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Thermoelastic Displacements and 
Stresses Due to a Heat Source 
Moving Over the Surface of a Half 
Plane 
A solution is given for the surface displacement and stresses due to a line heat 
source that moves at constant speed over the surface of an elastic half plane. The 
solution is obtained by integration of previous results for the instantaneous point 
source. The final results are expressed in terms of Bessel functions for which 
numerically efficient series and asymptotic expressions are given. 

Introduction 
If two thermally conducting bodies are in sliding contact, 

the frictional heat generated at the interfaces causes ther­
moelastic distortion which profoundly influences the extent of 
the contact area and the distribution of contact stress [1]. This 
phenomenon - now known as thermoelastic instability - has 
been observed experimentally in a wide range of practical 
sliding systems [2, 3]. 

Several theoretical solutions have been obtained to 
problems of this kind, e.g., [4-6], but most make the 
assumption that one of the bodies is either rigid or a non­
conductor or both, thus ensuring that the temperature field is 
stationary in the deformable solid. 

In the more general problem, the contact area and hence the 
temperature field will move with respect to both solids. One 
way to treat problems of this kind is to use the Green's 
function for a moving heat source on the surface of the body. 
The two-dimensional Green's function for a heat source 
moving over the surface of an elastic half plane was first 
investigated by Ling and Mow [7], who used Fourier trans­
formation to obtain a simplified solution in which conduction 
of heat in the direction of motion is neglected. This ap­
proximation is justified at large Peclet number - i.e., when 

Vxn >> 1 (1) 

where V is the source velocity, x0 is a characteristic length for 
the problem and k is the thermal dif fusivity of the material. 

More recently, Kilaparti and Burton [8] have developed an 
exact Fourier series solution for a periodic strip heat input. 
Their series is rather unwieldly, but at large Vx0/k, it reduces 
to a form [9] that is simpler than that of Ling and Mow [7]. 
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Fig. 1 The heat source is moving to the right at speed V and has just 
reached 0. Stresses and displacements are to be found at P. 

Tseng and Burton [10] have extended this solution to give the 
tangential surface stress due to a moving heat source. 

In this paper, we shall develop the Green's function for the 
problem of Kilaparti and Burton, by superposition of 
previously published results for the instantaneous point heat 
source [11]. The results obtained are expressed in a simple 
form and are exact for all values of Vx0/k in the context of 
quasi-static, uncoupled thermoelasticity. 

Solution 

The fundamental problem is illustrated in Fig. 1. A line 
heat source, q per unit length per unit time, moves from left to 
right at constant speed V on the traction-free surface of an 
elastic half plane. We wish to find the components of 
displacement, ux, uy and stress axx at the point P(x0,0) on the 
surface when the source has reached the origin 0. Plane-strain 
conditions are assumed. 

The moving source can be considered as a sequence of 
instantaneous sources of strength q bt at time \-t) and 
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position ( - Vt, 0) as t takes all the values in the range 
0</<oo. 

The surface displacements at (x, 0) due to an instantaneous 
source Q at (0, 0) are given in [11] as 

a Q U + v) (l-e-x2) 
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and a, v, p, c are the coefficient of thermal expansion, 
Poisson 's rat io, density, and specific heat, respectively, for 
the material . 

If follows that the displacement components for the moving 
source are 

X = x/(4kt)1 
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where 
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(9) (x0 + Vt)/(4kt)W2 

We shall evaluate the integrals (7) and (8) by substituting 
for t in terms of X ( o r R). It is convenient to consider the cases 
x0 > 0,x0 < 0 separately. 

(i) XQ > 0 . The results for x0 > 0 correspond to points P 
which have not yet been passed by the source. We note from 
equations (9) and (6) that R = X and that X — oo at both ends 
of the range of integration (t -~ oo, / — 0). There is therefore a 
time t0 at which X i s a minimum, which occurs when 

dX Vt-X« « (10) 
dt 2f(4ArO' 

= 0 

i.e. 

t = t0=x0/V. (11) 

Substituting in equation (9), we find the minimum value of X 
is 

x0 = (vx0/ky/2 

Solving equation (9) for t, we find 

0 < / < t0 

t = tx = k{2X2-X2
0-2^X2(X2-X2

0)}/V2 

t>t0 

t = t2 = kXlX2 -X2
0+2^X2(X2 -Xj^/V2 

and hence we can rewrite equation (7) in the form 

(12) 
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(14) 

a(\ + v)q [['o (\-e~x ) dtx 

wpck 
1/2 LJo X 1/2 

x2) dt2 f ° ° ( l - e - ^ ) dt2 I 

J/n X UU2\ 

a(\ + v)q 

icpck1. 

