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Abstract

Photoelasticity is an optical technique that measures the difference of the principal 
stresses plus the principal stress direction. A complementary technique is thermoelasticity 
which measures the sum of the principal stresses. Combining these two full-field, non- 
contact nondestructive evaluation techniques allows the individual stress components to 
be measured. One o f the main difficulties in merging these two measurement systems is in 
identifying an appropriate surface coating. Thermoelasticity demands a highly emissive 
surface, while photoelasticity requires a thick, stress-birefringent, transparent coating with 
a retro-reflective backing. Two coatings have been identified that can be used for com­
bined thermoelastic and photoelastic stress measurements: PMM A and polycarbonate.

An anisotropic electromagnetic boundary value model was developed to under­
stand more fully the mechanisms through which photoelastic stress patterns are produced. 
This model produced intensity contour maps which matched the fringe patterns observed 
in the laboratory, and allowed the effect o f  measurement errors on the calculated stress 
tensor to be quantified. One significant source o f error was the retro-reflective backing, 
which depolarized the light and degraded the resulting photoelastic fringes. A quantitative 
analysis o f the degraded fringes, to be used as a  rating scheme for reflective backing mate­
rials, showed that the isoclinic lines shift position as a result of the backing roughness and 
oblique incidence. This is a  concern when calculating the stress components through the 
combination of photoelasticity and thermoelasticity because the data maps are integrated 
at the pixel level. Small shifts in the photoelastic fringes result in incorrect information 
being assigned to some pixels and hence lead to uncertainties in the stress tensor compo­
nents. Progress in the understanding o f the depolarization at the reflective backing allows 
the specification of new materials that will minimize this effect, as well as the develop­
ment of robust computer algorithms to correct for any remaining depolarization.

xi
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Chapter 1 

Introduction

A structure is defined as any assemblage of material which is intended to sustain 

loads, and the study o f  structures is one of the traditional branches of physical science 

[ 1 ]. Nondestructive evaluation is a field devoted to the detection, repair, and prevention 

of flaws in objects. Its interests are with the detection of cracks, voids, disbonds, 

corrosion, and stress concentrations within an object and their effect on the overall 

structural integrity. Two techniques used for the characterization of stress distributions 

in a structure are thermoelasticity and photoelasticity. Photoelastic stress analysis 

is a well-established engineering tool, while thermoelastic stress analysis has been 

developed more recently. A combination o f the two opens new possibilities for a better 

understanding the behavior o f structures, as well as the development o f practical flaw 

detection schemes for ensuring the safety o f civil and aerospace structures and the 

quality of manufactured components.

1.1 History of Photoelasticity

In 1809 Etienne Malus, a military engineer and captain in the army of Napoleon,

discovered the polarization of light by reflection. He found that light reflected at a

particular angle from the surface of transparent bodies acquired the same property as

light formed by double refraction. He measured the polarizing angles for water and

2
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3

glass and concluded that the polarizing angle followed neither the order of refractive 

powers nor of the dispersive force. In 1811 David Brewster repeated the experiments 

of Malus and found the index of refraction to be the tangent of the polarization angle. 

He also discovered that complemetary colors are produced by the action of crystalline 

bodies upon polarized light [2].

Brewster continued his optical experiments with annealed and unannealed glass 

drops. He observed dark lines in the unannealed bulbs that were not present in the 

annealed and then went on to discover that the burst bulbs cleaved in the direction of 

these lines. He also found that glass, when suddenly cooled, possessed all the optical 

properties of crystallized bodies, whereas slowly cooled glass did not have this special 

property. Brewster’s investigation of the depolarization of light was not limited to 

glass. He found that calves’ feet jelly, which had no particular action upon incident 

light, acquired, from simple pressure, a structure which enabled it to become double 

refracting [3]. He noticed the same result with a long plate of glass where he observed 

a deep black line when the glass was bent by the force of his hand. As this force 

increased, three or four orders of colors were present on each side of the black line. 

Brewster pointed out that these colors ascended according to Newton’s scale of colors 

with the color at any particular point proportional to the compression or dilation to 

which that part is exposed. He noticed that some materials exhibited a greater number 

of colors than others when subjected to the same pressure.

Brewster took his observations and proposed the first (theoretical) application of 

photoelasticity. He surmised that if arch stones were made of glass or any other simply 

refracting substance, the intensity and direction of all the forces which are excited by a
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superincumbent load in different parts of the arch will be rendered visible by exposing 

the model to polarized light [4].

In 1830 Brewster revisited birefringence in materials due to pressure and 

concluded that the force of double refraction is not resident in the molecules themselves 

but is the result o f mechanical forces by which these molecules constitute solid bodies 

[5]. In 1853 he investigated the reaction of potash pressed between hard glass 

under heavy pressure. He observed that the resulting transparent film exhibited the 

phenomena of double reflection and polarization from its surface as if it was a large 

crystal [6].

At about the same time that Brewster was investigating potash, James Clerk 

Maxwell was conducting a mathematical study of the equilibrium of elastic solids. 

Maxwell began with the laws of elasticity expressing the relation between the changes 

in dimensions of a body and the forces which produce them. Using a triangle of 

unannealed plate-glass, Maxwell observed lines of equal intensity using circularly 

polarized light. He described these lines mathematically as

4>\ {x,y) = -  = u > (p -q ) - .  (1.1)z  z

where /  is the difference of retardation between the oppositely polarized rays, q and p 

are the pressures in the principal axes at any point, z  is the thickness of the plate, and 

u  is the stress-optic coefficient. With plane polarized light he observed the direction of 

the principal axes as dark bands which shifted position as the triangle was turned in its 

own plane. These dark band were describe mathematically as

02(z, y) =  tan  6 (1.2)
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where 0 is the angle o f inclination of the principal axes. At the time, the best method of 

determining p  and q was by graphical construction, although it was much better when 

0! and 0 2 were known so as to resolve the pressures and directions o f the axes. From 

Maxwell’s mathematical study it was now possible to find the pressures from the curves 

of equal tint and equal inclination in any case where it may be required [7].

By this time it was well known that glass and other transparent, isotropic 

substances, when compressed unequally in different directions, behaved like doubly- 

refracting substances and exhibited colors, but few had considered how the effect varies 

with the nature o f the light employed. It was assumed that the relative retardation in 

air was constant for all colors making the stress optic coefficient independent o f the 

wavelength. The difference of the refractive indices was also considered independent 

of the wavelength whereby it exhibited no dispersion. Pockel showed that in certain 

glasses, the stress-optical coefficient does vary with the wavelength, being numerically 

greater in the green than in the red; in very heavy lead glasses, this variation was more 

rapid as the blue end o f the spectrum was approached [8].

1.1.1 Design of the Polariscope

As the study o f photoelasticity grew, various methods of fringe detection were 

created. When David Brewster studied strained glass he observed the colors with a pair 

of crossed Nicol prisms. In 1888 John Kerr used a Jamin’s Interference-Refractor in his 

experiments on the birefringent action of strained glass. The apparatus was made from 

a Foucault prism, Iceland spar, a half wave plate, and a Nicol prism placed crossed to
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that o f the Foucault prism. It was reported that this system was capable of measuring a 

difference o f retardation to the hundredth of an average wavelength [9].

The best means by the early 1900’s for obtaining polarized light was through the 

use of prisms made from Iceland spar, first invented by Nicol and known by his name. 

Such prisms are unsurpassed for the purity and intensity of light transmitted through 

them. For scientific purposes, Nicol’s prisms were more than ample, but the number o f 

large prisms in existence was very limited. E. G. Coker and S. P. Thompson investigated 

other means of producing polarized light. They found the polarizing properties of 

glass plates were extremely useful in cases requiring a large doubly-refracting object. 

Because glass can be obtained at any convenient size and at a lower cost, it would make 

an easy, inexpensive means o f obtaining polarized light. In practice, however, it was 

found that light which was incident upon a sheet of black glass at the polarizing angle 

transmitted polarized light with the intensity of one-seventh of the incident ray. This 

arrangement required a bank of lights to illuminate the plate to produce a sufficient 

intensity o f polarized light for experimental use [10].

During this period, the usual optical equipment for photoelastic measurements had 

the following arrangement: a  white or monochromatic light which passed through a 

condenser, a polarizing Nicol prism, a convex lens, the specimen and another lens, 

through another Nicol polarizer, and finally through an object which projected the 

image of the specimen on a screen or photographic plate. These lenses were large and 

isotropic with a large focal length to render small aberration. O f these elements and 

the required size of the Nicol prism made the photoelastic equipment very expensive. 

Alexander Goetz recommended the use of concave spherical mirrors in place of the
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lenses, which reduced most o f the experimental difficulties. This arrangement provided 

better accessibility and much more space for the test apparatus [11].

In the early 1900’s, Coker set out to produce a “standard” photoelastic apparatus, 

later referred to as a polariscope, which could be used by engineers who had no great 

knowledge of physics. He designed an optical bench with a lens system which projected 

an enlarged image of a model upon a screen where Nicol prisms and mica quarter-wave 

plates were properly aligned and graduated. He developed a “tension-bar compensator” 

with which the stress-difference at any point in the model could be read directly in 

pounds per square inch on a spring balance. For the determination of the separate 

stresses, he used the method of deducing the sum of the stresses from measurements of 

the change in thickness of the model [12].

Efforts to reduce the amount o f equipment and its cost were pursued by Raymond 

Mindlin and H. E. Wessman in the 1930’s. Mindlin proposed a polariscope design 

where the light, after passing through the usual arrangement of optical devices, was 

reflected back through the same system [13]. Wessman’s contribution was a 

simple, low-cost straining frame that could be designed and built in universities which 

established a photoelastic and model-analysis laboratory [14],

The Coker polariscope, seen in Figure 1.1, was the standard apparatus used 

in photoelastic stress analysis until 1974 when S. Redner developed a method of 

measuring photoelastic birefringence based on the phase-angle difference at two 

different wavelengths which allowed for automation of photoelastic data. He 

incorporated spinning crossed polarizers which rotated at a constant speed in the 

polariscope, modulating the light intensity emerging from the polariscope into
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a sinusoidal wave. A photoelectric sensor which generated an electric current 

proportional to the light intensity was used as a detector. The direction of the principal 

stress was measured and compared to the measured voltage of a reference signal using 

a phase detector. This new automatic polariscope measured the direction and difference 

of principal stresses and strains simultaneously with the results appearing on a digital 

panel m eter [15].

With image processing becoming more prevalent in the early I980’s, 

photoelasticians started incorporating it into their stress measurement systems. C. P. 

Burger and A. S. Voloshin developed the “half-fringe-photoelasticity” system which 

could resolve small differences in birefringence resulting either from low loads or low 

stress birefringence [16]. Early developments in photoelasticity concentrated on single 

point analysis, but advances in electronic equipment permitted full-held analysis. The 

major inadequacy in most o f  the automated systems was their inability to identify the 

isochromatic fringe orders without intervention with the operator [17].

Other polariscope designs were more focused on a particular application. 

Masayoshi Yamada developed a computer-controlled infrared polariscope to observe 

stresses in commercial silicon wafers [18-19]. H. Lee and S. Krishnaswamy combined 

a polariscope with a shearing interferometer to map stress fields in bimaterial systems. 

The main advantage of this set-up was that stress information could be obtained from 

optically isotropic as well as optically birefringent materials [20]. Yasushi Niitsu et 

al. used a He-Ne laser as the light source for a polariscope to measure small stresses 

in transparent materials [21]. E. Liasi et al. developed a retroreflection polariscope 

which differed from an ordinary polariscope in that the expensive held lenses were
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eliminated by the addition of a  retroreflector. The retroreflector was a single layer o f 

high-index glass beads which enabled them to obtain images with double the fringe 

order [22]. D. E. P. Hoy used a color scanner as a digital recording polariscope. 

Scanners typically had, in the mid 1990’s, a much higher resolution than a digital image 

camera and were widely available at a reasonable cost. With the addition of a polarizing 

element, the scanner could digitize fringes using white or monochromatic light with a 

fringe resolution of 0.2 fringes for white light or 0.5 for monochromatic [23].

In 1998 Jon Lesniak developed the Gray Field Polariscope (GFP1000). This 

polariscope was similar to S. Redner’s 1974 system in that the polarizers rotate, but 

the GFP1000 system measured intensity and not voltage. Lesniak’s system was digital 

and required no fringe analysis. The system had a resolution of 1/100 fringe and a  

spacial resolution of 80 x 60 or 480 x 360 pixels. The added feature of this system 

was its ability to determine the thickness of the photoelastic coating with an accuracy 

of ±5% . This was significant because historically the photoelastic film was of known 

thickness before application because it is proportional to the difference in principal 

stresses. Uncertainties in thickness render unreliable photoelastic data. The GFP1000 

could test components that have been painted with a photoelastic material and adjust 

for the coating thickness over the surface [24].

1.1.2 Advances in Photoelastic Analysis

The beginning of photoelasticity as it exists today started with the exploration of 

stress-distributions in engineering components of Xylonite by S. P. Thompson and E. G. 

Coker in 1909. This work attracted the attention o f L. N. G. Filon whose chief interest
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at the time was the mathematical theory of elasticity. I t was his work which established 

the mathematical procedures to be followed in the determination of the stresses from the 

observations made on a stressed model. The work of Coker and Filon was responsible 

for the introduction of photoelastic measurements to many countries and provided the 

stimulus for work done by other investigators during this period [12].

With the Coker apparatus it was much easier to obtain the difference of the 

principal stresses from the isochromatic fringes and the angle of the principal stress axes 

from the isoclinics fringes, but deducing the stresses from these images was difficult. In 

1921 A. Kimball and in 1923 L. N. G. Filon correlated the color of the observed fringes 

to stress values making it possible to obtain the stresses completely from observations 

of the photoelastic fringes [25]. Ikuzoo Arkawa continued this work with experimental 

observations of Bakelite to illustrate the extremely delicate behavior of photoelastic 

fringes. He found that the isoclinic lines of a circular disk with a center hole could 

not be satisfactorily traced in some parts of the plate, especially in the neighborhood of 

the internal boundary. He also found the isochromatics around the boundary were very 

delicately arranged in accordance with the mathematical theory of a multiply-connected 

plate [27].

With the growth of high-speed and large-size machinery, mechanics became an 

essential engineering tool. Because only the simplest problems in stress analysis can 

be solved theoretically, photoelasticity had become much more recognized [28-29], 

but its development was retarded due to the absence of a suitable material. Rather 

than color matching the fringes to correlate with stress level, Max Frocht used fringe 

orders to determine the difference of the principal stresses. With a monochromatic light
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source, the fringes are much clearer than colored isochromatics and can be traced with 

accuracy and even photographed, securing permanent and convincing evidence of the 

stress distribution [30].

Photoelastic research was not limited to surface measurements. Three-dimensional 

photoelasticity was first observed by Maxwell in 1850 when he found that a hot jelly 

substance poured between two concentric cylinders under a torsional force maintained 

its effects on polarized light once the jelly cooled and the force was removed. In 

1935 Solakian took a hot, circular rod of Marblette and held it in a twisted position 

as it cooled. Upon slicing the rod, the interior areas revealed concentric circles under 

polarized light. In 1936 Oppel theoretically discovered that cutting an annealed sample 

does not disturb its fringe pattern. M. Hetenyi continued the effort by conducting a 

large number of experiments for proof [31]. In applying the photoelastic method to 

states of stress which vary in three dimensions, the experimenter is confronted with 

the problem of interpreting the effects observed when light is passed through a medium 

whose properties vary from point to point in a general manner. Theoretical work on this 

topic was done in 1938 by Mindlin describing the optical aspects o f three-dimensional 

photoelasticity [32] with an extension in 1940 by Drucker and Mindlin [33],

Many researcher in the 1920’s were interested in determining the individual 

stresses over the surface o f an object, and photoelastic analysis was a natural 

measurement tool to provide this information. The difficulty was that photoelasticity 

yielded the difference of the principal stresses, not the individual components. At the 

edge of an object, this was not an issue because only one of the two principal stresses 

were nonzero due to the edge creating a free surface. However, interior locations
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were much more challenging to obtain individual stress components. Various methods 

had been employed to overcome this problem, such as graphical integration, but each 

had its own limitations and sources of error. In 1929 Henri Favre brought to the 

attention of the scientific community a method by which the individual stresses could 

be measured optically using a beam of light. He measured the absolute retardation of 

a beam passing through a transparent model when subjected to a change in stress. His 

measuring instrument was a precise interferometer which did not require the counting 

of fringes. This operation became much more rapid and accurate if the outside path 

was changed in length by an amount equal to the refractive change of the inside path. 

Although a precise measurement system, the photoelastic interferometer was not a full 

field measurement but rather a point detector on the order of <  1m m , the width of the 

beam [34].

As the physics of photoelasticity progressed, the discussion of measurement 

errors began. Stresses had been obtained previously by either color matching or 

compensation. In color matching known loads were applied to a tensile specimen of 

a similar material to that of the model creating a stress-color scale for comparison. 

Large errors were inevitable for a small change in stress, although fairly exact values 

were obtainable when the color changed from red to the blue. The stress compensation 

method used a polarized beam of light which passed through the model and focused 

on a specimen o f  the same material under tension. The line o f pull of the tension 

specimen was adjusted to coincide with the direction of the minimum principal stress 

before altering the load until a dark spot appeared, corresponding to the part of the 

model under examination. As one can imagine, this method was very tedious in its
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application [35]. In addition to errors associated with the identification o f colors, 

Mindlin showed that if the retardation plates were not accurate quarter-wave plates, not 

only were the isoclinics not completely removed from the isoclinic fringe image but 

also the retardation of the fringes may be altered [36].

In attempts to reduce the number of errors, several new methods of photoelastic 

analysis were developed. D. C. Drucker proposed a method for obtaining crx and cry 

separately by the rotation of a two-dimensional model about an axis in its plane. He 

used the method o f oblique incidence where the stresses are of significant magnitude 

[37]. Robert Gray developed the equations for the correction of the final fringe 

pattern from any initial stresses present in the coating or model [38]. Max Frocht 

and Roscoe Guernsey, Jr. combined the photoelastic data from frozen stress patterns 

with a numerical integration of the differential equations o f equilibrium in Cartesian 

coordinates. This provided the actual principal stresses at each point of a homogeneous 

and isotropic body o f arbitrary shape subjected to a general system of loads [39]. The 

development of plastics in 1953 provided the standard photoelastic material. They not 

only adhered to all kinds of structural materials, but their optical-strain constants were 

stable with time and large enough to permit commercial application in both elastic and 

plastic ranges of deformation [40]. J. W. Dally and F. J. Ahimaz produced a print with 

twice the number o f sharper fringes by the superposition o f light and dark isochromatic 

images [41]. Combining normal and oblique incident light, S. S. Redner showed high 

accuracy in the calculation of principal strains both at the boundary and in the interior 

regions of an object [42].
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Douglas Bynum addressed other sources of error in a 1966 technical note 

discussing an experiment to determine the order of extremum error using the method 

of fringe multiplication. He found integrating effects due to strain averaging through 

the thick coating can be minimized by using an oblique angle of light incidence which 

corresponds to the minimum strain gradient. In addition, the light scatter due to the 

diffuse, mirrored birefringent coatings could be minimized if the structure surface is 

electroplated to obtain a specular finish for use of an unmirrored birefringent coating 

[43]. In 1962 J. W. Dally and F. J. Ahimaz investigated a photographic method for 

fringe multiplication in which a mixed-field pattern was obtained by superposition of 

ordinary light and dark field isochromatic fringe patterns. N. K. Das Talukder and 

P. Ghosh went on to show that although this technique gave the desired results, the 

equations derived for the fringe multiplication technique contained inaccuracies [44],

In 1979 R. K. Muller and L. R. Saackel combined photoelasticity with image 

processing methods. They took a photoelastic picture with a TV cam era and stored 

it digitally. Using their own specially developed software, Muller and Saackel were 

able to do some basic manipulations on the digital photoelastic image [45]. Toyahiko 

Yatagai, et al. continued this work extracting fringes from the digital photoelastic 

images. Their method was based on the two-dimensional gray-level fringe peak 

detection technique [46], A. S. Voloshin used the sensitivity of the image processing 

system to evaluate photoelastic materials showing a half-fringe order in the area of 

interest [47]. A. C. Gillies then developed a system which compared the digital results 

to mathematical models [48]. Techniques for finding fringe spacing and orientation in 

patterns laden with noise was developed by T. Y. Chen and C. E. Taylor. Their goal was
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to automate the data-reduction processing so that a useful computerized, general fringe 

analysis algorithm could be used to analyze any fringe from any experimental method 

[49].

In addition to the image processing methods, Voloshin and Redner used spectral- 

contents-analysis to investigate the spectral content of a light beam passing through 

a stressed specimen. This beam contained all of the information necessary to 

automatically extract the value of the retardation [50]. A. J. Durelli and B. 

Ranganayakamma implemented numeric methods of Laplace’s equation and finite 

element so as to verify experimental results [51]. P. Boulanger and M. Hayes 

studied the propagation o f electromagnetic time-harmonic plane waves in deformed, 

non-absorbing, non-optically active materials and interpreted the results geometrically 

using an ellipsoid whose axes are proportional to the index of refraction in the 

principal coordinate system. The foundations of their method were based on Maxwell’s 

equations and the electromagnetic constitutive equations [52].

Eliminating human interpretation of photoelastic fringes became popular in the 

early 1990’s. E. A. Patterson and Z. F. Wang designed and built an automated full-field 

photoelastic analysis system with the objective of having minimum interaction with 

the operator [53]. One such procedure was the drawing of isoclinic lines from the 

photoelastic fringe resulting from linear polarized light. Often these fringes appeared 

as broad bands causing the researcher to approximate the isoclinic line through the 

center of the large band. K. Ramesh ex al. developed a computerized method for the 

identification of the actual fringes from the bands. They developed an algorithm which 

utilized the minimum intensity criterion to thin the fringes to a width of one pixel [54],
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With several stress separation techniques available, S. J. Haake and E. A. Patterson 

surveyed the methods to incorporate the most suitable technique into an automated full- 

field polariscope. They concluded that the shear difference method was susceptible 

to errors and that oblique incidence had the advantage of not using the inaccurate 

isoclinic parameters and having the neighboring points independent o f each other [55]. 

In 1993, A. Asundi applied an interferometric technique, called phase shifting, to 

photoelasticity. This method had been used with other interferometric techniques, such 

as holography, Moire, and even speckle interferometry, to determine fractional fringe 

order. This was accomplished by recording a few images corresponding to different 

optical arrangements in a given experimental situation. The optical elements invoked 

a specific phase shift between the recorded images, hence its experimental name of 

the phase-shifting technique [56]. S. J. Haake, Z. F. Wang, and E. A. Patterson 

used this new application to determine both the fractional isochromatic fringes and 

isoclinic parameters at all points in the field of view independent o f their neighboring 

points showing the accuracy and reliability of this method [57]. J. Carazo-Alvarez, 

Haake, and Patterson then integrated phase stepping with spectral content analysis 

which identified the absolute value of the isochromatic parameter at a particular point 

and was used to calibrate maps of relative retardation produced by the phase stepping 

method [58]. Phase stepping and image processing o f photoelastic data was restricted 

by the periodic nature o f the data and the interaction between the principal angle and 

relative retardation. Z. F. Wang and E. A. Patterson used signal analysis and fuzzy set 

theory to overcome these difficulties [59].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

By the mid 1990’s, numerous researchers were working to obtain more exact 

fringe values using numerical methods. Y. Morimoto et al. separated the isochromatics 

and the isoclinics by calculating the Fourier transform of sequential images captured 

by rotating the polarizers and found this method insensitive to high frequency noise 

due to the Fourier filter [60]. Since isochromatic fringes are broad, uncertainties 

in the locations of the fringe centerlines limit the accuracy o f the experimental data. 

