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Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise
in coated test masses for interferometric gravitational wave detectors
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The displacement noise in the test-mass mirrors of interferometric gravitational wave detectors is
proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one
fundamental source of dissipation in thin coatings, thermoelastic damping associated with the
dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the
thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral
density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The
predicted size of these effects is large enough to affect the interpretation of loss measurements, and to
influence design choices in advanced gravitational wave detectors.
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I. INTRODUCTION

While recent results indicate that the elastic losses
available in bulk materials such as silica and sapphire
are adequate to achieve the design goals for displacement
noise in next generation interferometric gravitational
wave detectors, the losses associated with the multilayer
dielectric mirrors deposited on the faces of the mass are
large enough to contribute significantly to the total noise
of the system. The origin of these coating losses is not yet
clear. In this paper, we investigate an intrinsic dissipation
mechanism, thermoelastic effects associated with a thin
film on a bulk substrate. Thermoelastic dissipation has
been known since Zener’s work in the 1930s [1]. In
homogeneous solids, it is associated with the irreversible
flow of heat driven by temperature gradients associated
with strain gradients in the solid. These effects lead to the
well-known result for the damping of flexural vibrations
in a thin beam, where the heat flows from the side of the
beam in compression to the side in tension [2]. The
maximum dissipation �max in this case is a function
only of the material properties and not the beam dimen-
sions, �max � Q�1 � E�2T=C, where E is the Young’s
modulus, � is the coefficient of linear thermal expansion,
C is the volumetric heat capacity, and T is the background
temperature. The dissipation peak occurs at a frequency
!p � 1=
 where 
� l2C=k is the thermal diffusion time
through a beam of thickness l given the thermal conduc-
tivity k.

More recently, thermoelastic dissipation in homogene-
ous test masses has been analyzed as a source of noise in
gravitational wave detectors [3], where the heat can be
viewed as diffusing radially in the compressed region
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associated with a Gaussian-distributed pressure field on
the surface of the mass, as is used in Levin’s method for
analyzing displacement noise [4]. Characteristic of both
these examples is the presence of a nonuniform strain
field, necessary to create a temperature gradient to drive
the thermal diffusion in a homogeneous medium.

In an inhomogeneous body, temperature gradients can
be generated in a uniform strain field, so that thermoelas-
tic dissipation can be expected even in the absence of
stress or strain gradients. For the case of a coated test
mass, if the thermoelastic properties of the film are
different from those in the substrate, we can anticipate
that thermal diffusion and hence thermoelastic dissipa-
tion will occur. An estimate of the size of the effect can be
obtained by comparison with the flexural damping of a
thin beam. Replacing the thermal expansion coefficient
by the difference between these coefficients in the film
and substrate, and assuming for simplicity that the other
pertinent material parameters are the same, we have
�max � E��f � �s�

2T=C, and again expect the peak re-
sponse to occur for frequencies corresponding to the
thermal diffusion time through the film. If we consider
a film with the thermal expansion coefficient of alumina
on a substrate with the thermal expansion of silica, and
take the other parameters to be those of silica we find
�max � 3� 10�4, comparable to the elastic losses mea-
sured in optical coatings [5,6]. For a 5-micron-thick film
with these properties the dissipation maximum occurs at
�5 kHz, corresponding to the thermal diffusion time
through the film. This frequency is in the range typically
sampled by mechanical loss measurements, and not far
from the frequency band of interest for gravitational wave
detection.
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It appears that a more quantitative investigation of
these effects is necessary to evaluate their implications
for characterization of test masses as well as for gravita-
tional wave detectors themselves. We consider in this
paper two questions associated with the thermoelastic
mechanism: what is the effective dissipation in the situ-
ation characteristic of resonator measurements of elastic
loss, and what is the expected spectral density of dis-
placement noise in the situation characteristic of a test
mass in a gravitational wave detector.

The key results from the analyses contained here are:
(a) the derivation of an expression for �tot;k, the thermo-
elastic dissipation expected in a coated test mass under-
going deformations of the type expected in mechanical
loss measurements and (b) the derivation of an expression
for Sx�f�, the power spectral density of thermoelastic
displacement noise associated with the dielectric mirror
coating on a test-mass substrate.

A recent independent calculation of the spectral den-
sity of thermal noise in the low-frequency limit agrees,
for the case where the thermoelastic properties of the film
and substrate other than the thermal expansion coefficient
are identical, with the results given here taken to that
same limit. [7,8].

In Ref. [8], the difference between the expressions for
thermoelastic thermal noise presented here and in [7] for
cases where the elastic properties of the film and substrate
differ is noted. After discussions with the authors this
difference has been resolved in favor of the results pre-
sented here.
α

II. SKETCH OF THE CALCULATION

In this section, we sketch the calculation of the ther-
moelastic dissipation and the displacement noise in an
inhomogeneous medium. Details of the calculation are
given in Sec. IV and Appendices.

There are three steps to calculating the thermoelastic
loss in the coating:
(1) O
btain the oscillatory thermal field associated
with the zeroth-order elastic fields,
(2) C
alculate the complex first-order elastic fields gen-
erated by the spatially varying oscillatory thermal
field, and then
α
(3) C
alculate the power dissipated by the interaction of
the zeroth- and first-order elastic fields.
FIG. 1. Diagram showing substrate with multilayer coating
where the properties of the coating have been approximated to
those of a single layer coating. Shown for clarity are the linear
thermal expansion coefficients of the film, �f and substrate �s.
Throughout we will consider only linear thermoelastic-
ity, retaining terms up to first-order in the oscillatory
thermal field. Therefore the stored energy can be taken
to be proportional to the square of zeroth-order elastic
fields, while the imaginary part of the product of the
zeroth-order elastic fields and the elastic fields induced
by the thermal wave represent the relevant average dis-
sipated power. Zeroth and first-order quantities are de-
noted by subscripts 0, 1, respectively.
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The geometry we consider consists of a film of thick-
ness l and coefficient of linear thermal expansion �f on a
substrate with �s whose thermophysical properties are all
possibly different from those of the film. We take the
surface normal to be in the �z direction, and the surface
located at z � 0, so that the film extends from z � 0 to
z � l, and the substrate from z � l to z � 1. This is
shown in Fig. 1.

To simplify the analysis, we assume that the multilayer
film can be approximated as a uniform film with appro-
priately averaged properties, and assume that the film is
thin enough and the thermal diffusion length at the
frequencies of interest short enough compared to any
relevant transverse dimension (e.g. the dimensions of
the object itself, or the radius of the Gaussian beam
interrogating its surface) that only the thermal diffusion
normal to the surface of the mass need be considered.
Since the thermal diffusion lengths for frequencies of
interest are on the order of or longer than the total film
thickness, the description of the film in terms of its
average properties appears reasonable, but we also con-
sider the case of a film whose thermal expansion (but no
other parameters) varies periodically through its thick-
ness, as a simple model to explore any unexpected effects
that might arise from the neglected microstructure of the
film.

The point of departure for the calculation is the ther-
mal diffusion equation, driven by a thermoelastic source
term, which for the assumed one-dimensional heat flow
can be cast in the form [2]
-2
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i!�j � �j
d2�j
dz2

� �
Ej�jT

�1� 2�j�Cj
i!

