EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Thermodynamics of viscoelastic fluids: the temperature
equation

Citation for published version (APA):
Wapperom, P., & Hulsen, M. A. (1998). Thermodynamics of viscoelastic fluids: the temperature equation.
Journal of Rheology, 42(5), 999-1019. https://doi.org/10.1122/1.550922

DOI:
10.1122/1.550922

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022


https://doi.org/10.1122/1.550922
https://doi.org/10.1122/1.550922
https://research.tue.nl/en/publications/15edd9a3-20f2-44bf-bdce-06d60d89ba86

Thermodynamics of viscoelastic fluids:
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Synopsis

From the thermodynamics with internal variables we will derive the temperature equation for
viscoelastic fluids. We consider the type of storage of mechanical energy, the dissipation of
mechanical energy, the compressibility of the fluid, the nonequilibrium heat capacity and thermal
expansion, and deformation induced anisotropy of the heat conduction. The well-known stress
differential models that fit into the thermodynamic theory will be treated as an example. Adapting
a power-law scaling of the shear moduli on temperature and density, as is usual in rubber elasticity,
we will derive an approximation of the temperature equation in measurable quantities. This equation
will be compared with experimental results. 898 The Society of Rheology.
[S0148-60588)00105-9

I. INTRODUCTION

For viscoelastic fluids many differential and integral stress models have been proposed
in the literature, see, for example, Lars(i®88. As already shown by Leono{d992
most of the differential stress models fit into the thermodynamic theory with internal
variables. However, although the thermodynamics is well suited to describe nonisother-
mal effects and although many practical flows are highly nonisothermal, relatively little
attention has been paid to nonisothermal effects. Even in the original thermodynamical
derivation of the Leonov modé¢lLeonov(1976], the attention was focused on the stress
constitutive equation. Also in later articles one has mainly focused on the stress equation.
If a temperature equation was discussed, just a simple temperature equation was consid-
ered, i.e., with the heat production equal to the stress work, with isotropic heat conduc-
tion and for incompressible fluids.

Nevertheless, some nonisothermal topics received some attention in recent years. A
viscoelastic fluid can both dissipate and store or release energy, so that the dissipation
does not equal the stress work. The dissipation of various viscoelastic fluid models has
been discussed by Leond¥992 and Peter$1996. However, it is interesting to recon-
sider these expressions, because some of them are in error.

A topic that is closely related to the dissipation is the type of storage of mechanical
energy, see Brau(l991), Astarita and Sart{1976 and Sarti and Espositd977/1978.
Mechanical energy can be stored in the form of internal energy or in the form of entropy.

aAuthor to whom correspondence should be addressed. Present address: CESAME, Division of Applied Me-
chanics, Universiteatholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
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A complete storage as internal energy gives no reversible heat production, only dissipa-
tion. If it is completely stored as entropy, the calculation of the dissipation is superfluous,
because then the sum of reversible heat production and dissipation equals the stress work.

Another reversible heat production source is caused by pressure changes. This effect
has been discussed by Flaman and Velti#88 for injection moulding experiments.
During compression the temperature of the fluid rises and it drops during expansion.

The deformation induced anisotropy of the heat conduction is another interesting
nonisothermal effect of polymeric fluids. Experiments of Hellwegel. (1963 already
showed that with increasing orientation of the polymeric fluid, the thermal conductivity
in the direction of orientation increases and the thermal conductivity perpendicular to the
orientation decreases. More recently, the anisotropy has been derived from microrheo-
logical modeling by van den Brul€l990.

In this article we derive the temperature equation for compressible viscoelastic fluids.
We start with a brief description of the thermodynamics, including the constitutive equa-
tions and their relation to well-known stress models. Next we will determine the connec-
tion between the requisite thermodynamical quantities like mechanical dissipation, free
energy, pressure and entropy and show how they are related to the stress models. Based
on this, we then obtain the temperature equation with the above-mentioned nonisothermal
effects. By approximating the nonequilibrium coefficierfk@at capacity and thermal
expansiol, we will derive an approximate temperature equation with measurable coef-
ficients. Finally, we will compare this equation with experimental results.

II. THERMODYNAMICS OF VISCOELASTIC FLUIDS
A. General

In a fixed bounded spac@ the balance equations for a system without sources are
[see, for example, Biret al. (1960]:

p=—pVu, (1)
ov=V-ao, 2
pu=o:d=V- ¢y, 3)

wherep is the fluid densityp the velocity,d the Euler rate-of-deformation tensor defined
byd = (L+LT)/2, with LT = Vv. The constitutive equations needed for tegmmet-
ric) total stressr, the heat fluxq and the internal energycan be obtained with the help
of the balance of entropy from the thermodynamics.

To describe thermodynamically the relaxation phenomena of viscoelastic fluids we use
a set of(interna) state variables antexterna) rate variablegsee, for example, Kuiken
(1994 or Jongschaapt al. (1994)]. As the mechanical state variables we will take the
density andK internal deformation tensots . So we will not take into account possible
scalar internal variables describing the volume relaxation or internal vector variables
describing the relaxation of the heat flux. The internal deformation telpsbias also
been used by Leono1976, 1987 to derive the Leonov model. It is also called the
conformation tensor or the configuration tensor, and in microrheology it corresponds up
to a scaling factor to the second mom€@QQ). However, in this article we will use the
nomenclature from the thermodynamics.

To derive the balance of entropy from the balance of internal energy, the Gibbs
equation for viscoelastic fluids, including compressibility and internal processes, is
needed:
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K

. p. .
u= TS+—2p+ 2 Py :by, (4)
2 K=

wherep is the thermodynamic pressure aBg the conjugate forces of thigh internal
deformation tensoby . See Kuiken(1994) or Jongschaapt al. (19949 for an extensive
discussion of the Gibbs equation.

