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Abstract: In the present paper, the thermoeconomic optimization of an endoreversible solar-
driven heat engine has been carried out by using finite-time/finite-size thermodynamic theory.
In the considered heat engine model, the heat transfer from the hot reservoir to the working
fluid is assumed to be the radiation type and the heat transfer to the cold reservoir is assumed
the conduction type. In this work, the optimum performance and two design parameters have
been investigated under three objective functions: the power output per unit total cost, the
efficient power per unit total cost and the ecological function per unit total cost. The effects
of the technical and economical parameters on the thermoeconomic performance have been
also discussed under the aforementioned three criteria of performance.
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1. Introduction

Within the context of finite-time/finite-size thermodynamic theory several authors have studied the
optimum performance of endoreversible solar-driven heat engines [1–4]. These authors have employed
different regimes of performance, like the optimum thermal efficiency [4], the ecological criterion [5]
or the maximum power output [1]. Other authors [6, 7] have recognized that the ecological function is
an exergy-based ecological optimization, in the sense that this criterion considers the exergy losses (or
dissipation) of the system.

Recently, Sahin [8] studied the optimum performance of an endoreversible solar-driven heat engine.
In this study, the author considered that the heat transfer from the hot reservoir to the working fluid is
given by radiation, while the mode of heat transfer from the working fluid to the cold reservoir is given by
a Newtonian heat transfer law. In another work, Sahin [9] also considered that the heat transfer from the
hot reservoir to the working fluid is simultaneously produced by radiation and conduction. In references
[8, 9], Sahin calculated the optimum temperatures of the working fluid and the optimum efficiency of
the engine operating at maximum power conditions. On the other hand, Sahin and Kodal [10] made a
thermoeconomic analysis of an endoreversible heat engine in terms of the maximization of an objective
function defined as the quotient of the power output and the total cost involved in the operation of the
power plant. Sahin and Kodal [10] considered the total cost as the sum of both investment and fuel costs,
and the investment cost of the plant is assumed proportional to the size of the plant and can be taken
as proportional to the total heat transfer area. The procedure used by Sahin and Kodal [10] was later
applied by Sahin et al. [11] to study the thermoeconomics of an endoreversible solar-driven heat engine
in terms of the maximization of a profit function defined as the quotient of the power output and the
annual investment cost.

More recently, Barranco-Jiménez et al.[12] studied the optimum operation conditions of an endore-
versible solar-driven heat engine with different heat transfer laws in the thermal couplings but operating
at maximum ecological function conditions. Barranco-Jiménez and Angulo-Brown [13] also studied the
thermoeconomics of an endoreversible heat engine model under maximum ecological conditions and by
considering different heat transfer laws in a Novikov model. In the present work we follow the procedure
by Sahin et al. [8, 9, 11] to study the thermoeconomics of an endoreversible solar-driven heat engine,
but by using two other objective functions, which are the ecological function [5] and the so-called ef-
ficient power [14] function, and we take the total cost as that considered by Sahin et al. [11]. Our
results can be useful as a general guide for the design of solar energy converters concerning their mode
of thermoeconomic performance.

2. Theoretical Model

The endoreversible solar-driven engine model of Sahin et al. is shown in Figure 1 [11]. The solar-
driven engine is considered to operate according to a Rankine cycle, also given in Figure 1. The endore-
versible Rankine cycle works between a heat reservoir of temperature TH and a heat sink of temperature
TL. To simplify the analysis, the endoreversible Rankine cycle (1-2-3-4-5-1) can be modified by using
an entropic average temperature defined by Khaliq [15] for an endoreversible Carnot cycle (1-a-b-5-1).
Following Khaliq[15] and Sahin[11] the area under the process 2-3-4 in the T-S diagram of Figure 1 rep-
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Figure 1. Schematic diagram of a solar powered heat engine and its T − S diagram [11].
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resents the amount of heat added to the Rankine cycle, we can make this area equal to the area under the
horizontal line with an entropic average temperature of heat addition. The entropic average temperature
can be written as TX = ∆Q

∆S
= H4−H2

S4−S2
[15]. The heat transfer from the hot reservoir is assumed to be

radiation dominated and the net heat flow rate Q̇H from the hot reservoir to the engine can be written as
[11],

Q̇H = AHσ
(
εHT 4

H − αHT 4
X

)
= UHAH

(
T 4

H − T 4
X

)
, (1)

where σ is the Stefan-Boltzmann constant, εH and αH are the emittance and absorption coefficients of
the heat source and AH is the heat transfer area of the hot side heat exchanger. UH = εHσ is the hot side
heat transfer coefficient. The emittance will be balanced uniformly by absorption εH = αH for a thin
slice of gas [11], that is, for fully concentrated solar radiation. In Equation 1 convective effects are not
considered, thus, this model only applies to space applications. One manner of considering convection
effects can be made by using the Dulong-Petit heat transfer law. On the other hand, the conduction heat
transfer is assumed the main mode of heat transfer to the low temperature reservoir, therefore the heat
flux rate Q̇L from the heat engine to the cold reservoir can be written as