X3
i�1

"0;ii;j (1)

where �j�z� is the time-varying temperature with
exp�i!t� time dependence assumed, �j � kj=Cj is the
thermal diffusivity, Ej is the Young’s modulus, �j is the
Poisson ratio, T is the background temperature, Cj is the
heat capacity per unit volume, "0;ii;j is the zeroth-order
i-polarized compressional strain, and j � f; s indicates
quantities evaluated in the film and the substrate,
respectively.

To obtain the source term, we need the zeroth-order
compressional strains. Different combinations of zeroth-
order elastic fields are relevant in different situations. We
will assume that the transverse variation of the zeroth-
order elastic fields is slow compared to the thickness of
the film, so their only possible variation is in the
z-direction, and that variation results only from the pos-
sible discontinuity of the elastic properties at the film-
substrate boundary. Note that this statement regarding the
z-dependence applies only to the zeroth-order elastic
fields; as we will see, the thermal fields and the first-order
elastic fields they generate have a z-dependence that arises
from the propagation of the oscillatory thermal wave
itself. Under these assumptions, we can specify the
zeroth-order fields in terms of three quantities that, due
to the elastic boundary conditions, do not vary over the
length scales relevant to this problem: the axial stress
�0 	 �0;zz, the symmetric combination of in-plane
strains (the dilation) "0 	 �"0;xx 
 "0;yy�=2, and the anti-
symmetric combination of in-plane strains "0;xx � "0;yy.
All of the other components of the zeroth-order elastic
fields can be derived from these three, as is established in
Appendix A. The antisymmetric combination of strains,
which is a pure shear along axes rotated �=4 to x and y,
does not interact thermoelastically, and can be neglected
in the remainder of the analysis, as is established in more
detail in Sec. IV C 1.

Given these zeroth-order elastic fields, we can evaluate
the source term in Eq. (1) and solve for the oscillatory
thermal wave, ��z�, as discussed in Sec. IVA and
Appendix B. This thermal wave, in turn, generates a
first-order elastic field, with compressional components
"1;ii and �1;ii. The thermoelastic coupling enters into the
formulation through the elastic equilibrium equations and
modified Hooke’s law, which can be cast for the one-
dimensional case considered here from Eqs. 7.8 and 6.2
of [10],

d
dz
�"1;xx;j
"1;yy;j
2�1��j�"1;zz;j�2�1
�j���j��0

(2)

and
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�1;ii;j �
Ej

1
 �j

�
"1;ii;j 


�j
1� 2�j

�"1;xx;j 
 "1;yy;j


 "1;zz;j�
�
�

Ej�j�j
1� 2�j

; (3)

where j � f; s represents fields and material properties in
the film and substrate, respectively. With the thermal
fields obtained by solving Eq. (1), we can obtain from
Eqs. (2) and (3) the first-order elastic fields, as given in
Appendix C.

The rate at which work is done per unit volume in a
deformed body is in general given by

p � �ik
d"ik
dt

and the dissipated power density by

pdiss  �
!
2

X3
i�1

Im���
0;ii"1;ii 
 ��

1;ii"0;ii�: (4)

where the second form is specified to our problem with
sinusoidal fields and only longitudinal strains, and takes
into account that the zeroth-order fields are real, so that
dissipation first appears in the product of first- and zeroth-
order fields. Integrating the dissipated power density over
0 � z <1, we obtain the dissipated power per unit area,
given in Sec. IV B. While this is the essential quantity of
interest, it is convenient for comparison to experimental
measurements of elastic Q to define an effective dissipa-
tion factor, �. Since the thermoelastic dissipation is non-
local, the choice of stored energy with which to make
such a definition is somewhat arbitrary. A reasonable
choice, and the one that results in a value for � directly
comparable to that derived from experimental results, is
the elastic energy stored in the film. With this choice, as
described in Sec. IV C 1, we find that for an elastic field
with specified in-plane strain and vanishing axial stress,
as would be appropriate for a measurement of the elastic
Q of a mass coated with a uniform film of thickness l, the
total thermoelastic loss, �tot [Eq. (55)] is well approxi-
mated by

�l;k �
2Ef�

2
fT

Cf�1� �f�

�
1�

�s

�f

Es�1� �f�

Ef�1� �s�

Cf

Cs

�
2
g�!� (5)

where the frequency dependence is contained in the func-
tion g�!� defined by

g�!� 	 Im
�
�

1�����������
i!
f

p sinh�
�����������
i!
f

p
�

cosh�
�����������
i!
f

p
� 
 R sinh�

�����������
i!
f

p
�

�
;

(6)

where ! � 2�f; 
f 	 l2=�f � l2Cf=kf is the thermal

diffusion time across the film, and R 	
�����������������������
kfCf=ksCs

q
,
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with kj and Cj the thermal conductivity and volumetric
heat capacity, respectively. Eqs. (5) and (6) [or the form
for a multilayer in Eq. (9)] constitute one of the two key
results of this paper. The frequency dependence repre-
sented by g�!� is discussed at length in Sec. IV C 3. The
quantitative implications for measurements of thermo-
elastic dissipation in several material systems are dis-
cussed in Sec. III A.

These numerical results indicate that thermoelastic
losses associated with the coating are comparable to those
obtained in experimental measurements of elastic loss,
which suggests that their contribution to the total dis-
placement noise budget for a test mass could be signifi-
cant. While one could form an expression for the thermal
noise imposed on a Gaussian beam interrogating a coated
test mass by inserting �l;k from Eq. (5), and a corre-
sponding one for �l;? from Eq. (41) into one of the
expressions developed for thermal noise in coated test
masses [6][10], the result would only be approximate
because of the thermoelastic coupling between in-plane
and normal strains. A direct calculation of the thermal
noise can instead be carried out using Levin’s formula-
tion, calculating the power dissipated by the thermoelas-
tic mechanism when a pressure field with the same radial
distribution as the optical intensity field is applied to the
coated mass. This calculation, using the zeroth-order
elastic fields obtained in [6], is carried out for arbitrary
frequency in Sec. D. We find

Sx�f�df �
8kBT

2

�2f

l

w2
�2sCf

C2s
�1
 �s�2�2g�!�df

!
8

���
2

p
kBT2

�
����
!

p
l2

w2
�1
 �s�

2
C2f
C2s

�2s����������
ksCs

p �2df; (7)

where �2 is a dimensionless positive-definite combina-
tion of material constants that vanishes when the film and
substrate are identical,

�2	
�

Cs

2�sCf

�f

�1��f�

�
1
�f
1
�s


�1�2�s�
Ef

Es

�
�1

�
2
; (8)

g�!� is the same frequency dependence as defined in
Eq. (6), and the second form holds for low frequencies
obeying !< 1=
f. Note that the results in Sec. III B show
that the limiting form must be used in the gravitational
wave detection band only with caution. Equation (7) [or
the corresponding Eq. (10) for a multilayer] is the other
key result of this paper; quantitative implications for
several plausible mass/coating combinations are pre-
sented in Sec. III B.