Instead of the internal energy it is advantageous to use the Helmholtz free energy
¢ = u—Ts, wheresis the entropy per unit mass. Substitution in the Gibbs equa4ipn
gives

K
. . p. .
g =—sT+—pt+ > Peby, (5)
p? k=1
with the equations of state
IMop P i P11 J KTy

where a|, means a quantity at constaxtA |, means that alK internal deformation
tensorsby are constant. Abl/( will be used if allK internal deformation tensoitg, are

constant except thith internal deformation tensor. Combination of the balance of inter-
nal energy(3) and the Gibbs equatiof#) gives the balance of entropy

ps = —V-(T ) +11s,
o @
Tlg= T ¢, VT+o:d——p—p > Py:by,
S q p k=1

wherellg is the entropy production. The second law of thermodynamics states that the
entropy production must be nonnegativég = 0.

For the evolution equation of the internal deformation tensor, we follow Leonov
(1976:

v
b = — by i k= dirr, i i (8)

v .
where ()= b,—L-b—by-LT is the upper-convected derivative adg  the irrevers-

ible rate-of-deformation tensor, which has to be specified by a constitutive relation.
Substituting Egs(1) and (8) in the entropy productioK?) gives

K K
Tlg= —T 1y VT+ 0—k212pbk-Pk+pl :d+2pk21[Pk:(bk~dirr,k)],
9)

where the antisymmetric part &f canceled out because of the isotropy of the material
(bx-Px = Py-by).

A mode of the elastic stresg i is defined analogously to Jongschasimal. (1994
and Grmela and Carred®987:
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b
Tek = 2pbk Pk = 2pbk - . (10)
, AR

Note that we have not used the Leonov constraintoget 1. The Brownian force is not
included when this constraint is used and the constraint can be incorporated by using
Lagrange multipliers, see Grmela and Carrée@87). With Eq. (10) the entropy produc-
tion (9) can be written as the sum of products of thermodynamic fluxes and forces

K

T = —T “py VT+ 7 :o|+k§1 Gher kX Te ks (12)

where the irreversible stress is definedms= o— 7¢+pl, with 75 = EL(: 1Tek-

B. Constitutive equations

In thermodynamics the constitutive equations for the thermodynamic fluxes have to be
specified by a linear combination of the forces. In our case the forces @€ T, d and
7ek- Using the Onsager—Casimir reciprocal relations and the Curie principle, see, for
example, de Groot and Maz(t984 or Kuiken (1994, we have for the thermodynamic
fluxes ¢q, 7y anddigy «

g =T 'Lgq VT, (12)
K
Tirr = c’dd:d"'lzl Liry, Tel (13
K
T :
Girr, i = _‘Cdre’k'd_‘_lzl Lororer Tel 14

where the second and fourth order tensdrsnay depend on the local state variabtes
T andby . We will restrict ourselves to the case whee,_, - only depends on thkth

internal deformation tensdy, and L',Te el = 0 for k # |. Then Eq.(14) becomes

Cher k= —L}Te’k A+ L (15)

Te,kTe,k: Te,k '
This corresponds to the assumption, usually made for multimode models, that the modal
stresses are decoupled. In Sec. Il we will relate the fourth order telkQrs Lar, and

£Te ek 1O the various stress differential models. Due to the dependentg pbn by,
anisotropy of the heat conduction tengecan be taken into account. For experimental
evidence we refer to Hellwegst al. (1963, Choyet al. (1981 and Wallaceet al. (1985.
The most general isotropic model for the heat conduction tens@with decoupled
modes:

K

K= —Tilﬂqq = kzl (KO,kI + Kl,kbk+ K2,kbi)’ (16)

where k;  may depend on the invariants bf, the pressure and temperature. For a
one-mode model with constant coefficients ang = 0 this model reduces to the model
derived for Hookean dumbbells by van den Br(d®90. The behavior ofc depends on
the stress model used. For a simple model&avith the coefficients¢; , independent of
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by, all stress models that we discuss in Appendix A are able to predict the increase of the
thermal conductivity parallel to the direction of deformation. However, the decrease of
the thermal conductivity perpendicular to the deformation in steady shear can then only
be predicted by models with nonzero second normal stress difference. The equation for
the heat flux will not be discussed in more detail. For the behavior of the anisotropy for
various stress models see Wapperd96.

Substitution of Eqs(12), (13), (15) and(16) in the entropy productiofll) gives

K
THS = VT -k VT+d: £dd:d+ kZ]_ Terk:CTe,kTe,k:Te*k' 17)

Due to the restriction that the entropy production has to be nonnegative for independent
VT, d and 7 i, the tensorsCqq and ETe,kTe,k have to be positive definite. We will
discuss these restrictions further in Sec. IV B. The cross termsmm%’k are nondis-
sipative, so the entropy production does not give any restriction on these tensors. Fur-
thermore, it is easy to check that fa, = 0, k1 = 0 and kp, = 0 the heat flux
contribution to the entropy production is positive, becalisés positive definite. How-

ever, some less severe restrictions can be derived, see Wap(E366n

[ll. STRESS MODELS IN THE LITERATURE

The total stressr is usually decomposed in a pressure pagil and an extrastress
tensor7 that vanishes in equilibrium

o= —pl+tr, (19)

wherel is the unit tensor. The pressuypes then related to the density and the tempera-
ture only. The extrastress tenspconsists of a Newtonia(solvenj contribution and the
polymer contributions containing different modes

K

2
7= 2nd+ ﬂs,v_gns)v'vl’l'kzl Tk (19

in which % is the Newtonian shear viscositys , the Newtonian bulk viscosity anid
the number of modes. The modal stregsis assumed to be a function of the internal
deformation tensofconfiguration tensgrwhich fulfills an evolution equation, see, for
example, Leonoy1992.

An extensive overview of differential stress models is given by Lafé888. For the
well-known differential models that we will consider next, the modal stress is related to
the internal deformation tensor with the help of the simple algebraic relation:

Gy
1-&

whereGy is the shear modulus of théh mode, andB, may be a function of the first
invariantl 1. We give the values dBy for various models in Appendix A. The moduli
are weak functions of the temperature and the density. For the paragpetehich will
be explained shortly, we will exclude the valgg = 1. For all well-known differential
stress models it can be shown thgatis positive definite, see Huls€é®990 or Wapperom
and Hulsen(1995.

