!

2r
aT,bbk

21
•te,k . ~52!

If we assume thatgk 5 O(1) anddk21 5 O(1) the Ds term isO(TaT,b) times the
]s/]bkuT,r,b

k8
term, so theDs term is in general smaller but cannot be neglecteda priori.

Combining the two results gives thatDsb can be approximated by

Dsb . 2
1

2r
(

k 5 1

K

@T21gk2~dk21!aT,b#~bk
21

•te,k!:ḃk

5 2
1

r
(

k 5 1

K

@T21gk2~dk21!aT,b#te,k :~d2dirr,k!, ~53!

where we have used Eq.~8! for the last equality.

C. The heat capacity c p ,b

Differentiation of the entropy~41!, gives for the heat capacitycp,b :

cp,b 5 T
]s

]T
U
p,b

5 c̄p,b2
1

T
(

k 5 1

K

gkck@gk212TaT,b~dk21!#, ~54!

wherec̄p,b is given by

c̄p,b 5 T
]s̄

]T
U
p,b

. ~55!

This result shows thatcp,b only reduces toc̄p,b whengk 5 0, or bothgk 5 1 anddk
5 1. Becauseck is positive it depends on the quantity between the brackets whether
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cp,b is smaller or larger thanc̄p,b . For dk 5 1 the heat capacitycp,b decreases when
gk , 0 and gk . 1 and it increases when 0, gk , 1. Furthermore, in equilibrium

cp,b reduces toc̄p,b becauseck vanishes.

From Appendix B we find thatc̄p,b is approximately independent ofbk . This means

that c̄p,b is approximately equal tocp,b
eq , the heat capacity at constant pressure and

constant internal deformation in equilibrium. This quantity is usually measured and
then denoted bycp . However, to be consistent with the thermodynamic notation we
will use cp,b

eq instead ofcp . The heat capacity of a polymeric fluid isO(103)J kg21 K21,
see van Krevelen and Hoftyzer~1976!, while the order of magnitude ofc/rT 5 O(1) –
O(10) J kg21 K21. If we assume thatgk@gk212TaT,b(dk21)# 5 O(1), we findthat

cp,b 5 c̄p,b 5 cp,b
eq is in general a good approximation. Because it may be difficult to

perform the experiments at constant internal deformation tensor the heat capacity at
constant pressure and elastic stresscp,te

is also of importance. We will discuss this

quantity in Appendix B.

D. An approximation for the temperature equation

With the results of the approximations in the Secs. V A–V C, we obtain for the
temperature equation~44!

rcp,b
eq Ṫ 5 TaT,b

eq ṗ1Dm2rTDsb1¹•~k•¹T!, ~56!

wherecp,b
eq equals the heat capacity at constant pressure andaT,b

eq the thermal expansion
coefficient that are usually measured in equilibrium. The heat conduction tensork
may be anisotropic as discussed at the end of Sec. II B. The heat production term
Dm2rTDsb can be rewritten by combining Eqs.~28! and ~53!. Using Eqs.~23!, ~25!
and ~29! for the irreversible rate-of-deformation tensor, the elastic stress and the modal
mechanical dissipation results in

Dm2rTDsb 5 2hsd:d1 (
k 5 1

K

@gk* tk :d1~12gk* !Dm,k#, ~57!

wheregk* 5 gk2TaT,b
eq (dk21). Equation~57! has also been obtained by Braun~1991!

for dk 5 1 andK 5 1. This result shows that forgk 5 1 anddk 5 1 the stress work
completely contributes to the heat production~reversibly!, so that the internal energy
does not change whenbk changes. In this case the fluid is called entropy elastic. This
elasticity would correspond to the deformation of entirely free chains, without distortion
of the valent angles. Forgk 5 0 anddk 5 1 the heat production equals the dissipation,
i.e.,Dsb 5 0, so that the entropy does not change whenbk changes. In this case the fluid
is called energy elastic. This elasticity would correspond to pure distortion in the valent
angles, without a macromolecular conformation. The fact that rubbers give out heat at
extension, and thus, are at least partly entropy elastic, had already been noticed in the
beginning of the previous century. The effect is called the Gough–Joule effect.