While the results for �l;k and Sx�f� in Eqs. (5) and (7)
are calculated for a uniform film, most optical coatings of
course will consist of a large number of layers. In such a
multilayered coating, there are two thermoelastic dissi-
pation peaks, one at a frequency related to the thermal
diffusion time through the entire film, and one at a
082003
frequency related to the thermal diffusion time through
an individual layer. These interlayer effects are investi-
gated in Sec. IV C 2. It is seen there together with
Sec. IV C 3 that for problems of interest, the thermoelas-
tic effects are dominated by contributions from the ther-
mal diffusion through the film, so that a description of the
multilayer in terms of a set of averaged properties appears
appropriate. The subtleties of the averaging process are
investigated in Appendix D, where it is seen that the
average of various products of material quantities is re-
quired in addition to the average of the quantities them-
selves. Specializing to a periodic multilayer of total
thickness l with N alternating layers of materials a and
b in thicknesses of da and db, the result for �l;k from
Eq. (42),

�l;k �
2CFT

� E
1���avg

�
1

CF

	
E�
1� �



avg

�
1

Cs

Es�s

1� �s

�
2
g�!� (9)

where the frequency dependence is contained in the same
function g�!� as defined in Eq. (6) with 
f ! 
F where

F � l2=�F, and the result for Sx�f� from Eq. (74),

Sx�f� �
8kBT

2

�2f

l

w2
�2sCF

C2s
�1
 �s�2 ~�

2g�!�

!
8

���
2

p
kBT2

�
����
!

p
l2

w2
�1
 �s�

2 C
2
F

C2s

�2s����������
ksCs

p ~�2; (10)

and Eq. (73)

~� 2	

�
Cs

2�sCF

	
�
1��

�
1
�
1
�s


�1�2�s�
E
Es

�

avg

�1
�
2
;

(11)

can be stated in terms of an averaging operator defined in
Eq. (D1) as

�X�avg 	
da

da 
 db
Xa 


db
da 
 db

Xb; (12)

and volume-averaged material properties CF and �F de-
fined in Eq. (D5). The second form of Eq. (10) is, like the
second form of Eq. (7), a low-frequency limit valid for
!< 1=
f.

III. NUMERICAL RESULTS

A. Numerical results for dissipation
in Q measurements

The mechanical loss factors (or equivalently Q factors)
of dielectric coatings applied to test-mass substrates may
be obtained experimentally. In a typical measurement of
this type, a subset of the vibrational resonant modes of a
coated substrate are individually excited above some
background level and the decay of the amplitude of
vibration of the face of the sample measured as a function
of time. From this measurement, and a model of the
distribution of the stored energy in each mode of a coated
-4



THERMOELASTIC DISSIPATION IN INHOMOGENEOUS. . . PHYSICAL REVIEW D 70 082003
sample, the mechanical loss factors of the dielectric coat-
ing at each of the resonant frequencies of the sample may
be obtained.

As part of the loss measurement process described
above, the coated samples experience periodic strains.
If there exists a difference in the thermoelastic properties
of the dielectric coating and the substrate, then as shown
in this paper, there will be thermoelastic dissipation.
Equation (9) can be used to calculate the thermoelastic
dissipation in a coating both at the frequencies typical of
mechanical loss measurements, and at frequencies of
interest for gravitational wave detection.

The expected thermoelastic loss associated with a coat-
ing on a substrate is a direct function of the material
parameters for the particular substrates and coatings
chosen. Current interferometric detectors use fused-silica
substrates with coatings formed from alternating layers of
SiO2 (refractive index n � 1:45) and Ta2O5 (refractive
index n � 2:03), each layer being of +=4 optical thick-
ness, with + � 1064 nm. The mirrors in future upgrades
to current detectors are expected to have substrates of
either fused silica or sapphire. The choice of appropriate
mirror coating materials is a subject of ongoing study
[5,6,11], with the two coatings currently under most in-
tense study being alternating layers of SiO2 and Ta2O5, or
Al2O3 (refractive index n � 1:63) and Ta2O5.

To estimate the expected level of thermoelastic loss for
the mirror/substrate coating combinations above, Eq. (9)
was used. In each case a coating thickness equivalent to
30 alternating quarter-lambda layers of the coating ma-
terials was chosen. The numerical values used for the
properties of the mirror substrates are shown in Tables I
and II.

Choosing appropriate material parameters for the mul-
tilayer ion-beam-sputtered dielectric coatings is made
more difficult by the fact that thermophysical properties
of these types of coatings are not well characterized.
Absent better information, the properties of the amor-
TABLE II. Sapphire substrate properties [16] [17] .

�s � 5:4� 10�6 K�1

Es � 4� 1011 Nm�2

Cs � 777 Jkg�1 K�1 � 3980 kgm�3

� 3:09� 106 JK�1 m�3

ks � 33 Wm�1 K�1

�s � 0:23

TABLE I. Fused-silica substrate properties [16] [17].

�s � 5:1� 10�7 K�1

Es � 7:2� 1010 Nm�2

Cs � 746 Jkg�1 K�1 � 2200 kgm�3

� 1:64� 106 JK�1 m�3

ks � 1:38 Wm�1 K�1

�s � 0:17
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phous SiO2 and Al2O3 present in the films were assumed
to be the same as the bulk values for amorphous fused
silica and crystalline sapphire. The numerical values used
for the properties of Ta2O5 are summarized in Table III.

Values for Young’s modulus and density of Ta2O5 in
thin film form were taken from Ref. [12]. The coefficient
of thermal expansion for Ta2O5 film was taken from [13]
and a value for the specific heat capacity of Ta2O5 (bulk)
from [14]. No values for thermal conductivity or Poisson’s
ratio were available for Ta2O5; absent better information
we take these to be closer to those of sapphire than silica,
and assign them the same values as used for Al2O3. Using
Eq. (10) the thermoelastic losses from coatings of either
SiO2=Ta2O5 or Al2O3=Ta2O5 applied to silica and sap-
phire substrates were calculated for frequencies up to
100 kHz, a typical range of interest for measurements
of mechanical loss. The estimated loss factors are plotted
in Fig. 2.

If the material parameters given above are considered
representative then it can be seen from Fig. 2 that in
general, the calculated magnitude of the thermoelastic
losses from these mirror and coating combinations can be
of the order of a few 10�6 to approximately 10�3, com-
parable to the levels of coating loss factors predicted to be
significant in estimations of the thermal-noise level in
advanced gravitational wave detectors [5,6].

In previous work [11], measurements have been made
of the mechanical loss in the frequency range from
�2:8 kHz to �73 kHz, for dielectric coatings of
SiO2=Ta2O5 applied to fused-silica substrates. The mea-
sured coating loss factors were found to be of the order of
2:8� 10�4. It can be seen from Fig. 2, (curve a) that the
estimated thermoelastic losses for this particular coating/
substrate combination are much smaller than the mea-
sured losses. This suggests that the measured losses are
not predominantly thermoelastic in origin, and are asso-
ciated with some other form of dissipation. However in
this case the calculated loss factor depends strongly on the
square of the linear expansivity of the film. An increase in
the expansivity of Ta2O5 in thin film form by a factor of
approximately three over the value taken here would
increase the predicted thermoelastic loss to a level com-
parable with that measured experimentally. However,
such an increased expansion coefficient would be consid-
erably higher than found in recent measurements by
Braginsky and Samoilenko [8].
TABLE III. Properties used for Ta2O5 in thin film form.