The evolution equation fdp, has the form

7 (Byb—1), (20)
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My = gk, (21)

where the relaxation tima, may depend on the temperature and pressure,gand

= goxl 91kt gzvkbﬁ. The scalarg; K may depend on the invariants bf and are

given in Appendix A. The temperature dependence of the relaxation time may be de-
scribed by a Williams—Landel-Fer@VLF) or Arrhenius shift factor, see Fer(L981)

or Tanner(1985, and also its pressure dependence may be described by an exponential
shift factor, see Ferr(1981) or Kadijk and van den Brulg1994. The mixed (or
Gordon—Schowaltg¢rconvected derivative dby is defined by

tD)k = bk—(L—gkd)'bk—bk'(L_fkd)T, (22)

in which &, is a parameter for which holds € &, < 2. The values 0< &, < 2 repre-

sent a sort of frictionless slip of the internal microstructure with respect to the macro-
scopic flow. In Sec. IV A we will show that the slip is indeed frictionless or nondissipa-
tive.

IV. THE RELATION BETWEEN THE STRESS MODELS AND THE
THERMODYNAMIC QUANTITIES
A. The thermodynamic fluxes  dj, and =y

Comparison of the mode{21) with Eq. (8) gives that the irreversible rate-of-
deformation tensor corresponds to

1
irr k = §kd— Z_M(bk g (23

Note that to include the slip paramety it is not necessary to modify the left-hand side
of the evolution equatio8) as done by Leonoy1992 and Jongschaagt al. (1994). It
can be included iy, . Comparing with the equation for the irreversible rate-of-strain
tensor(15), and introducing the fourth order unit tensby leads to

. -1
‘CdTe’k = _gkI’ £7’e,k7'e,k'Tevk == _bk gk; (24)

which shows that the frictionless slip in the mixed convected derivative, represented by
the parametegy, is indeed nondissipativesee Eq.(17)]. Comparing the constitutive
equations for the irreversible stre3) and (19), and usingr = 7.+ 7, then gives

2
Lyg = 2nsL+| 75y~ 5773) It (253

Tek = 7k - (25b)

1-&k
Henceforth, we will neglect the compressible Newtonian contribution, so that the irre-
versible stress reduces to

K

Ty = 7T~ Te = Zﬂsd_kzl EkTe k- (26)
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B. The mechanical dissipation
With the results of Sec. IV A the entropy producti@ti?) can be written as

Tlg= —T 1pg- VT+Dpy,. (27)

The first term represents the entropy production due to conduction of he&taislthe
mechanical dissipation which consists of a Newtonian solvent and a viscoelastic part

K
Dy, = 270:d+ > Dk, (28)
k=1 ’
(7 by )10k, (29)

Dimic =~ 2(1—&)

where Dy, i is the modal mechanical dissipation. During deformation the mechanical
dissipationD, is smaller than the stress work and mechanical energy is stored. During
relaxation it is larger and then the stored mechanical energy is dissipated.

From the restriction that the entropy production has to be nonnegative for independent
VT, d and 7, it follows that »s = 0. We examine the expression ry, | for various
stress models in more detail in Appendix A. Furthermore we show that for all of these
models the dissipation is nonnegative, as it should be.

C. The free energy and related quantities
1. The free energy i and the elastic stress 7,

For models of the forn(20), it follows from Egs.(10) and(25b) that the derivative of
the free energy with respect to an internal deformation tebg@quals

a Gy

— = — (B b Y. (30)
Pl 20(1- &0

With the help ofdlq/dby = | and dlzy/dby = |3’kblzl Eqg. (30) can easily be inte-
grated. For convenience we will split the free enerfgin

K

l// = lZ(p,T)+k21 lpkv (31)

where ¢(p,T) only depends on the density and the temperature and the modal free
energyy depends on thkth internal deformation tensdm and possibly on the density
and temperature.

For models withB, = 1, see Appendix A, the elastic stresses and the corresponding
modal free energies are:

Gk (be—1) Sk (I1e=Inlap—3) 32
= ——— (b D), = —————(l1—Inlgz—3),
T g T g

where the I3y term in the free energy corresponds to the isotropic term in the elastic
stress and represents the free energy of noninteracting macromolecules as has been dis-
cussed by Carreau and Grmeél®91). For a large internal deformation, if the gy term

can be neglected, we findp2y = tr 7o |k = tr 7.
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For the Larson elastic stregsee, for example, Leono(1992], where By = [1
+ Br(11x—3)/3] "1, we obtain

o3y e
Tek = Gk(Bkbk_I)! l,bk: ——|—In Bk+lnl3k s (33)
’ 2p \ Bk ’
when B¢ # 0. For a large internal deformation, if the ligy term can be neglected, we
find 2p4y = tr o IN[1+By(l1x—3)/3]. This term will be assumed of(tr 7) (for
I1x = 100 andBy = 1 the logarithm equals 3.5).

For the finitely extensible nonlinear elastic using the Peterlin closure approximation
(FENE-P model, see, for example, Wedgewood and Bité88, the elastic stress and
the corresponding free energy are

Gk
Tok = Gu(Bkbe—=1), ¥y = Z(bk In B—=Inl3}), (34

where By = by /(by+ 3—I1k) and by a dimensionless constant. For a large internal

deformation, if the I3y term can be neglected, we fingp 2y = tr a-kBk_l In By, with
Bk > 1. This term is not larger tha®(tr 7).
Note that in equilibriumy reduces tay for the neo-Hookean, the Larson and FENE-P

models. Out of equilibriumy— ¢ is nonnegative. This result follows after a decomposi-
tion on the principal axes. The resulting functions In x—1 for the neo-Hookean free
energy, 18y In[1+ B (x—1)]—Inx for the Larson free energy, are nonnegative for
> 0. For the FENE-P free energy it can be shdwith a decomposition on the principal
axes and the fact that the minimumalafy is on the line with equal principal valuethat

by In By—In I3 has one local minimum in equilibrium, so that—4 = 0. We will

examine the free energy further in the remaining part of this section, because it is
related to the pressure and entropy.