VI. THE RELATION WITH EXPERIMENTAL DATA

Before we discuss two experiments for polymeric fluids, we will first mention another
experiment performed for rubbers that supports the scaling~35! of the shear modulusG:
anisotropic thermal expansion. This effect can be described by the equivalent of Eq.
~B11! for rubbers, see, for example, Godovsky~1992!. Then, however, the anisotropy is
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related to the~observable! Finger tensorb instead of the internal deformation tensor. The
anisotropy of rubbers is up to two orders of magnitude larger than the volume thermal
expansion. In the direction of orientation, the thermal expansion is negative and perpen-
dicular to the orientation positive. For elongated samples of natural rubber~e , 1.6!, the
value ofg agrees well with calory measurements, see Shen and Croucher~1975!. How-
ever, deviations were found in Thiele and Cohen~1980! for larger elongation ratios.

Astarita and Sarti~1976! and Sarti and Esposito~1977/1978! have tried to show that
some polymeric fluids are entropy elastic. Therefore, they used the integrated form of the
temperature equation for entropy elastic fluids (gk 5 dk 5 1), where pressure effect
and heat conduction have been neglected:

rĉDT 5 E
t
t :d dt, ~58!

whereĉ is a heat capacity that equalscp,b
eq for an entropy elastic fluid. To ensure that the

stress work is much larger than the dissipation, the total force on the sample has been
taken as a strong increasing function of time. From the obtained temperature rise and
stress work, the heat capacity can be computed and compared with values from the
literature. For an entropy elastic fluid the values must correspond, for an energy elastic
fluid the obtained heat capacity will be too high.

Astarita and Sarti~1976! performed the experiment~at constant deformation rate! for
polyisobutylene at room temperature. Both in shearing and elongational flow they ob-
tained a good correspondence with values of the heat capacity in the literature, indicating
an ~almost! entropy elastic fluid (g close to 1!. This seems in agreement with the value
of g 5 1.03 given by Mark~1973!, obtained for rubber elasticity measurements. The
small difference is probably within experimental error, because the scatter in the obtained
heat capacities is about 10%.

Sarti and Esposito~1977/1978! performed adiabatic shear and elongational experi-
ments, at various temperatures aboveTg , on polyisobutylene and polyvinylacetate with
different molecular weights. The materials were deformed from equilibrium at a constant
rate until a maximum deformation. Then the deformation was stopped and the material
relaxed adiabatically towards a stress-free state. For a purely entropy elasticity the tem-
perature has to remain constant during the relaxation process~d 5 0!, see Eqs.~56! and
~57!. For the polyisobutylene melts they found a vanishing temperature rise during the
stress relaxation process, which confirms the result by Astarita and Sarti~1976! which
has been discussed above. Furthermore, they obtained a constant heat capacity, equal to
the equilibrium value, during deformation. However, for the polyvinylacetate at 333K,
which is more than 20K aboveTg , the temperature decreased during the relaxation. This
can be explained by a value ofg . 1, as has also been noted by Braun~1991!. For
polyvinylacetate no data ofg are available in Mark~1973!. However, for vinyl polymers,
g is usually positive and not close to one, for polyvinylalcohol, for example, 1.2360.07
, g , 1.6860.12, where the lowest value is for the syndiotactic and the highest for the

isotactic form of polyvinylalcohol. The decreasing temperature does not seem to be in
contradiction with the thermodynamic theory. The result that at a higher temperature the
decreasing temperature is absent, might be explained by the fact that then dissipation is
not negligible compared to elastic effects. The temperature dependence for polyvinylac-
etate can be described by a WLF shift factor withTg 5 305 K, c1 5 15.6 andc2
5 46.8 K, which gives a ratio of 100 in relaxation times. Because the elongation rate is

almost equal, this results in a more viscous response for the sample at the highest tem-
perature. And if much mechanical energy is already dissipated during elongation, the
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possible temperature change during stress relaxation is much smaller or maybe almost
absent. However, the increasing heat capacityĉ during elongation cannot be explained in
this way. In view of Eq.~54! it is not expected that there will be a large change of the
heat capacitycp,b during elastic deformation, for moderate stresses andgk 5 O(1).
Furthermore, if elastic effects are dominant, the stress work is much larger than the
dissipation and the heat production is larger than the stress work forg . 1. This would
result in a larger temperature riseDT and consequently a decreasing heat capacityĉ. For
an increase of the heat capacityĉ a g , 1 would be needed. In the literature about rubber
elasticity, changes ofg to negative values are observed sometimes, see Treloar~1975!
and Mark ~1976!. The effect is ascribed to strain-induced crystallization. Whether this
effect plays a role in the experiments of Sarti and Esposito~1977/1978! is not clear.