2 

du 
L = A - 0 * 17^72 "7772 J 

(15) 

(16) 

Finally, differentiating (13) and (14) and substituting for tr, t2 

into (16) we find 

f dt2 dt, -\ __ 

tt2
U2 t^'2) 

4kW2dX 

V<\-Xi/X2 (17) 

and hence 

4a(\ + v)q[~ ( 1 - e - * )dX 
x ~ irpc V ix0 ylX*=Xl ( } 

Similarly, from equations (8) and (17) 

4 a ( l + i - ) g r XFx(X)dX 
Uy TrcpV ix0 ~JX2-Xl 

(19) 

(if) x0 < 0. When the source has passed P and x0 < 0, there 
is no minimum value of X as defined by equation (10) and X 
varies monotonically from - 00 to +00 through the range of 
integration. Solving equation (9) for t, we find 

0 < t < t0, X < 0 

t = t{ = k{2X2+X2
0-2^/X2(X2+X2

0))/V
2 (20) 

t>t0, X<0 

t = t2 = k{2X1+Xl+2*JX1(X2+Xl)}/V1 (21) 

where we now redefine 

t0 = -x0/V (22) 

X0 = (-Vxjkf2 (23) 

Notice that X0 is wctf now the minimum value of X- in fact 
X — 0 as r — ?0, as can be seen on substituting (22) into (9). 
The time t = t0 corresponds in this case to the instant when 
the source is passing the point P. 

Equat ion (15) now takes the form 
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and since (1 -e~x )/X is odd in X, the two integrals can be 
combined to give 

a ( l + v)q 

irp ckW2 

f ^ = » ( l - e ^ A )(- dt2 

L-o x I7772 
2 + _ * 1 _ ] (25) 

After substitution from equations (20) and (21), this reduces 
to 

4a(l + v)q r ° ° ( l - e - * )dX 
Ux ~~ irpc V Jo y/X2+X2

0 

(26) 

We follow a similar procedure to determine uy, but, since 
Fx (X) an even function, we find 

7rpcA: 

7rpc V Jo 
(28) 

after substi tution. 
Notice that equation (28) is independent of XQ. In other 

words , the normal displacement uy remains constant once the 
source has passed P. 

(Hi) Stress at the Surface. We anticipate that the maximum 
thermal stress due to the moving source will occur at the 
surface and hence we calculate the component axx (the other 
two components axy, oyy being zero because of the zero 
traction condit ion). Expressions for axx are not given in [11], 
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Fig. 2 Displacement u x , u„ and tangential stress <rxx as functions of 
Vx0lk. The source is at 0 ana is moving to the right at speed V. 

but they are easily obtained in the same manner as the 
displacement components by superposition of an axisym-
metric thermal stress field and an isothermal correction field 
to leave surface free of traction. The contribution from the 
axisymmetric field is given by equations (3) and (4) of [11]. 

If a half plane is subjected to a purely normal traction oyy, 
it can be shown that the stress axx induced at the surface is 
everywhere equal to ayy (except for a possible additive con­
stant). Hence, the corrective traction that cancels the com­
ponent aM (equation (4) of [1 \\) leaves behind a stress 

<*QE ro_-e~*2) 
u(x* = 0) 2irpc(l - v)kt L R2 - e~«2] 

(29) 

Following the same procedure as in the preceding section, 
we find that the moving source produces a surface stress 

oxx = - "** \ V - ^ - -e~«2] £ (30) 2irpc(l-v)kh L R2 J t K ' 

The integrand is even in R and hence the substitution 
process is similar to that used for uy in section (if). For X0 > 
0, 
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In each case, definitions of ?,, r2, and X0 are as in the 
appropriate part of section (11). 

Results 

The integrals in equations (18), (19), (26), (28), (30), and 
(34) are evaluated in Appendix I, giving the results 
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(38) Equations (35) and (38) are valid for all values of xQ 

provided we interpretK0(-x) = K0(.x),K{(-x) = -K^x). 
The expression for ux is unbounded as x0 — ± oo and hence 

the tangential displacement cannot be referred to the point at 
infinity. For this reason, it might be more convenient in some 
applications to use the derivative 

d"x ^ 
dx 

2aq(\ + v) 

vpck lVxa 2 ' 
- Vx0/2k [*.(£W£)D 

(39) 

We also record here the surface temperature due to the 
moving source which is 

T= Q 

ivkpc ' -^ ( t ) (40) 

(see Carslaw and Jaeger [12] Section 10.7). 
The results for ux, uy, and axx are plotted in Fig. 2. Notice 

that the maximum (compressive) value of axx and the 
minimum ux occur just ahead of the heat source, while the 
normal displacement uy is constant behind the source. 
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Kilaparti and Burton 

Exact solution 

Fig. 3 Comparison of the solution for uy- equation (36), with the 
approximate solution of Ling and Mow [7] and the one-term asymptotic 
expression of Kilaparti and Burton [9] 

Numerical Evaluation and Convergence. The principal use 
of these results is as a Green's function for thermoelastic 
contact with moving heat sources. Such problems tend to 
involve extensive numerical computations and it is therefore 
important to find representations that can be easily and ef­
ficiently evaluated numerically. 