� � 3:6� 10�6 K�1

E� 1:4� 1011 Nm�2

C � 306 Jkg�1K�1 � 6850 kgm�3

� 2:1� 106 JK�1 m�3

k � 33 Wm�1 K�1

� � 0:23

-5
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The thermoelastic losses for other combinations of
mirror and coating materials are estimated to be consid-
erably larger than is the case for SiO2=Ta2O5 coatings on
silica substrates, see, for example, Fig. 2, (curve b) for an
Al2O3=Ta2O5 coating on a silica substrate. Available data
on material properties suggests that in this case thermo-
elastic loss could account for a larger fraction of measured
dissipation but the currently available experimental data
is sufficiently inconclusive to allow quantitative compari-
son here. Since this form of dissipation is frequency
dependent, it is clearly important to estimate the magni-
tude of the dissipation in the frequency range of interest
for gravitational wave detectors.

From Fig. 2 it can be seen that the thermoelastic loss in
the gravitational wave detection band, �10 Hz to
�1 kHz, is lower than at the higher frequencies sampled
by mechanical loss measurements, however it can still be
of the order of 10�4. It should be noted that in the absence
of dissipation from other sources thermal noise arising
from coating-related thermoelastic losses will form a
limit to the thermal-noise performance of interferometric
detectors in a manner similar to the thermoelastic noise
from the substrates themselves [3]. Section D thus ad-
dresses the derivation of an expression for the thermal
noise from coatings arising from thermoelastic dissipa-
tion, numerical results from which are presented in
Sec. III B.

B. Thermal noise

Using Eqs. (10) and (72) with the parameters for coat-
ing and substrate properties given earlier, the thermal
displacement noise resulting from thermoelastic dissipa-
082003
tion,
�����������
Sx�f�

p
, associated with silica and sapphire mirrors

with coatings of either SiO2=Ta2O5 or Al2O3=Ta2O5 can
be estimated. Here, multilayer coatings of a thickness
equivalent to 10 ppm transmission were modeled, since
this represents a typical specification for the transmission
of a mirror coating used in the Fabry-Perot arm cavities
of a gravitational wave detector. Figure 3 shows the
calculated noise for each case, for frequencies up to
1 kHz. A beam radius, w, of 5.5 cm was assumed.

For comparison, the target level for total displacement
noise per test mass in the advanced LIGO gravitational
wave interferometer design is approximately 6�
10�21 m=

������
Hz

p
at 100 Hz if sapphire mirrors are used

and approximately 8� 10�21 m=
������
Hz

p
for silica mirrors.

[15] Fig. 3 shows that for SiO2=Ta2O5 coatings on silica or
sapphire substrates and Al2O3=Ta2O5 coatings on sap-
phire substrates, the expected coating-related thermoelas-
tic displacement noise is below the required specification
at 100 Hz. However for an Al2O3=Ta2O5 coating on a
fused-silica substrate the noise from this dissipation
mechanism alone is above the specification at 100 Hz. It
is also clear that the same coating will result in a different
level of noise if applied to different substrates.

There are several other points illustrated by Fig. 3
worth consideration. Firstly, for some coating/substrate
combinations the thermoelastic noise starts to deviate
significantly from the explicit low-frequency limit in
the frequency range of interest for detector operation.
Thus when estimating the expected level of this noise it
-6
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is important to use the full frequency-dependent expres-
sion. In addition, comparing Figs. 2 and 3 it can be seen
that while the thermoelastic loss for strain fields associ-
ated with typical loss measurements, �l;k is higher for a
SiO2=Ta2O5 coating on a sapphire substrate than for that
coating on a silica substrate, the opposite trend holds for
the thermoelastic displacement noise sensed in an inter-
ferometer. This seeming contradiction can be understood
by comparing Eqs. (37) for �l;k and (41) for �l;?, the loss
for a specified surface-normal stress. We see that the
dependence of these two loss coefficients on the material
properties is quite different, in particular, containing a
ratio of Young’s moduli in the former but not the latter. In
fact, for the material properties characteristic of these
coatings, unlike �l;k, �l;? follows the same trend as Sx,
consistent with the observation that the axial stress is
large in the region of high optical intensity for the fields
of Eq. (66) used in the noise calculation.

It is also important to note that in each case the exact
level of thermoelastic noise is a strong function of certain
of the material parameters of the coatings, in particular,
the coefficient of thermal expansion, and given the lack of
information available on the thermoelastic properties of
ion-beam-sputtered coatings, our calculations here were
carried out using plausible rather than definitive values
for relevant coating material parameters. Thus these fig-
ures should be taken as estimates of the expected ther-
moelastic noise due to the coatings, rather than reliable
results that can be used in design calculations.
IV. DETAILED CALCULATION

A. Thermal fields

We start by calculating the thermal field ��z; t� gener-
ated by the applied zeroth-order elastic fields from
Appendix A. We can cast the one-dimensional heat equa-
tion in the form [2]

@�j
@t

� �j
@2�j
@z2

� �
Ej�jT

�1� 2�j�Cj

@
@t

X3
i�1

"0;ii;j (13)

where �j is the time-varying temperature, �j � kj=Cj is
the thermal diffusivity, Ej is the Young’s modulus, �j is
the Poisson ratio, T is the background temperature, Cj is
the heat capacity per unit volume, "0;ii;j is the zeroth-
order i-polarized compressional strain, and j � f; s indi-
cates quantities evaluated in the film and the substrate,
respectively. Taking sinusoidally time-varying quantities
according to a�z; t� � Re�a�z� exp�i!t��, Eq. (13) be-
comes

i!�j�z� � �j
@2�j�z�

@z2
� �i!-j; (14)

where the source term is proportional to
082003
-j 	
Ej�jT

Cj

,j

1� 2�j
: (15)

The quantity ,j representing the sum of the strains
according to

,j 	
X3
i�1

"0;ii;j; (16)

is proportional to the zeroth-order elastic field’s ampli-
tude with a combination of elastic constants that depends
on the specific case, and is evaluated in Appendix A. �f is
possibly z-dependent to allow for spatially varying ther-
mal expansion coefficient within the film. The boundary
conditions are zero heat flux at z � 0, continuity of heat
flux at z � l, and vanishing heat flux for z ! 1, or

d�f
dz

jz�0�0;kf
d�f
dz

jz�l�ks
d�s
dz

jz�l;
d�s
dz

jz!1�0; (17)

respectively.
The total solution can be constructed as the sum of

homogeneous and particular solutions. Homogeneous so-
lutions meeting the boundary conditions at z � 0 and z !
1 are

�h;f�z� � �1f cosh�/fz� and �h;s�z� � �1se�/sz (18)

where the complex propagation constants of the damped
thermal waves in the film and substrate are

/j 	 �1
 i�
��������������
!=2�j

q
(19)

and �1f and �1s are constants determined by the boundary
condition at z � l and the particular solution.

The particular solutions will be evaluated for two
specific cases of practical interest in Appendix B. For
the time being take them to be �p;j�z�, so that the total
solutions are

�f�z���p;f�z�
�1f cosh�/fz�; �s�z���p;s
�1se�/sz

(20)

Note that both �p;j�z� and �1;j will be proportional to the
amplitude of the zeroth-order elastic fields.