B. Han and L. Wang subtracted the light field images from the dark field images to 

sharpen subfringes [61]. Jaime F. Cardenas-Garcia et al. rewrote the expressions 

for the principal stresses as a function of normalized variable distances from the 

center o f the hole which enabled them to determine the stress tensor for any general 

loading situation [62]. C. Quan et al. evaluated the fractional fringe order by 

operating in the frequency domain and acquiring only one image. The fractional 

fringe order is obtained from the ratio of the real and imaginary parts of the Fourier 

transform which is then transformed to a total fringe order by phase unwrapping [63], 

N. Plouzennec et al., developed a new method to obtain isoclinic and isochromatic 

parameters by photoelasticity and numerical analysis. Four images are acquired from a 

plane polariscope which are numerically treated to separately calculate the isoclinic and 

isochromatic parameters. The parameters are functions of arctangents and arccosines 

which need to be unwrapped to restore continuity to the entire field. The results for 

a disk under diametrical compression produced a maximum difference of 1° for the 

isoclinic angle and 0.05 fringes for the isochromatic parameter [64].

In addition to numerical methods, the mid 1990’s also provided photoelasticity 

with new methods of obtaining fringes. A. Ajovalasit et al. developed a new method
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for automatic analysis of isochromatic fringes in white light, called red, green, and 

blue (RGB) photoelasticity. This process acquired the isochromatics with a color 

video camera and decomposed them into red, green, and blue before being compared 

to a calibration array [65]. K. Ramesh and S. Deshmukh used a sim ilar method to 

determine fringes up to three orders. Their study found that using the difference in the 

RGB values between bright and dark field images reduced the noise in the data points 

[66]. S. J. Haake, E. A. Patterson, and Z. F. Wang used phase stepping to determine 

both the fractional isochromatic fringes and isoclinic parameters at all points in the 

field of view [67]. B. Han and A. L. Wang determined fractional fringe orders through 

the use of the Tardy Compensator with data from a robust algorithm producing highly 

sharpened isochromatic fringe contours in the immediate vicinity o f an isoclinic line 

[68]. Sherri A. Sparling and Carolyn F. Small used hue, saturation, and light intensity 

values to identify photoelastic fringe values in the field of view o f the camera. The 

digital images were obtained through a reflective white-light polariscope [69].

By 1997 numerous methods for the automation of photoelasticity had been 

developed. E. A. Patterson reviewed these methods and concluded that they all were 

derived from a common theoretical basis. He emphasized that all o f the methods 

suffer from the same fundamental disadvantage, namely the periodic nature of the 

relative retardation and undefined regions in the isoclinic angles [70]. Most o f 

the attempts to extract the difference o f the principal stresses and the isoclinic angle 

have used phase-stepping which enabled the photoelastic parameters to be calculated 

through an arctangent function. A drawback to this approach is the need to unwrap the 

isoclinic angle and isochromatic parameter. Although several unwrapping procedures
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are available, the isochromatic parameter and the isoclinic angle interact causing a high 

signal-to-noise ratio in some regions. Andrew Nurse developed a new approach to 

phase-stepping in which many of the problems involved with the extraction of data are 

either solved or circumnavigated. Using three narrow-band filters -  red, green, and 

b lue- in combination with a white light source and a plane polariscope, six images 

were collected and a least-squares algorithm used to obtain the fringe patterns. The 

least-square routine reduced the effects of the noise incurred in the data collection 

process; the three colors allowed the photoelastic parameters to be determined without 

the isoclinic-isochromatic interaction problem, and the isoclinic angle phase map 

could be unwrapped and assigned to one principal angle [71]. At the same time 

T. W. Ng used step-loading to overcome discontinuities in the phase measurement 

requiring unwrapping. This method required recording of successive images with 

phase increments or decrements of 7r radians or less and the loading restricted to either 

increase or decrease. Their technique required twice the number of intensities sampled 

compared to digital speckle-shearing interferometry [72]. M. J. Ekman and A. D. 

Nurse later extended load-stepping to determine the isochromatic parameter using three 

incremental loads instead o f three wavelengths. This method was able to yield the 

absolute value of the isochromatic parameter without the need of auxiliary techniques 

for a base fringe value [73].

Other automation methods were done by Ramesh and Deshmukh who investigated 

phase shifting using color image processing — a superposition of image planes of red, 

green, and blue. They investigated whether one or all o f the image planes can be 

thought of as behaving like an optical filter so that they can extend phase shifting to the
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color domain [74], T. Y. Chen demonstrated a new approach for digitally determining 

photoelastic birefringence using the relationship between the intensity values and fringe 

orders of two wavelengths. The methods allowed for the automatic determination of 

fringe orders without using the zero-order fringes with a 0.05 fringe accuracy [75]. G. 

Petrucci developed a technique based on phase-stepping with the use o f true image 

color technology for evaluations. This system used four images from a dark field 

polariscope taken by rotating the optical elements in steps of 22.5°. Although this 

technique required more expensive hardware, it advantages were good resolution and 

high execution speed [76].

The theory behind phase-stepping is based on monochromatic light. W. Ji and 

E. A. Patterson investigated the effects of white light on phase-stepping through a 

mathematical model to analyze the errors generated by the use of various bandwidth 

spectra in the polariscope light sources. Errors due to the mismatch of quarter-wave 

plates and dispersion are thought to cause significant contributions to errors in the 

isoclinic angles and isochromatic fringe order. The form of the spectrum of white light 

directly influences the errors in the isoclinic angle and isochromatic fringe order. This 

error is larger for high isochromatic fringe order compared with low fringe order -  

typically 5 percent error for one fringe order. Using medium-band filters with a central 

wavelength matched to the quarter-wave plate greatly decreased the error generated by 

white light, allowing fringe orders up to 6 and 10 to be measured with an accuracy of 

± 5  percent using 80 and 40 n m  bandwidth filters, respectively [77].

The last two decades have seen significant advances in photoelasticity with the 

advent of PC-based digital image processing systems. The exploration of photoelastic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

stress analysis does not stop here but will be continued into the next millennium with the 

development of new algorithms, analysis techniques, and hardware further advancing 

our understanding stress analysis through the use of birefringent materials.

1.2 History of Thermoelasticity

Whereas photoelasticity uses a birefringent coating to produce fringe patterns 

corresponding to the underlying stress field, thermoelasticity correlates temperature 

variations to stress. The phenomenon of a material changing temperature when 

stretched was first noted by John Gough in 1805. W hile stretching a piece of India 

Rubber, he felt a sensation of warmth when the rubber touched the edge of his lip. (It 

was known that the lips possess a high degree of sensitivity which enable them to detect 

small temperature changes with greater fidelity than other parts of the body.) He found 

that this temperature increase was destroyed by permitting the rubber to contract [78]. 

In 1830, Weber saw this effect in metals when he noted a sudden change in tension 

applied to a vibrating wire caused the fundamental frequency of the wire to change 

gradually rather than suddenly as he had expected. He reasoned that this transitory 

effect was due to the temporal change in temperature o f the wire as higher stresses 

were applied [79].

Gough and W eber observed these temperature changes but offered no explanation 

into its cause. It was not until 1851 that William Thomson (Lord Kelvin) provided the 

theoretical basis for thermoelasticity: the coupling between mechanical deformation 

and generated heat. Thomson wrote that heat is not a substance, but a dynamical
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form of mechanical effect. He concluded that there must be an equivalence between 

mechanical work and heat as between cause and effect. From this reasoning he derived

where 6 is the change in temperature, e is the coefficient o f expansion, K  is the 

reciprocal of compressibility, p  is Carnot’s Function, and x  is the specific heat under 

constant pressure. Equation (1.3) illustrates that the change in temperature of any solid 

is modified by an infinitely small alteration of its volume. For a rod or wire, the increase 

in temperature produced by stretching is written specifically as

where a is the thermal coefficient of expansion, r  is the radius, p  is the density, s is the 

specific heat, 6 is the absolute temperature, A F  is the increase in stretching force, and 

J  is the mechanical equivalent of heat [80].

Joule was the first to attempt verification o f equation (1.4) in 1859 using various 

liquids, metals, woods and rubber. He found general agreement between observations 

and theory but with an average 15% discrepancy. Edlund in 1865 used metal wires 

to show that the relative temperature change in different metals could be predicted by 

the Thomson formula but failed to show absolute accuracy — steel showed only 63% 

of the calculated temperature change. In 1882 Haga succeeded in verifying Thomson’s 

formula to within 2.54% for steel wire and 0.25% for German silver. He used improved 

methods of measuring small changes in temperature and considered variations in the 

thermal coefficient o f  expansion at different temperatures. His method of temperature 

measurement utilized a thermocouple with one end soldered to the stretched part of the

(1.3)
p x

\  n r2p s J  J
(1-4)
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wire and the other to an unstretched part. The difficulty in measuring small changes 

in temperature (<0.5 C) was where all the disagreement lay. The heat liberated or 

absorbed was very small and was rapidly lost by surface conduction and radiation 

from the wire making the galvanometer unable to register the total initial change in 

temperature. K. T. Compton and B. D. Webster discarded the thermocouple method 

and employed a resistance method requiring the use of a Wheatstone bridge. With the 

stretched wire forming one arm of the bridge, the resistance measurements were 35 

times more sensitive than the galvanometer in Haga’s experiment. To reduce the rate 

of heat loss, the steel piano wire was passed axially through a polished test-tube with 

ends plugged with cotton before being covered entirely with a thick layer of cotton. 

This reduced the rate of loss o f heat to less than half o f the rate when freely exposed 

producing measured values that were within 0.07% of the calculated values [81].

Tamman and Warrentuip continued this experiment in 1937 on copper, nickel and 

carbon steel. They showed the thermoelastic effect and the reversal o f temperature 

change stopped at the yielding point of the material where they detected a sudden 

energy released by plastic strain. Their experimental goal was to determine the yield 

point in certain metals from this information [79]. In 1938 Clarence Zemer used 

thermoelasticity in his theory o f internal friction of solids to show the importance of 

thermoelasticity in the damping o f vibrations in polycrystalline materials [82]. Further 

advances in the understanding o f thermodynamics and thermoelasticity resulted from 

M. A. Biot in 1956 who investigated the entropy changes in deformed materials. He 

derived thermoelasticity, not from thermodynamics, but by showing the inverse process 

of thermoelasticity leads to a variational formulation which coincides with a general
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principle of irreversible thermodynamics using an entropy flow field. He found that 

an infrared signal yields the sum o f the principal stresses and was insensitive to shear 

stresses [83].

With advances in infrared radiometric technology, Milo Belgen, at the NASA 

Langley Research Center in 1967, found it possible to measure dynamic structural 

stresses with infrared radiometers. With the applied strain within the elastic limit 

o f the material and oscillations o f  strain rapid enough to be considered adiabatic, 

the average temperature of the object was found to increase slowly due to damping 

energy generation while the instantaneous temperature oscillated. Detection of this 

temperature oscillation correlated to areas of stress. With thermoelasticity yielding 

the sum of the principal stresses, strain gauges yielding the tension-compression strain 

in the direction o f installation, photoelasticity yielding the difference of the principal 

strains, and brittle coatings yielding major principal tension strain, Belgen concluded 

that the use of infrared measurements in combination with existing methods would 

make biaxial stress data feasible.

Belgen’s thermographic instrumentation consisted of a Cassegrainian type 

radiometer with a  compensated thermistor bridge and a germanium lens detector. The 

optics yielded a field o f view measuring 10.24 square millimeters for a target distance 

o f 2.4 meters. During his analytical studies, Belgen discovered that a high-emittance 

surface on the object was quite desirable because he found painted beams yielded a 

higher radiometer signal than unpainted beams. To ensure this condition, he applied 

two coats of flat, black paint before data was acquired. Further analysis showed that the 

paint acted as a thermal insulator at high frequencies. To overcome this situation, the
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high-emittance coating would be used at low frequencies to obtain improved signal-to- 

noise ratios [84-85].

The most common reason for measuring temperatures produced by deformation 

was to study the stored energy of cold work. Temperatures near running cracks had 

been measured as large as 1000 K. - 2000 K. K. E. H. Jordan and B. I. Sandor wanted to 

establish a basis in 1978 for the quantitative stress of metal with stress analysis. Rather 

than using an infrared system, they chose thermocouples due to their cost compared to 

an infrared system [86].

It was not until 1974 that the first laboratory instrument was capable of measuring 

stress patterns down to a  level of sensitivity to be o f practical interest to a wide range 

of design engineers. The temperature changes of interest were in the range of 0.001 

K  to 0.3 K . This translated to 200 Pa  in aluminium for a 1 m K  temperature change. 

The first commercially available instrument to make practical use o f the thermoelastic 

effect for experimental stress analysis was the SPATE 8000 (Stress Pattern Analysis by 

measurement of the Thermal Emission). This was a computer controlled, non-contact 

instrument which provided quantitative stress values at given points through a 16- 

color scale displayed on a monitor. A germanium lens in conjunction with motorized 

horizontal and vertical scanning mirrors focused the thermoelastic flux from a spot on 

the structure to a spot onto the detector [79].

Although the SPATE 8000 possessed the sensitivity necessary for thermoelastic 

stress analysis, it was only a point detector requiring approximately 45 minutes to scan 

a small area. D. Mountain and J. Webber built a thermoelastic system in 1978 that 

synchronously detected the infrared signal at the peak of oscillation. They produced an
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image by building up many point measurements in a raster pattern [87], D. Oliver et 

al., increased the efficiency of this system in 1982 by using all o f the signal, not just 

the peak, to produce a thermoelastic image. In 1982 L. R. Baker and J. M. B. Webber 

developed an infrared camera with a sensitivity o f 0.001 K  using a dichroic beam 

splitter focused by a germanium lens on an infrared detector. Rotation of the scanning 

mirror enabled an extended area on the object to be scanned, and hence the generation 

of a television-type raster on a colored cathode-ray tube. In this way, one o f 16 possible 

colors can be related to the level of absolute or bipolar stress at a particular point on 

the object seen on a TV monitor for real-time stress display [88]. Two year later, J. 

Heyman reported producing a thermoelastic image by averaging multiple subtractions 

of image pairs taken before and after the application of stress to the sample using a 

commercial fast scan radiometer [89]. In response to the technical improvements, 

the SPATE 9000 was introduced in 1987 incorporating a more powerful computer 

with improved software developed by John Deere Incorporated and the University of 

Wisconsin. This system now provided full-field thermoelastic information and was 

capable of collecting both amplitude and phase whereas the SPATE 8000 was limited 

to amplitude measurements [79].

The SPATE 9000, as well as the Baker/Webber system, measured the surface 

temperature in response to applied stresses. Several mechanisms may affect the 

accurate measurement of the stress-induced temperature. Among them are internal 

conduction of heat between regions of different stress levels, heat lost from the surface 

to the environment, and the attenuating effects o f  surface coatings which may be 

otherwise beneficial to surface emissivity. The benefit o f the use of cyclic loading as a
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method of reducing the effects o f internal and external heat transfer is balanced by the 

increased attenuation with frequency due to the coating. The coating is used to obtain 

a constant emissivity, to maximize the radiant energy, and to avoid reflected heat which 

attenuates the thermoelastic response from the object. A thermoelastic inert coating will 

attenuate the temperature change by simple resistance, capacitative thermal lag, and 

thermal “drag-down.” The attenuation increases with increasing frequency and coating 

thickness. McKelvie analyzed the amplitude of the surface temperature calculation 

induced by cyclic loading through solutions of the heat-conduction equation and found 

his analytical work in accord with experimental work of earlier investigators [90].

Although thermoelastic data is in the form of the sum of the principal stresses, the 

real interest is with the individual stress components. In 1988 T. G. Ryall and A. K. 

Wong presented a method for obtaining the stress components from thermoelastic data 

by taking into account the boundary conditions and the expected form of the stress 

distribution by means of a least-squares method. They found this technique to be 

relatively insensitive to random noise but due to ill-conditioning of the least squares 

matrix, the high frequency components of stresses were not able to be resolved. Also, 

the sample that they chose for this demonstration was rather simple, a known bulk stress 

applied at the boundary x  =  0. For an arbitrary geometry, the problem becomes much 

more difficult [91].

In 1990, Huang et al., also developed a method for determining the individual 

stresses from thermoelastic data using only a few locations of known stress or a 

traction-free segment of a boundary. Their method of separating stresses used an 

interferometrically recorded sum of the principal stresses in transparent models. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

problems where the signal is on a traction-free edge, the stress could be approximated 

by a polynomial o f the third degree or by using finite difference approximations [92].

Thermoelastic stress analysis to this point had been purely qualitative because of 

noisy data and unreliable edge information. Y. M. Huang, R. E. Rowlands, and J. 

R. Lesniak developed a hybrid method o f stress analysis to simultaneously smooth 

the thermoelastic data, enhance the boundary information, and separate the stresses 

at nonboundary locations using only the thermoelastic data. Their approach was to 

represent the loaded, isotropic, plane elastic object with stresses written in terms 

of complex stress potentials [93]. Huang and Rowlands continued this work by 

extending the model to areas adjacent to a curved boundary which only required limited 

information in the area of interest [94].

By 1990 the study o f crack growth was of considerable interest to the NASA 

Langley Research Center. Although thermoelasticity was a natural method of observing 

crack propagation, the SPATE 9000 was too slow for analysis. K. Elliott Cramer and 

Christopher Welch at NASA combined a commercial infrared radiometer with real­

time digital image processing to use for crack studies. The infrared camera was a video 

fast-scan system based on a single detector and fast-scanning mirror set which output 

information in video format at a rate of 30 images per second. At the same time J. R. 

Lesniak at StressPhotonics, Inc. was funded by NASA Langley to develop a new type 

of infrared camera that utilized a focal plane array in place of a  vibrating mirror as in the 

Cramer/Welch system. This fast-scan detector-array camera was capable of obtaining 

434 images per second using a 128 x 128 InSb array. Although this system was not 

as sensitive as the Cramer/Welch system, it overcame this difficulty by averaging more
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data. Typical thermoelastic images with a temperature resolution of 1 m K  would take 

30 seconds [95].

In all of the thermoelastic systems, signal-to-noise ratios were a concern due to 

the very small temperatures being generated by the sample. The noise associated 

in thermoelastic data is related to the quantum statistics o f photon emission and 

is dependent on the specimen’s temperature. If a thermoelastic signal for a room 

temperature object was 1 m K , the same load but with the sample at an increased 

temperature would produce a signal exceeding 1 m K .  Although ideal performance 

improves with elevated temperature, the practical performance is less because of 

electronic saturation problems. This problem occurs when the vastly increased flux 

due to the elevated temperature exceeds the design limitations of the electronics. 

J. Lesniak and B. Bartel designed a furnace to address this specific problem with 

elevated-temperature thermoelasticity. They were able to obtain a signal-to-noise ratio 

at elevated temperatures similar to ratios seen at room temperature [96].

Rather than using a cyclic load at a  constant amplitude and frequency, S. T. Lin et 

al., studied randomly loaded structures which are characteristic of field measurements 

on engineering structures. This method was useful for systems experiencing nonmodal 

behavior and was based on the ratio between total power of the thermoelastic signal and 

the total power of a reference signal with a specified time frame. An added benefit of 

this method was its ability to separate the measured thermoelastic data into individual 

stresses [97].

During the computational evaluations of measured thermoelastic data, inherent 

experimental noise can overwhelm the quality of information. B. J. Rauch and R. E.
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Rowlands produced a numeric filter which incorporated the mechanics of the problem 

into a smoothing technique for noise removal. This filter was based on the isotropic 

compatibility equation and used a least squares fit to a general solution o f Laplace’s 

equation. It removed the noise without diminishing the information in the original 

measured data [98].

Under adiabatic conditions the heat transfer inside of the material under a cyclic 

load is neglected, whereas under nonadiabatic conditions, heat diffusion attenuates the 

spatial temperature gradients leading to an underestimation of stress concentrations. S. 

Offermann et al., performed iterations of the direct heat diffusion model using the finite 

element method until the calculated temperature converged to the measured values. 

This method yielded a good restoration o f the real stress map [99].

Since the mid 1980s researchers have been investigating the reproducibility of 

thermoelastic data between various SPATE systems. The first study found varied 

results, up to 20 percent difference, between five SPATE systems testing identical 

materials. These differences were attributed to inaccuracies in loading and variations in 

the test specimen material. The second study used eleven SPATE systems to calculate 

the ratio o f temperature change to strain change. Comparison of the results showed a 16 

percent variation which was blamed on the detector responsivity. J. M. Dulieu-Barton 

and P. Stanley conducted a third study which assessed the long-term reproducibility, 

reliability, and stability of various systems over a four year period. They found the 

detector responsiveness could change by 8 percent over a nine month period. To 

ensure high quality, reliable thermoelastic data, detector responsiveness should be 

redetermined periodically using a reliable standard test specimen (e.g., a Brazilian
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disk), the test machine should be periodically recalibrated, and a controlled emissivity 

paint should be used [100].

With the price of a thermoelastic measurement system 30 times that of 

a photoelastic system, thermoelastic stress analysis has not become a standard 

measurement tool. Recent advances in detector arrays are promising to double the 

spacial resolution of the thermoelastic image at half the original cost. This step along 

with additional improvements in software is sure to make thermoelasticity a standard 

stress analysis system in every laboratory.

1.3 Motivation to Combine Thermo- and Photoelasticity

Accurate determination of stress distributions is essential in assessing the structural 

integrity o f a component. Thermoelastic signals are proportional to the sum o f the 

principal stresses

where a  is the thermal conductivity, p is the density, Cp is the specific heat capacity. 

Alternatively, photoelasticity measures the difference of the principal stresses plus the 

principal stress direction

where E  is the modulus o f elasticity, v  is Poisson’s Ratio, Nn is the normal incident 

fringe order, A is the wavelength of light, t  is the thickness of the photoelastic 

coating, and K  is the strain-optic coefficient. With each system it is difficult, 

sometimes impossible, to determine the individual stress components without the

(1.5)

( 1-6)
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aid of a free surface. Several methods have been employed with photoelasticity 

to find a  solution to this problem. One method involves the drilling of small 

circular holes over the surface of the test object, the diameter o f which is on the 

order of the thickness o f the photoelastic coating, creating numerous free boundaries 

[101]. Another method combines normal incidence photoelastic measurement with 

oblique incidence measurements. The problem with this procedure is that the oblique 

incident measurements are much more difficult and time consuming compared to 

normal incidence because not only must the oblique angle be accurately determined, 

geometric details in the testing object, such as small fillets, reentrant comers, physical 

obstructions, etc., will often prevent oblique incidence measurements. In addition, 

for certain strain states, significant errors can result from small inaccuracies in the 

measured fringe orders producing large errors in the calculated strains [102].

With the combination of the thermoelastic and photoelastic stress measurement 

systems, the full-field stress tensor can be determined with few geometric limitations. 

The key in linking the two systems is the identification of a coating that is both 

highly emissive (thermoelastic) and birefringent (photoelastic). A partial-integration 

of thermoelasticity with photoelasticity was done in 1996 by S. Barone and E. A. 