VII. CONCLUSIONS

In this article we have derived the temperature equation for compressible viscoelastic
fluids, with the help of the thermodynamics. We discussed both the irreversible~dissipa-
tive! part and the reversible~elastic! part of the temperature equation. The reversible part
is closely related to the free energy. From the free energy the state variables~elastic
stress, pressure and entropy! can be calculated. Once these quantities are completely
known, the temperature equation with all the coefficients~like the heat capacity and the
thermal expansion coefficient! can be obtained.

Results have been illustrated with various stress differential models and for adapting a
power-law scaling of the shear moduli on density and temperature, as is usual in rubber
elasticity. We found that if the moduli depend linearly on temperature and density~as in
kinetic theory! the pressure reduces to its equilibrium value. Otherwise, elastic deforma-
tion may cause a considerable pressure change. For linear scaling, the temperature equa-
tion also simplifies considerably: the nonequilibrium heat capacity and thermal expansion
coefficient reduce to their equilibrium values and the heat production equals the stress
work. However, rubber elasticity experiments show that linear scaling generally does not
hold. We found that for the usual values of the pressure, temperature and stresses, the
nonequilibrium heat capacity and thermal expansion coefficient can still be approximated
by the equilibrium values, so that a much simpler approximate temperature equation for
viscoelastic fluids could be derived. The heat production term, however, does not reduce
to the stress work and has to be included in the approximate temperature equation.

Not many experimental results exist to test the approximate temperature equation for
polymeric fluids. The results of Astarita and Sarti~1976! and Sarti and Esposito~1977/
1978! for polyisobutylene seem to be in agreement with rubber elasticity experiments and
thermodynamic theory. For some of the results of Sarti and Esposito~1977/1978! for
polyvinylacetate, however, this is not clear.

APPENDIX A: EXPRESSIONS FOR THE MECHANICAL DISSIPATION OF
VARIOUS VISCOELASTIC MODELS

The expression for the mechanical dissipationDm,k , Eq. ~29!, can be obtained by
substituting for a stress model Eq.~20! and the scalargi ,k defining gk in Eq. ~21!.
Because the expression is similar for all modes we will omit the subscriptk for the mode
number. Furthermore, we will show that the mechanical dissipation is nonnegative. One
should be careful by using expressions for the dissipation of specific models presented in
the literature. The incorrectness is usually caused by using the wrong expressions for the
elastic stresste,k for models with nonconstant determinant or elastic stresses that are not
of the neo-Hookean type, as, for example, in Leonov~1992! and Peters~1996!. The
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correctness of the dissipation can easily be checked by considering a fully developed
flow, for which the dissipation equals the stress work.

1. The Johnson–Segalman model and the Phan-Thien–Tanner model

The Johnson–Segalman model and the Phan-Thien–Tanner model are defined byg0
5 Y, g1 5 2Y andg2 5 0, B 5 1 and 0< j < 2. For the Johnson–Segalman model

Y 5 1, for the linear Phan-Thien–Tanner modelY 5 11e(I 123), and for the expo-
nential Phan-Thien–Tanner modelY 5 exp@e(I123)#. The parametere is positive. The
mechanical dissipation~29! becomes

Dm 5
G

2~12j!2l
Y~I11tr b2126!, ~A1!

for j Þ 1. Decomposition on the principal axis immediately shows that for a positive
definite internal deformation tensor the term between the brackets in Eq.~A1! is
nonnegative~the function x11/x22 is nonnegative forx . 0.! For the Johnson–
Segalman model and the exponential Phan-Thien–Tanner modelY is positive and for the
linear Phan-Thien–Tanner model the result of Wapperom and Hulsen~1995! that I 1
> 3, ensures a positiveY and thus a positive dissipation.

2. The „modified … Leonov model

The modified Leonov model is defined byB 5 1, j 5 0, g0 5 f/2, g1 5 f(I 1
2I 2)/6 andg2 5 2f/2, wheref21 5 112a/p arctan@b/4(I 11I 226)# with a > 0
andb > 0, see Bush~1989!. The modified Leonov model reduces to the Leonov model
if f 5 1 is taken. The mechanical dissipation~29! becomes

Dm 5
Gf

4l
Fb:b231

I 1

3
~ I 22I 1!G . ~A2!