Theoretically, all thermodynamic quantities related to the elastic part of the free en-
ergy can now be computed. However, depending on the complexity of the free energy
function, this may be rather complicated. Therefore, we make the following assumptions:

(1) The temperature and density dependence of the shear moduli are given by

G G T P b 3
= —_— —_— , 5
K koref Tret Pref (39

where vy, and 8y are constants. Temperature scaling is well known in rubber elasticity,
see, for example, Trelo&t975. The values for a large number of polymers are given by
Mark (1973, 1976, including a discussion on reliability of the experiments. A value of
vk = 1 corresponds to a set of free chains, as in the kinetic theory. However, the internal
rotation about bonds within the molecule is not entirely free, but is restricted by hindering
potentials arising from steric interactions. This effect can be taken into account by a
temperature dependence of the mean-square length of a set of free chains, which results
in the temperature scaling in E(B5). It is claimed that because the effect is intramo-
lecular the value ofy is characteristic for a polymer, thus valid in the rubber state, fluid
state and for solutions. The value pis usually obtained from measurement of the force
on a sample as a function of temperature. Dependent on the majemialy be larger or
smaller than 1. A value of < 1 indicates that a small mean-square length is energeti-
cally favored, and a value oy > 1 that the extended conformation is energetically
favored. The value of is often given in terms ofo/f, the ratio of the internal energy
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contribution to the force and the total force,cbnln(r%}/d In T with (ré) the mean-square
length of a set of free chains. These quantities are related to the temperature dependence
of the modulus byf./f = d In(rg)/d InT = 1—v. Up to moderate elongation ratiog (
= 3), indeed, an almost constant rafig/f is found experimentally. A strong decrease
for large extension ratios is usually ascribed to strain-induced crystallization. However,
some caution does not seem superfluous, because for some polymers there is considerable
scatter in the experimental results, particularly between experiments at constant density
and at constant pressure. However, the range @ < 2 covers the list given by Mark
(1973 of tens of polymers, so that the value pf= —5 assumed by Gupta and Metzner
(1982 seems to be unrealistic. Note also that as longGas the only temperature
dependent parameter in the free energy, the r&tif is constant. However, i3y
= Bk(T) in Eq. (33) or by = by(T) in Eq. (34) this does not hold anymore.

The density scaling witld, = 1 corresponds to the kinetic theory. The density scaling
with & # 1 corresponds to the extra factor introduced by Tobolsky and Gt#66 for
rubber elasticity, resulting from the dependence{o?)o on the density. They have
supposed that this effect is caused by intermolecular forces. The parafpesethen a
constant that depends on the chemical structure of the chains. The vadigecah be
obtained from volume dilatation, force-pressure or thermoelastic measurements. Al-
though sometimes considerable scatter exists between results of various workers, the
deviations fromé, = 1 do not seem to be large. Natural rubber values are found in the
range 0.75< § < 1.28, and for polyvinylalcohols = 1.2 is reported, see Shen and
Croucher(1975. For the approximation of terms in the next sections we will assume 0
< 5k < 2.

(2) The parametegy in the Larson andb, in the FENE-P free energy are constant, for
reasons of simplicity.

Due to the second assumption the free energy can be written as

K K
_ _ G
b= oD+ D = Hp D+ S —filby), 36
K=1 kK=12p

=1
where the function$y are independent of density and temperature.

2. The thermodynamic pressure p

With the assumption Eq35) for the moduli, the thermodynamic presspref Eq. (6)
can easily be obtained by differentiation of E§6)

K

Y _
p= pza— = pp. T+ X (8 L)pi, (37)
Pl k=1

wherep(p,T) = pzﬂlZ/(?ph"b. This result shows that the thermodynamic presguie

only independent of the internal deformation tensorgif= 1. With respect tgp the
pressure increasesdf > 1 and decreases #iy < 1 when the material is deformed. For
the free energy term holdgw = O(tr 7). For the assumption & &g < 2, the sum-
mation may be of the same order as the trace of the stress. This may give a considerable
contribution to the pressure then, because values ﬁf=tl’(9(106) Pa are not unusual.

For the relation between the density and the thermodynamic pre@swequilibrium)
the Tait equation, see van Krevelen and HoftyZE976, is often used for polymeric
fluids:
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p Xp,T) = po [1—cIn(1+p/B)], (39)

Wherepa1 = p~1(0,T), cis a constant anB depends exponentially on the temperature
B = by exd —by(T—273)]. Equation(38) is equivalent to

_ 1 ff1
p(p,T) = B| ex s 1—71 -1]. (39
Po

The order of magnitude of the various coefficients is abowut1ef Pa< by < 4
X 10° Pa, 4<10 3 K 1< b; < 7x10° 3 K 1andc = 0.1. The exponent is still be-
tween 1 and 3 for pressures lower than 0.1 GPa. Accurate values for various polymers
can be found in the books by Tann@985 and van Krevelen and Hoftyz€t976.

The corresponding free energycan easily be obtained by integrating the equation of
state for the pressure:

+Bp 4, (40)

_ - 1 1 p_1
#p,T) = (T)+cBpy ~ ex s 1—71
Po

whereg(T) is a function of temperature only.

3. The entropy s

With the assumption Eq35) for the moduli, the entropy can easily be calculated by
differentiation of Eq.(36)

o K
s=-—| =s(p,T)— T 1y, 41
o (p D)= 2 %I e (41)
p,b
where s(p,T) = —ayldT|,. Becauseyy is positive, it depends ory, whether the

entropy increasesy < 0), decreasesy > 0) or remains constantyf = 0) with
increasing internal deformation.