The Bessel functions I0, K0, Ku occurring in equations 
(35)-(40) can be expanded in convergent series when Vx0/k is 
small and in asymptotic expansions when it is large. The 
appropriate expressions are given in Appendix II. Notice that 
the singular terms in equations (35), (38) are (39) cancel 
corresponding terms in the Bessel function expansions, 
leaving a bounded result at Vx0/k = 0. 

In all cases, the ranges of the two forms overlap to give 
good accuracy throughout the range. The series for uy 

(equations (36), (A22)) is particularly convergent. For 
example, four-digit accuracy throughout the range can be 
obtained by using just the first six terms of (̂ 422) for 0 < 
Vx0/k < 8 and six terms of the asymptotic expansion (,426) 
for Vx/k > 8. By contrast, Kilaparti and Burton [9] used 1000 
terms to evaluate their Fourier expansion solution for uy and 
Tseng and Burton [10] needed 5000 terms for convergence of 
their expansion of o^ . 

Comparison With Previous Approximate Solutions. In Fig. 
3, Ling and Mow's approximate solution [7] for uy is com­
pared with the exact solution (equation (36)). Ling and Mow's 
analysis is restricted to large Peclet number, which for the 
moving point source is equivalent to \Vxa/k\> > 1 . As we 
would expect, an asymptotic expansion of their result has the 
same leading term as equations (36), and (,426) except for a 
factor of 2 error in [7], noted already by Kilaparti and Burton 

[9]. This leading term was also extracted by Kilaparti and 
Burton [9, equation (25)] and is plotted in Fig. 3. It actually 
turns out to be a better approximation to the exact solution 
than Ling and Mow's expression except for Vx0/k < 0.4. 
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A P P E N D I X I 

Evaluation of Integrals 

In this appendix, we evaluate the integrals in equations (18), 
(19), (26), (28), (30), and (34) in terms of Bessel functions. 

(/) The integral 

{
00 

x0 

(l-e~x )dX 
(AX) 

from equation (18) is unbounded becuase of the behavior of 
the integrand at infinity. However, we can write/, - Jx + J2 

where 

J-, - - i ; 
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)X0 y/WZ^i 

and is bounded, and 

dJ, d Cc 
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Substituting^ = X0 ch(y) in (.42), we find 
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by GR, Section 3.547 [13]. 
Hence, we can write 
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/ , = - log X0 - — e 2 KQ{X\/2) + constant 045) 

(w) From equation (19), 
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where cos 0 = X0/X. 
Treating S, 6 as polar coordinates and reducing to rec­

tangular coordinates through X = S cos0, Y = S sin0, we 
obtain 
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by GR, Section 8.431 [13]. 

(///) From equation (26), 

I." 
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• j ; 
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by a similar procedure to (0 in the foregoing, using the 
substitution A1 = A"0 sh(y) and GR, Section 3.547.4 [13]. 

(;'y) From equation (28) 
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(see [11], equation (14)). 

(t>) From equation (32) 
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Integrating by parts, 
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The integrals Ju J2 can now be evaluated as in (j), in the 
foregoing using the substitution X = X0 ch(y), giving 
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h = ^2~Ye * KMD 

(vf) We use the same procedure for the integral 
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from equation (34), obtaining 
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A P P E N D I X II 

(-419) 

(,420) 

(-421) 

Series and Asymptotic Forms for Bessel Functions 
For small arguments (positive or negative) we can use the 

convergent series 

h(x) h m2 
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2 [ ^ + l ) - l o g U / 2 l 

2k+\ „ _ J . f« (x/2)2*+' r 1 
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ft*+l) = -c+£) 
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andc = 0.577215 . . . is Euler's constant, 
(see Gradshteyn and Ryzhik [13], Sections 8.447, 8.486.18, 
8.365.4, and 9.73). 

Asymptotic expansions for large positive arguments are 

_ , , e* r, l2 l 2 - 3 2 

7 o W _ ( 2 ^ ) 1 / 2 L 1 + Sx + 2 ! ( « ^ 2 !(8x)2 

12.32»52 
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and hence (see [12], Appendix III). 
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