Patterson. The two stress measurements were applied to the opposite faces of a plate 

with a central circular hole. They claimed that the information could be obtained 

sequentially on the same face if the photoelastic coating could be bonded to the 

painted surface in the thermoelastic test or levered off with a scalpel before painting 

for thermoelastic analysis [103].
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1.4 Dissertation Overview

The objective of this dissertation is to show that thermoelasticity and 

photoelasticity can be combined to produce the components o f the stress tensor over 

the entire area o f an object. Chapter 2 will address the coating issues between 

the thermoelastic and photoelastic stress measurement systems and provide a list of 

materials capable o f being used for both experiments. Mathematically, the photoelastic 

effect is more difficult to describe than the thermoelastic effect. Chapter 3 will review 

the various theories of photoelasticity and Chapter 4 will describe the anisotropic 

electromagnetic boundary value problem. This is used to simulate the photoelastic 

fringes which will be used to explore conditions under which the fringes change shape 

and position. One such condition that has received very little attention in the literature 

is the depolarization o f the light wave upon reflection. Changes to the incident light 

wave, in photoelasticity, are solely the result o f  the anisotropy induced by the applied 

tensile stress. Any changes added by the reflective backing are unwanted because it 

will alter the photoelastic data resulting in uncertainties in the calculated stress tensor 

components. It will be shown in Chapter 5 that a slight shift in the fringe pattern results 

in non-negligible errors in the calculation of the stress tensor components. Chapter 

6 will conclude with a summary of the project and suggestions of future work for the 

determination of the stress tensor components through the combination of thermoelastic 

and photoelastic stress measurements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Photo-Thermoelastic Coating

2.1 Measurement Systems Overview

Photoelasticity is a widely used, and well-established, full-held technique for the 

measurement of surface stresses in a part or structure during static or dynamic testing, 

as seen in Chapter 1. The stresses are seen as fringes in a clear, stress-sensitive coating, 

such as polycarbonate or epoxy, bonded to the test part. Upon application of an external 

load, the coating becomes optically anisotropic (birefringent). The induced anisotropy 

decomposes the incident light into two waves: an ordinary and an extraordinary wave 

which possess perpendicular polarizations relative to each other and different phase 

velocities. With the index of refraction related to the phase velocity by n  =  c/v ,  where 

c is the speed of light, the difference in n  between the two waves multiplied by the 

thickness o f the coating is defined as the relative retardation. As the coating becomes 

more optically anisotropic due to the applied stress, the relative retardation increases 

creating an interference which produces more fringes.

Photoelastic fringes are observed with polariscope composed of a polarizer,

analyzer, two quarter-wave plates, and a light source. Two sets o f fringe patterns, as

seen in Figure 2.1, are produced in photoelastic stress analysis: isoclinics with linear

polarized light and isochromatics with circular polarized light. Isoclinics appear as

35
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Figure 2.1. Isoclinic (a) and isochromatic (b) photoelastic images for a hole in a PMMA plate 
under vertical tension taken with the Model 030 Polariscope.
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dark lines which change position as the analyzer and polarizer are rotated. Along 

this line the angle o f rotation of the analyzer/polarizer equals the angle by which 

the stress matrix is converted to a diagonal (principal) matrix. This angle is referred 

to as the “direction o f the principal stresses.” Whereas linear polarized light reveals 

angle information, circular polarized light reveals isochromatic fringes which yield the 

difference in magnitude between the principal stresses. When using white polarized 

light, isochromatic fringes appear as varying bands of color corresponding to different 

levels of retardation between the two waves. With increasing relative retardation, each 

color in the spectrum is extinguished, starting with violet, leaving the complementary 

color for observation. Conversion of the color to the difference of the principal stresses 

is done with a color-to-stress chart which is unique for each photoelastic material. 

When polarized monochromatic light is used for illumination, the isochromatics appear 

as dark and bright fringes which are converted to the difference of the principal stresses 

through the identification of the fringe order.

A complementary stress measurement technique to photoelasticity is 

thermoelasticity. This is a  relatively new method of stress detection which provides 

the sum of the principal stresses using thermographic techniques. As an object deforms 

under an applied stress, the surface exhibits small temperature fluctuations in areas 

of tensile and compressive stresses. These temperatures are very small and difficult 

to detect, requiring sensitive infrared detectors and cyclic loads (1 m K  corresponds 

to stress measurements o f 1.0 M P a  in steel and 0.4 M P a  in aluminum). Several 

factors affect the surface temperature -  internal conduction of heat between regions 

of different stress levels and heat lost from the surface to the environment. A loading
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frequency on the order of a few hertz is used to make the object repeat the temperature 

signals to ensure detection from the radiometer but to avoid the overall temperature of 

the sample to increase due to conduction. An added concern with the thermographic 

measurement is with the surface emissivity. A surface with a low emissivity, such as 

aluminum, reflects most incident infrared radiation (originating from the surrounding 

environment) concealing any temperature fluctuations which are a result of the induced 

mechanical deformation. Emissivity enhancing coatings, such as flat, black paint, are 

applied to such objects to obtain a thermoelastic stress map which is displayed as a 

two-dimensional color map. Each stress image is accompanied by a legend which is 

used to convert the colors to the sum of the principal stresses.

One of the main difficulties in merging thermoelasticity with photoelasticity is 

with the identification of an appropriate coating. The key to linking the two systems is 

the identification o f a  coating that is both highly emissive and birefringent.

2.2 Coating Characteristics

For a material to function effectively as a photoelastic coating, it must posses 

certain characteristics. Ideal photoelastic materials are transparent, have a low material 

fringe value (load required to produce one fringe-per-unit thickness) and possess 

linear strain-fringe and stress-strain relationship. Moreover, they must be isotropic, 

unaffected by small temperature variations as well as free from time-edge effects, 

residual stresses, and optical and mechanical creep. They must also be inexpensive 

and easily available. A large numbers of polymers exhibit birefringence and are
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candidates for photoelastic coatings. Epoxy resins, introduced in the 1950s, are the 

most widely used and preferred materials suitable for not only birefringent coatings 

but also for three-dimensional photoelastic models. Some other commonly used 

photoelastic materials are polycarbonates, polymethylmethacrylate (PMMA), methanol 

of polycarbonate (PCBA), polyurethane, and elastomers [104-105].

If the clear, birefringent coating was opaque in the 3 — 5 urn band of the infrared, 

the coating could be used as a thermoelastic coating. Table 2-1 lists the transmission 

ranges for various birefringent polymers [106].

Table 2-1. Optical properties o f some common polymers.
Polymer Optical Transmission Range
PMMA <  330 nm , 340 n m  — 1660 n m
Low-Density poly(ethylene) Visible - IR
High-Density poly(ethylene) Visible - IR
Poly(vinyl Chloride) UV - Visible - IR
Poly(styrene) <  250 nm , 300 - 3.2/jm, >  3.6/xm
Nylon Visible (if thickness <  0.5 m m )
Celluloic compounds Visible
Poly(carbonate) UV - Visible - IR
Epoxide resins Visible

Not only is material selection a concern but so is its thickness. Typically, thicker 

photoelastic coatings have better optical responses compared with thinner coatings of 

the same material because the response is proportional to coating thickness, as seen 

in equation (1.6). Thermoelastic coatings, on the other hand, need to be thin due to 

attenuation effects. Alexander MacKenzie investigated the effects of surface coatings 

on infrared measurements assessing coating responses to loading frequencies, angles 

of view, and elevated temperatures. He found the response greatest for objects with 

thin coatings experiencing low frequencies. As the frequency and coating thickness
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increased, he observed diminishing thermoelastic signals due to the coating becoming 

more insulator-like, preventing the thermoelastic signal generated at the object/coating 

interface from propagating to the surface o f  the coating for detection. At high 

frequencies and coating thicknesses, he found the thermoelastic signal leveled out to 

about ten percent o f the maximum. In addition, he concluded that the coating placed 

a thermal load on the surface of the substrate resulting in attenuation and phase lag in 

the substrate response at the substrate/coating interface. For a given substrate/coating 

material combination, this attenuation and a phase lag was a function of coating 

thickness and strain frequency. The thermoelastic coating could also contribute to the 

detected signal but this would be a small effect if the substrate had a high thermal 

diffusivity compared to the coating [107].

Typical photoelastic sheets range in thickness from 25 /zm to 305 /zm with an 

adhesive layer of approximately 40 /zm whereas the thickness of the flat, black paint is 

about 10 /zm. This makes the photoelastic layer six to thirty-five times that of the paint 

thickness. In photoelasticity a fraction of the applied load may be borne by the coating, 

which acts as a reinforcement on the test object. In this case stresses in the test object 

are smaller for a  given load with the photoelastic coating than without it. Corrections 

are needed to calculate the actual stress on the test object without the added strength of 

the photoelastic coating [108].

If thermoelastic information is to be obtained from the photoelastic coatings six 

to thirty-five times the thickness of black paint, the response time of the coating will 

substantially lag that o f the substrate being measured. This is due to the layers having a
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Figure 2.2. Theoretical plot of the amplitude response of a sample coated with black 
paint as a function of frequency. Notice the fall-off region as the frequency increases. 
At high frequencies the amplitude from the sample is completely damped-out in the 
coating. The remaining signal is the response generated by the coating reacting to the 
applied strain.

finite heat capacity and often being an thermal insulator. Reducing the thickness of the 

coating is the most direct way of reducing the thermal response time.

MacKenzie formulated the coating response as a thermal wave problem which 

depended on various parameters of the coating such as thickness and the frequency of 

oscillation. Analysis of this equation by Welch and Zickel showed that as the frequency 

and thickness increase, the thermal response drastically decreases in amplitude and 

develops a substantial phase shift. This reduction in amplitude does not continue 

indefinitely but is terminated in a region with zero phase and a single value, as seen in 

Figure 2.2. This high frequency-large thickness regime is the thermoelastic response to 

strain in the coating itself with the thermal waves from the substrate being completely 

absorbed by the coating. This was designated as the strain witness region [109].
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The work of Welch and Zickel focused on black paint and not polym er coatings 

which are o f interest to this project. S. Barone and E. A. Patterson investigated 

polycarbonate films, typically used in reflection photoelasticity, as a strain witness 

in thermoelasticity. These films were bonded to the test object for anaJysis. If 

the thickness of the coating was small in comparison with that of the substrate, the 

strains at the surface of the object were transmitted without significant variation. The 

thermoelastic temperature change of the coating was always in phase with the loading, 

whereas the phase from the substrate varied with thickness and frequency. When the 

signal was generated by the coating rather than the substrate, very thick coatings and 

high frequencies were preferred so that the interference o f the thermoelastic effect of the 

coating with the thermoelastic effect coming from the substrate would be negligible. In 

addition, the coating must have an adequate infrared opacity to have a good emissivity 

and reduce errors due to reflection of radiation from the environment. M ost materials 

commonly used in photoelasticity are opaque to wavelengths above 2.3 /zm. Barone and 

Patterson found the photoelastic material PS-1 worked well as a thermoelastic coating. 

The actual signal from the PS-1 coatings turned out to be much smaller than the signal 

obtainable with black paint. Increasing the sensitivity of the detector compensated 

for this lower signal but added noise to the data, thus making the measurement less 

accurate.

Barone and Patterson made several conclusions from thermoelastic data taken with 

a photoelastic coating. The 1 mm thick photoelastic coating on an aluminum plate 

showed a slight enhanced thermoelastic response compared to the response for the 2 

mm and 3 mm coating for all frequencies. This was due to the reinforcing effect of
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the coating on the substrate, a result typically found in reflection photoelasticity and 

was expected here as well. Moreover, to avoid out-of-plane bending moments, two 

coatings were applied to opposite sides of the specimens for the 1,2,  and 3 mm thick 

coatings to double the reinforcing effects. Observations of the phase difference between 

the loading and temperature response did not show significant variation over the region 

observed. This indicated that the effects from thermal diffusion were small and constant 

with thickness of the coating and loading frequency [110].

2.3 Dual-Use Coating

Candidates for the thermoelastic and photoelastic coating must be opaque in the 

3 — 5 fim  band of the infrared and be birefringent in the visible. Two materials fitting 

these requirements are polymethylmethacrylate (PMMA) and polycarbonate materials. 

PMM A was obtained from a local glass supply store and cut to 30 cm x 5 cm x 3 mm 

with a 13mm diameter hole. It was sprayed with two layers o f Rust-Oleum metallic 

paint on the back side enabling the acquisition of photoelastic data. The second sample 

was a 33 cm x 5 cm x 1.6 mm piece of aluminum with a 0.5 mm polycarbonate sheet 

(PS-ID ), purchased from the Measurements Group, Inc. in Raleigh, North Carolina, 

epoxied to the front surface before a 13mm hole was drilled. The samples were placed 

in a hydraulic load frame, MTS 800, in order to subject them to vertical tension.

With a cyclic load of 5 Hz, thermoelastic data was obtained with the DeltaTherm 

1000. This contains a 128 x 128 InSb array detector operating in the 3 — 5 n m  

wavelength region, with a spacial resolution of 0.1 mm and is capable o f capturing
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434 images per second (Stress Photonics, Madison, WI). Thirty seconds o f data 

was collected and averaged to produce a stress map. The replacement of the 

DeltaTherm 1000 with the Model 030-Series Reflection Polariscope manufactured by 

the Measurements Group, Inc., Raleigh, NC, permitted the acquisition of photoelastic 

data under a static load. The thermoelastic and photoelastic results for a hole in plate 

under vertical tension for a polycarbonate sheet attached to aluminum is shown in 

Figure 2.3 and for a  PMMA plate in Figure 2.4.

Photoelastic coatings must be securely cemented to the structure to ensure proper 

strain transmission. In most applications, an aluminum powder filled epoxy cement 

is used due to its excellent adhesion functions and added reflectively [111]. A fter the 

strain measurements are complete, the coating needs to be removed to restore the object 

to its original state. There are three methods for removing the photoelastic coating -  

chemical, thermal, and mechanical. The chemical method involves submerging the test 

object in a solvent, such as methylene chloride, for a period of about 12 hours. For 

this method to work properly, bond failure between the coating and test part must be 

initiated at several points along the edge of the coating to allow the solvent to attack the 

adhesive. The second method of coating removal is by thermal methods. Heat alone 

will not remove the photoelastic coating, but it can be pried, scraped, or pulled o ff more 

easily when heated to about 100— 150°C. This method will require final finish cleaning 

of the surface by mechanical or chemical means to remove any remaining cement. The 

third technique involves various mechanical methods: when all else fails, the coating 

can always be removed by chipping, sand blasting, or grinding [112].
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These methods of coating removal can be very harmful to the test object because 

it can be damaged by the solvents, heat, or mechanical efforts to chip the coating away 

using a hammer and a chisel. If the dual-use coating was tinted and sufficiently durable 

then it could be used as a “paint” for corrosion protection, aesthetics, etc., as well as 

for stress measurements on any structure or part in its natural environment.

Because of its durability and its photoelastic characteristics, epoxies are a top 

selection for the dual-use paint coating. The Measurements Group, Inc. sold a 

Bisphenol-A based Epoxy Resin (PSO-3) which was sprayed onto the surface of the 

object following the application of a reflective layer o f diglycidyl ether o f Bisphenol-A 

(RSO-3). This coating provided a rapid technique for covering parts, but it was difficult 

to control the coating uniformity and thickness and has since been taken off of the 

market. In spite of the problems, PSO-3 was tested as a dual-use coating.

Coating candidates were not limited to ones in Table 2-1. Several birefringent 

polymer films were obtained from Dr. Catharine Fay of the Composites and Polymer 

Branch at the NASA Langley Research Center in Hampton, Virginia. The list included 

LaRC-lA  Extruded film #5A, Kapton® HA, UPILEX®  R, LaRC 8515, TOR, 

K apton®  HY, Teflon, Mylar, UPILEX® S, and LaRC - 1AX. These films varied 

in color from clear to a brownish-orange, in optical transmission from  transparent to 

opaque in the visible, and in thickness from 25 /zm to 75 /zm. Although these materials 

were expected to be opaque in the infrared due to their chemical structure, testing of 

these films in the 3-5 /zm IR showed differently. One possible reason was that the film 

was too thin to show total opaqueness. Increasing the thickness or the addition of other 

chemicals may have allowed the film to become totally opaque in the 3 — 5 /zm IR
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band. The investigation o f these materials stopped at this point because PMMA and 

polycarbonate had already been identified as dual-use coating candidates and further 

chemical study on the birefringent polymers was out of the scope o f  this thesis.

2.4 Reflective Backing

The backing layer in reflection photoelasticity consists of metal particles 

suspended in an epoxy or other adhesive. Because of the added width that this layer 

contributes to the overall thickness of the photoelastic coating, other products were 

compared in reflectance and in thickness to see if spray paints or other types of materials 

exhibited similar characteristics. Nine samples were selected, among them were Rust- 

Oleum Metallic Spray Paint (1), Rust-Oleum High Heat Gray Paint (2), MIL-P-53022B 

Gray Primer (3), Hydropox 4:1 Gray Epoxy (4), 20 /zm Aluminum spheres suspended 

in (The Measurements Group) PSO-3 Photoelastic Coating (5), 20 /zm aluminum 

spheres suspended in Elmer’s Glue (6), (The Measurements Group) PS-IE  photoelastic 

sheet with reflective backing (7), aluminum repair tape (8), and RSO-3 spray reflective 

backing (9). The function o f this surface is to reflect the incident light without affecting 

its polarization. To test these nine samples as to their ability to preserve polarization 

upon reflection, they were placed in front of a reflection polariscope which illuminated 

each surface with vertically polarized light. The samples were then viewed through an 

analyzer with its polarization axis first parallel and then perpendicular to the incident 

light as shown in Figure 2.5.

Initial inspection of Figure 2.5 showed Rust-Oleum Metallic Spray Paint (1), Rust-
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(a) (b)

Figure 2.5. Various surfaces subjected to polarized light and observed through an analyzer that is (a) parallel and
(b) perpendicular to the incident light. Material list given in the text. ^
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Sample Number

Figure 2.6. Ratio o f the parallel to perpendicular polarization pixel values for reflection 
of surfaces 1 - 9. The industry standard is denoted by the dashed line for com parison.

Oleum High Heat Gray Paint (2), PS-IE  photoelastic sheet with reflective backing (7),

aluminum repair tape (8), and RSO-3 (9) had similar characteristics: they were bright

with the analyzer parallel and dark with the analyzer perpendicular to the incident

polarized light. The remaining materials all exhibited a gray appearance due to much

of the light either being scattered away from the analyzer or the surface changed the

polarization of the wave. Further analysis was done by calculating the ratio between

pixel values in the parallel and perpendicular analyzer images and comparing it to  the

industry standard, sample 7, as seen in Figure 2.6. Ratios at or below the industry

standard are materials that would work as well as the current available reflective

backing. The metallic Rust-Oleum paint (1) possessed the lowest ratio follow ed by

the RSO-3 (9). The Rust-Oleum High Heat Gray Paint (2) also preformed w ell as a

reflective backing although its ratio was slightly larger. A small amount o f saturation

was observed in the parallel polarization image for the metallic Rust-Oleum pain t (1)
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which could have lowered the calculated ratio. Estimates indicate a corrected ratio 

value of approximately 0.05.

It was clear from this analysis that the Metallic Rust-Oleum paint performed 

as well as the industry standard at a substantially smaller thickness, 10 nm  for the 

paint and 250 n m  for the backing plus adhesive. This material, in combination with 

other identified birefringent coatings, was a candidate for the dual-use coating “paint” 

described earlier.

2.5 Deposition

Various combinations of birefringent coatings and reflective backings were 

prepared for testing. PSO-3 was applied using a  Paasche Airbrush to a thoroughly 

cleaned 33 cm x 5 cm x 1.6 mm piece of aluminum which was heated to 35°C. Several 

problems were encountered with the application o f this material to the aluminum, the 

main one being the spraying of the epoxy because of clogging in the airbrush.

The airbrush was equipped with two different types of containers to hold paint -  

a  small jar with a plastic straw in the cap and a small metal cup. Very little o f the 

epoxy was sprayed onto the sample when the small jar was used even with increased 

air pressure. When the ja r was replaced with the small metal cup, flow of the epoxy 

through the airbrush onto the sample was easier. The differences between the containers 

were with the jar set-up pulling the material up through a plastic straw compared to the 

metal cup having a small tube at the bottom. It was suspected that the epoxy stuck 

to the plastic straw causing a decrease in flow during application. W. E. Witzell also
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encountered difficulty when spraying photoelastic coatings. His primary problem was 

with the epoxy setting up in the spray gun during the application. When he was able 

to have the material pass through the spray gun uninterrupted by either controlling the 

temperature of the exothermic reaction or varying the amount of the catalyst, he found 

longer curing times and runs in the coating on the surface [113].

Once the coating was applied to the object, the epoxy was allowed to cure for 

24 hours at room temperature or for about 20 minutes at 93°C. When left to cure at 

room temperature, humidity kept the material tacky for days while the use of an oven 

and hot-plate yielded samples that sometimes contained bubbles. The formation o f the 

bubbles was not suspected to be related to the spraying technique because there was no 

evidence of them once the spraying was complete. The use of a dry box assisted in the 

removal of humidity during room temperature drying but was not always successful and 

available for use. Replacement of the airbrush with an ordinary paint brush resulted in 

a few better samples but the main difficulty with curing remained. Difficulty with this 

product was not unique to this research. PSO-3 and RSO-3 have since been taken off 

of the market because of their difficulty in application.

Other combinations of materials were tested. Among them was TOR on Rust- 

Oleum gray high heat paint. It was found that the N-Methyl-2-Pyrrolidone solvent for 

the TOR rewet the dried paint giving it the appearance of paint stripper on an old piece 

of furniture. Next was PMMA dissolved in xylenes applied on Rust-Oleum metallic 

paint. Once the solvent evaporated in a dry box, there was significant evidence that 

the xylenes interacted with the paint because the surface showed signs of bubbling and 

streaking. Inspection of the contents of the metallic paint showed it to contain toluene
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and xylenes. With the solvent of the PMMA identical to chemicals used in the spray 

paint, it would rewet the paint causing some mixing between the two layers. However, 

when the paint was replaced by a metallic suspended epoxy, the PMMA deposited 

on the surface nicely. W ork with other materials such as poly-Bisphenol-A Carbonate 

produced films that curled up on themselves once the solvent evaporated. Conversations 

with Dr. Floyd Klavetter, from the Department of Applied Science at the College o f 

William and Mary, attributed this effect to the lack of a polar surface for the adherence 

of the polymer. The coating found itself more polar than the substrate, resulting in the 

curling of the film upon drying.

Although the surface requirements for thermoelastic and photoelastic stress 

analysis seem to be in opposition to each other, polycarbonate and PMMA have shown 

promise. Not only are they birefringent in the visible but they are also opaque in the 

infrared preventing the thermographic imager from seeing the low emissive reflective 

backing. These coatings were used to collect both thermoelastic and photoelastic data 

which were then combined to determine the fiill-field stress tensor components. Before 

any data analysis, the theory behind fringe generation and heat production must be 

understood to ensure confidence in the calculated stress values. These theories were 

united in a computer code to simulate the thermoelastic stress maps and photoelastic 

fringes. O f the two theories, it was birefringence that was the most challenging to 

model.
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Chapter 3 

Photoelastic Theories

James Maxwell developed the one-dimensional theory of photoelasticity because 

of David Brewster’s observations. More recently, increased understanding in the fields 

of optics, elasticity, and electromagnetics have provided additional explanations of 

birefringence. The following is a description of the one-dimensional theory followed 

by a modem optical and electromagnetic analysis. The objective is to combine all three 

theories into a model that will be able to  generate photoelastic fringes. Errors, such 

as non-retroreflection, will be systematically introduced into the model and the effects 

observed in the resulting fringe patterns. How the modified photoelastic data influences 

the calculation of the full-fleld stress tensor is o f significant interest to this thesis.