Differentiatinglz in Eq. (40) with respect to the temperature gives for the entrgpy

~1\ 4,1 -1
_ p ~|dp 1/ p
chypg - (c+ —_1) -2 exp{g (1— _—1)
Po

+ ) 4
T s(T) (42)
wheres = —d/dT is a function of temperature only.

s(p.T) = Bbyp *+B

V. THE TEMPERATURE EQUATION

In this section we will transform the balance of entropy into the temperature equation
for viscoelastic fluids. Therefore, we have to evaluate the change of entropy. If we
consider the entropy as a function of the temperature, the thermodynamic pressure and
the internal deformation tensoss= s(T,p,by), the change of entropy can be written as

s
T+—
ap

K
. as . Chp- OATp-
p+ S —| b= %T—%bpm%, (43

s
k=107bk

T

pb T.b p.T.bj

which defines the heat capacity at constant pressure and internal deforejagorthe
thermal expansion coefficiertr j, and the entropy differenc&sy,. Substitution of the
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entropy changé43) in the local entropy balanc€) with the viscoelastic entropy pro-
duction (27), gives thetemperature equatiofor viscoelastic fluids

pCppT—Tarpp+pTASy = TH—TV(T 1) = Dyy— V- by (44)

In the remaining part of this section we will discuss the expressionsfgr, at 1, and
Asy. These quantities can be obtained by differentiation of the entropy, (Etjsand
(42). We will relate them to measured, or more easily measured, quantities.

A. The thermal expansion coefficient a7 p

The reason why we have called |, the thermal expansion coefficient is that it is also
related to the temperature derivative of the density:

o"p_1

aT

1 s
— a E——
p Tb op

: (45)
p,b

Tb

which follows easily from the compatibility relation for the free enthalpy= u—Ts
—plp, see, for example, Kuike(1994). To evaluate the thermal expansion coefficient,

we note that
( Js o7p_1)
- 1
o \dp P

wherexT p is the isothermal compressibility which is discussed in Appendix B. There we
have shown thakt p, is approximately independent of the internal deformation tensors
and that this dependence vanishes exactlydjoe= 1. The remaining derivative of the
entropy can be obtained by differentiation of the entré¢pi):

-1 -1 -1
— _p " dpg 1 »p
= —b;p+B—— —— exg-|1-—

Thb CPo Po

1 s
— o =
p Tb p

: (46)
T.b

T.b P

K
0T 2 WA Dk

(47)

so that this term, and also the thermal expansion coefficigny, is only independent of
the internal deformation tensors, i.e., reduces to the equilibrium \1193}8@ if 5 = 1.
Furthermore, we note that the derivatiﬁe/ap_lh,b is, for not too high values opf_),
dominated by the second term on the right-hand side whiéd(I°) Pa K™ 1. The first
term plays a role for pressures@(los) Pa. Foryg and (6x—1) = O(1) the last term
on the right-hand side i©(T™ 1 tr 7) < O(10" PaK . So a1, is approximately
independent of the internal deformation amflp = oz-?-(’]b is a good approximation out of
equilibrium. Furthermore, neglecting the lower order terms resultsy4, = a??b
= podpg LdT. Experimental data of the thermal expansion coefficient in equilibrium
indicate a7}, = 0.16/Tg, see van Krevelen and Hoftyz¢t976, so that the order of
magnitude is about T0* K™% < of}) < 1073 K™%

as

&p71

B. The entropy difference Asy

The derivative of the entropy iAsy can be obtained by differentiation of the entropy
(41). We will split the derivatives in two parts:
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9 Js
— = —|  +A, (48)
by T.p.by oy T.p.b,
A= 0 49
s = a -1 (9b , . ( )
P lrp 77K Tp Ty

For the first term we find with the help of Eqgl1l) and (10)

Yk 9Pk

T by

aJs
oy

Yk 1
- - Kyl 50
2pT Kk Tek (50

I !
T,p,bk T,p,bk

As for rubbers, the entropy derivative at constant density is related to the temperature
derivative of the stress. For viscoelastic fluids this relation becomes

B a [ Y
T’p’bl;

T aT| oy
so that this term can be obtained from stress-temperature measurements.
From Appendix B we find thalAg can be approximated by

(6—1) _
AS = 2 aT,bbk 1‘ Te,k . (52)
p

Js
oy,

1 lky
SR i I 1
P piby

’
Typybk

P,bk

If we assume thaty = O(1) anddy—1 = O(1) the Ag term is O(TaT ) times the
0"3/07bk|T,p,b,Q term, so theAg term is in general smaller but cannot be negleetegxtiori.

Combining the two results gives thAts, can be approximated by
K

1 _ .
A= =50 B [T n (B Darplc b 7o

K

1
- kgl [T~ = (8= Dt p]7e (A= iy 1), (53)

where we have used E@) for the last equality.

C. The heat capacity cp p

Differentiation of the entropy41), gives for the heat capacity, p:
K

s _ 1
Cob=T=| =Cpp— = > wd v 1-Tar (8- 1)1, (54
JT bb Tk=1
wherecy p, is given by
_ s
Cp,b = T&_T . (55)

p,b

This result shows thaty, , only reduces tcEp'b when vy, = 0, or bothy, = 1 and &y
= 1. Becausa)y is positive it depends on the quantity between the brackets whether
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Cp,b is smaller or larger thaﬁp,b. For 6 = 1 the heat capacitg, , decreases when
vk < 0 and vy, > 1 and it increases when € vy, < 1. Furthermore, in equilibrium

Cp.p reduces ta,  becausey vanishes.

From Appendix B we find that,, ,, is approximately independent bf. This means
that cp b IS approximately equal tcmp b the heat. capacity at- constant pressure and
constant internal deformation in equilibrium. This quantity is usually measured and
then denoted by, . However, to be consistent with the thermodynamic notation we
will use c ¥, instead ofcy, . The heat capacity of a polymeric fluid@(10%)J kg 1K1,
see van Krevelen and Hoftyz€1976, while the order of magnitude af/pT = (9(1)—
O(10) Jkg 1 K™L If we assume thay[ yk—1— Tat p(6—1)] = O(1), we findthat
Cp,b = Cp,b = cgf‘b is in general a good approximation. Because it may be difficult to
perform the experiments at constant internal deformation tensor the heat capacity at
constant pressure and elastic stregs; is also of importance. We will discuss this
quantity in Appendix B.