With the help of the decomposition on the principal axis, and usingI 3 5 1 and the
results of Wapperom and Hulsen~1995! that I 1 > 3 andI 2 > 3 for the Leonov models,
it can be shown that the term between the brackets in Eq.~A2! is nonnegative. Because
f is positive, the dissipation is nonnegative.

3. The Giesekus model

The Giesekus model is defined byB 5 1, j 5 0, g0 5 (12a), g1 5 2(122a)
andg2 5 2a, where 0< a , 1. Fora 5 0 the model reduces to the upper-convected
Maxwell model~the Johnson–Segalman model withj 5 0!. The mechanical dissipation
~29! becomes

Dm 5
G

2l
@~12a!~I11tr b2126!1a~b:b22I 113!#. ~A3!

As for the Johnson–Segalman model the termI 11tr b2126 is always nonnegative.
Decomposition on the principal axis also shows thatb:b22I 113 is nonnegative~the
functionx222x11 is nonnegative forx . 0). Thus, for the admissible values ofa the
dissipation is nonnegative.
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4. The Larson model

The Larson model is given byg0 5 1/B, g1 5 21/B and g2 5 0, B 5 @11b(I 1
23)/3#21, where 0< b < 1, andj 5 0. The mechanical dissipation~29! becomes

Dm 5
G

2l
@I1231B21~tr b2123!#. ~A4!

After substitution of the definition ofB and reordering of the terms, it follows that the
term between the brackets can be written as (12b)(I 11tr b2126)1b(tr b21I 1 /3
23). As for the Johnson–Segalman model the termI 11tr b2126 is always
nonnegative. Furthermore, by decomposition on the principle axes it can be shown that
tr b21I 1 /323 is nonnegative. Thus, for 0< b < 1 the dissipation is nonnegative.

5. The FENE-P model

The FENE-P model is given byg0 5 1, g1 5 2B and g2 5 0, B 5 b/(b13
2I 1), with I 1 , b13, andj 5 0, see Wedgewood and Bird~1988!. The mechanical
dissipation~29! becomes

Dm 5
G

2l
~B2I126B1tr b21!. ~A5!

Reordering of the terms gives that the factor between the brackets equals

B2I126B1tr b21 5 I 11tr b21261~B21!@~B11!I 126#. ~A6!

As for the Johnson–Segalman model, the first part of this expression is positive. Because
B . 1, the second part of the expression is positive ifI 1 . 3.

APPENDIX B: APPROXIMATIONS OF VARIOUS THERMODYNAMIC
QUANTITIES

1. The isothermal compressibility kT,b

The isothermal compressibility is defined by

kT,b 5
1

r

]r

]p
U
T,b

, ~B1!

and can be obtained by differentiation of the thermodynamic pressure~37!:

kT,b
21

5 2r21
]p

]r21U
T,b

5
Br21

cr0
21

expF1cS12
r21

r0
21DG2r (

k 5 1

K

dk~dk21!ck . ~B2!

For polymeric fluids the isothermal compressibility in equilibrium is about 10210 Pa21

, kT,b
eq , 1029 Pa21, see, for example, van Krevelen and Hoftyzer~1976!. This cor-

responds to the order of magnitude given forB and c below Eq.~39!. If dk 5 0 or if
dk 5 1 ~as in the kinetic theory of Gaussian networks! the last term at the right-hand side
vanishes and then the isothermal compressibility only depends on density and tempera-
ture. In Sec. IV C we have shown thatO(rck) < O(tr tk). If dk is assumed to beO(1),
the last term on the right-hand side of Eq.~B2! is negligible, because the order of
magnitude isO~tr t!, which is usually not larger thanO(106) Pa. The order of magni-
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tude of the first term on the right-hand side of Eq.~B2! is O(109) Pa. Therefore,kT,b

5 kT,b
eq is a good approximation out of equilibrium.

2. The entropy difference term Ds

The entropy difference termDs is defined by

Ds 5
]s

]r21U
T,b

]r21

]bk
U

p,T,bk8
, ~B3!

where]s/]r21uT,b is given by Eq.~47!. The other term can be obtained by differentia-
tion of the pressure~37!:

]r21

]bk
U

p,T,bk8
5

~dk21!

2
bk

21
•te,kS B

cr0
21

expF1cS12
r21

r0
21DG1r2 (

l 5 1

K

~dl21!dlclD21

.

~B4!