3.1 One-Dimensional Theory

As a material is subjected to an applied stress, the density of the object changes 

resulting in a modified index of refraction. Some optically isotropic materials become 

anisotropic when subjected to an applied load resulting in the propagating light wave 

being decomposed into an ordinary and extraordinary wave each having different 

velocities and polarizations orthogonal to one another. The relative retardation, 6 , 

between these waves is the difference in their optical path lengths,

6  = d ( n e — n 0) ,  (3.1)
54
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where n e and ne is the indices of refraction for the extraordinary and ordinary waves, 

respectively, and d is the thickness of the medium. Brewster’s Law connects the 

difference in the indices of refraction with the difference in the principal strains by

(nx -  T i y )  =  K  (ex -  € y )  (3.2)

where K  is defined as the strain-optic coefficient and is a property of the material, and 

ex and ey are the principal strains. The combination of equations (3.1) and (3.2) yields 

the photoelastic equation for reflection

6  NX
(Cl “  2d K  ~  2d K '  C }

where N  is the fringe order number.

Photoelastic fringes are observed through a polariscope which reveals two sets of

fringes. A plane polariscope produces linear polarized light which is incident upon a

strained sample coated with a birefringent material, and the reflected light is analyzed

by a second linear polarizer set perpendicular to the first, as depicted in Figure 3.1. The

intensity of the light passing through the second polarizer has the form

7tS
I  =  a 2  sin2 2 (/? — a)  sin2 — , (3.4)

A

where a  is the angle between the polarization axis o f the first polarizer and the y-axis 

and (3 is the angle between the principal x-axis and the y-axis. The intensity becomes 

zero when the crossed polarizers becomes parallel to the direction of the principal 

strains in the coating. Thus, a plane polariscope is set-up to measure principal strain 

direction. The images used to determine this quantity are called isoclinic fringes

Placing quarter-wave plates after the polarizer and before the analyzer converts the 

linear polariscope into a circular polariscope, as seen in Figure 3.2, which produces a
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different set of fringes. The intensity o f light emerging from a circular polariscope is

and becomes zero when 6  =  NX. Thus a circular polariscope is setup to measure the 

difference of the principal strains, referred to as isochromatic fringes [114].

This level o f theory is adequate for experimental determination of fringe order, 

N, and strain direction, but offers little insight into the anisotropic characteristics of 

the material. A more defined picture is formed with the investigation of light waves 

propagating through a stressed material.

3.2 Modern Optics

Anisotropic materials have physical properties that vary with direction. Assuming 

the material is isotropic with regards to magnetic permeability, /z, anisotropic for the 

permittivity, e, and is a  lossless medium, the impermeability tensor, can be defined 

from the relationship between the electric field vector, E , and the electric displacement,

In general there are nine elements associated with the impermeability tensor but energy 

consideration, such as the energy of the electromagnetic field and the energy flux 

(Poynting vector) which are valid for isotropic materials are also valid for anisotropic 

materials. In addition the assumption of no energy loss in the medium results in the 

permeability tensor being Hermitian, will reduce the tensor to six or less independent 

elements.

(3.5)

3

(3.6)
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Properties of the impermeability tensor can be understood through the use o f a 

geometric surface, called the optical indicatrix, generated from the electric energy 

density equation,

by substituting the principal values o f the electric displacement for the electric field 

vector. This equation expresses an ellipsoid whose semiaxes equal the square root of the 

principal dielectric constants and is known as the optical indicatrix. It should be noted 

that other studies of anisotropy label this ellipsoid as the index ellipsoid, reciprocal 

ellipsoid, poinsot ellipsoid, and the ellipsoid of wave normals.

The optical indicatrix is used to determine the electric field, E, the propagation 

vector k, and the Poynting vector, S, given the displacement vector, D . Alternatively 

it can determine D  and E  given k. Drawing the propagation vector from the center of 

ellipsoid in the appropriate direction, a  plane normal to propagation vector slices the 

ellipsoid forming an ellipse. The principal semiaxes of this ellipse are proportional 

to the indices of refraction, n\ and ri2, and coincide with D i and D 2, two orthogonal 

polarizations for the wave with wave vector k, as illustrated in Figure 3.3. For certain 

directions of k, the plane normal to k  will cut the ellipsoid forming a circle. These 

special directions are referred to as the optic axes of the material. If there is only one 

such direction, the material is referred to as uniaxial, and a material with two special 

directions, is called a biaxial material.

2U e  =  D  • E. (3.7)

This can be rewritten as

(3.8)
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Figure 3.3. Optical indicatrix ellipsoid intersected by a plane perpendicular to the 
propagation vector k  forming an ellipse. The principal semiaxes of the ellipse coincide 
with Di and D2 and are proportional to the indices of refraction m and n2 [1 15].

As stated above, the principal axes for the ellipse are proportional to the indices

of refraction. Through the use o f Fresnel’s equation written as (see Appendix A for

details)

the relationship between the propagation direction and the index of refraction can be 

determined. This equation is quadratic with respect to n  and has two positive roots, nf 

and n \, which are squares of the principal indices of refraction. They are related to the 

impermeability tensor by

where c* is the principal permittivity in the material and e0 is the permittivity of free 

space. Because applying a force to an isotropic material produces a small change in the 

index of refraction, the impermeability tensor can be expanded in a power series of the 

total applied field,

(3.9)

-QijkmTjm for stress and 

+PijkmSjm for strain.

(3.11a)
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The tensors q and p contain the stress-optic values and the strain-optic values, 

respectively, of the coating and are related through the elastic stiffness constants by

The waves associated with n \  and n 2 from FresneFs equation are referred to as the 

ordinary and extraordinary waves respectively which have a phase difference of

where L  is the thickness of the material. The physical interpretation of this equation is 

seen when the relative retardation, 6 , is incorporated into an equation which converts 

the phase difference into an intensity o f light transmitted through crossed polarizers,

With monochromatic light, the contours of equal intensity determined by equation

(3.14) represent contours of equal stress [115].

This analysis connects the impermeability tensor to the induced stress in a material 

and permits the calculation of the fringes. Modem optics predicts the two waves 

propagating in the anisotropic medium but does not provide a mathematical expression 

for them. Equations for the ordinary and extraordinary waves are found when exploring 

electromagnetic wave theory.

3.3 Electromagnetic Wave Theory

The fundamental equations for electromagnetic wave theory were established 

in 1873 by James Clerk Maxwell and experimentally verified by Heinrich Hertz in

Pijkl QijmnCmnkl ■ (3.12)

6  =  kQL  (nj — n 2) (3.13)

(3.14)
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1888. This elegant theory embodies many principles and concepts which served as 

fundamental rules of nature and forms a vital link to other scientific disciplines.

M axwell’s equations can be written as
Q

v  X  E ( r , f ) + — B(r,<) =  0 (3.15a)
Q

v  x H ( r , t ) —— D ( r , 0  =  J ( r ,<)  (3.15b)

V  - B (r , f) =  0 (3.15c)

V - D ( r , f )  =  p(r, t) (3.15d)

where E  is the electric field strength, B  is the magnetic flux density, H  is the magnetic 

field strength, D  is the electric displacement, J  is the electric current density, and p 

is the electric charge density. These relations are the fundamental laws governing 

the behavior of electromagnetic fields in free space and in media. No reference has 

been made here to specific material properties which would provide connections to 

other disciplines of physics, such as plasma physics, continuum mechanics, solid- 

state physics, thermodynamics, etc. The behavior of the electromagnetic waves in the 

presence of a medium, whether it is diffracted, refracted, or scattered, is of primary 

interest over deformation or movement o f the medium. Thus the constitutive relations 

characterize a material medium according to its various properties. For an isotropic 

material

D  =  cE  (3.16a)

B  =  pH . (3.16b)

An isotropic material is defined as one in which the field vector E  is parallel to D  and

the field vector H  is parallel to B . Inside the material the permittivity, e, is determined
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by the electrical properties of the medium and the permeability, p, by the magnetic 

properties of the medium.

More generally, a material is described by its permittivity tensor,

£xx £-xy
C =  ( £ y x  Cyy €y~ |  . ( 3 . 1 7 )

^ z x  ^ z y  ^ z z

When rotated to the principal optical axes, the this matrix has the form

€  =

ex 0 0
0 ey 0 
0  0  ez

( 3 . 1 8 )

with ex , ey, and ez referring to the principal axes o f the crystal. For cubic crystals, 

the diagonal elements are equal and the material is considered optically isotropic. 

In tetragonal, hexagonal, and rhombohedral crystals, two of the three parameters are 

equal. Such crystals are optically uniaxial exhibiting a two-dimensional degeneracy; 

the principal axis that exhibits this anisotropy is called the optic axis. For a crystal 

with the z-axis as the optic axis, it is regarded as positive uniaxial if e. > e and 

negative uniaxial if ez < e. In orthorhombic, monoclinic, and triclinic crystals, all three 

crystallographic axes are unequal making the medium optically biaxial.

In this study, time-harmonic (monochromatic or continuous) waves will be 

considered. The benefit o f using such waves are (1) the continuous wave assumption 

can be used to eliminate the time dependence in Maxwell’s equations and thus 

considerably simplifying the mathematics; (2) once the continuous wave case is solved
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and a sound understanding is developed for the frequency-domain phenomena, Fourier 

theory can be applied to study the time-domain phenomena; and (3) continuous wave 

representation covers the whole spectrum of electromagnetic waves. For a continuous 

wave, Maxwell equations (3 .15a-d) are rewritten as

V  x E  =  iw B (3.19a)

V  x H  =  —i a / D + J  (3.19b)

V - B  =  0  (3.19c)

V  D  =  0. (3.19d)

In a source-free region, J  =  p =  0 ,  plane waves of the form e‘k r convert these 

equations to

k  x  E  =  u/B (3.20a)

k x  H  =  —w D  (3.20b)

k  B =  0  (3.20c)

k  D =  0 .  (3.20d)

From these equations it is obvious that the electric displacement and magnetic flux 

density are always perpendicular to the wave vector, k. The plane containing both D  

and B  is referred to as the DB plane. For a medium with B  =  /xH, the vector H  also lies 

in the DB plane. If the medium is anisotropic with respect to permittivity, the electric 

field vector may not lie in the DB plane. For this reason the polarization of the plane 

wave will be denoted by the vector electric displacement instead of the electric field.

To facilitate discussions o f wave behavior and solutions for the field vectors inside 

a homogeneous medium, a new coordinate system is needed. This new coordinate
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Figure 3.4. The kDB coordinate system as related to the cartesian axes [116]. 

system will consist of the propagation vector and the DB plane and be referred to as the 

kDB system. This system has three unit vectors £1 , £2 , and £ 3  where £ 3  is defined as the 

direction of propagation vector as shown in Figure 3.4. The transformation between

the kDB system and the Cartesian system is given by

( sin <f> — cos 6  0 \
cos 6 cos<(> s in 6 cos<t> — s in# I . (3.21)

sin 8  cos <p sin 6  sin 4 > cos 0 . I

Within the frame of the kDB system, equations (3.20a-d) take the form

k  x E/kDB =  u;BkDB (3.22a)

k  x =  — ujD/cdb (3.22b)

k  • B kDB =  0 (3.22c)

k  • D kDB =  0. (3.22d)

When k  = £3 k, B 3  = D 3  =  0 and the constitutive relations written as

EjfcDB =  K-kDB  • DfcOB (3.23a)

H/tDB =  f iB kDBi (3.23b)

equations (3.22a) and (3.22b) can be written in matrix form as

Ui s)(S)-(% s)U) <3-24>
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and

" U M °  o" ) ( S ) (3 -25>

where u  =  uj/k, k = 1/e, and u  =  1///.

The tensor #c is called the impermittivity tensor. In a uniaxial medium with the

optic axis in the £ direction, the impermittivity tensor has the form

/  k 0 0 \
k  =  0 k 0 . (3.26)

\  0 0 K  z  J
Transformation to the kDB system by KkDB =  T £ran3 • n  • yields

(k  0 0 \
0 k  cos2 0 +  k z sin2 6  (k  — Kz)s in 0 co sd  1 (3.27)

0 ( k  —  k z ) sin 6  cos 6  k  sin2 6  +  k z c o s 2 6  )

.Using this result in equations (3.24-25) produces

(:- L)(a)-(°, .')(£)
and

oM) ( S ) -  ( 3 2 9 )

Eliminating B  from these results in the relationship

Four cases satisfy (3.30). The first is Dx =  D* =  0 implying no field. The second

case is £>i /  0 and D2 =  0 which corresponds to a linearly polarized wave in the ex

direction with a phase velocity of

U =  ±y/l/K \i =  ± .\/v k . (3.31)

Case three is D \ = 0  and D 2  ^  0 corresponding to a linearly polarized wave in the e2 

direction with a phase velocity of

u = ±y/i/K . 2 2  =  ± \J v  (k  cos2 0  + k z sin2 9). (3.32)
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Case four has D \ ^  0 and D 2 / 0  which only occurs if k u  = k 22 and is only true for 

an isotropic medium or the propagation direction along the optic axis.

The result o f these two waves propagating with different phase velocities in a 

medium is called birefringence. When an electromagnetic wave enters an optically 

uniaxial medium, it decomposes into two linearly polarized waves. With the y- 

axis perpendicular to the front surface and the z-axis as the optic axis, the spacial 

dependence o f the D  vector becomes [116]

D = x  D 0  exp
tu y

.v /™
+ z  De exp

tujy
(3.33)

Conversion of this equation to an electric field vector provides the necessary 

equation for the material propagating wave. Used in combination with equations 

for an incident and reflected wave, an anisotropic electromagnetic boundary value 

problem can be established which will enable the calculation o f photoelastic fringes. 

This method is preferred over the other theories in that errors can be systematically 

incorporated into the model and their effects observed in the resulting fringe patterns. 

In the next chapter this model will be tested on a hole in a plate, a  hole with a notch, 

and two holes in a  plate under vertical tension for comparison to experimental results.
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Chapter 4 

Anisotropic Electromagnetic Boundary Value Problem

The motivation to develop an alternate description of the photoelastic effect 

evolved from the inability o f the existing theories to relate parameters, such as angle o f 

incidence and surface roughness, to observe the effects on the resulting photoelastic 

fringes. The anisotropic electromagnetic boundary value model will combine 

electromagnetic wave theory and modem optics with appropriate electromagnetic 

boundary conditions to produce photoelastic fringe patterns for comparison with 

laboratory observations. This method is non-graphical and capable o f producing the 

phase and amplitude of all incident, reflected, and material propagating waves.

4.1 Isoclinic Model

Consider a plane electromagnetic wave traveling in the negative z  -direction 

normally incident upon a birefringent coating of thickness d  with the x  and y  axes in 

the plane o f the material. The plane wave will pass through a polarizer aligned along 

the y  axis, interact with the stressed medium, and then pass through an analyzer aligned 

along the x  axis as seen in Figure 4.1. Two coordinate systems will be utilized in this 

model -  the kDB system for the material frame and Cartesian for the analyzer and 

polarizers in the lab frame.

68
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polarizer analyzer

Figure 4.1. Set-up for the isoclinic model.

The unloaded material is optically isotropic requiring the material frame (kDB) 

to be aligned to that of the lab system (Cartesian). From Figure 3.4, it is clear that 

QkDB =  0° and <t>kDB =  90°. Substitution of these values into the transformation 

equation (3.21) yields
( 1  0 0 \

Tfrona =  0 1 0 .  (4.1)
\ 0  o l /

The kDB coordinates, rkDB, are related to  the Cartesian coordinates, r, by r kDB =

T trans ■ r  • T tra„a which, when written explicitly, yields

ei =  x, e2 =  y, and e3 =  z. (4.2)

When an external load is applied to the material, it becomes optically anisotropic. 

For a material under in-plane uniaxial tension, the relation between the impermeability
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tensor and the applied load, as given in equation (3.1 la), can be written as

(  \tx ^ /  9<°> >
\ y 9(0)
hz 9(0)
3\/z 0

0
V 3ry /  ̂ 0 )

+

f  Pxx Pxy Pxy 
Pxy Pxx Pxy 
Pxy Pxy Pxx 
0 0 0
0 0 0

V o o o

0
0
0

Pzz
0
0

0
0
0
0

Pzz
0

0 \  
0 
0 
0 
0

Pzz I

(  T~  \  
0
0
0
0

\  0 /

(4-3)

where pzz — pxx — pxy and the stress-optic coefficients, p, are for an isotropic material.

Writing the new impermeability tensor in a normal matrix form results in

9 = (4.4)
3(0) +PxxTxx o 0

0 3(0> +PxyTxx 0
o 0 9<°> + PxyTxl

When compared to equation (3.26), (note the relation between impermeability and

impermittivity is 9 =  e0n  ), this equation signifies an optically uniaxial medium 

with the optic axis along the x  axis in the material. For convenience the material 

coordinates will not be labeled e.\ or e2 but rather x '  and y" and be referred to as the 

principal stress axes. From the one-dimensional theory o f  photoelasticity, the angle o f 

polarizer/analyzer unit and the angle o f the principal axes will vary. The polarizer will 

be aligned along y  and the analyzer along x. The angle 4> will measure the rotation o f 

the crossed analyzer/polarizer unit from the y axis and the angle 6  will measure the 

rotation of the principal axes from the x  axis.

The general expression for a  CW, linearly polarized, normal incidence light wave

is

E i =  (x  cos <t> +  y sin <f>) A  e~tk°z . (4.5)

This is incident upon the stressed medium and must be rotated to the kDB system for 

further analysis,
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Photoelastic coating

Reflective backing

Incident wave (I)

Reflected wave (R) Transmitted wave (T)Material wave 
(M)

♦
z = 0

♦
z = -d

Figure 4.2. Propagating waves associated with the isoclinic and isochromatic 
theoretical models.

,-ikoz (4.6)
E f  \  /  cos#  sin#  0 \  /  Acostp
E?f I =  I —s in #  cos# O i l  ,4 s in 0  | e
E f  )  V O  0  1 /  V  0

In the vicinity of the material, there will be an incident (/), reflected (/?), material

propagating (Af), and transmitted (T) waves as shown in Figure 4.2.

These have the form, in the material system,

E'r =  [:r ' cos (# — 0) +  i}' sin (# -  0)] A  e~tk°z (4.7a)

E r  = [x'Bx. +  y'By>} eik°z (4.7b)

  twr
(4.7c)E m  =  x  k x x  D 0  e  +  y  D e e  +

x  kxx D 0  e +  y Kyy D e e v^w  

E't  = [x'Fx> + y F y .}  e ~ iklZ (4.7d)
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By requiring the normal and tangential components of B , D , E , and H  to be continuous 

across the boundaries,

n  • (B 2  — B i)  =  0 n  x (E 2  — E i)  =  0 (4.8)

n ■ (D 2  -  Di) =  0 n  x  (H 2  — H i)  =  0,

four equations are generated at the air/photoelastic coating intersection,

E f ( z  = 0 ) + E%(z =  0) =  E l f {z =  0) (4.9a)

E-f (z  =  0 )  +  E yR(z =  0 )  =  E lf{ z  =  0 )  (4.9b)

H f ( z  = 0 )+ H % (z  =  0) =  H%f{z =  0) (4.9c)

H j ( z  = Q ) + H yR(z =  0 )  =  H m (z  =  0 ) ,  (4.9d)

and four at the photoelastic coating/reflective backing boundary

E^f (z = —d ) =  E t (z =  —d) (4.10a)

E vm  (z =  —d) =  Ej*(z = —d) (4.10b)

H xm  (z = ~d) = H t (z = —d) (4.10c)

H vm  ( z  = - d )  = Hj-(z  =  —d). (4 .lOd)

If the reflective backing was a perfect conductor, E t  =  0. The material wave would 

then be reflected upon interaction with the back surface (z =  —d) reducing the number 

of equations in (4.10) to two (a-b). The remaining six equations are solved for the six 

unknown amplitudes, B x, B y, D 0, De, D0, and D e. For the case where the reflective 

backing has a finite conductivity whereby E"t  ^  0, it will be assumed that the energy 

transfer from the material wave to the transmitted wave is small so that the perfect 

conductor calculation is a close approximation. With this in mind, the amplitude and
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phase of each wave can be calculated from the six equations (4.9a-d) and (4. lOa-b). The 

polariscope records the backscatter from the sample therefore requiring the calculation

of B x> and By>,

B x' = k0 y/VKXxA  cos (i9 -  <f>) [cos ( ;? = = )  +  (

r) -  0 sin ( ^ ) )cos ( —̂ L
\  s / V K l .

=

cos ( —0 = (,sin (vfe))

(4.11a)

(4.11b)

Rewriting these equations in terms of a phase and amplitude results in the expression

for the reflected wave

where

and

E r  =  \x' cos ( 6  — 4>) e,r* 4- y' sin (0 — 4>) e,r °] A  e t k ° 2

r e

r c

=  arctan  

=  arctan

n e sin 2 K \d
cos2 K \d  — n 2 sin2 K \d  

n a sin 2K2d 
cos2 d K i  — n 2 sin2 d K 2.

K \  =  

K 2  =  

n e = 

n 0  =

u
y/VKxx

U
y /V K y y

E i
ko
E i
ko

(4.12)

(4.13a)

(4.13b)

(4.14a)

(4.14b)

(4.14c)

(4.14d)

Inspection of equation (4.12) shows an ordinary wave traveling along the y' axis and 

an extraordinary wave along the x '  axis, which is consistent with the behavior of an
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anisotropic material. The reflected wave in (4.12) is rotated back to the lab system

E f  \  /  cos 9 — sin 9 0 \  /  cos (9  — 0) e‘re
£ ' / )  =  [ s in#  cos# 0 1 I sin (# — 0) e,r° I A  e~lkoZ (4.15)
E i )  \ °  0 1 /  V 0

resulting in the expression

E r  = x  A  etk°z [cos#cos(0 — 0)e,r '  — s in  0 sin (4 > — 0)e,r°] -f (4.16) 

y  A  exk°z [sin0cos(0 — 0)e,r '  — co s0 s in (0  — 0)e,r°] .

The reflected wave now passes through the analyzer which only transmits that portion 

of E r  that is parallel to its polarization axis. This is written as

Eanaiyzer =  x  E \  cos (0  — 9 0 ° )  +  y E ^  sin (0  — 9 0 ° )  (4.17)

where the 9 0 °  signifies crossed polarizer and analyzer.

Comparison between theoretical and experimental results can only be done by 

converting this equation to an intensity value. This is accomplished by using

/  =  ( E l )  +  (£ £ > +  2 ( £ ,• £ „ >  cos (6 ) (4.18)

where 6  is the phase difference between the two waves. Combining equation (4.17) and 

(4.18) results in the linear polarization intensity equation

I  linear =  A \  (cos2 9 sin2 0  +  sin2 6  COS2 0) +

A l  (sin2 9 sin2 0  +  cos2 6  cos2 0) -(- (4.19)

A eA 0  sin 29 cos 20 cos ( r e — T0)

where

A e =  A  cos (0 — 9) (4.20)
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A 0  = A  sin {$ — 6 ).