D. An approximation for the temperature equation

With the results of the approximations in the Secs. V A-V C, we obtain for the
temperature equatio@4)

pCopT = TaThp+Dm—pTAS,+V- (k- VT), (56)

wherecp, equals the heat capacity at constant pressurengfjgithe thermal expansion
coefﬁment that are usually measured in equilibrium. The heat conduction tensor
may be anisotropic as discussed at the end of Sec. Il B. The heat production term
Dm—pTAsy can be rewritten by combining Eq&28) and (53). Using Egs.(23), (25

and (29) for the irreversible rate-of-deformation tensor, the elastic stress and the modal
mechanical dissipation results in

K
Do~ pTAS, = 27t 2 [9 A0+ (1=90)Dmyd, (57)

whereyy = y—TaTh(d—1). Equation(57) has also been obtained by Bra(ir991)

for 6y = 1 andK = 1. This result shows that fopy = 1 andd, = 1 the stress work
completely contributes to the heat productigeversibly, so that the internal energy
does not change whdn changes. In this case the fluid is called entropy elastic. This
elasticity would correspond to the deformation of entirely free chains, without distortion
of the valent angles. Fopy, = 0 andd, = 1 the heat production equals the dissipation,
i.e.,Asp = 0, so that the entropy does not change whgohanges. In this case the fluid

is called energy elastic. This elasticity would correspond to pure distortion in the valent
angles, without a macromolecular conformation. The fact that rubbers give out heat at
extension, and thus, are at least partly entropy elastic, had already been noticed in the
beginning of the previous century. The effect is called the Gough—Joule effect.

VI. THE RELATION WITH EXPERIMENTAL DATA

Before we discuss two experiments for polymeric fluids, we will first mention another
experiment performed for rubbers that supports the scéBBgof the shear modulu6:
anisotropic thermal expansion. This effect can be described by the equivalent of Eq.
(B11) for rubbers, see, for example, Godovdip92. Then, however, the anisotropy is
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related to th€observablgFinger tensob instead of the internal deformation tensor. The
anisotropy of rubbers is up to two orders of magnitude larger than the volume thermal
expansion. In the direction of orientation, the thermal expansion is negative and perpen-
dicular to the orientation positive. For elongated samples of natural ri{bberl.6), the

value of y agrees well with calory measurements, see Shen and Cro(i%i&). How-

ever, deviations were found in Thiele and Col{&880 for larger elongation ratios.

Astarita and Sart{1976 and Sarti and Espositd977/1978 have tried to show that
some polymeric fluids are entropy elastic. Therefore, they used the integrated form of the
temperature equation for entropy elastic fluidg & o = 1), where pressure effect
and heat conduction have been neglected:

pCAT = LT:d dt, (58

wherec is a heat capacity that equaig‘f'b for an entropy elastic fluid. To ensure that the
stress work is much larger than the dissipation, the total force on the sample has been
taken as a strong increasing function of time. From the obtained temperature rise and
stress work, the heat capacity can be computed and compared with values from the
literature. For an entropy elastic fluid the values must correspond, for an energy elastic
fluid the obtained heat capacity will be too high.

Astarita and Sart{1976 performed the experimeriat constant deformation ratéor
polyisobutylene at room temperature. Both in shearing and elongational flow they ob-
tained a good correspondence with values of the heat capacity in the literature, indicating
an (almos} entropy elastic fluid ¢ close to ). This seems in agreement with the value
of y = 1.03 given by Mark(1973, obtained for rubber elasticity measurements. The
small difference is probably within experimental error, because the scatter in the obtained
heat capacities is about 10%.

Sarti and Espositg1977/1978 performed adiabatic shear and elongational experi-
ments, at various temperatures abdyg on polyisobutylene and polyvinylacetate with
different molecular weights. The materials were deformed from equilibrium at a constant
rate until a maximum deformation. Then the deformation was stopped and the material
relaxed adiabatically towards a stress-free state. For a purely entropy elasticity the tem-
perature has to remain constant during the relaxation prddess0), see Eqs(56) and
(57). For the polyisobutylene melts they found a vanishing temperature rise during the
stress relaxation process, which confirms the result by Astarita and($8r which
has been discussed above. Furthermore, they obtained a constant heat capacity, equal to
the equilibrium value, during deformation. However, for the polyvinylacetate at 333K,
which is more than 20K abovEgy, the temperature decreased during the relaxation. This
can be explained by a value gf> 1, as has also been noted by Bra1991). For
polyvinylacetate no data of are available in Mark1973. However, for vinyl polymers,

v is usually positive and not close to one, for polyvinylalcohol, for example,-1237

< y < 1.68t0.12, where the lowest value is for the syndiotactic and the highest for the
isotactic form of polyvinylalcohol. The decreasing temperature does not seem to be in
contradiction with the thermodynamic theory. The result that at a higher temperature the
decreasing temperature is absent, might be explained by the fact that then dissipation is
not negligible compared to elastic effects. The temperature dependence for polyvinylac-
etate can be described by a WLF shift factor wity = 305 K, c; = 15.6 andc,

= 46.8 K, which gives a ratio of 100 in relaxation times. Because the elongation rate is
almost equal, this results in a more viscous response for the sample at the highest tem-
perature. And if much mechanical energy is already dissipated during elongation, the
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possible temperature change during stress relaxation is much smaller or maybe almost
absent. However, the increasing heat capacitiyring elongation cannot be explained in
this way. In view of Eq.(54) it is not expected that there will be a large change of the
heat capacityc, b during elastic deformation, for moderate stresses @pe= O(1).
Furthermore, if elastic effects are dominant, the stress work is much larger than the
dissipation and the heat production is larger than the stress work fod. This would

result in a larger temperature ridad and consequently a decreasing heat capacifyor

an increase of the heat capadity v < 1 would be needed. In the literature about rubber
elasticity, changes of to negative values are observed sometimes, see Trel8a@H

and Mark(1976. The effect is ascribed to strain-induced crystallization. Whether this
effect plays a role in the experiments of Sarti and Espqdi@y7/1978 is not clear.