Q̇L = ULAL (TY − TL) , (2)

where UL is the cold side heat transfer coefficient and AL is the heat transfer area of the cold side heat
exchanger. Applying the first law of thermodynamics, the power output of the solar driven heat engine
is given as

W = Q̇H − Q̇L =

[
βAR

(T 4
H − T 4

X)

T 3
H

− (TY − TL)

]
ULAL, (3)

where AR and β are the ratio of the heat transfer areas and the heat conductance parameter respectively,
and are defined as

AR =
AH

AL

, (4)

and
β =

UH

UL

T 3
H . (5)
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These two parameters can be taken as design parameters. The thermal efficiency of the endoreversible
heat engine is

η = 1− Q̇L

Q̇H

= 1− TY

TX

, (6)

Applying in Figure 1 the second law of thermodynamics to the reversible part of the model, we obtain

Q̇H

TX

=
Q̇L

TY

, (7)

Substituting Equations 1 and 2 into Equation 7, a relationship between TY and TX is obtained as

TY =
TL

1− βAR

(
T 4

H−T 4
X

TXT 3
H

) . (8)

In thermoeconomic analysis of power plant models, an objective function is defined in terms of a char-
acteristic function (power output [9, 11, 16], ecological function [5, 12, 13], etc.) and the cost involved
in the performance of the power plant. In his early paper, De Vos [16] studied the thermoeconomics of a
Novikov power plant model in terms of the maximization of an objective function defined as the quotient
of the power output and the performing costs of the plant. In that paper, De Vos considered a function of
costs with two contributions: the cost of the investment which is assumed proportional to the size of the
plant and the cost of the fuel consumption which is assumed proportional to the quantity of heat input
in the Novikov model. Analogously, Sahin and Kodal made a thermoeconomic analysis of a Curzon
and Ahlborn [17] model in terms of an objective function which they defined as power output per unit
total cost taking into account both the investment and fuel costs [9], while assuming the size of the plant
proportional to the total heat transfer area, rather than the maximum heat input previously considered by
De Vos [16]. Following the Sahin et al. procedure [11], the objective function has been defined as the
power output per unit investment cost, because a solar driven heat engine does not consume fossil fuels.
In order to optimize power output per unit total cost, the objective function is given by [11]

F =
W

Ci

, (9)

where Ci refers to annual investment cost. The investment cost of the plant is assumed proportional to
the size of the plant. The size of the plant can be proportional to the total heat transfer area. Thus, the
annual investment cost of the system can be given as [11]

Ci = aAH + bAL, (10)

where the investment cost proportionality coefficients for the hot and cold sides a and b respectively
are equal to the capital recovery factor times the investment cost per unit heat transfer area, and their
dimensions are ncu/(year·m2). Substituting Equations 2 and 9 into Equation 10, we obtain a normalized
expression for objective function under maximum power regime given by [11]

Fmp =
bF

ULTL

=
βARτ (1− θ4)

[
1− 1

τ [θ−βAR(1−θ4)]

]

f
1+f

AR + 1
, (11)
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Figure 2. a) Objective function Fmp with respect to thermal efficiency for several values
of f with τ = 4, β = 1 and AR = 1 and b) Fmp against η for several values of AR with
f = 0.7, τ = 4 and β = 1.
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where θ = TX

TH
, τ = TH

TL
, and the parameter f is the relative investment cost of the hot size heat exchanger

and defined as [11]
f =

a

a + b
. (12)

For our thermoeconomic optimization approach, we define two objective functions, the so-called effi-
cient power [14] and the ecological function [5, 13], both divided by the annual investment cost. These
two functions are given by Fη = ηW

Ci
and FE = W−TLΣ

Ci
respectively, where Σ is the total entropy pro-

duction of the engine model. Analogously to Equation 11, the normalized objective functions under both
the maximum efficient power regime and the maximum ecological function are given by

F η =
bFη

ULTL

=
βARτ (1− θ4)

[
1− 1

τ [θ−βAR(1−θ4)]

]
ηth

f
1+f

AR + 1
, (13)

and

FE =
bFE

ULTL

=
βAR (1− θ4) [(1 + τ) (θ − βAR (1− θ4))− 2][

f
1+f

AR + 1
]
[θ − βAR (1− θ4)]

, (14)

where ηth is the thermal efficiency of the endoreversible heat engine given by

ηth = 1− 1

τ [βAR (1− θ4)]
. (15)

In Equation 14 we have applied the second law of thermodynamics to calculate the total entropy pro-
duction given by Σ = Q̇L

TL
− Q̇H

TH
(see Figure 1). The normalized thermoeconomic objective functions

(Equations 11, 13 and 14) can be plotted with respect to the thermal efficiency (Equations 15) for given
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values of f and AR as shown in Figures 2a, 3a and 4a respectively, and in Figures 2b, 3b and 4b for the
cases of the maximum power output, maximum ecological function and maximum efficient power con-
ditions respectively. In all cases we use τ = 4, as in [11], where TL ≈ 300K and therefore TH ≈ 1200K.
This value of τ is for comparison with [11], however a more realistic value of TH could be of the order
of 431K [18], which is the effective sky temperature stemming from the dilution of solar energy. As
could be seen from Figures 2a–4b, there exists an optimal thermal efficiency that maximizes the objec-
tive functions for given f , AR and τ values. In Figure 5, we show the comparison of the aforementioned
three objective functions.