Using the trigonometric identity cos 26 =  1 — 2 sin2 <5, equation (4.19) can be written as

Iunear =  A 2  (cos2 0 sin2 <f> +  sin2 0 cos2  <p) +

A 2  (sin2 0 sin2 <p +  cos2 6  cos2 d>) + (4.21)

A eA 0  sin 20 cos 2 <f) — 2 A eA 0  sin 20 cos 2  <t> sin2 

Numerical evaluation of this equation shows that the fourth term dominates the 

expression. This occurs because the observed fringes are a product of the phase 

difference between the extraordinary and ordinary waves. The contribution from the 

amplitude terms alone is extremely small. This simplification creates a modified linear 

intensity equation

Iunear =  A 2 sin [2 (0 — (j>)} s in 20 cos 2 4 >sin2 ^ . (4.22)

With the amplitude squared defined as

a2  =  A 2  s in  20 cos 2 <f>, (4.23)

equation (4.22) can be rewritten as

I lin ear = a2  sin [2 (0 -  0)] sin2 ( r<! 2 • (4.24)

Comparison of this equation with the linear intensity equation (3.4) from the one­

dimensional theory,

A ) '
shows remarkable similarities. The advantage o f (4.24) over (3.4) is the detailed 

information contained in the anisotropic electromagnetic boundary intensity equation 

that is not explicitly involved in the one-dimensional theory. For any case where the 

stresses are known because the impermittivity tensor links the stresses with the phase of

/  = 2 •  2 a  sm [2 ( 0  — a)] sin5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

the waves, equation (4.24) can be used to simulate the photoelastic fringes. An added 

feature of equation (4.24) is its ability to include problems with optical components 

and reflective backings, such as imperfect polarizers and rough surfaces, and observe 

their influence on the resulting fringe patterns. Incorporating errors into the model in a 

systematic method and observing any changes in the photoelastic fringes will enhance 

our understanding of fringe generation by an applied stress and enable us to take the 

necessary steps to correct these problems.

4.2 Isochromatic Model

Isoclinic fringes are one of two fringe patterns produced using photoelasticity. 

The isoclinic fringes are used to extract the direction of the principal stresses 

whereas the isochromatic fringes provide the difference between the principal stresses. 

Isochromatic fringes are observed when linear polarized light is replaced with circular 

light. The mathematical development is similar to that of the isoclinics except with 

the addition of two quarter-wave plates, one following the polarizer and the other 

proceeding the analyzer as shown in Figure 4.3.

Isochromatic fringes are not dependent on the orientation o f the polarizer/analyzer 

unit making the mathematical equations independent of <p. The incident polarized light 

will have the form

=  (4.25)

This wave is incident on the first quarter-wave plate with its fast axis f  radians from the 

x  axis. Transmission of this wave through the quarter-wave plate results in a * rotation
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quarter-wave
plate

quarter-wave
plate

Z

polarizer

Figure 4.3. Set-up for the isochromatic model. The quarter-wave plates have a 
coordinate system that is rotated 45° from the lab system. The fast axis (F) denotes 
the component o f the wave that will lead by a phase of 90°.

given by

- D U . 0- * )  (4-26)
yielding

E q i = xq U )  A » + V Q (4.27)

which is the equation for circularly polarized light. The unit axes x Q and yQ refer to 

the quarter-wave plate so as not to be confused with the primed material coordinate 

systems (kDB).

The light wave defined by (4.27) is incident upon the birefringent material 

requiring a coordinate transformation to the material system.

where ( 0  — is the angle between the fast axis o f  the quarter-wave plate and the x' 

axis as seen in Figure 4.4.
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x’ axis of the material system

Fast axis of the quaiter-wave plate

n/4

F igure  4.4. Relation between the quarter-wave plate axes and the material coordinate
system.

This wave is used in place of E)  in equation (4.7a) to calculate the coefficients B x> 

and By- resulting in

B x- =
( ^ )  e‘( f ~6) [(—1 +  ei2°x) +  (1 +  ei2°x) y / = « ]

(—1 -I- ei2a*) k 0 Kxx — (1 +  ei2a*)
(4.29a)

u)d
(4.29b)

(&) ei{*~6) [ ( - 1 +  e‘2Qw) ko*vy +  (1 +  ei2a«0
B y  =  1--------------------------------------= - * ------- i  (4.29c)

( —1 +  e ‘2av) k 0 K y y  — (1 +  e*2Qw) y j ;

a y = ,____  (4.29d)
v^^vv

Rewriting these equations in terms of phase and amplitude yields the reflected wave 

equation

E'r  =  ( x A b *  eiA'e - i 1 t / 2  +  y A By e,A° )  eikoZ (4.30)
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where

lBi =
(3 § )  K1 +  n l)  +  ( - 1 +  n l ) cos (2/fid)]

sin2 {Kid)  +  n 2  cos2  (Kid) (4.31a)

A„ =  tan - l ge sin ( ^ — 0 ) +  n e sin cos — 0)
£>e cos (* — 0) — n e sin (2K\d)  sin ( j  — 0)

(4.31b)

ge =  n 2 cos2 (Kid)  — sin2 (Kid) (4.31c)

A By =
( ^ )  [(! +  n o) +  ( - 1 +  nl)  cos (2 /r2<f)] 

sin2 (K id)  +  n 2 cos2 (Kid)
(4.3 Id)

A0 =  tan - l q0  sin ( f  — 0) +  n0sin (2AT2d) cos (* — 0 ) 
q0  cos — 0 ) — n a sin (2AT2<f) sin  — 0)

(4.3 le)

ea =  n 2 cos2 (AT2d) — sin2 (K id ) . (4.3 If)

This wave now passes through the second quarter-wave plate with its fast and slow axes 

reversed from  that of the first. This optical element rotates E'r  about z  from the material 

coordinate (kDB) system to the primed quarter-wave plate system by

JTl'x —slow  
Q2

E  v Q2

which results in the equation

F)-(2#:8 “W )(3) «-

E q 2  =  X o [ / tS l cos ( » - (4. 33)  

+Vq [ a b,  sin (e  -  | )  > +  A s , cos (#  -  j )  eiA"e‘“ "2- " /2)] .
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This wave is rotated |  radians about z  and is finally incident upon the analyzer 

with its polarization axis along x . Taking the x  components o f &Q2 yields

Eanalyzer = £  (^<?2 — ^Q 2 ĵ ' (4.34)

Using the relation I  =  E E * results in the intensity equation for circular polarization

I circular =  ~ — -4By)2 +  2Aflx-4By sin2 ^  ^ . (4.35)

Numerical analysis of this equation shows

2 (^ fli  — ^By)2 ^  2 A BxA By sin2 ^  e ^ (4. 36)  

which, for the same reasons as the isoclinic case, simplifies the circular polarization 

intensity to

I circular = 2 A BxA By sin2 . (4.37)

With a 2  =  2A BxA By in the above equation, Idrcuiar resembles the circular polarization 

intensity of one-dimensional theory, equation (3.5),

/ = a2sin2(f)-
As with the isoclinic model, the advantage of equation (4.37) over equation (3.5) is the 

detailed information regarding the propagating waves which form the observed fringe 

patterns.

4.3 Experimental Versus Theoretical Comparison

Theoretical photoelastic fringes are produced by incorporating equations (4.24) 

and (4.37) into a computer program to create intensity contour plots. The code was 

written in Mathematica and used the stresses over the surface of the object calculated 

from known equations or finite element. A common benchmark object for stress
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analysis is a plate with a central, circular hole under uniaxial tension. Equations 

describing the stress field for an infinite plate with a central, circular hole can be 

obtained from various continuum mechanics books and used to generate files o f T x , 

Ty, and Txy calculated at each coordinate location. These files are read into the 

Mathematica model and the stress matrix associated with each coordinate is converted 

to a diagonal matrix (principal stress matrix) through

T x' =  ~ ( T x  "f* -^y) -b 2 — T y )  c o s  ^  T x y  s*n ^

Tyf =  ^  ( T x +  T y ) — ̂  ( T x — Ty ) cos 26 — T xy  sin 26

2 T
tan  2 6  = - f - (4.38a)

ix  y

where 6  is the principal angle [118]. The stress dependent variables in the theoretical 

model are k xx and Kyy  which are used in the calculation o f the phase velocities for the 

ordinary and extraordinary waves. With the impermeability tensor, 9, related to the 

impermittivity tensor, k , by 9= e0/c, the first two components in equation (4.3) can be 

written as

«*x =  +  — (QxxTx- 4- qxyTy') (4.39a)e0n 2 e0

Kyy  =  ----   4- — {qxyTx'  4 -  qyyTy>)  (4.39b)
e0n* e0

where q’s  are the stress optic coefficients and 1 /n2 =  l / e (0). The strain optic 

coefficients are tabulated for selected materials and are converted to stress optic 

coefficients through equation (3.12). The impermittivity components are calculated 

at each coordinate location and used to calculate the intensity in equations (4.24) and 

(4.37) after the selection of the material thickness and wavelength of light used in the
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Stress values T„, Ty, and T,

Calculation o f the intensity

Calculation principal stresses

Calculation o f the impermittivity tensor

Selection of material thickness and wavelength of light

Construction on an intensity contour graph to display photoelastic fringes

Figure 4.5. Flow chart for the theoretical calculation of the photoelastic fringes, 

initial illumination. See Figure 4.5 for a  flow diagram of the code. The resulting graph 

is a surface plot which is then converted to a contour image. Mathematica does not 

easily permit the manipulation of these images, so the intensity information was written 

to a file and analyzed by Microsoft Excel. This spread sheet permitted the adjustment of 

the plotted intensity scale so that various slices of the surface plot could be examined 

and compared with experimental results. The result of the classical Kirsch problem 

solution for a hole in an infinite plate under uniaxial tension is shown in Figure 4.6a 

and is consistent with expected laboratory results.

To obtain the stresses for any object under a myriad of loading conditions, a 

finite element analysis package was used. COSMOS/M, a commercial finite element 

package, was used to build a model of finite dimension and select material makeup. The 

model was subjected to uniaxial tension resulting in contour image plots for Tx, Ty, and 

Txy as shown in Figure 4.7. Because COSMOS/M only provided stress information
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Figure 4.6. Comparison of (a) experimental versus (b) theoretical photoelastic fringe pattern for a hole in plate under 
vertical tension. The experimental image was obtained with the model 030-polariscope and the theoretical image was 
calculated from the Kirsch problem.
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(a) (b) (c)

Figure 4.7. A typical stress contour images for a FEA model of a hole in plate under uniaxial tension: (a) Tx, (b) Ty, (c) Txy. 
A color legend would accompany each image for the conversion of color to stress level.
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at nodal points, the contour plots (an interpolation graphic from the calculated nodal 

stresses) were downloaded into NIH-Image 1.57. This program permitted regions of 

the stress contour image to be saved as text with the pixel locations possessing a 

value ranging from 1 to 255 corresponding to the color at that point. The color was 

converted to stress through the color scale provided by COSMOS/M with each contour 

stress image. Adjusting the existing code to accommodate the new stress information 

provided a method to check the model against objects. The results for a hole in a 

finite plate under uniaxial tension is shown in Figure 4.8. A slightly more complicated 

geometry is a  notched hole is illustrated Figure 4.9. Notice that both contain a dark 

fringe line extending from the notch towards the top and bottom of the hole. A plate 

with two identical offset holes, seen in Figure 4.10, and two different, offset holes 

in Figure 4.11. Both theoretical images are qualitatively similar to the laboratory 

results. These geometries suggest that the electromagnetic boundary value problem 

will produce isoclinic photoelastic fringes for many geometries if given the stress field.

The other set of photoelastic fringes, the isochromatics, proved to be more difficult 

to match with experimental images. This occurred because the fringe patterns are 

dependent upon the applied stress. As the stress changes, so do the isochromatics. 

This problem was not encountered in the isoclinic model because these images are load 

independent. Isoclinic fringes measure the direction of the principal stresses which do 

not change with increasing loads whereas the isochromatics measure the difference in 

magnitude between the principal stresses. As the applied load increases, so does the 

magnitude. The comparison between an experimental image and the Kirsch problem is 

shown in Figure 4.12. Although the images are consistent, they are at different applied
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(a) (b)

Figure 4.8. Comparison of (a) experimental versus (b) theoretical photoelastic fringe patterns for a hole in a
PMMA plate under vertical tension. The theoretical image was calculated using Finite Element Analysis.
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(a) (b)

Figure 4.9. Comparison of (a) experimental versus (b) theoretical photoelastic fringe patterns for a hole with a
notch in a PMMA plate under vertical tension. The theoretical image was calculated using Finite Element Analysis.
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(a) (b)

Figure 4.10. Comparison of (a) experimental versus (b) theoretical photoelastic fringe pattern two identical holes
in a PMMA plate under vertical tension. The theoretical image was calculated using Finite Element Analysis. The
experimental image (a) shows the reflection of the light source in the upper right corner. oo
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mm

Figure 4.11. Comparison of (a) experimental versus (b) theoretical photoelastic fringe pattern two different sized 
holes in a PMMA plate under vertical tension. The theoretical image was calculated using Finite Element Analysis. 
The experimental image (a) shows the reflection of the light source in the upper right corner.
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Figure 4.12. (a) Experimental versus (b) theoretical isochromatic fringes for a hole in a plate under uniaxial
tension. The stresses for the theoretical images were calculated from the Kirsch problem.
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loads. Figure 4.13 shows the comparison between a FEA image at an applied load 

of 400 pounds and an experimental image at the same loading. The FEA model is 

beginning to exhibit the characteristic pattern for that material at 400 pounds, but it is 

not a complete match. This was not entirely unexpected. Finite element analysis does 

not completely match the actual loading conditions and material properties because it 

is impossible to know precisely all of the conditions to which this object was exposed. 

The boundary conditions which the computer uses to calculate the stresses are only an 

approximation of the actual laboratory. The results of the model are as good as the input 

parameters, some o f which have to be estimated. FEA is, at most, a good approximation 

but not an exact match to the laboratory conditions.

4.4 Combining Thermoelasticity and Photoelasticity

Thermoelasticity provides the sum of the principal stresses and photoelasticity 

provides the difference of the principal stresses plus the principal stress direction. 

Combining thermoelastic and photoelastic data to extract the full stress tensor is not 

computationally difficult. To determine the relation between the principal stresses and 

the full stress components, begin with a stress tensor of the form

A rotation of this matrix about an angle 6  yields a tensor with its components defined 

in terms of the original matrix elements [118]

(4.40)

T *  =  ^ (Tx +  TV) +  ^  (Tx -  Ty) cos 26 +  Txy sin 26

Ty> = |(Tx + Ty) - | ( r x - r tf)cos2tf-r^siii2tf (4.41b)

(4.41a)
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(a) (b)

Figure 4.13. (a) Experimental versus (b) theoretical isochromatic fringes for a hole in a plate under uniaxial tension
at 400 pounds. The stresses for the theoretical images were calculated using FEA.
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T x v  =  — ^  ( T x — T y ) sin 29 +  T xy cos 29. (4.41c)

This rotated matrix becomes the principal matrix by requiring Tx>y> to be zero. Solving 

for 9  in (4.41c) and defining it as the principal angle results in

Solving (4.41a) and (4.41b) for T x and T y produces the relations between the general 

stress and the principal stress components

where (2V +  Ty>) is provided by the thermoelastic system and (T x> — Ty>) and 9 came 

from the photoelastic system. Using these equations, it is possible to determine the 

components of the stress tensor over the surface o f the object if the sum and difference 

of the principal stresses are known along with the principal angle at each point on the 

surface. The difficulty with determining the tensor elements at each pixel lies not with 

material compatibility between the thermoelastic and photoelastic systems but with 

experimental and processing issues such as load setting, calibration errors, and pixel 

matching.

4.5 Data Integration Issues

Since thermoelastic measurements are steady-state and photoelastic measurements 

are static, a common loading between the two systems is needed for the integration 

of the two data sets. K. E. Cramer et. al compared thermoelastic data with data

(4.42)

T t  =  i [ ( 7 V + 7 V )  +  ( I i . —7VOCOS201 

T y  =  ^ [(TV +  Ty* ) — (Tx* — Ty" ) cos 20] 

Txy = ^  ( 7 V  -  7 V )  sin 20

(4.43b)

(4.43c)

(4.43a)
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generated from finite element code using a static load. They studied the tensile and 

compressive stresses across a hole in a plate under vertical tension and concluded that 

the thermoelastic data matched the finite element results when the mean load from the 

thermoelastic measurement was used in the theoretical static model [119].

The steady-state loading for thermoelastic analysis produces errors in the 

calculated sum of the principal stresses at certain edges on a sample. The phase images 

for a hole in a plate and two holes in a plate under vertical tension are shown in Figure 

4.14. The tops and bottoms of the holes reveal a different phase from that of the 

sample. This occurs because the vertical motion (deformation) of the sample due to 

cyclic loading makes the imager average data between free space and the sample. The 

imager locks into the phase exhibited by the majority of the sample and generates a two- 

dimension stress map. Variations in phase result in inaccuracies in the thermoelastic 

data. This effect can be minimized but not eliminated.

The stress maps produced by thermoelasticity and photoelasticity require 

calibration to ensure accurate stress values. Interpretation of these images in terms 

of sums and differences of principal stresses is done through a color legend or fringe- 

order-to-stress conversion. For thermoelastic analysis, a color legend bar accompanies 

every image and is calibrated with a perpendicular strain gauge rosette mounted to the 

object in an area with a low strain gradient. The strain gauge readings are used to 

determine the calibration factor, k,

k  =  ( 4 ' 4 4 )Save (1 ^0

where E  is Young’s Modulus, v  is Poisson’s ratio, ex and ey are the measurements from 

the strain gauge, and S ave is the average thermoelastic signal obtained in the location
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(a) (b)

Figure 4.14. Thermoelastic phase images for a PMMA plate with (a) one hole and (b) two holes under vertical
tension. The tops and bottoms of the holes exhibit a different phase from the rest of the sample due to cyclic loading.
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of the strain gauge [120]. For circular polarized white light photoelasticity, colors are 

associated with stresses according to an unvarying sequence of color in the birefringent 

material. The relative retardation in the material extinguishes one color o f the incident 

white light as the load is increased. Once a full wavelength of relative retardation 

is achieved, the colors repeat, appearing fainter than the first series signifying an 

increase by a whole fringe order. Each material will have its own unique color-to- 

stress conversion chart which can be determined using the deflection o f a cantilever 

beam. With a beam coated with the photoelastic material and one end mounted in a 

rigid frame, a precision micrometer deflects the beam imposing a known state of strain 

on the coating which is then correlated with the resultant birefringence [121]. For 

circularly polarized monochromatic light, only dark and bright fringes are present. The 

difference of the principal stresses (or strains) is calculated by determining the fringe 

order, N. Refer to section 3.1, equation (3.3).

A second set of fringes is obtained when linear polarized light is used for 

illumination and the sample viewed with an analyzer having its polarization axes set 

perpendicular to the incident light. Black fringes appear in the material corresponding 

to the polarizer/analyzer axes becoming parallel to the direction of the principal 

stresses. As the polarizer/analyzer is rotated through 90°, the full set of isoclinic 

fringes are observed. These fringes are typically traced or photographed to produce an 

image with of all of the isoclinic angles as shown in Figure 4.15. From this composite 

image, isostatic lines are drawn, as shown in Figure 4.16, revealing stress trajectories 

which provide more insight into the stress field of the object under study. The isostatic 

lines are constructed in a similar manner to equipotential lines in electrostatics. The
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Figure 4.15. Isoclinic lines for a hole in a plate under vertical tension. The angles 
correspond to the rotation of the polarizer/analyzer about the z  axis in the laboratory 
system [123].

X

(a)

Figure 4.16. (a) General construction of isostatic lines from isoclinic lines used to 
visualize the (b) stress trajectories for a hole in plate under vertical tension. Stress 
trajectories are at the top if (b) and isoclinic lines at the bottom [123],
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equipotential lines bisect the electric held lines whereas the isostatic lines are rotated 

an angle 0 from the bisector in accordance with the isoclinic line it passes. At times, 

isoclinic fringes appear as broad bands rather than thin lines. Tracing methods position 

the isoclinic line through the center of the thick band. More recently, computer 

algorithms have been developed which digitize the isoclinic image and convert it to a 

fringe skeleton with a width of one pixel. These codes are hampered by long processing 

times and are prone to failure in areas of high stresses [122].

An increasingly popular technique for determining the isoclinic angle and phase 

difference between the ordinary and extraordinary waves (isochromatic parameter) is 

through the use of four fringe images obtained at different polarizer/analyzer settings. 

Each image is associated with an intensity equation, and algebraic manipulation of 

these equations results in the isoclinic angle being a function of the arctangent and the 

isochromatic parameter a function of the arccosine of the four intensities. Because o f 

the inverse trigometric functions, discontinuities in the returned values occur requiring 

an unwrapping process to restore continuity throughout the entire field. This is not a 

trivial process. For the isoclinic unwrapping, only points with at least one of its eight 

adjacent points unwrapped can be treated. This is done by adding or subtracting 7r/2 

where the phase difference between points is more than 7r/3. Isochromatic unwrapping 

is different from the isoclinic procedure. The isochromatic parameter is unwrapped 

once the zero order fringe, the maximal and minimal values o f  the isochromatic 

parameter, and the total number of fringes are known [122],

For thermoelastic and photoelastic data to be combined, the stress images from 

the two systems must posses a one-to-one pixel mapping. The DeltaTherm 1000 has
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Figure 4.17. Sixty pixels of thermoelastic data expanded to 120 pixels by linear 
interpolation between every two points.

a picture resolution of 128 x 128 square pixels whereas the photoelastic images are 

acquired with a digital cam era producing 800 x 600 or 1600 x 1200 square pixel images. 

Alignment of these images is critical in obtaining the components of the stress tensor. 

Barone and Patterson reduced the larger array of points to that of the smaller array 

through computer processing [103], An alternative method is to expand the smaller data 

matrix to that of the larger. Since thermal data is typically smooth, the number o f pixels 

can be increased through linear interpolation as shown in Figure 4.17. Algorithms for 

this process can be found in many image analysis software packages.

Another issue that has received less attention in the literature is the effect of 

a non-retroreflecting surface. It is assumed that the reflective backing is a perfect 

retroreflector which preserves the state of the wave upon reflection. Any change to the 

light wave, physically observed as fringes, is attributed solely to induced anisotropy of 

the photoelastic coating by the applied stress. If the reflective backing also contributed 

a change on the light wave upon reflection, what influence would it have to the observed 

fringe pattern? Additionally, what effect would it have on the determination o f the full- 

field stress tensor?
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Chapter 5 

Depolarization of Electromagnetic Waves

Polarization refers to the orientation of the field vectors of an electromagnetic 

wave at a given point during one period of oscillation. A change in polarization as a 

consequence of propagation, reflection, scattering, diffraction, or any other interaction 

with matter is called depolarization. The case under consideration for this thesis is the 

depolarization effect of a  light wave upon reflection from an imperfect retroreflector, 

such as a rough surface. A retroreflector is an optical element that reflects an incident 

beam of light back to its origin for all angles of incidence. This is an important feature 

because not only is the intensity of light at the analyzer greater but also the light 

ray returns along the same path it entered the coating thereby eliminating any stress 

gradient averaging. Any averaging is a result of the reflected light passing through 

a slightly larger area of the coating due to a change in angle of reflection from the 

angle of incidence. Because the stresses differ from point to point, the information 

extracted from the light at the analyzer is related to the average of the stress gradient in 

that area of inspection. Since photoelastic fringes are produced by the depolarization 

of the incident light wave by the induced anisotropy of the photoelastic medium, any 

additional depolarization by the reflective surface is unwanted and can change the fringe 

pattern. The mathematical model used to simulate the photoelastic fringes assumed a 

smooth, reflective surface exhibiting retroreflection. A smooth plane will reflect the

100
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incident light spectrally in a single direction while a rough surface will scatter it into 

various directions. The same surface may be rough for some wavelengths and smooth 

for others; or for the same wavelength it may be either rough or smooth for different 

angles o f incidence. The scattered waves are not only described by their amplitudes 

and phases, but also by their polarization. One of the difficult questions connected with 

rough-surface theory is what happens to the original polarization of the incident wave 

after it has been scattered.