VIl. CONCLUSIONS

In this article we have derived the temperature equation for compressible viscoelastic
fluids, with the help of the thermodynamics. We discussed both the irrevetdibipa-
tive) part and the reversibl@lastig part of the temperature equation. The reversible part
is closely related to the free energy. From the free energy the state var{aldetc
stress, pressure and entrpmpan be calculated. Once these quantities are completely
known, the temperature equation with all the coefficidiike the heat capacity and the
thermal expansion coefficientan be obtained.

Results have been illustrated with various stress differential models and for adapting a
power-law scaling of the shear moduli on density and temperature, as is usual in rubber
elasticity. We found that if the moduli depend linearly on temperature and ddasiin
kinetic theory the pressure reduces to its equilibrium value. Otherwise, elastic deforma-
tion may cause a considerable pressure change. For linear scaling, the temperature equa-
tion also simplifies considerably: the nonequilibrium heat capacity and thermal expansion
coefficient reduce to their equilibrium values and the heat production equals the stress
work. However, rubber elasticity experiments show that linear scaling generally does not
hold. We found that for the usual values of the pressure, temperature and stresses, the
nonequilibrium heat capacity and thermal expansion coefficient can still be approximated
by the equilibrium values, so that a much simpler approximate temperature equation for
viscoelastic fluids could be derived. The heat production term, however, does not reduce
to the stress work and has to be included in the approximate temperature equation.

Not many experimental results exist to test the approximate temperature equation for
polymeric fluids. The results of Astarita and Sddb76 and Sarti and Espositd 977/

1978 for polyisobutylene seem to be in agreement with rubber elasticity experiments and
thermodynamic theory. For some of the results of Sarti and EspEX67/1978 for
polyvinylacetate, however, this is not clear.

APPENDIX A: EXPRESSIONS FOR THE MECHANICAL DISSIPATION OF
VARIOUS VISCOELASTIC MODELS

The expression for the mechanical dissipatDg, «, Eq. (29), can be obtained by
substituting for a stress model E¢RO) and the scalag; \ defining gx in Eq. (21).
Because the expression is similar for all modes we will omit the subdcfgtthe mode
number. Furthermore, we will show that the mechanical dissipation is honnegative. One
should be careful by using expressions for the dissipation of specific models presented in
the literature. The incorrectness is usually caused by using the wrong expressions for the
elastic stressg  for models with nonconstant determinant or elastic stresses that are not
of the neo-Hookean type, as, for example, in Leorid992 and Peterg1996. The
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correctness of the dissipation can easily be checked by considering a fully developed
flow, for which the dissipation equals the stress work.

1. The Johnson—Segalman model and the Phan-Thien—Tanner model

The Johnson—Segalman model and the Phan-Thien—Tanner model are defmgd by
=Y,g; = —Yandg, = 0,B = 1 and 0< £ < 2. For the Johnson-Segalman model
Y = 1, for the linear Phan-Thien—Tanner modél= 1+ €(1,—3), and for the expo-
nential Phan-Thien—Tanner modél= exd e(11—3)]. The parametee is positive. The
mechanical dissipatio(29) becomes

Dp= ——Y(,+tr b~ 1—6), Al
m 2(1—5)2)\ (1 r ) ( )

for ¢ # 1. Decomposition on the principal axis immediately shows that for a positive
definite internal deformation tensor the term between the brackets in(A&Q. is
nonnegative(the function x+1/x—2 is nonnegative forx > 0.) For the Johnson-
Segalman model and the exponential Phan-Thien—Tanner ifasiglositive and for the
linear Phan-Thien—Tanner model the result of Wapperom and H(E@®H that |,

= 3, ensures a positivé and thus a positive dissipation.

2. The (modified ) Leonov model

The modified Leonov model is defined = 1, £ =0, gg = #/2, 91 = ¢(I1
—1,)/6 andg, = — @2, where¢p L = 1+2a/ 7 arctafipla(l1+1,—6)] with a = 0
andB = 0, see Busl{1989. The modified Leonov model reduces to the Leonov model
if ¢ = 1 is taken. The mechanical dissipati@9) becomes

Go

I
= b3+ = (I,
4)\bb 3 3(2 1)

Dy . (A2)

With the help of the decomposition on the principal axis, and usiig= 1 and the
results of Wapperom and Huls€éh995 thatl, = 3 andl, = 3 for the Leonov models,
it can be shown that the term between the brackets in(A&2). is nonnegative. Because
¢ is positive, the dissipation is nonnegative.

3. The Giesekus model

The Giesekus model is defined IB/= 1, £ =0,99 = (1— @), 91 = —(1—2«)
andgp, = —«, where 0< a < 1. Fora = 0 the model reduces to the upper-convected
Maxwell model(the Johnson—Segalman model witk= 0). The mechanical dissipation
(29) becomes

G
Dy = o (A=)l +r b™1-6)+a(b:b—21,+3)]. (A3)

As for the Johnson—Segalman model the tdfr-tr b~ 1—6 is always nonnegative.
Decomposition on the principal axis also shows thdi— 21+ 3 is nonnegativgthe
functionx?—2x+1 is nonnegative for > 0). Thus, for the admissible values @fthe
dissipation is nonnegative.
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4. The Larson model

The Larson model is given bgg = 1/B, g1 = —1/B andg, = 0, B = [1+B(l1
—3)/3]7 1, where 0< g8 < 1, and¢ = 0. The mechanical dissipatid®9) becomes

G
D, = 5[|1—3+B‘1(tr b-1-3)]. (A4)

After substitution of the definition oB and reordering of the terms, it follows that the
term between the brackets can be written as-@)(1;+tr b~ 1—6)+8(tr b~ 11,/3

—3). As for the Johnson—Segalman model the tekm-trb 1—6 is always
nonnegative. Furthermore, by decomposition on the principle axes it can be shown that
tr b= 1| 1/3—3 is nonnegative. Thus, for & 8 < 1 the dissipation is nonnegative.