B. Elastic fields and energy density

The rate at which work is done per unit volume by
internal stresses on a deformed body is [10]

p � �ik
d"ik
dt

: (21)

This expression is correct independent of whether the
body responds elastically or anelastically to the stresses.
The cycle average of the delivered power density (or,
equivalently, the average dissipated power density) is
then, for fields sinusoidal in time of the form �ii;j�z; t� �
Ref��0;ii;j 
 �1;ii;j�z�� exp�i!t�g and similar for "ii;j�z; t�,
-7
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pdiss�z� � �
!
2

X3
i�1

Im���
ik"ik�

� �
!
2

X3
i�1

Im���
0;ii"0;ii 
 ��

0;ii"1;ii 
 ��
1;ii"0;ii


��
1;ii"1;ii�

 �
!
2

X3
i�1

Im���
0;ii"1;ii 
 ��

1;ii"0;ii�: (22)

The last form of this equation is justified by the following
observations: For our problem, only the longitudinal
strains are significant and the zeroth-order elastic fields
are real [Appendix A, and Eqs. (66)], while the first-order
elastic fields [those that depend on the thermal field,
Appendix C] are complex and so contribute to the dis-
sipation. We assume that the dissipation is small, so that a
calculation to lowest order in the thermal field will be
adequate, and second order terms can be dropped.

To evaluate Eq. (22), we need the zeroth- and first-order
elastic fields in the film and the substrate, as derived in
Appendices A and C. It is convenient to write the zeroth-
order fields in terms of�0 and "0, two combinations of the
fields that are invariant through the region of interest in
the body. These are defined by �0 	 �0;zz, the compres-
sional stress normal to the surface of the object, and "0 	
�"0;xx 
 "0;yy�=2, the in-plane dilation. For convenience,
we can take "0;xx � "0;yy, though only their sum matters
for the thermoelastic calculation. The antisymmetric
combination of in-plane strains is a pure shear, does not
interact thermoelastically, and so be can neglected in this
analysis (as is discussed in Sec. IV C 1). Note that in
cylindrical coordinates "0 � �"0;rr 
 "0;���=2. The
zeroth-order fields can then be summarized as

"0;ii;j � A0;ii;j"0 
 a0;ii;j�0; �0;ii;j � B0;ii;j"0 
 b0;ii;j�0;

(23)

where j � f; s, and the (A0;ii;j and B0;ii;j) and the (a0;ii;j
and b0;ii;j) are combinations of elastic constants given in
Eqs. (A7) and (A14), respectively. Similarly, it is conve-
nient to write the first-order elastic fields as proportional
to the local temperature and thermal expansion coeffi-
cient, since we assume that the frequencies of interest are
low enough that the elastic response can be treated qua-
sistatically:

"1;ii;j�z��A1;ii;j�j�j�z�; �1;ii;j�z��B1;ii;j�j�j�z� (24)

The (real) coefficients A1;ii;j and B1;ii;j are given in
Eqs. (C7).

With Eqs. (23) and (24) in Eq. (22), the dissipated
power density can be written as

pdiss;j�z� � !
�j

2
�Dj"0 
 dj�0�Im���j�z�� (25)
082003
where

Dj 	
X3
i�1

�B0;ii;jA1;ii;j � B1;ii;jA0;ii;j�

dj 	
X3
i�1

�b0;ii;jA1;ii;j � B1;ii;ja0;ii;j�: (26)

The dissipated power per unit area is then obtained by
integrating the power density over the thickness of the
body,

Pdiss
area

�
Z 1

0
pdiss�z�dz

�
!
2

�
�Df"0 
 df�0�

Z l

0
�f�z�Im���f�z��dz


�Ds"0 
 ds�0��s

Z 1

l
Im���s�z��dz

�
(27)

where we allow for the possibility of spatial variation in
the thermal expansion coefficient in the film but assume
that it is uniform in the substrate.

We can use this expression both to evaluate the dis-
sipation that would be measured in a typical measurement
of the Q of a coated test mass and to calculate the coating-
related thermoelastic contribution to the displacement
noise imposed on an optical field incident on a test
mass. The most convenient form of the analysis is some-
what different in these two contexts. We begin with the
case of a Q measurement.

C. Effective thermoelastic losses in measurements
of elastic Q

While the total dissipated power given in Eq. (27) is
the physical quantity of importance to measurements of
Q, and is nonlocal in nature, occurring in both the film
and the substrate, it generally occurs in a region thin
compared to the dimensions of the test mass, so for
comparison with experimental results it is convenient to
describe the loss in terms of an effective � associated
with the coating. To define such an effective �, we must
compare the dissipated power to some stored energy. A
reasonable choice of stored energy for the definition of �
is that in the film, i.e.

Ustor=area�
l
2

X3
i�1

Re���
0;ii;f"0;ii;f� � l

j"20j
2
Uf; (28)

where

Uf 	
X3
i�1

B0;ii;fA0;ii;f: (29)

In writing Eqs. (28) and (29) we assumed that the film is
on a stress-free surface, so that �0;zz and hence �0 vanish.
Uf is calculated in Appendix A, Eq. (A9). We then have
-8
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for �, with Eq. (27)

� �
Pdiss

2�Ustor

� �f 
�s (30)

where

�f 	
Df

Ufl

Z l

0
�f�z�Im���f�z�="0�dz (31)

and

�s 	
Ds

Ufl
�s

Z 1

l
Im���s�z�="0�dz: (32)

Note that since the thermal fields are proportional to "0,
the quantity in square brackets in Eqs. (31) and (32) is
independent of "0, as are all the other factors in these
equations.

To make further progress, we must find the particular
solution and the coefficients for the homogeneous solu-
tions for the thermal field in the specific cases of interest.
We consider the specific cases of a uniform film on a
uniform substrate, and a periodic film on a uniform sub-
strate. In Appendix B we obtain the thermal fields for
these two cases.

1. Uniform film and substrate

Consider first the simple model of a uniform film on a
substrate, with possibly different thermophysical proper-
ties in film and substrate. For this case, we can take the
thermal expansion coefficients in the film and substrate to
be �f�z� � �f and �s, respectively, and the particular
solutions to the heat equation, given in Appendix B as
Eq. (B5), are

�p;j�z� � �-j: (33)

Since the particular solutions are real, the only contribu-
tion to the imaginary part of the integrals in Eqs. (31) and
(32) come from the homogeneous solutions, so with
Eqs. (18) we have for the film,

�f �
Df

Ufl

Z l

0
�f�z�Im���f�z�="0�dz

�
Df�f

Ufl
Im

�
���1;f="0�

Z l

0
cosh�/fz�dz

�

�
Df�f

Ufl
Im����1;f="0�/

�1
f sinh�/fl�� (34)

and similarly for the substrate

�s �
Ds�s

Ufl
Im����1;s="0�/�1

s e�/sl�: (35)

where the Dj are combinations of elastic constants de-
fined in Eq. (26) and calculated in Eq. (C8). Summing the
contributions to the dissipation from the film and the
substrate, Eqs. (34) and (35), we can express the total
082003
loss as