5.1 The Rayleigh Criterion

The Rayleigh criterion, based on ray theory, is the most widely used approach to 

scattering by rough surfaces. Consider two rays incident on a surface with irregularities 

in height h  at a grazing angle of 7 . The path difference between these two rays is

If the phase difference is small, the two rays will be almost in phase as in the case o f a 

perfectly smooth surface. As the phase difference increases, the two rays will interfere 

until A 0  =  7r and will cancel. If there is no energy flow in this direction, it must have 

been redistributed in other directions. Thus for A <f> =  7r the surface scatters and is 

considered rough and for A 0  =  0 the surface reflects spectrally and is smooth. The 

dividing line between a rough surface and a smooth surface is determined by choosing 

the phase difference between the extremes, A<f> =  f . Upon substitution into equation

A r  =  2 h  sin 7 (5.1)

with a phase difference of

(5.2)
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(5.1), the equation for the Rayleigh Criterion is written as

h < (5.3)
8 sin 7

which determines whether a surface is considered smooth. An alternate method of 

expressing the Rayleigh Criterion is to use only the right side of this equation as 

a measure of the effective surface roughness. Therefore a surface will tend to be

effectively smooth only under two conditions:

h
— —♦ 0 o r 7 —+ 0. (5.4)
/\

The Rayleigh criterion is useful for the distinction between smooth and rough 

surfaces because it is based on three easily measured parameters (/i, A, 7 ) but does not 

provide any details on the effect that rough surfaces have on scattered waves. The next 

section will discuss a more quantitative expression for the backscattered wave in terms 

of the same three parameters [124].

5.2 Optical Analysis of the Reflective Backings

The two reflective surfaces used in the laboratory were Rust-Oleum metallic paint 

and the Measurements Group polycarbonate sheet with reflective backing. Upon visual 

inspection, both looked relatively smooth. The surface o f the metallic paint at a 

magnification of 40x is shown in Figure 5.1. The silver particles suspended in the paint 

are quite prominent and vary in size. Notice that some of the image is out of focus. 

This indicates the height differential that was present on the surface. A slight turn of 

the fine adjustment knob on the microscope brought these areas into focus. The surface
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of the Measurements Group reflective backing, shown in Figure 5.2, has some bubbles 

seen at a magnification of 20x.

In monochromatic photoelasticity with yellow light (A =  450 n m ) the surface is 

considered effectively smooth if ( j)  —* 0. This ratio equals 0.1 if h  =  45nm and 

will go to zero as h get smaller. A /xm scale is used to observe the surface features in 

Figures 5.1 and 5.2. The metallic paint image showed areas out of focus that came into 

focus after a small turn of the fine adjustment knob. Estimation of the height difference 

between the focused and out-of-focused region was 0.5 to 1/xm, which does not satisfy 

the ratio in the Rayleigh Criterion for a smooth surface. The Measurements Group 

reflective backing did not show as many out of focus areas as did the metallic paint, but 

the surface did reveal larger features, such as the bubbles seen in Figure 5.2. The second 

part of the Rayleigh Criterion is that the local angle of incidence goes to  zero, 7 —+ 0. 

The spherical object on the right of Figure 5.2 measures approximately 7/xm in length. 

If this feature is thought of as a half buried ellipsoid with its semi-major axis measuring 

3.5fim  and its semi-minor axis 0.5/im  (the lower approximation of the height difference 

from the metallic paint image), a right triangle can be constructed with the semi-major 

and semi-minor axes. An approximate slope can be calculated by taking the arctangent 

of the semi-minor to the semi-major axis yielding an inclination angle o f  8°.

It is clear that both surfaces depolarize, to some degree, the incidence light because 

the Rayleigh Criterion for a smooth was not satisfied. Depolarization will cause the 

photoelastic fringe patterns to change resulting in uncertainties in the stress tensor 

components when combined with thermoelastic data. Due to this depolarization, the 

selection of reflective surfaces is a serious issue for photoelasticity when the results
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are combined with other stress measurements. Depolarization effects have been largely 

ignored in the photoelastic community because the focus has been with the optical 

response of the clear, birefringent coatings which are desired to produce a large number 

of fringes for a relatively low applied stress. In addition, the isoclinic and isochromatic 

fringe patterns are interpreted on a full-held scale versus a pixel scale. Small changes in 

the fringe pattern due to depolarization will largely go unnoticed unless the fringe maps 

are examined on the pixel level. Also, photoelasticity has been used, to a large extent, 

as a qualitative rather than a quantitative stress measurement. More fringes indicate a 

higher stress. A  quick measurement of fringe order by its color yields an approximate 

stress value for that region. If instead, thermoelastic and photoelastic measurement are 

to be combined to produce the full-held stress tensor, the photoelastic fringes must be 

analyzed at the pixel level. Any changes to the fringes as a result o f depolarization will 

cause the stress tensor to be incorrect.

5.3 Depolarization by Scattering from Random Rough Surfaces

The calculation of the depolarization of electromagnetic waves scattered from 

objects or surfaces of given shape is easily described using geometric or ray optics. 

In many cases the result is nearly identical to that obtained from more sophisticated 

methods. In other cases, such as backscattering, the simplicity o f geometric optics 

produces wrong results. Since the interest o f this thesis is with the backscatter from a 

reflective surface, physical optics will be utilized which will approximate the boundary 

conditions o f the wave equations.
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w a v e  f r o n t

dS

Figure 5 3 .  Vector diagram for an element d S  at an arbitrary orientation in space [124], 

The equation for the scattered field in the direction of the source (backscatter) is 

E2 = a J  y*(n • K ) [(e - 1) (R + +  R~) t - f l +e] exp ( - 2zk - r) d S  (5.5) 

where n  is the normal to the surface, K  is the propagation direction of the incident light, 

e  is the polarization direction, and t  is the intersection of the wave front with the sample 

which are shown in Figure 5.3. The reflected field will be elliptically polarized and can 

be represented by two linearly polarized waves, a linear (Ep) and cross-polarized (Ec) 

component,

E p =  j  J  J  cos 6 [ ( /2+ -  R~) -  (R+ +  R ~) c o s2V>] x (5.6a) 

exp (—2 ik  • r)  d S

E c =  ^  J  J  cos 6 (R + 4- R~) s in 2t/'exp (—2ik  • r)  d S  (5.6b) 

where 8 is the local angle o f incidence, ip is the angle between the polarization of 

the incident field measured from the local plane of incidence, d S , and R + and R r  

are Fresnel reflection coefficients. The Fresnel coefficients for two adjoining, non­
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magnetic media are written as

, I  cos 0 — v i  — sin2 6
,  (5.7a)

I cos 9 +  v i  — sin 9

R -  = C°s 9 ~ ^ - SiD2g (5.7b)
cos 9 +  v  i — sin2 0

where 6 is the incidence angle and e is the ratio of the permittivities between the two 

media, defined as

-  _  £r/^o _  K _j_ (5 .8)
o

where k  is the dielectric constant, a  is the conductivity, and A is the wavelength. The 

subscript r refers to the reflective surface and p  to the photoelastic coating in this 

equation. Fresnel coefficients are important to this discussion because they provide 

information into the electrical properties of the media.

Considerable insight into the phenomenon of depolarized backscatter is offered 

by equations (5.6a-b). The integrand in equation (S.6b) indicates the parts of the 

surface that are responsible for the depolarization of the backscatter of radiation. Those 

surfaces that do not give rise to a cross-polarized component are 6 =  -k/2 (local grazing 

angle which will not backscatter any radiation), tp  =  0  or 7 t / 2  (elements so oriented

that the polarization plane of the incident radiation is identical with, or perpendicular

to, the local plane of incident), and R + + R ~  =  0 (perfect conductor or n  =  —K , a 

mirroring element).

Further interpretation of the backscattered radiation can be done by dividing the 

wave into two components: a quasi-specular components returned by the mirrored 

elements whose normals point towards the source and diffuse components for those
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Figure 5.4. The local angle of incidence, 6, and its relation to the angle of incidence, 6. 
The angle of incidence is defined with respect to Zo and constant for the whole surface 
whereas the local angle o f incidence is defined from the normal at that location.

nonmirrored elements. Physically both components are re-radiated, but the difference

lies with the quasi-specular case where the neighboring elements are reinforcing each

other coherently whereas the phase for the diffuse case changes rapidly from point to

point causing an incoherent addition. The magnitude of the cross-polarized component

returned by the non-mirrored surface element depends on its orientation and the

electrical properties o f the surface. As the local angle of incidence, S, approaches 7r / 2,

the cross-polarized component will decrease to zero.

To obtain quantitative results of the backscattered field and its polarization, the 

integral in equations (5.6a-b) must be evaluated. The local angle of incidence, depicted 

in Figure 5.4, is defined as

_ Zx sin#  -I- co s0 cos 6 =  -= = = = = =  (5.9)
y/1 +  Z l  +  Z l

and the angle between the polarization plane and the local incident plane is given by

cos 0* (Zx cos 9 — sin 0) +  Z„ sin 0* cos =  - - t — v 1 =y (5 .10)
y l  + Z* + Z£ — (Z x sin  8 +  cos 9)
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where the direction of incident polarization is defined by an angle /?* concluded by the 

incident polarization plane and the x y  plane. The variables Z x and Z y are the partial 

derivatives o f the surface S  with respect to x  and y, respectively, represented by a 

differential function Z (x , y). The phase factors in (5.6a-b) are determined by

Polarization for a perfect conductor will remain constant for a given scattering 

direction even when the shape o f the scattering surface is random because R + = — R ~ . 

This occurs because the relative permittivity in equation (5.8) goes to infinity as 

<x —► oo, for a perfect conductor, thereby reducing equation (5.7a-b) to R*  =  1 

and R~  =  —1. For finite conductivity, the polarization depends on the shape of the 

surface. Since E c and Ep will be used to describe the backscattered polarization, a 

random surface described by the variables, Z x and Zy, makes E c and E p random. The 

polarization of the backscattered wave is described by the cross-polarization ratio

which is the ratio of the mean cross-polarized power to the mean parallel-polarized 

power. Substitution of equations (5.6a-b) into equation (5.12) yields

k  =  —  (xo sin 6 — Zo cos 6)
A

r  =  ix o  + y y 0 +  Z ( x ,y ) z Q. (5.11b)

(5.11a)

I 2
— ^|cos<5 (if*  -I- R~) sin2 '0 |2^ x

m i  (exp [2ik- ( f2 — Ti)]) d S \d S 2

(5.13)
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1 2
I  (|cos<5 [(R+ - R - )  -  (72+ +  i r ) c o s 2T/;]|2)  x (5.14) 

/ / / /  (exp [2ik- ( r2 — ri)]) dSidLSi

where the subscripts 1 and 2 refer to two variable points on S  and the averaging in (5.13) 

and (5.14) is to be performed over the surface S. For the discussion of polarization, 

equation (5.12) can be approximated to [124]

which is valid for small illumination angles (<  30°), very rough surfaces, and gentle 

slopes.

The relation between the mean square slope of the surface and depolarization is 

seen through equation (5.9). For a smooth surface, Z x and Z y —* 0 and the local angle 

of incidence approaches the illumination angle 6. For B =  0, no cross-polarization 

will be present. Therefore, as the mean square slope increases, 6 will increasingly 

differ from 6 resulting in more depolarization. Thus at small angles of incidence, the 

rougher of the two similar surfaces will depolarize more strongly. A  plot o f P 2 versus 

illumination angle for various rms slopes is shown in Figure 5.5. As the rms value 

increases, the cross-polarization ratio becomes larger resulting in more depolarization. 

Thus the cross-polarization ratio is a measure of depolarization [123].

(5.15)
(|cos£  [(Z2+ — R~) — (R + -f- P ~ )c o s2 0 ]|2)
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Figure 5.5. Cross-polarization ratio versus incidence angle, 6. As the rms slope 
increases, so does the depolarization. In this simulation, the relative permittivity was
four and 0  =  45°.
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5.3.1 Depolarization of Isoclinic Fringes

In the isoclinic model, it was assumed that the reflective surface was a perfect 

retroreflector producing a wave of the form

E r  =  [x ' cos (9 — (f>) e,r '  +  y' sin (0 — <f>) etT°] A  etkoZ. (5.16)

If the reflective layer is considered to be an imperfect retroreflector, the cross-polarized 

component of the wave becomes larger with increasing rms slope (roughness) leading 

to the depolarization of the incidence wave. The cross-polarized component in the 

anisotropic electromagnetic boundary value model is the extraordinary wave. Its 

amplitude increases because of the depolarization effects of the reflective surface. In 

the retroreflection case, the amplitudes of the reflective waves were D'e and D 0 for the 

extraordinary and ordinary waves respectively. If the amplitude of the extraordinary 

wave is to increase by an amount upon reflection, then the amplitude of the ordinary 

wave will decrease by the same amount, in the case o f a lossless medium. This results in 

a factor o f (1 + P )  multiplied to D e and (1 — P) to D a in equation (4.7c). The variable P  

will be a  random number ranging from zero to one and will model the amount of energy 

transfer between the two waves. In addition, it was assumed that the incident light was 

normal to the front and back surfaces of the object. Deviation from normal incidence 

elongates the path length. The new path length will change from d , the thickness of the 

photoelastic coating, to d se c ^  where is measured from the normal shown in Figure 

5.6. Recalculating B x and B y in equation (4.7b) results in a new expression for the 

reflected wave

E'r  =  x  [Ce cos (i9 -  <t>) e*n'  -I- y 'C 0 sin {6 -  <t>) e,n°] eikoZ (5.17)
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normal to ^  
back surface

z = 0 z = -d

1 = -d sec ij>

F igure 5.6. There is a change in path length due to off normal incidence. The new path
length is — d sec ip.
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where

C e =
y jN f  cos4 a  4- N% sin4 a  — sin2 (2a) ^ N \N 2 — 16n2(l 4- P ) 2

cos2 q  [P  4- n e(2 4- P)] 4- sin2 a  [2 4- P (  1 4- n e)]“
(5.18)

J M 2 cos4 /? 4- M 2 sin4 0  4- sin2 (20) \ \M \M 2  4- 16n2(P  — l ) 2]
_  jL________________________________   L (5 |9)

cos2 /3 [P 4- nQ( P  — 2)]2 +  sin2/? [P ( l  — n 0) — 2]2

Qe =  a rc tan

=  a rc tan

—4ne(l 4- P )  sin(2a) 
sin2 a  — N \ cos2 a  

4n0(P  -  1) sin (2/?) 
_Mi sin2 /? 4- M 2 cos2 /?

(5.20)

(5.21)

N i

N 2

- P 2 +  n 2(2 4- P ) 2 

4(1 +  P ) +  P 2(n2 -  1)

a  =  K ed sec ip

(5.22a)

(5.22b)

(5.22c)

M i =  P 2 — n 2(P  — 2)2 (5.23a)

M 2 =  4(1 -  P ) -  P 2(n2 -  1) (5.23b)

/? =  K 0d sec ip (5.23c)

To observe the effects of imperfect retroreflection and off-normal incidence, equation

(5.17) was converted to an intensity equation as discussed in Section 4.1. The results 

for a hole in plate under vertical tension are shown in Figure 5.7. Notice that as the 

amount of energy transfer between the waves increases due to depolarization, the fringe 

patterns degrade.
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Knowledge of the amount of fringe degradation can be used to determine the 

amount of depolarization inflicted on the reflected wave thereby making it possible 

to rate the reflective backings. This rating system would provide a means to identify 

good and poor materials to be used in reflection photoelasticity and its integration with 

thermoelasticity. Various technique were used to analyze these degraded fringes for a 

quantitative comparison between the images. One such method looked at fringe areas. 

Figure 5.7 shows the top portion of the 0° isoclinic fringes for the Kirsch problem. This 

region is made up of four lobes, two small and two large, which change size and shape 

as the angle from normal incidence and depolarization increase. Comparison of these 

lobe areas between the images provided very little quantitative information. In some 

cases, such as the zero depolarization and 10° off normal incidence, the small lobe 

substantially decreased in size in comparison with the 25% and 50% depolarization at 

normal incidence. The same was true for the large lobe at 5°. Even the ratio of the lobe 

areas between the levels o f  depolarization did not provide any results that could rate the 

reflective backings as good or poor.

The second analytical technique was with the comparison of isoclinic lines 

between the degraded fringes. The isoclinic lines, in increments of 5 °, for a hole in a 

plate under uniaxial tension are shown in Figure 4.15. In the second quadrant there is a 

linear 0° isoclinic between the 5° and 85° lines which was selected for the comparison 

between the degraded images. This line corresponded to the region between the left 

small and large lobes seen in Figure 5.7. The degraded images were read into a 

Mathematica program which converted the pictures into a matrix of numbers where 

the value of “5” was assigned to the lobe areas and “0” everywhere else. A region
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X

Figure 5.8. Best fit isoclinic lines for various depolarizations and angles off normal 
incidence for the Kirsch problem.

was selected in the normal incidence, no depolarization case to fit the best linear line 

in the “0” area between the left small and large lobes. This procedure was repeated 

for the remainder of the test cases -  combinations of energy transfers, P, of 0%, 25%, 

and 50% and angles of incidence ranging from 0° to 10° -  keeping the initial selected 

region constant in all of the images. As the amount of depolarization and oblique angle 

increased, the region between the lobes in this selected region changed. As a  result, the 

best fit 0° isoclinic line moved, illustrated in Figure 5.8 which shows the results o f the 

best fit line for all of the simulations. As the reflective backing becomes an imperfect 

retroreflector and slightly oblique incidence light is used, the isoclinic line shifts down. 

Comparison between the actual position of the isoclinic line at this location to the one 

observed with a particular reflective backing provides a quantitative distinction between 

good and bad reflective materials. Because the hole in plate under uniaxial tension is a
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well known and understood problem, this geometry will be used for the comparison of 

reflective backings.

A similar analysis was done with the notched hole and two different diameter holes 

in a plate under uniaxial tension. For the notched hole, shown in Figure 5.9, the arced 

line towards the top of the drilled hole was selected for the region of comparison.

The best fit quadratic line was calculated for the same cases as with the Kirsch 

problem. The results, seen in Figure 5.10, again show movement of this line but 

with less influence on the depolarization compared with the angle off from normal 

incidence. For the two holes in a plate with different diameters, a  linear isoclinic line 

was constructed in the upper right region of the smaller hole between the two lobes 

(identical to that of the Kirsch problem analysis). Here again there is evidence of the 

isoclinic line moving due to depolarization and off normal incidence as shown in Figure 

5.11. This line was much more influenced by depolarization, as in the Kirsch problem, 

as compared with the isoclinic line in the notch hole example. This could be an 

indication that certain fringes are more susceptible to movement by the depolarization 

of the reflective backing than others. But in all cases, the location o f the isoclinic line 

was influenced by the off normal incidence angle.

Because thermoelastic and photoelastic images are going to  be combined pixel 

by pixel to determine the stress tensor components, movement o f the isoclinic lines 

results in principal angles being assigned to the wrong pixels. Simulations were done 

to reconstruct the stress tensor using equations (4.43a-c). A location was considered 

where the principal direction was 0° and stress values were 943 psi, -120.9 psi, and 0 

psi for Tx , Ty, and Txy respectively. This stress matrix was rotated to the principal stress
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axes and the sum and difference of the principal stresses were determined. These values 

were used for the thermoelastic and photoelastic measurements in equations (4.43a-c), 

and the stress tensor components were calculated. The principal angle was varied in 

this simulation so that its influence on the stress component could be observed. The 

results are given in Table 5.1.

Table 5.1. Stress tensor components subjected to variations in angle.
0 Tx (p si) T w (psi) Txv (psi)
0° 943 -120.9 01

o U1 o 942.92 -120.82 9.28
1° 942.68 -120.58 18.56
2° 941.70 -119.60 37.11
3° 940.09 -117.99 55.60
4° 937.82 -115.72 74.03

The first row in Table 5.1 shows the correct numerical values for each of the 

components. Notice that Tx and Ty at 4° are less than 5% off from the expected values 

whereas the value of T*y at 4° is 8% that o f Tx at 0°. From this it can be concluded 

that the simulations show that the shear stress is sensitive to errors in principal angle. 

Although the shear stress uncertainty is 8% at 4°, this value cannot be considered small 

or large because of the wide range of stress tolerence levels that structures can handle. 

A related question is the influence that errors in the difference of the principal stresses 

have on the stress components.
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5.3.2 Depolarization of Isochromatic Fringes

Making the same additions to the isochromatic model, as in the 

isoclinic model, changes the reflective wave from

E r =  (± 'A Bx eiA*e~in/2 +  y 'A By e tA")  eiÂ

where

A-Bx =
[(1 +  n \)  +  ( - 1 4 -  n \)  cos (2K \d)\ 

sin2 (K id)  +  n f cos2 (K \d )

Ae =  tan - l ge sin ( f  — 0) +  n e sin (2K \d)  cos ( j  — 0 ) 
qc cos — 0) — n e sin (2K \d )  sin ( |  — 0)

ge =  n l cos2 (K id) — sin2 (K id )

A  B y  =
[(1 + w2) +  ( - 1 +  n l ) cos & K * d ) )  

sin2 (K id) +  n 2 cos2 (K id)

A„ =  tan - l ga sin ( f  — 0) +  w„ sin (2K id)  cos (*  — 0) 
ga cos ( f  — 0) — w0 sin (2K id)  sin (* — 0 )

0O =  w2 cos2 (K 2d) -  sin2 (K 2d ) ,

to

where

C f =

E'r  =  [x'Cec eiT*e~iir/2 +  y 'C 'e ir °] A e lk°z

__________________ A y / i f , ) 3 +  (& )* ___________________

[—P(1  +  n e) — 2ne]2 cos2 a  +  [2 +  P (  1 +  n e)]2 sin2 a
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£i =  £+Fx cos2 a  — £ F 2 sin 2a. — £+F3 sin2 a  (5.27b)

C~Fi cos2 a  4- £+F 2 sin 2a  — £~F3 sin2 a  (5.27c)

Vte.)2 + K-)2V /c \
[F (l 4- n0) — 2n0]2 cos2 (3 4  [2 — F (1  4- n0)]2 sin2 (3 

£+G: cos2 /3 +  £ "G 2 sin 2/3 +  £+G3 sin2 (3 (5.28b)

£4 =  Q~G\ cos2 /3 — £+G 2 sin 20  4- £~G3 sin2 (3 (5.28c)

(5.29a) 

(5.29b) 

(5.29c) 

(5.29d)

F: =  2n2( l  +  P) 4- ( 0  P \ n \  -  1) (5.30)

F2 =  2n e( l +  P )  (5.31)

F3 =  2(1 4- P) +  Q )  P 2( l -  n 2) (5.32)

G x =  2n2( P - l ) + Q ) p 2( l - n 2) (5.33a)

G2 =  2n 0( l  — P )  (5.33b)
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C 3 =  2(1 -  P )  +  Q )  P 2( l  -  n l) .  (5.33c)

Equation (5.24) was converted to an intensity equation, as done in Section 4.2 to 

observe the effects of imperfect retroreflection and off-normal incidence. The results 

for a hole in plate under uniaxial tension are shown in Figure 5.12. Notice again 

that as the amount of depolarization increases, the fringe patterns degrade. With 

the isochromatic fringes providing the difference of the principal stresses and the 

depolarization distorting the size and shape of the fringe, a pixel on outer edge of a 

fringe in the one simulation case may be totally outside o f the same fringe in a more 

degraded images. The actual value for the difference o f the principal stresses at that 

pixel location has changed as a result of imperfect retroreflection due to a rough surface 

and off normal incidence. The influence of the stress tensor elements to uncertainties in 

the difference of the principal stresses due to depolarization can be seen in Table 5.2.