5. The FENE-P model

The FENE-P model is given bgg =1, g1 = —B and g, = 0, B = b/(b+3
—17), with I < b+3, and¢ = 0, see Wedgewood and Bid988. The mechanical
dissipation(29) becomes

G 2, -1
D = o (B11=6B-+tr b™ ). (A5)

Reordering of the terms gives that the factor between the brackets equals
B%,—6B+trb 1 =1, +trb"1—6+(B—1)[(B+1)I;—6]. (A6)

As for the Johnson—Segalman model, the first part of this expression is positive. Because
B > 1, the second part of the expression is positive; if> 3.

APPENDIX B: APPROXIMATIONS OF VARIOUS THERMODYNAMIC
QUANTITIES

1. The isothermal compressibility — x7 p
The isothermal compressibility is defined by

1ldp

B1
s (B1)

Ktph =

Tb
and can be obtained by differentiation of the thermodynamic pre¢8idye
-1 1 P

KIh= —P T3
ap !

Bp~t (1 pt K
= P_l ex{g(l—p—_l)]—pkzl 86— D  (B2)

Tp PO Po

For polymeric fluids the isothermal compressibility in equilibrium is about 4¥oPa 1

< «§} < 1079 Pa ', see, for example, van Krevelen and Hoftyz#876. This cor-
responds to the order of magnitude given Bandc below Eq.(39). If §x = 0 or if

Sk = 1 (as in the kinetic theory of Gaussian netwgritee last term at the right-hand side
vanishes and then the isothermal compressibility only depends on density and tempera-
ture. In Sec. IV C we have shown th@(p ) < O(tr 7). If 5 is assumed to b&(1),

the last term on the right-hand side of E@®2) is negligible, because the order of
magnitude isO(tr ), which is usually not larger tha@(10°) Pa. The order of magni-
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tude of the first term on the right-hand side of EB2) is O(10%) Pa. Thereforexr p
= kT is a good approximation out of equilibrium.

2. The entropy difference term  Ag
The entropy difference terlAg is defined by

9s 1

-1

ap~

ab
Th K

(B3)

ap p.T.by

whereas/&p’lhb is given by Eq.(47). The other term can be obtained by differentia-
tion of the pressuré37):

-1 -1
ap (6k—1) _, B i p
— = b, - exg—|1- —
by 2k Tek| C -1 c ~1

p.T.by Cpo Po

K -1
+p2|21(@—1)a¢|> .

(B4)

Thus this term, and als@dg, only vanishes if5, = 1. Analogously to Section B 1, it can
be shown that forsy—1 = O(1) the sum over the free energiés can be neglected.
With the estimate of Eq(47), discussed in Sec. V A, we then find thAg can be
approximated by

-1 -1
L T (85)
s = 2 p_l dT K “Tek = 2 P aTpbk " Tek-

0

3. The heat capacity cp p

The heat capacitﬁp,b can be determined from the entroﬁygiven by Eq.(42). After
some calculations, it follows
ds
+ _l
dT

1 p_1
= By Zy+Z, exg— 1—T1
p,b ¢ Po
- -1 -1
! )dpo p 2 dpo

2 ~1_ . ~1
Zy = —byp “tbyp “arp,
_ p
2, = —cbipy t+by| — +c +——a
1 1P0 1 Pal oT Cpaz Tb T

-2 —-1\2 -1
p = [dpg 1 P
i —bip Carp—{ct—;

-3
cog | dT o0

Js
ar

(B6)

2 —1

dT?

For polymeric fluids the order of magnitude of the heat capacity is about 2
x10°J kg 1K1 to 3x10°J kg 1 K™, so thatgs/aT|pp, = O(10)I kg 1 K2 Evalu-

ation of Eq.(B6) at atmospheric pressure, i.e., the exponential function is about 1, and
neglecting nondominating terms gives
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If it is assumed that the second derivativq;g_f1 has the order of magnitude afr ,/pT,

it follows that the derivative ofs is the dominating term, which has to be
O(10)J kg 1K 2,

4. The heat capacity cp r,

The heat capacity at constant pressure and elastic st,g;,e,%sis defined by

Js
Cory = TE’ (B8)
P7e
The difference betweeq, , andcp , equals
K
s by
Ac=c,. —C =TE— — (B9)
Pre PPN b T
=1 T.p.by P.by  Te i

The first term on the right-hand side has already been needed for the calculation of the
entropy difference in Sec. V B. For the neo-Hookean model, with the free el(@2yy
the second term can be computed analytically. For the other m@®land (34) it is
also possible to calculate the difference analytically. However,&tﬂ@l‘ﬂﬂp,bl/(,,.ek is

more difficult to elaborate due to the nonlinear relation between the extra stress and the
internal deformation. Therefore, we will only discuss the expressions for the neo-
Hookean model.

5. Example: Cp,ry for the neo-Hookean free energy.

The last term on the right-hand side of EB9) may be calculated from Eq&0) and
(25). Differentiation of the elastic modal stresg gives

aTe k Gk ﬂbk k
T T ek . Taer VT
PbL T i (1-&) Db 7a (1-&) P 7o k
(B10)
After rearrangement of this equation we obtain
dby 1
e = = (T ~—okar p)(b—1). (B11
p,b(( 'Te,k
Combination of Eqs(B9), (48) and(B11) gives the heat capacity differendec:
K Gy

Ac [ 7~ (& DTarpl(nT 1= Sarp)(lyxttr b —6),

(B12)

where the last factor with the invariants is always positive out of equilibrium and van-
ishes in equilibrium, see Appendix A. Therefore, it depends on the signg ahd 5
whetherAc is positive or negative. Ify, and §x have equal order of magnitudac is

positive, becaus& a1, = 0.2. This is analogous to the heat capacity of viscous fluids,
where the heat capacity at constant pressure is larger than the heat capacity at constant
volume. The heat capacity differendec is approximately proportional tofz tr #/pT

1142
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=~ O(10y%)J kg LK1 for stresses between &@nd 10 Pa. Fory, = O(1) the heat
e

capacity differencéc is relatively small, so thatp,Te = cp"]'b is a good approximation.
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