Thus this term, and alsoDs , only vanishes ifdk 5 1. Analogously to Section B 1, it can
be shown that fordk21 5 O(1) the sum over the free energiesc l can be neglected.
With the estimate of Eq.~47!, discussed in Sec. V A, we then find thatDs can be
approximated by

Ds .
~dk21!

2

r21

r0
21

dr0
21

dT
bk

21
•te,k .

~dk21!

2
r21aT,bbk

21
•te,k . ~B5!

3. The heat capacity c̄ p ,b

The heat capacityc̄p,b can be determined from the entropys̄ given by Eq.~42!. After
some calculations, it follows

]s̄

]T
U
p,b

5 BH Z01Z1 expF1cS12
r21

r0
21DGJ1

ds̃

dT
,

Z0 5 2b1
2r211b1r

21aT,b ,
~B6!

Z1 5 2cb1
2r0

21
1b1Sr21

r0
21

1cD dr0
21

dT
1

r22

cr0
22

aT,b

dr0
21

dT

2
r22

cr0
23Sdr0

21

dT D2

2b1r
21aT,b2Sc1

r21

r0
21D d2r0

21

dT2
.

For polymeric fluids the order of magnitude of the heat capacity is about 2

3103J kg21 K21 to 33103J kg21 K21, so that] s̄/]Tup,b 5 O(10)J kg21 K22. Evalu-
ation of Eq.~B6! at atmospheric pressure, i.e., the exponential function is about 1, and
neglecting nondominating terms gives

]s̄

]T
U
p 5 patm,b

.
ds̃

dT
1BS 2b1

2r211b1

r21

r0
21

dr0
21

dT
2

r21

r0
21

d2r0
21

dT2 D . ~B7!
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If it is assumed that the second derivative ofr0
21 has the order of magnitude ofaT,b /rT,

it follows that the derivative of s̃ is the dominating term, which has to be
O(10)J kg21 K22.

4. The heat capacity c p ,te

The heat capacity at constant pressure and elastic stresscp,te
is defined by

cp,te
5 T

]s

]T
U
p,te

. ~B8!

The difference betweencp,te
andcp,b equals

Dc 5 cp,te
2cp,b 5 T (

k 5 1

K
]s

]bk
U

T,p,bk8
:
]bk

]T
U

p,bk8 ,te,k

. ~B9!

The first term on the right-hand side has already been needed for the calculation of the
entropy difference in Sec. V B. For the neo-Hookean model, with the free energy~32!,
the second term can be computed analytically. For the other models~33! and ~34! it is
also possible to calculate the difference analytically. However, the]bk /]Tup,b

k8 ,te,k
is

more difficult to elaborate due to the nonlinear relation between the extra stress and the
internal deformation. Therefore, we will only discuss the expressions for the neo-
Hookean model.

5. Example: c p ,te
for the neo-Hookean free energy.

The last term on the right-hand side of Eq.~B9! may be calculated from Eqs.~20! and
~25!. Differentiation of the elastic modal stresste,k gives

0 5
]te,k

]T
U

p,bk8 ,te,k

5
Gk

~12jk!2

]bk

]TU
p,bk8 ,te,k

1
1

~12jk!2
~bk2I !

]Gk

]T
U

p,bk8 ,te,k

.

~B10!

After rearrangement of this equation we obtain

]bk

]T
U

p,bk8 ,te,k

5 2~gkT212dkaT,b!~bk2I !. ~B11!

Combination of Eqs.~B9!, ~48! and ~B11! gives the heat capacity differenceDc:

Dc 5 (
k 5 1

K
Gk

2r~12jk!
2
@gk2~dk21!TaT,b#~gkT

212dkaT,b!~I1,k1tr bk
21

26!,

~B12!

where the last factor with the invariants is always positive out of equilibrium and van-
ishes in equilibrium, see Appendix A. Therefore, it depends on the signs ofgk and dk
whetherDc is positive or negative. Ifgk anddk have equal order of magnitude,Dc is
positive, becauseTaT,b . 0.2. This is analogous to the heat capacity of viscous fluids,
where the heat capacity at constant pressure is larger than the heat capacity at constant
volume. The heat capacity differenceDc is approximately proportional tog2 tr t /rT
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. O(10g2)J kg21 K21 for stresses between 106 and 107 Pa. Forgk 5 O(1) the heat
capacity differenceDc is relatively small, so thatcp,te

. cp,b
eq is a good approximation.
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