Figure 3. a) Objective function FE with respect to thermal efficiency for several values of f

with τ = 4, β = 1 and AR = 1 and b) FE against η for several values of AR with f = 0.7,
τ = 4 and β = 1.
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Since the three objective functions and thermal efficiency depend on the working fluid temperatures
(TX , TY ), the objective functions given by Equations 11, 13 and 14 can be maximized with respect to
TX and TY . This optimization procedure has been numerically carried out in the next section [11, 12].

3. Numerical Results and Discussion

In Figures 2a–4b, we observe how the maximum of the objective functions diminishes while the
economical parameter f augments for both the maximum ecological function (see Figure 3a) and the
efficient power (see Figure 4a) regimes, in the same way shown by Sahin et al. [11] for the case of the
maximum power output regime (see Figure 2a). On the other hand, when comparing with each other the
profits obtained under the maximum power output, maximum efficient power and the ecological function
conditions for the same value of f , it can be observed that the ecological profits are less than the profits
in both maximum power output and maximum efficient power regimes, as shown in Figure 5. In Figures
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2b, 3b and 4b we can also observe an optimum value of the ratio of heat transfer areas (AR) at which
each objective function has its highest value.

Figure 4. a) Objective function F η with respect to thermal efficiency for several values of f

with τ = 4, β = 1 and AR = 1 and b) F η against η for several values of AR with f = 0.7,
τ = 4 and β = 1.
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These cases are more evident in Figure 6a,b for two different values of β and f . From these figures
we can observe that the optimal AR value depends on the β and f parameters. As we can see in these
figures, under the three considered regimes the optimal AR value slightly decreases for increasing β and
f . The variation of the optimal thermal efficiency (ηopt) and the optimal power output (Wopt) under the
maximum ecological function with respect to β for different AR values are given in Figure 7.

Figure 6. Variation of the three maximum thermoeconomic objective functions with respect
to AR for different β. a) with f = 0.7, τ = 4 for β = 0.5 and β = 0.1, b) with τ = 4 β = 1

for f = 0.5 and f = 0.3.
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In Figure 8, we show the comparison of optimal thermal efficiencies and the optimal power output for
the three considered regimes. As we can see in Figures 7a and 8a, for the whole range of β values, the
optimal thermal efficiencies satisfy

ηCA = 1−
√

TL/TH ≤ ηmp
opt < ηep

opt < ηe
opt < ηC = 1− TL/TH , (16)

that is, the Curzon-Ahlborn (ηCA) and the Carnot (ηC) efficiencies are the ground and the ceiling of the
optimum thermal efficiencies (ηopt). Analogously, from Figures 7b and 8b, the optimal power output
satisfy

W e
opt < W ep

opt < Wmp
opt . (17)

for the whole range of β values. On the other hand, we can see in Figures 7a and 8a that for given β

and AR values, the optimal thermal efficiencies (ηopt) decrease while the optimal power output (Wopt)

increases. From Figures 7a and 8a it is also seen that the effect on ηopt and Wopt is more important within
the interval 0 < β < 1.5. As AR increases, the effective β range becomes narrower.
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Figure 7. a) Thermal efficiency vs. β for several values of AR. b) Power output at maximum
thermoeconomic ecological function vs. β for different values of AR (f = 0.7 and τ = 4).
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4. Concluding Remarks

In this work, following the Sahin et al. procedure, a thermoeconomic performance analysis using
finite time/finite size thermodynamics has been carried out for an endoreversible solar-driven heat en-
gine in terms of the maximization of three different characteristic functions. The objective functions
have been defined as the characteristic functions (power output, ecological function and efficient power)
per unit total investment cost. By the maximization of these three objective functions, the optimum
thermoeconomic performance and the corresponding best design parameters of the solar-driven heat en-
gine were determined. In this context, the effects of the economic parameter, f , and the ratio of heat
transfer areas, AR, on the optimal thermoeconomic performance have been investigated. We show how
the optimal thermal efficiency under maximum ecological conditions is bigger than the optimal thermal
efficiencies under both the maximum power and the maximum efficient power conditions. Moreover,
the maximum power output under maximum ecological conditions is less than the corresponding maxi-
mum power output under both the maximum power and the maximum efficient power conditions. This
result has been systematically observed in all kinds of thermal engine models operating under maximum
ecological function conditions.
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