�l;k �
Df�f

Ufl
Im����1;f="0�/

�1
f sinh�/fl��



Ds�s

Ufl
Im����1;s="0�/�1

s e�/sl�; (36)

where the subscript l is used to indicate a quantity result-
ing from thermoelastic behavior over the entire thickness
of the film (contrasted to multilayer case in the following
section) and k indicates the case of specified in-plane
strain (in contrast to ? for specified surface-normal
stress). With the coefficients �1;j from Appendix B
Eqs. (B6) and (B7) inserted into Eq. (36), we can express
the total loss, after some algebra, as

�l;k �
�-
"0

Cf�1� �f�

Ef

� �fEf

1� �f
�

�sEs

1� �s

R/f

/s

�
g�!�

�
2Cf�1� �f�T

Ef

� �fEf

Cf�1� �f�
�

�sEs

Cs�1� �s�

�
2
g�!�

�
2Ef�2fT

Cf�1� �f�

�
1�

�s

�f

Es�1� �f�

Ef�1� �s�

Cf

Cs

�
2
g�!� (37)

where the frequency dependence is contained in the func-
tion g�!� defined by

g�!� 	 Im
�
�

1�����������
i!
f

p sinh�
�����������
i!
f

p
�

cosh�
�����������
i!
f

p
� 
 R sinh�

�����������
i!
f

p
�

�
:

(38)

In deriving this result, we made use of Dj from Eq. (C8),
Uf from Eq. (A9), R from Eq. (B4),�- 	 -f � -s from
Eq. (15), , from Eqs. (A1) and (A8), and defined 
f 	
l2=�f so that with Eq. (19) we have /fl �

�����������
i!
f

p
. Note

that the combination of material properties in square
brackets in Eq. (37) is positive-definite and vanishes if
the film and substrate properties are identical. The qua-
dratic dependence on the difference between substrate and
film properties can lead to dissipation that is sensitive to
small changes in the film properties.

A similar analysis can be carried out for an antisym-
metric in-plane strain, "0;xx � �"0;yy. We find that ,j �

0, so that no thermal wave is generated (consistent with
the observation that this antisymmetric strain is a pure
shear along axes rotated �=4 with respect to x and y,
causes no volume change, and hence does not contribute
to the source term for the thermal wave). We also find that
Dj � 0, indicating that there will be no power dissipated
by the interaction of the zeroth-order antisymmetric
strain with the first-order strain fields generated by the
thermal wave (driven by other zeroth-order strains pos-
sibly present). This latter observation can be explained by
noting that the thermal wave generates no first-order shear
strains (for the geometry considered here), and that there
-9



M. M. FEJER et al. PHYSICAL REVIEW D 70 082003
is no energy term associated with the product of shear and
compressional strains in isotropic media.

While not encountered in the measurement of elastic
loss in coated masses, an expression for the dissipation
for a specified surface-normal stress is useful for devel-
oping an understanding of the thermal-noise results in
comparison to results for loss measurements. Following
the same analysis as was used to find �l;k, but replacing
the stored energy in Eq. (28) with

Ustor=area � l
j�20j
2

uf; (39)

where

uf 	
X3
i�1

b0;ii;fa0;ii;f: (40)

We find that replacing Uf ! uf, Dj ! dj, and "0 ! �0 in
Eq. (36) yields the correct result for �l;?,

�l;? �
Ef�2fT

Cf

1
 �f
�1� �f��1� 2�f�

�
1�

�s

�f

�
�1� �f��1
 �s�

�1� �s��1
 �f�

Cf

Cs

�
2
g�!�; (41)

where we made use of dj from Eq. (C9), uf from
Eq. (A16), , from Eqs. (A1) and (A15), other quantities
as after Eq. (38), and g�!� is the same frequency depen-
dence given in Eq. (38).

2. Modulated film and uniform substrate

Optical coatings of interest for use on test masses for
gravitational wave detectors are invariably multilayered,
so the analysis in the previous section of a uniform film
cannot be correct in detail. Because the thermal diffusion
length for frequencies of interest are in general long
compared to the thickness of individual layers in the
film, an accurate approximation for a multilayer coating
can be obtained by using a suitable averaging process to
model it as a uniform layer (except at very high frequen-
cies), as discussed in Appendix D. Following the proce-
dure described there, we find that the result in Eq. (37) is
replaced by

�l;k �
2CFT

� E
1���avg

�
1

CF

	
E�
1��



avg

�
1

Cs

Es�s

1��s

�
2
g�!� (42)

and the frequency dependence g�!� is unchanged except
for replacing the time constant 
f by an appropriately
averaged one 
F. The volume-weighted average indicated
by �X�avg is defined in Eq. (D1), the averaged heat ca-
pacity CF in Eq. (D4), and 
F in Eq. (D6).

While the results based on this averaging process ap-
pear reasonable, it is useful to explore for unexpected
effects associated with the spatial variation of thermo-
elastic properties within the multilayer film. As a simple
082003
model of such a case, we consider a film whose thermal
expansion coefficient, but no other property, varies peri-
odically, on a uniform substrate. The calculation is simi-
lar in principal, but somewhat more complicated than for
the case of a uniform film on a uniform substrate. For this
case, we take a thermal expansion coefficient of the form

�f�z� � �f 
 �m cos�Kmz� and �s�z� � �s (43)

and the particular solution to the heat equation in the film,
given in Appendix B as Eq. (B13) is

�p;f�z� � �-f � -m

/2f
/2f 
 K2m

cos�Kmz� (44)

while the particular solution in the substrate, Eq. (B14),
remains the same as for the uniform film case

�p;s � �-s: (45)

For simplicity, we consider here only the case of speci-
fied in-plane strain and vanishing surface-normal stress
�0. Since the particular solution in the film has a complex
part, the imaginary part of the integrals in Eqs. (31) and
(32) will contain contributions from both the particular
and the homogeneous solutions. With Eqs. (18), (43) and
(44) we have in the film

�f �
Df

Ufl

Z l

0
�f�z�Im���f�z�="0�dz

�
Df

Ufl
�.f;p 
.f;h�; (46)

where

.f;p 	 Im
�
�
Z l

0
��f 
 �m cos�Kmz����p;f�z�="0�dz

�

�
-m

Km"0

�
�f sin�Kml�


�m

�
Kml
2



sin�2Kml�

4

��
Im

� /2f
/2f 
 K2m

�
(47)

and

.f;h	 Im
�
�
Z l

0
��f
�mcos�Kmz����h;f�z�="0�dz

�

��Im
�
�f

�1;f
"0

/�1
f sinh/fl 
�m

�1;f
"0

�
Kmcosh�/fl�sin�Kml�
/f sinh�/fl�cos�Kml�

K2m
/2f

�

(48)

Since the thermal expansion coefficient in the substrate
is assumed uniform, the result for �s is similar to that of
Eq. (35) (though of course �1;s will be different in the two
cases). We use Eqs. (18), (43) and (45) to obtain for the
substrate
-10
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�s �
Ds�s

Ufl
Im����1;s="0�/�1

s e�/sl�: (49)

Considerably more effort is required to convert Eqs. (47),
(48), and (49) into a simple form like Eq. (37) after
inserting �1;f and �1;s from Eqs. (B15) and (B16). The
following two terms emerge as dominant in Eqs. (47) and
(48) for cases where jKmj>>j/fj,