Table 5.2. Stress tensor components subjected to variations in stresses.

H 1 H T* (psi) Ty (psi) Txy (psi)
1063.9 943 -120.9 0

-5% 916.40 -94.3 0
- 10% 889.81 -67.7 0
-20% 836.61 -14.51 0
+5% 969.60 -147.50 0

+ 10% 996.20 -174.10 0
+20% 1049.39 -227.29 0

It is evident that uncertainties in the difference of the principal stresses influence Ty. 

With errors in both the principal stress direction and the difference of the principal 

stresses, the reconstructed values for Ty and Txy can be significantly different from 

their true value given in Table 5.3.
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Table 5.3. Stress tensor components with errors in the angle and stresses.
9 T  - - T  'I  V T x (psi) Ty (psi) Txy (psi)
0° 1063.9 943 -120.9 0
2° +5% 968.24 -146.14 38.96
2° + 10% 944.77 -172.67 40.81
2° -5% 915.17 -93.07 35.25
2° -10% 888.64 -66.54 33.39

For the stress tensor components to be calculated with any certainty, the amount of 

depolarization has to  be determined so that its influence on the resulting fringe patterns 

can be removed. Comparison between the location o f the isoclinic fringes can not only 

be used to rate the reflective backing but also to determine the amount of correction 

needed to restore the fringe patterns to their unaltered configuration. The rating scheme 

will aid in the selection of materials for the reflective backing that produce the least 

amount of depolarization. Any remaining depolarization effect causing the fringes to 

move can be corrected by a computer algorithm before the information is integrated 

with thermoelastic measurements.

The two reflective backings used in this project, Rust-Oleum metallic paint 

and the Measurements Group polycarbonate sheet with reflective backing, produced 

identical fringe patterns under the same loading condition. Efforts to create a data 

base of degraded fringe patterns so as to rate the reflective surfaces as either good 

or poor were outside of the scope of this project. Further work with the integration 

o f thermoelastic and photoelastic stress measurements will not only address the 

reflective backings causing depolarization but also technical issues associated with the 

collection of thermoelastic and photoelastic data, such image resolution between the 

two measurement systems.
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Chapter 6 

Summary and Future Direction

Thermoelastic and photoelastic stress analysis effectively provide information 

about the sum and the difference of the principal stresses, respectively. Combining 

these two full-held, non-contact nondestructive evaluation techniques allows the 

individual stress components to be measured. One of the main difficulties in merging 

these two measurement systems was in identifying an appropriate surface coating. 

Thermoelasticity demand* a highly emissive surface, while photoelasticity requires 

a stress-induced birefringent, transparent coating with a retro-reflective backing. 

Two coatings have been identified that can be used for combined thermoelastic 

and photoelastic stress measurements: PMMA and polycarbonate. Both are clear 

plastic materials which produced fringe patterns when exposed to an applied load 

and illuminated with polarized light. The polycarbonate material was a film designed 

specifically for photoelastic analysis and the PMMA was a general use plexiglas. Both 

produced clearly defined fringe patterns when observed with a polariscope. When 

subjected to a cyclic load and viewed with a thermographic imager synchronized to the 

loading, both materials produced temperature fluctuations on the surface in response to 

tensile and compressive stresses induced by the applied load. The chemical make-up of 

the PMMA and polycarbonate is such that the clear coatings are opaque in the infrared 

producing a high emissive surface which allows for thermoelastic stress analysis.

128
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W ithout the identification of a common coating, the two systems could not have 

been linked. The next step towards integrating thermoelasticity with photoelasticity 

measurements involved understanding the mechanisms by which these coatings 

exhibited fringe patterns and temperature fluctuations when exposed to an applied 

stress. Mechanical deformation in the object causes a local temperature change which 

is proportional to the sum of the principal stresses in that region. With the knowledge of 

the stresses over the surface o f an object, a temperature map can be easily constructed 

by converting the stresses to principal stresses and summing the elements. On the 

other hand, the production o f photoelastic fringes due to the induced anisotropy was 

not so easily modeled and became the theoretical focus of this thesis. An anisotropic 

electromagnetic boundary value model was developed using the electromagnetic wave 

theory. This model produced intensity contour maps which matched the fringe patterns 

observed in the laboratory. The model used material properties, such as the index 

of refraction and stress-optic coefficients, and the induced stress field to produce the 

intensity contour maps. The material properties are tabulated for most substances, 

and the stress field can be calculated by classical mechanical equations or from finite 

elem ent analysis.

With a theoretical photoelastic model in place, an understanding of fringe 

production as a result of an applied stress was possible. The model assumed 

normally incident light and perfect reflection from the reflective backing, but laboratory 

conditions fall short of these assumptions. An anisotropic electromagnetic boundary 

value model was used to simulate fringe patterns, where the incident light was at a 

small angle from the normal and the reflective backing was an imperfect retro-reflector.
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As the experimental conditions changed, modifications to the fringes were noted. The 

reflective backing becoming an imperfect retro-reflector was a result o f it being a 

rough surface which depolarized the light wave. As the surface became rougher, more 

depolarization occurred which in turn degraded the photoelastic fringes. A quantitative 

analysis o f the degraded fringes, to be used as a rating scheme for reflective backing 

materials, showed that the isoclinic lines shift position as a result of the depolarization 

and oblique incidence. This is a concern when calculating the stress components 

through the combination of photoelasticity and thermoelasticity because the data maps 

are going to be integrated at the pixel level. Small shifts in the photoelastic fringes 

result in incorrect information being assigned to some pixels resulting in uncertainties 

in the stress tensor components [126-128]. Progress in the understanding of the 

depolarization at the reflective backing should lead to the selection of new materials 

that will minimize this effect, depolarization, as well as the development of computer 

algorithms to correct for any remaining depolarization.

The primary impediment to the photoelastic/thermoelastic measurement system, 

experimentally, seems to be the expense of the thermoelastic stress measurement 

system and the inherent image resolution limitations of their relatively small detector 

array. The DeltaTherm 1000 imager used for this thesis has a  spacial resolution of 

128 x 128 pixels for a cost o f $150k ($9 per pixel). The Model 030 Polariscope 

which used a Polaroid Digital Camera with a  maximum resolution of 1600 x 1200 

pixels and sells for $5000 and the digital camera for $1200 (total system, $0,003 per 

pixel). The resolution mismatch between the two stress systems were solved through 

linear interpolation of the thermal images to match the photoelastic images. New
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technologies are having an impact on thermal methods, especially with the advance 

in detector arrays. Current microbolometer focal plane arrays have a spacial resolution 

of 320 x 240 pixels at a projected cost of $15k ($0.19 per pixel). Their use in the 

thermoelastic community has been limited because its thermal resolution is much worse 

than other radiometers, 50 mK compared to the 1 mK of the DeltaTherm 1000. A 

poorer temperature resolution equates to a lower stress sensitivity. However, advances 

in computer processing have been able to bring this detector into the thermoelastic 

community by averaging lots of data per second which counteracts the higher thermal 

resolution. As the price of the thermoelastic system decreases and the spacial resolution 

increases, combined photoelasticity/thermoelasticity will become a more practical 

technique for the measurement of the stress tensor components.

This thesis demonstrates that thermoelastic and photoelastic stress measurements 

can be integrated to produce the full-held stress tensor components. This is a novel 

measurement method because past techniques could only produce this information at 

select points. This thesis is just the beginning of many new and exciting developments 

in the held o f stress analysis. Besides the identification of additional materials 

suitable for thermoelastic and photoelastic stress analysis, a redesign of the photoelastic 

apparatus is possible. The polariscope is about the size of a football and its design 

has largely remained unchanged for decades. The polariscope consists of a lighting 

source, polarizers, and quarter-wave plates. The polarizers are large enough to permit 

recording equipment, such as digital cameras, to capture the photoelastic images. A 

hand-held version of a polariscope can be developed using a digital camera with a 

polarizers in front of the lens and the hash. The major cost with this new system would
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be with the camera, which is currently priced at around $800. One could envision 

walking around the lab, and the held, and snapping photoelastic images with ease. 

Later these images would be uploaded into a computer for automated processing of 

the data. A further redesign of the polariscope would size it down to the fiber-optic 

(mini) cameras for integration into the thermoelastic systems. This would provide 

simultaneous data collection between the two systems preventing problems, such as 

alignment and viewing angle mismatches between the two data images, from occurring. 

The data would be obtained, processed, and displayed immediately.
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APPENDIX A Fresnel’s Equation

Assume that the medium is nonconducting, magnetically isotropic, and no currents 

or charges present. Maxwell’s equations are written as

V  - D  =  0 (A.la)

V  - B  =  0 (A.lb)

V  x E  =  (A.lc)
O'pv

V  x H  =  — . (A. Id)

Interpretation of these equations can be done using plane waves written as

E  =  Eo exp[z(urt — k  • r  +  <t>)\ (A.2a)

D  =  Do exp[z(urt — k  - r +  4>)] (A.2b)

B  =  Bo exp[z(urf — k  • r  +  4>)\ (A.2c)

H  =  f iB .  (A.2d)

Substituting equation (A.2a-d) into the first two Maxwell equations yields

V  D  =  - k  D  =  0 (A.3)

and

V  • B  =  M V  • H  =  — zk - H  =  0. (A.4)

133
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These two equations imply D , B, and H  are perpendicular to k  but not necessarily to 

E  due to the relation Ei = ?  ijD j. Substitution of the plane waves into the second two 

Maxwell equations yields

t k x H  =  iuj D  (A.5)

and

ik  x  E  =  zu/B =iLJfJ.QH . (A.6)

These equations require H  be perpendicular to both k  and D  as well as to k  and E.

With E  not perpendicular to k, the scalar product k  • E  ^  0. To calculate the 

product of the electric field and the wave vector, the cross product o f k  with equation 

(A.6) yields

k  x  (k  x E) =  u p 0k  x H  =  (—u /D ). (A.7)

Rewriting this as

k  (k  • E) — E  (k  • k ) =  - u 2n 0D  (A.8)

and identifying the propagation constant as

'nu)\2
=

a new expression for the dot product of k  - E  is developed,

| ( k E ) = E - ^ D .  (A.10)

Physical interpretation of this equation begins by evaluating the components along 

the three principal directions. Using the j t h  component and multiplying both sides by 

kj, an eigenvalue equation is developed,

| ( k . E ) = ( l _ ^ ) £ ;i . (A.U )
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Using the relation c2 =  (/i0eo) \  this equation can be simplified to
£2

(k • E) —   r- =  k jE j .  (A. 12)
( !  -  = & )

Since k  • E  ^  0, the vector product the above equation can be divided out and n 2

removed to obtain

y *  _  J_
j- l k2 („2 _ Sj)- I  ' ’2£° /

Defining the principal refractive index to be

(A. 13)

*? =  - ’ (A. 14)

equation (A. 13) can be rewritten in the form called Fresnel’s equation [115],

^ ^ ( n 2 - ^ 2) “  n 2 ' (A ' 15)
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APPENDIX B Definition of Roughness

Roughness is a measure of the topographic relief of a surface. Examples of surface 

relief include scratches, polishing marks on optical surfaces, machining marks, grains 

of magnetic materials on memory disks, undulations on silicon wafers, or marks left 

by rollers on sheet stock. Two quantities describing the rough surface are root-mean- 

square (rms) roughness and correlation lengths (surface spatial wavelengths). The rms 

roughness determines the surface height variations measured from a mean surface level 

whereas the correlation length is the separation between similar features on surface, as 

shown in Figure B .l.

Rough surfaces are a product of scratches, digs, polishing marks, and machining 

marks. Scratches are present on most surfaces, and apart from improper handling, are 

produced by surface finishing operations. Scratches can have widths as large as 10 fim  

or as small as a  few tenths of a micrometer. Digs are pits remaining on surfaces that 

have been ground and subsequently polished. The grinding process produces irregular 

chips that are later removed by polishing which may also introduce tiny scratches over 

the surface. If an object is machined by a lathe or milling machine, the surface will 

show marks of the cutting tool. For sheet metal, the stock is formed by rolling between 

polished hardened rollers which may leave its marks on the surface of the pressed metal.

136
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Even under the best o f conditions, surfaces are always covered with dust which can be 

in the form of fine particles o f sand or hair materials, lint from clothes, or even fine 

particles left from evaporating w ater vapor or cleaning agents. The size of dust particles 

can range from several micrometers down to a few angstroms also contributing to the 

roughness of the surface [129].

To determine the amount o f scattering from a material and its angular distribution, 

there needs to be a well-validated theory to predict scattering from surfaces. The main 

statistical quantities used in characterizing smooth surfaces are the root-mean-square 

roughness, average roughness, and root-mean-square slope.

The most important and m ost used statistical parameter is the root-mean-square 

(rms) roughness. The mean surface line is determined by requiring the area of the 

surface above and below this line to be equal, seen in Figure B. 1. The surface height 

variations are then measured from  this line in the ± z  direction and the rms roughness 

for N discrete, equally spaces, measured points is determined by

The mean surface level must be calculated in order to define the rms surface 

roughness. If the surface is wavy, i.e., has roughness components o f long surface spatial 

wavelength, the value calculated for the rms roughness will in general depend on the 

length L used for the calculation. Further, if the data points represent the averages of 

height variations over small areas on the surface, the rms values will depend on the size 

of the areas. For these reasons, there is no unique rms roughness value for a surface.

rms (B.16)
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Although the rms roughness is generally used to describe the finish of optical 

surfaces, the average roughness, R a, is used for machined surfaces. R a is the average 

of the absolute values of the surface heights z, measured from the mean surface level 

expressed as

If the surface has a profile that contains no large deviations from the mean surface level, 

the values of rms and Ra will be similar. However, if there are appreciable numbers of 

large “bumps” or “holes,” the larger values of the measured heights will dominate the 

surface statistics making rms larger than Ra-

Generally there is more interest in the slopes of the surface features because they 

help define the local angle of incidence. When the height data have been measured 

relative to the mean surface level, the rms slope is defined as the square root of the 

mean of the squares o f the slopes. Each slope is the difference between the heights o f 

the adjacent points divided by the data sampling interval,

and r 0 is the (constant) difference between the data points measured along the mean 

surface level. If the surface is a  mathematically smooth, continuous function, the 

surface slope is the tangent to the surface at all points. The rms slope would then be 

a unique, well-defined quantity for a profile of length L as long as the profile had a 

uniquely defined first derivative at every point [129].

(B.17)
£=1

(B.18)

where

( Z j + i  +  Zj )  

To
(B.19)
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APPENDIX C Derivation of the Thermoelastic

Equation

The field o f continuum mechanics is governed by three conservation laws — 

conservation of mass, momentum, and energy. Solid mechanics also abides by these 

laws with the additional constitutive law relating stresses to strains and temperature. 

For a Hookean material under a small deformation in comparison with the dimension 

of the object, the Law o f Conservation of Mass is written as

where p  and p0 are the strained and unstrained densities o f the material respectively. 

The Conservation of Momentum takes the form

where a tj is the stress tensor and F, is the body force per unit mass. Incorporating 

equations (C. 1) and (C. 2) yields the Conservation of Energy

where U  is the rate of change of internal energy per unit mass, is the strain rate, R  

is the rate of heat produced per unit mass by internal heat sources, and Qi is the heat 

flux through the surface o f the body whose outward directed normal is n t . The material

P = Po (C.20)

a ijJ ~  Po^i (C. 21)

(C.22)
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response is defined as the Constitutive Law written as

-+- (Aekk — (3 A T )  &ij (C.23)

and

(3 =  (3A +  2/x) a , A T  = T  -  T0, (C.24)

where a  is the coefficient o f linear thermal expansion, A and /i are Lame constants. To 

is the stress-free temperature, and StJ is the Kronecker delta. Equation (4) is generally 

known as the Duhamel-Neumann Law.

The above laws, together with the conditions of compatibility and boundary 

conditions, completely describe the system. The temperature, T, and either the stress, 

CTjj, or the strain, eij, but not both in equation (C.4) may be specified arbitrarily. The 

following will treat T  and as independent variables.

The Helmholtz free energy equation is written as

where S  is the specific entropy. For an elastic material $  and S  depend only on T  and 

so that

$  = U - T S (C.25)

( J 'ir  U H f  •

*  =  ^  +  a r r  =  £ / - T S - 5 r -
(C.26)

Substituting equation (C.7) into equation (C.3), we obtain

(p °  | |  -  <T«) iij +  Po ( H  +  s )  T  + [ p 0 ( r s  - R ) +  Q , ,  } =  0. (C.27)

For a reversible process, the second law of thermodynamics requires that

(C.28)
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This leads to the vanishing of the third term in equation (C.8) and the remaining terms 

independent of and T ,

& i j  — Po

and

<*ij = Pofa~ (C. 29)

S  = - Q f -  (C.30)

From equations (C. 10) and (C. 11) it follows that

d 2$  . d 2& -  1 d an .  d2$ -
d e i jd T ^  d T 2 pQ d T €ij ~  d T 2 (

Substituting equation (C.12) into equation (C.9) yields

Qi,< =  T  + P o + paR- (C.32)

It is customary to define a specific heat under constant strain Cc such that for etj =  0

p0CcT  = —Qi,t (C.33)

which by setting =  0 in equation (C.13) we get

d 24>
° £ =  - d T * T - (C 34)

Hence, equation (C.13) maybe written as

Qi i = T ~ § T ktj ~  PoCct +  p°k ' (C’35)

Assuming the material properties are general functions of temperature, differentiating

the constitutive law with respect to temperature yields

This derivation differs from Kelvin’s approach where he assumed the elastic and 

thermal properties are constant where in reality they are strong functions of
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temperature. Upon substituting equation (C.17) into equation (C.16),

Q i,i  =  T kij -  p0CeT  +  p0R . (C.37)

In the case of a  stress-induced temperature field in which 6T  is extremely small, 

an order of magnitude analysis shows that while ff<ST may considered negligible 

compared to (3, the terms f f  e** and can be of significant order. Assuming

adiabatic conditions, with no internal heat sources, equation (C.18) can be rewritten as

T
PoPt-J! = Cii (C.38)

in terms of strain or

.  T  T /  v  d E  1 F h / \  1
CTkk CTkk (C.39)n T  -  r f  u d E  1 d u \

Po eT  [a + V E 2 a T  E d T J
/ ( I  + u ) d E  1 d v \

+  W ^  ^  1d T  E d T J  'J '3

where E  is Young’s Modulus, u is Poisson’s ratio, and a ** is the first stress invariant.

Equation (C.20) is the statement of the thermoelastic effect relating the temperature

field and the stress field.

The classical thermoelastic theory expression relating the sum of the principal

stress amplitudes with the temperature change A T  is written as

1 A T
A °  = (.cm

where

K  =  (C.41)
Po^c

and is called the thermoelastic constant. For small temperature changes, it is assumed 

that K  is independent o f the applied stress. But research has shown that K  is strain 

dependent. Considering the case of uniaxial loading where <Ti =  s  and <x2 =  <r3 =  0
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and &i =  s  and &2 = <x3 =  0. Equation (C.20) becomes

^  t  (  1 d E  \
=  -  ( a  -  p s f t j  s .  (C.42)

Assuming that both temperature and stress fluctuations are small compared to their

mean values (T0 and sm), equation (C.23) may be linearized to give

A T  /  1 d E  \
PoCeJh = ~{ a ~ E^dfSm)  A s ‘  ( C  4 3 )

It can be concluded through the comparison of equations (C.23) and (C.21) that the 

thermoelastic “constant” can be written in the form

~  <>„) (P o C .r ' (C.44)

which is stress depended as shown by experiment [130].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[ I ] J. E. Gordon, Structures — or Why Things Don't Fall Down (Da Capos Press, Inc, 
New York 1978).

[2] David Brewster, “On the Laws which Regulate the Polarization of Light by Re­
flexion from Transparent Bodies,” Philosophical Transactions o f  the Royal Society 
o f  London, pp. 125-159 (1815).

[3] David Brewster, “On the Effects of Simple Pressure in Producing that Species 
of Crystallization which forms Two Oppositely Polarized Images and Exibits the 
Complentary Colours by Polarized Light,” Philosophical Transactions o f  the Royal 
Society o f  London, pp. 60-64 (1815).

[4] David Brewster, “On the Communication of the Structure o f Doubly Refracting 
Crystals to Glass, Muriate of Soda, Fluor Spar, and Other Substances, by M echan­
ical Compression and Dilation,” Philosophical Transactions o f  the Royal Society 
o f  London, pp. 156-78(1816).

[5] David Brewster, “On the Production of Regular Double Refraction in the Mole­
cules o f Bodies by Simple Pressure: with Observations on the Origin of the Dou­
bly Refracting Structure,” Philosophical Transactions o f  the Royal Society o f  Lon­
don, pp. 87-97 (1830).

[6] David Brewster, “On the Production of Crystalline Structure in Crystallised Pow­
ders by Compression and Traction,” Transactions o f the Royal Society, Edinburgh, 
20, pp. 555-9(1853).

[7] James Clark Maxwell, “On the Equilibrium of Elastic Solids,” Transactions o f  the 
Royal Society, Edinburgh, 20 , pp. 87-120 (1853).

[8] L. N. G. Filon, “On the Dispersion in Artificial Double Refraction,” Philosophical 
Transactions o f  the Royal Society o f  London A, 207, pp. 263-306 (1907).

[9] John Kerr, “Experiments on the Birefringent Action of Strained Glass,” Philo­
sophical Magazine, 26, pp. 321-342 (1888).

[10] E. G. Coker and S.P. Thompson, “The Design and Construction of Large Polar- 
iscopes,” Engineering, 94, pp. 134-135 (July 1912).

[11] Alexander Goetz, “A Modified Optical Arrangement for Photoelastic M easure­
ments,” Review o f  Scientific Instruments, 5, p. 20 (1934).

[ 12] H.T. Jessop, “The Development of Photoelasticity in Britian," Schweitzer Anchiv.,
No. 5, pp. 158-163 (May 1959).

[13] Raymond D. Mindlin, “A Reflection Polariscope for Photoelastic Analysis,” Re­
view o f  Scientific Instruments, 5, pp. 224-228 (1934).

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

[14] H.E. Wessman, “New Universal Straining Frame Aids Photoelastic Research,” 
Civil Engineering, 8, p. 614 (1938).

[15] S. Redner, “New Automatic Polariscope System,” Experimental Mechanics, 14, 
pp. 486-491 (Dec 1974).

[16] C. P. Burger and A.S. Voloshin, “A New Instrument for Whole-Field Stress Analy­
sis,” ISA Transactions, 22, pp. 85-95 (1983).