.f;p
�ml
2

-m

"0
Im

� /2f
/2f
K2m

�
.f;h�f

�-
"0

g�!�; (50)

so that with Eq. (46) we have

�f
Df

Ufl

�
�ml
2

-m

"0
Im

� /2f
/2f
K2m

�

�f

�-
"0

g�!�

�
; (51)

where g�!� is defined in Eq. (38). Similarly, keeping the
leading term in Eq. (49) after inserting Eq. (B16) leads to

�s  �
�-
"0

Ds�s

Ufl
Rg�!� (52)

where all neglected terms are smaller by at least one
factor of /f=Km than those retained. The first term in
Eq. (51) is unique to a modulated film. The second term in
Eq. (51) and Eq. (52) are just the same as those that
appeared in the expression for a homogeneous film and
substrate, Eq. (36) with �f ! �f, so that portion of the
solution can be used here immediately. Rewriting
Eqs. (51) and (52) with Dj from Eq. (C8), Uf from
Eq. (A9), R from Eq. (B4), -m from Eq. (B10), -j from
Eq. (15), /j from Eq. (19), and ,j from Eq. (A1) with
Eq. (A8) we obtain

�tot;k 
EfT�

2
m

Cf�1� �f�
Im

� /2f
/2f 
 K2m

�

�l;k; (53)

where �l;k is the loss for a uniform film on a uniform
substrate given in Eq. (37), with �f ! �f. Defining a
characteristic time for diffusion in the modulated struc-
ture,


m 	

f
K2ml2

�
1

�fK2m
(54)

where the second form follows from the definition of 
f
following Eq. (38), �tot;k can be written in the form

�tot;k 
EfT�

2
m

Cf�1� �f�
gm�!� 
�l;k; (55)

where the frequency dependence gm�!� is

gm�!� �
!
m

1
!2
2m
: (56)

In Sec. IV C 3 we show that for the frequencies of
interest, the frequency dependence gm�!� from Eq. (56)
082003
representing heat flow between the multilayers is, as ex-
pected, small compared to g�!� from Eq. (38) represent-
ing heat flow between film and substrate, so that
considering only the contribution of the averaged form
�l;k from Eq. (42) is a good approximation.

3. Frequency dependence

The functions g�!� and gm�!�, defined in Eqs. (38) and
(56), respectively, contain all the frequency dependence
of the dissipation, and will reappear in our discussion of
displacement noise in Sec. D. It is therefore worth inves-
tigating their general features in some detail. Consider
first g�!�; it is convenient to define the real variable :
according to

/fl �
�����������
i!
f

q
	 �1
 i�:=2 (57)

so that

: 	

�����������
2!l2

�f

vuut �
������������
2!
f

q
(58)

where from Eq. (38) 
f � l2Cf=kf. The frequency depen-
dence of the loss due to a uniform film can then be written
as

g�:��:�1
sinh:�sin:
R�cosh:�cos:�

cosh:
cos:
2Rsinh:
R2�cosh:�cos:�
:

(59)

In terms of the normalized frequency :, the normal-
ized dissipation depends only on one parameter, R, de-

fined after Eq. (B4) as R 	 kf/f=ks/s �
�����������������������
kfCf=ksCs

q
.

Figure 4 shows the frequency dependence of the dissipa-
tion for R � �0:1; 1; 10�. Figure 5 shows the dependence
on R of gmax, the peak value of the normalized dissipa-
tion, and Fig. 6 the dependence on R of :max, the normal-
ized frequency at which this peak occurs.We see that gmax
depends only weakly on R, ranging from 0.41 for R � 1
to 0.21 for R � 1. :max is close to the thermal diffusion
time across the film (: � 2) for R � 1, and decreases as
1=R with R for R> 1.

Useful forms for low- and high-frequency limits of the
dissipation can be obtained from Eq. (59). Expanding for
: � 1 we find

g�:� !
1

2

�
R:�

	
R2 �

1

3



:2
�

(60)

while for : � 1

g�:� !
1

�1
 R�:
: (61)

Since ! / :2, the leading behavior for low frequencies
goes as the

����
!

p
, and, surprisingly, the sign of the term

linear in frequency depends on the value of R, crossing
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FIG. 4. Frequency-dependent part of thermoelastic loss func-
tion, g�:� as a function of frequency, where : 	
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2!
f

p
and


f � l2Cf=kf. Curves are shown for three values of the pa-

rameter R 	 kf/f=ks/s �
�����������������������
kfCf=ksCs

q
. Note that peak height

is only a weak function of R.
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zero for R � 1=
���
3

p
. At high frequencies, the dissipation

falls off as 1=
����
!

p
.

The frequency dependence described by gm�!� for the
contribution from the multilayer coating is simple, and
essentially the same as that for conventional thermoelas-
tic damping, so it needs little further discussion. It is
important to note that for typical multilayer coatings,
the characteristic time 
m for the multilayer effects is
much shorter than 
f for the effects of the averaged
uniform layer; for a coating with 2N layers,
10
−3
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−1

10
0

10
1
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0.2
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0.3

0.35

0.4

0.45
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g
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FIG. 5. Peak value of the normalized dissipation, gmax 	
g�:max� as a function of the parameter R. The peak value of
the normalized dissipation is seen to be only a weak function of
R, the only material parameter on which it depends.

082003

f=
m � K2ml2 � 4�2N2: (62)

Since a typical high reflector that might be used in a
LIGO interferometer has 40 layers, 
f � 160 00
m, so that
the peak frequency for the contribution to the thermo-
elastic dissipation from thermal diffusion between the
layers will be at a frequency �16 000 times higher, gen-
erally pushing the peak well above typical measurement
ranges. The thermoelastic effects at frequencies of inter-
est either for elastic Q measurements or thermal noise are
thus generally dominated by the contributions of the
averaged film.

D. Thermal noise

The results of Sec. III A indicate that the power dis-
sipated by the thermoelastic effects can be comparable or
even exceed that dissipated by the elastic loss in typical
multilayer coatings. It is then reasonable to assume that
the magnitude of the noise induced by the thermoelastic
mechanism could be comparable to that from the elastic
loss, and therefore must be calculated as part of the total
noise budget for the coated mass.

Following the approach of [4], the displacement noise
imposed on a Gaussian beam of normalized intensity
distribution I�r�

I�r� �
2

�w2
exp

	
�2r2

w2



(63)

is given by

Sx�f�df �
2kBT

�2f2
Wdiss

F20
df (64)
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FIG. 6. Normalized frequency :max at which the normalized
dissipation takes its maximum value, as a function of the
parameter R. :max corresponds to the thermal diffusion time
across the film for R< 1, and decreases as 1=R (corresponding
to !max decreasing as 1=R2 for R> 1).
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where Wdiss is the cycle-averaged power dissipated by a
pressure field =�r� oscillating at a frequency ! � 2�f, of
the same radial distribution as the intensity and with a
resultant force F0, i.e.

=�r� � F0I�r� cos�!t�: (65)

Since the radius of the Gaussian beam is much larger than
the thickness of the film or the thermal wave decay
length, we can use the one-dimensional theory developed
in previous Sections of this paper to evaluate Wdiss. The
zeroth-order elastic fields required for this calculation are
available in [6]. We have from their Eqs. (A10)

�0�r� 	 �0;zz
� �=�r�

"0�r� 	 �"rr�r� 
 "���r��=2

� �=�r�=4�+
>�

� �
�1
 �s��1� 2�s�

2Es
=�r� (66)

where the third form of "0 follows from the definition of
the Lamé constants in terms of the Young’s modulus and
Poisson ratio.