[17] E. A. Patterson, “Automated Photoelastic Analysis,” Strain, 24, pp. 15-20 (Feb 
1988).

[ 18] Masayoshi Yamada, “High-Sensitive Computer-Controlled Infrared Polariscope,”
Review o f  Scientific Instruments, 64, pp. 1815-1821 (1993).

[19] M. Fukuzawa and M. Yamada, “Birefringence Induced by Residual Strain in Op­
tically Isotropic m -V  Compounds Crystals,” Proceedings o f SPIE—The Interna­
tional Society fo r  Optical Engineering, 2873, pp. 250-253 (1997).

[20] H. Lee and S. Krishnaswamy, “A Compact Polariscope/Shearing Interferometer 
for Mapping Stress Fields in Bimaterial Systems,” Experimental Mechanics, 36, 
pp. 404-411 (December 1996).

[21 ] Yasushi Niitsu, Kenji Gomi, and Kensuke Ichinose, “Development o f Scanning
Stress Measurement Methods Using Laser Photoelasticity” JSME International 
Journal, 40A, pp. 143-148 (1997).

[22] E. Liasi, W. North, P.I. Makrygiannis, T. Rocheleau, and G. Womack, “Photoe­
lasticity Using Retroreflection,” Experimental Techniques, 21, pp. 17-19 (Jan/Feb 
1997).

[23] D. E. P. Hoy, “A Color Scanner as a  Digital Recording Polariscope,” Experimental 
Techniques, 22, pp. 26-27 (March/April 1998).

[24] http://www.stressphotonics.com

[25] A. L. Kimball, Jr., “Stress Determination by Means of the Coker Photo-Elastic 
Method,” General Electric Review, pp. 73-81 (Jan 1921).

[26] L. N. G. Filon, “On the Graphical Determination of Stresses from Photoelastic 
Observations,” Engineering, pp. 511-512 (Oct. 19, 1923).

[27] Ocuzoo Arakawa, “Some Advantages Obtained from Bakelite in Photoelastic Ob­
servations,” Proceedings o f  the Physico-Mathematical Society o f  Japan, 7, pp. 
160-180(1925).

[28] Raymond D. Mindlin, “A Review of the Photoelastic Method of Stress Analysis 
I '' Journal o f  Applied Physics, 10, pp. 222-241 (April 1939).

[29] Raymond D. Mindlin, “A Review of the Photoelastic Method of Stress Analysis 
II,” Journal o f  Applied Physics, 10, pp. 273-293 (May 1939).

[30] Max M. Frocht, “Recent Advances in Photoelasticity,” Transactions o f  ASME, 53, 
pp. 135-153 (1931).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.stressphotonics.com


147

[31] M. Hetenyi, “The Fundamentals of Three Dimensional Photoelasticity,” Journal 
o f  Applied Mechanics, 5, pp. 1149-1155 (1938).

[32] Raymond D. Mindlin, “Optical Aspects o f Three-Dimensional Photoelasticity,” 
Reprint from  the Journal o f  the Franklin Institute, 233, pp. 349-363 (April 1942).

[33] Daniel C. Drucker and Raymond D. Mindlin , “Stress Analysis by Three-Dimensional 
Photoelatic Methods,” Reprint from the Journal o f  Applied Physics, 11, pp. 724- 
732 (November 1940).

[34] J. H. A. Brahtz and J.E. Soehrens, “Direct Optical Measurement o f Individual 
Principal Streses,” Journal o f  Applied Physics, 10, pp. 242-247 (April 1939).

[35] J. Ward, “Recent Developments in Photoelasticity,” Transactions o f  the Institute 
o f  Marine Engineers, 59, pp. 223-235 (Dec 1947).

[36] Raymond D. Mindlin, “Distortion of the Photoelastic Fringe Pattern in an Opti­
cally Unbalanced Polariscope,” Reprint from  the Journal o f  Applied Mechanics, 
pp. A170-A178 (December 1937).

[37] D. C. Drucker, “Photoelastic Separation o f Principal Stresses by Oblique Inci­
dence,” Journal o f  Applied Mechanics, 65, pp. A153-A160 (1943).

[38] Robert M. Gray, “Initial Fringes in Photoelastic Models and Their Effects,” Ex­
perimental Stress Analysis, 11, pp. 115-118 (1953).

[39] Max M. Frocht and Roscoe Guernsey, Jr., “Further Work on the General Three- 
Dimensional Photoelastic Problem,” Journal o f  Applied Mechanics, 22, pp. 183- 
189 (June 1955).

[40] F. Zandman and Marc R. Wood, “Photostress: A New Technique for Photoelastic 
Stress Analysis for Observing and Measuring Surface Strains on Actual Structures 
and Parts,” Product Engineering, 27, pp. 167-178 (1956).

[41] J. W. Dally and F. J. Ahimaz, “Photographic Method to Sharpen and Double 
Isochrcmatic Fringes,” Experimental Mechanics, 2, pp. 170-175 (June 1962).

[42] S. S. Redner, “New Oblique-Incidence Method for Direct Photoelastic Measure­
ment o f Principal Strains,” Experimental Mechanics, 3, pp 67-72 (March 1963).

[43] Douglas Bynum, Jr., “On the Accuracy of Fringe Multiplication with Mirrored 
Birefringent Coatings,” Experimental Mechanics, 6 , pp. 381-382 (July 1966).

[44] N. K. DasTalukder and P. Ghosh, “On Fringe Multiplication by Superimposition 
of Negatives,” Experimental Mechanics, 15, pp. 237-239 (June 1975).

[45] R. K. M uller and L. R. Saackel, “Complete Automatic Analysis of Photoelastic 
Fringes,” Experimental Mechanics , 19, pp. 245-251 (July 1979).

[46] Toyahiko Yatagai, Suezou Nakadate, Masanori Idesawa, and Hiroyoshi Saito, 
“Automatic Fringe Analysis Using Digital Image Processing Techniques,” Optical 
Engineering, 21, pp. 432-435 (May/June 1982).

[47] A. S. Voloshin and C. P. Burger, “Half-fringe Photoelasticity: A New Approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

to Whole-field Stress Analysis,” Experimental Mechanics , 23, pp. 304-313 (Sept 
1983).

[48] A. C. Gillies, “Image Processing Approach to Fringe Patterns,” Optical Engineer­
ing, 27, pp. 861-866 (October 1988).

[49] T. Y. Chen and C. E. Taylor, “Computerized Fringe Analysis in Photomechanics,” 
Experimental Mechanics, 29, pp. 323-329 (Sept 1989).

[50] A. S. Voloshin and A. S. Redner, “Automated Measurement of Birefringence: De­
velopment and Experimental Evaluation of the Techniques,” Experimental M e­
chanics, 29, pp. 252-257 (Sept 1989).

[51] A. J. Durelli and B. Ranganayakamma, “Complementary Use of Photoelasticity 
with Numerical Methods,” Optical Engineering, 29, pp. 154-159 (February 1990).

[52] Ph. Boulanger and M. Hayes, “Some Remarks on Photoelasticity” Arch. Rational 
Mech. Anal, 116, pp. 199-222 (1991).

[53] E. A. Patterson and Z. F. Wang, ‘Towards Full Field Automated Photoelastic 
Analysis o f  Complex Components,” Strain, 27, pp. 49-56 (May 1991).

[54] K. Ramesh, V. R. Ganesan, and S. K. Mullick, “Digital Image Processing of 
Photoelastic Fringes -  A New Approach,” Experimental Techniques, pp. 41-46 
(Sept/Oct 1991).

[55] S. J. Haake and E. A. Patterson, “The Determination of Principal Stresses for 
Photoelastic Data,” Strain , 28, pp. 153-158 (Nov 1992).

[56] A. Asundi, “Phase Shifting in Photoelasticity,” Experimental Techniques, pp. 12- 
23 (Jan/Feb 1993).

[57] S. J. Haake, Z. F. Wang, and E. A. Patterson, “Evaluation of Full Field Automated 
Photoelastic Analysis Based on Phase Stepping,” Experimental Techniques, pp. 
19-25 (Nov/Dec 1993).

[58] J. Carazo-Alverez, S. J. Haake, and E. A. Patterson, “Completely Automated Pho­
toelastic Fringe Analysis,” Optics and Lasers in Engineering, 21, pp. 133-149 
(1994).

[59] Z. F. Wang and E. A. Patterson, “Use of Phase-Stepping with Demodulation and 
Fuzzy Sets for Birefringence Measurements,” Optics and Lasers in Engineering, 
22, pp. 91-104 (1995).

[60] Y. Morimoto, Y Morimoto Jr., and T. Hayashi, “Separation of Isochromatics and 
Isoclinics using Fourier Transform,” Experimental Techniques, pp. 13-17 (Sept/Oct 
1994).

[61] B. Han and L. Wang, “Isochromatic Fringe Sharpening and Multiplication,” Ex­
perimental Techniques, pp. 11-13 (Nov/Dec 1994).

[62] Jaime F. Cardenas-Garela, Javad Hashemi, and Augusto J. Durelli, “The Practical 
Use of the Hole Method Photoelasticity,” Mechanical Research Communica­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

tions, 22, pp. 239-244 (1995).

[63] C. Quan, P. J. Bryanston-Cross, and T. R. Judge, “Photoelastic Stress Analysis 
Using Carrier and Fast Fourier Techniques,” Optics and Lasers in Engineering, 
18, pp. 79-108 (1993).

[64] N. Plouzennec, J. C. Dupre, and A. Lagarde, “Whole Field Determination of Iso­
clinic and Isochrmatic Parameters, ” Experimental Techniques, 23, pp. 30-33 (Jan­
uary/February 1999).

[65] A. Ajovalasit, S. Barone, and G. Petrucci, ‘Towards RGB Photoelasticity: Full- 
Field Automative Photoelasticity in White Light,” Experimental Mechanics, 35, 
pp. 193-200 (September 1995).

[66] K. Ramesh and Sanjeev S. Deshmukh, “Three Fringe Photoelasticity -  Use of 
Colour Image Processing Hardware to Automate Ordering of Isochromatics,” Strain, 
32, pp. 79-86 (Aug 1996).

[67] S. J. Haake, E. A. Patterson, and Z. F. Wang, “2D and 3D Separation o f  Stresses 
using Automated Photoelasticity,” Experimental Mechanics, 35, pp. 269-276 (Sep­
tember 1996).

[68] B. Han and A. L. Wang, “Isochromatic Fringe Sharpening and Interpolation along 
an Isoclinic Contour, with Application to Fracture Mechanics,” Experimental Me­
chanics, 36, pp. 305-311 (December 1996).

[69] Sherri A. Sparling and Carolyn F. Small, “Photoelastic Analyis Using Chromatic 
Interpretation of Digitized Video,” 1995 IEEE Engineering in Medicine and Biol­
ogy: 17th Annual Conference, 1, pp. 417-418 (1997).

[70] E. A. Patterson, W. Ji, and Z. F. Wang, “On Image Analysis for Birefringence 
Measurements in Photoelasticity” Optics and Lasers in Engineering, 28 , pp. 17- 
36 (September 1997).

[71] Andrew D. Nurse, “Full-Field Automated Photoelasticity by Use of a Three- 
Wavelength Approach to Phase Stepping,” Applied Optics, 36, pp. 5781-5786 
(August 1997).

[72] T. W. Ng, “Photoelastic Stress Analysis Using an Object Step-Loading Method,” 
Experimental Mechanics, 37, pp. 137-141 (June 1997).

[73] M. J. Ekman and A. D. Nurse, “Absolute Determination of the Isochromatic Pa­
rameter by Load-stepping Photoelasticity,” Experimental Mechanics, 38, pp. 189- 
195 (September 1998).

[74] K. Ramesh and S. S. Deshmukh, “Automation of White Light Photoelasticity by 
Phase Shifting Technique Using Color Image Processing Hardware,” O ptics and 
Lasers in Engineering, 2 8 , pp. 47-60 (September 1997).

[75] T. Y. Chen, “Digital Determinatin of Photoelastic Birefringence Using Tw o Wave­
lengths,” Experimental Mechanics, 37, pp. 232-236 (September 1997).

[76] G. Petrucci, “Full-Field Automatic Evaluation of an Isoclinic Parameter in White

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



150

Light,” Experimental Mechanics, 37, pp. 420-426 (December 1997).

[77] W. Ji and E. A. Patterson, “Simulations of Errors in Automated Photoelaticity,” 
Experimental Mechanics, 38, pp. 132-139 (June 1998).

[78] J. Gough, “A  Description of a Property o f Indian Rubber (Caoutchouc),” Manchester 
Literary and Philosophical Society (1805).

[79] Thermoelastic Stress Analysis, N. Harwood and W. M. Cummings, Eds. (Adam 
Hilger, Bristol, 1991).

[80] W. Thomson, “On the Dynamic Theory of Heat with Numerical Results Deduced 
from Mr. Joule’s Equivalent of a Thermal Unit,” Transactions o f the Royal Society 
o f  Edinburgh, pp. 261-288 ( 1853).

[81] K. T. Compton and D. B. Webster, ‘Temperature Changes Accompanying the 
Adiabetic Compression of Steelf  Adiabetic Compression o f  Steel, 5, pp. 159-166 
(1915).

[82] Clarence Zener, “Internal Friction in Solid -  General Theory of Thermodynamic 
Internal Friction,” Physical Review, 53, pp. 90-99 (January 1, 1938).

[83] M. A. Biot, “Thermoelasticity and Irriversible Thermodynamics,” Journal o f  Ap­
plied  Physics, 27, pp. 240-253 (1956).

[84] M ilo H. Belgen, “Structural Stress Measurements with an Infrared Radiometer,” 
ISA Transactions, 6, pp. 49-53 (January 1967).

[85] M ilo H. Belgen, “Infrared Radiometric Stress Instrumentation Application Range 
Study,” NASA CR-1067 (1968).

[86] E. H. Jordan and B. I. Sandor, “Stress Analysis from Temperature Data,” Journal 
o f  Testing and Evaluation , 6, pp. 325-331 (November 1978).

[87] D. S. Mountain and J. M. B. Webber, Proceedings o f  the Society o f Photo-Optical 
Instrument Engineering, 164, pp. 189-196 (1978).

[88] L. R. Baker and J. M. B. Webber, “Thermoelastic Stress Analysis,” Optica Acta, 
29, pp. 555-563(1982).

[89] C. S. Welch, K. E. Cramer, J. R. Lesniak, and B. R. Boyce,“An Array M easure­
ment System for Thermoelastic Stress Analysis,” Nontraditional Methods o f  Sens­
ing Stress, Strain, and Damage in M aterials and Structures, George F. Lucas and 
David A. Stubbs, Eds., pp. 198-206 (American Society for Testing and Materials, 
1997).

[90] J. McKelvie, “Consideration of the Surface Temperature Response to Cyclic Ther­
moelastic Heat Generation,” SPIE Stress Analysis by Thermoelastic Techniques, 
731, pp. 44-53 (1987).

[91] T. G. Ryall and A. K. Wong, “Determining Stress Components from Thermoelas­
tic Data -  A Theoretical Study,” Mechanics o f Materials, 7, pp. 205-214 (1988).

[92] Y. M. Huang, H. H. AbdelMohsen, and R. E. Rowlands, “Determination o f Indi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151

vidual Stresses Thermoelasticlly,” Experimental Mechanics, 30, pp. 88-94 (1990).

[93] Y. M. Huang, R. E. Rowlands, and J. R. Lesniak, “Simultaneous Stress Separa­
tion, Smoothing of Measured Thermoelastic Isopachic Information and Enhanced 
Boundary Data,” Experimental Mechanics, 30, pp. 398-403 (1990).

[94] Y. M. Huang and R. E. Rowlands, “Quantitative Stress Analysis Based on the 
Measured Trace of the Stress Tensor,” Journal o f  Strain Analysis fo r  Engineering 
Design, 26, pp. 55-63 (1991).

[95] Jon Lesniak, Thermographic Stress Analysis/NDE via Focal-Plane-Array Detec­
tors, Final Report, Contract Number NAS1-19262 (1991).

[96] J. Lesniak and B. Bartel, “An Elevated-Temperature TSA Furnace Design,” Ex­
perimental Techniques, 20, pp. 10-13 (March/April 1996).

[97] S. T. Lin, J. R Miles, and R. E. Rowlands,“Image Enhancement and Stress Separa­
tion of Thermoelastically M easured Data Under Random Loading” Experimental 
Mechanics, 37, pp. 225-231 (September 1997).

[98] B. J. Rauch and R. E. Rowlands, “Filtering Thermoelastically Measured Isopachic 
Data,” Experimental Mechanics, 37, pp. 387-392 (December 1997).

[99] S. Offermann, J. L. Beaudoin, C. Bissieux, and H. Frick, “Thermoelastic Stress 
Analysis Under Nonadiabatic Conditions,” Experimental Mechanics, 37, pp. 409- 
413 (December 1997).

[100] J. M. Dulieu-Barton and P. Stanley, “Reproducibility and Reliability o f the Re­
sponse from Four SPATE Systems,” Experimental Mechanics, 37, pp. 440-444 
(December 1997).

[101] A. J. Durelli and K. Rajaiah, “Determination of Strains in Photoelastic Coatings,” 
Experimental Mechanics, 20, pp. 57-64 (1980).

[102] “Separation o f Principal Strains,” Operating Instructions and Technical Manual 
for the 030-Series Reflection Polariscope, Measurements Group, Inc., Raleigh, 
North Carolina.

[103] S. Barone and E. A. Patterson, “Full-fleld Separation o f Principal Stresses by 
Combined Thermo-and Photoelasticity” Experimental Mechanics, 36, pp. 318- 
324(1996).

[104] R. B. Agarwal and L. W. Teufel, “Epon 828 Epoxy: A New Photoelastic-Model 
Material,” Experimental Mechanics, 23, pp. 30-35 (1983).

[ 105] Polymer Materials: An Introduction fo r  Technologists and Scientists, Christopher 
Hall, Ed. (John Wiley & Sons, New York, 1989).

[ 106] Francoise Delplancke, Harry Sendrowicz Robert Bemaerd, and Jean Ebbeni, “Sim­
ple Process for Building Homogeneous Adaptable Retarders made from Poly­
meric Materials,” Applied Optics, 34, pp. 2921-2926 (June 1, 1995).

[ 107] Alexander K. Mackenzie, “Effects o f Surface Coatings on Infra-red Measurements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

of Thermoelastic Responses,” SPIE, 1084, pp. 59-71 (1989).

[ 108] “Principal Stress Separation in PhotoStress Measurements,” Measurements Group, 
Inc. Tech Note TN-708-1 (1992).

[109] Christopher S. Welch and Michael J. Zickel, “Thermal Coating Characterization 
Using Thermoelasticity” Review o f  Progress in Quantitative Nondestructive Eval­
uation, 12B, pp. 1923-1930(1993).

[110] S. Barone and E. A. Patterson, “Polymer Coating as a Strain Witness in Ther- 
moelasticity,” Journal o f  Strain Analysis, 33, pp. 223-232 (1998).

[111] Handbook on Structural Testing, R.T. Reese and W. A. Kawahara, Eds. (Fairmount 
Press, Libum, GA, 1993).

[112] “Instructions for Bonding Flat and Contoured Photoelastic Sheets to Test-Part Sur­
faces,” Instruction Bulletin IB-223-G (Measurements Group, Inc., 1982).

[113] W. E. Witzell, “Photostress Spray Technique Development,” REA 111-9133, Re­
port No. ERR-AN-027 (1961).

[114] “Introduction to Stress Analysis by the Photostress® Method,” Measurements 
Group Tech Note TN-702-I (Measurements Groups, Inc., Raleigh, North Car­
olina, 1989).

[115] Robert Guenther, Modem Optics, (John Wiley & Sons, Inc., New York, 1990).

[116] Jin Au Kong, Electromagnetic Wave Theory, Second Edition (John Wiley & Sons, 
Inc., New York, 1990).

[117] J. A. Brandao Faria, “A Perturbation Approach to the Analysis of Index Ellipsoid 
Deformations in Biaxial and Uniaxial Media,” Microwave and Optical Technology 
Letter, 6, pp. 657-670 (1993).

[118] Y. C. Fung, A First Course in Continuum Mechanics, Third Edition (Prentice Hall, 
Englewood Cliffs, 1994).

[119] K. Elliott Cramer, David S. Dawicke, and Christopher S. Welch, “Thermographic 
Characterization of Stress During Crack Growth,” Review o f the Progress o f  Quan­
titative Nondestructive Evaluation, 11, pp. 2139-2146 (Plenum Press, New York, 
1992).

[120] DeltaTherm User’s Guide (Stress Photonics Inc. Madison, WI, March 1998).

[121] “Calibration o f Photoelastic Coatings,” Measurements Group Tech Note TN-701 
(Measurements Groups, Inc., Raleigh, North Carolina, 1977).

[122] N. Plouzennec, J.C, Dupre, and A. Lagarde, “W hole Field Determination of Iso­
clinic and Isochromatic Parameters,” Experimental Techniques, 23, pp. 30-33 (Jan­
uary/February 1999).

[123] Max Mark Frocht, Photoelasticity, Volume I  (John Wiley & Sons, New York, 
1941).

[ 124] Petr Beckmann, The Depolarization o f Electromagnetic Waves (The Golem Press,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

Boulder, Colorado, 1968).

[125] Petr Beckmann and Andre Spizzichino, The Scattering o f  Electromagnetic Waves 
From Rough Surfaces (Artech House, Inc., Norwood, MA, 1987).

[126] Deonna Woolard and Mark Hinders, “Stress Separation Errors Resulting from 
Imperfect Backings," Proceedings o f SEM  Annual Conference on Theoretical, Ex­
perimental, and Computational Mechanics, pp. 605-608 (SEM 1999).

[ 127] D. F. Woolard and M. K. Hinders, “Coating for Combined Thermoelastic and Pho­
toelastic Stress Measurement,” Nondestructive Evaluation o f  Bridges and H igh­
ways III, Steven B. Chase, Editor, Proceedings of SPIE, 3587, pp. 88-96 (1999).

[128] Deonna Woolard, M ark Hinders, and Christopher Welch, “Combined Thermoelas­
tic and Photoelastic Full-Field Stress Measurement,” Review o f  Progress in Quan­
titative Nondestructive Evaluation, 18, pp. 1431-1438 (Plenum Press, New York, 
1999).

[ 129] Jean M. Bennett and Lars Mattsson, Introduction to Surface Roughness and Scat­
tering (Optical Society of America, Washington, D.C., 1989).

[ 130] A. K. Wong, R. Jones, and J. G. Sparrow, “Thermoelastic Constant of Thermoelas­
tic Parameter,” Journal o f  Physical Chemistry in Solids, 48, pp. 749-753 (1987).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vita

D eonna Faye W oolard

Bom in Weirton, West Virginia, on November 27, 1969 to Diane and William C. 

Johnson. Was the Salutatorian of the 1988 graduating class from Weir High School, Weir­

ton, West Virginia. Graduated Magna Cum Laude from Bethany College, Bethany, West 

Virginia with a Bachelor of Science in Physics, May 1992. Received her Masters Degree 

in Physics from the College of William and Mary, Williamsburg, Virginia in December 

1994 and her Doctorate of Philosophy from the same institution in December 1999. She 

has accepted a tenure-track assistant professor position in the Department o f Physics at 

Randolph-Macon College, Ashland, Virginia.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Thermoelastic and photoelastic full-field stress measurement
	Recommended Citation

	tmp.1539750766.pdf.0Hl_X