Here we analyze the noise due to an appropriately
averaged uniform film, since the analysis of Sec. IV C 3
showed that the contribution to the dissipation associated
with the thermal diffusion between the layers within the
film are significant only at frequencies well above the
LIGO detection band. We first consider a uniform film,
and then the modifications necessary to describe an ap-
propriately averaged multilayer.

Starting with Eq. (27) for the dissipated power per unit
area, and Eqs. (20) for the thermal fields we have

Pdiss
area

�
!
2
f�f�Df"0 
 df�0�Im���1f/�1

f sinh�/fl��


�s�Ds"0 
 ds�0�Im���1s/
�1
s exp��/fl��g

�
!�-l
2

�
�f�Df"0 
 df�0�

��s�Ds"0 
 ds�0�
Cf

Cs

�
g�!� (67)

where as in Eqs. (34) and (35), we simplified the result by
noting that only the homogeneous part of the thermal
solutions contains an imaginary part, and in the second
form used Eqs. (B6) and (B7) for �1;f and �1;s. The
frequency dependence is contained in the same function
g�!� defined in Eq. (38).

For this case, where there are both axial stresses and
in-plane strains, we can calculate �- 	 -f � -s from
Eqs. (15), (16), (A1), (A8), and (A15). We find that
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-j �
Ej�jT

Cj

1

1� �j

�
2"0 


1
 �j
Ej

�0

�

�
Ej�jT

Cj

1

1� �j

�
�1
 �s��1� 2�s�

Es


1
 �j
Ej

�
�0

(68)

where the second follows for the specific form of the
elastic fields given in Eqs. (66). With Eqs. (C8) and (C9)
for the combinations of elastic constants represented by
Dj and dj, and �- calculated from Eq. (68), the result in
Eq. (67) for the dissipated power per unit area becomes

Pdiss�r�
area

�
!TlCf

2
=�r�2g�!�

�

��f

Cf

�
1
 �f
1� �f



�1
 �s��1� 2�s�

1� �f

Ef

Es

�

�
�s

Cs
2�1
 �s�

�
2

(69)

where we replaced �20 with =�r�2 according to Eq. (66).
Integrating over the infinite cross section to obtain the
total dissipated power Wdiss, and inserting that result into
Eq. (64) for Sx�f�, we finally obtain

Sx�f� �
8kBT2

�2f

l

w2
Cfg�!�

�

��f

Cf

1

2

�
1
 �f
1� �f



�1
 �s��1� 2�s�

1� �f

Ef

Es

�

�
�s

Cs
�1
 �s�

�
2

�
8kBT

2

�2f

l

w2
�2sCf

C2s
�1
 �s�2�2g�!� (70)

where �2 is a dimensionless positive-definite combina-
tion of material constants that vanish when the film and
substrate are identical,

�2 	
�

Cs

2�sCf

�f

�1� �f�

�
1
 �f
1
 �s


 �1� 2�s�
Ef

Es

�
� 1

�
2
:

(71)

Equation (70) is the final result for the thermoelastic
displacement noise associated with a uniform coating.
The frequency dependence represented by g�!� is dis-
cussed at length in Sec. IV C 3.

An accurate approximation for a multilayer coating can
be obtained by using a suitable averaging process to
model it as a uniform layer, as discussed in
Appendix D. Following the procedure described there,
the result in Eq. (70) is replaced by

Sx�f� �
8kBT

2

�2f

l

w2
�2sCF

C2s
�1
 �s�2 ~�

2g�!� (72)

where
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~� 2	

�
Cs

2�sCF

	
�
1��

�
1
�
1
�s


�1�2�s�
E
Es

�

avg

�1
�
2
;

(73)

and the frequency dependence g�!� is unchanged except
for replacing the time constant 
f by an appropriately
averaged one 
F. The volume-weighted average indicated
by �X�avg is defined in Eq. (D1), the averaged heat ca-
pacity CF in Eq. (D4), and 
F in Eq. (D6). Since for
room-temperature operation the thermoelastic noise is
most important at frequencies falling in the low-
frequency limit of g�!�, it is useful to insert into
Eq. (72) the approximate result for g given in Eq. (60)
to obtain

Sx�f� !
8

���
2

p
kBT

2

�
����
!

p
l2

w2
�1
 �s�2

C2F
C2s

�2s����������
ksCs

p ~�2: (74)

Note that, as seen in Fig. 3, this low-frequency limit
becomes inaccurate at the upper end of the gravitational
wave detection band.
V. SUMMARY AND CONCLUSIONS

In this paper we have derived expressions for the
thermoelastic dissipation associated with a coating on a
test mass. For strains of the type consistent with me-
chanical loss measurements, numerical evaluation of the
thermoelastic loss factors for coating/test-mass material
combinations of the type being considered for use in
future gravitational wave interferometers shows that ther-
moelastic dissipation is of a level comparable to that
predicted to affect the sensitivity of advanced interfer-
ometers. Also derived is an expression for the expected
power spectral density of thermoelastic noise from the
coating of a mirror interrogated with a Gaussian beam.
Evaluating this expression across the gravitational wave
detector band using plausible values for the material
parameters of coatings and substrates results in displace-
ment noise that in some cases exceeds typical design
sensitivities.

It should be noted that the expected thermoelastic noise
is a strong function of the difference of the material
parameters in the substrate and coating, so that the
same coating will have different thermoelastic losses on
different substrates. As many of the necessary material
parameters are not well characterized, the noise levels
calculated here should be considered as estimates only.
Further experimental measurements of coating dissipa-
tion for likely choices for coating and substrate materials,
and better characterization of the intrinsic coating ther-
mophysical properties, should allow more accurate deter-
mination of the magnitude of the thermoelastic effects.
082003
ACKNOWLEDGMENTS

The authors are supported by NSF Grants No. PHY-
0140297 (MF, SR), No. PHY-0107417 (GH), No. PHY-
9801158 (AG), No. PHY-0140335 (SP), and No. PHY-
0098715 (SV). S. R., D. C., J. H., G. C. and P. S. also thank
PPARC in the U.K., and the University of Glasgow for
financial support. S.V. also thanks the Russian Ministry
of Industry and Science and the Russian Foundation of
Basic Researches. We also wish to thank Vladimir
Braginsky for useful discussions, and our colleagues in
the GEO 600 project and at Stanford for their interest in
this work.

APPENDIX A: ZEROTH-ORDER
DRIVING FIELDS

We need a set of zeroth-order driving fields that are
consistent with the elastic boundary conditions. In all
cases we must have continuity of the in-plane strains
and the normal stress at the film-substrate interface, z �
l: "0;xx;s � "0;xx;f, "0;yy;s � "0;yy;f, and �0;zz;f � �0;zz;s. As
discussed in Sec. I, the pertinent elastic fields can be
specified in terms of two components, the in-plane dila-
tion "0 	 �"0;xx 
 "0;yy�=2 and the axial stress�0 	 �0;zz,
which are independent of z under the assumptions set up
in Sec. I. We can neglect the antisymmetric in-plane
strain ("0;xx � "0;yy) which does not interact thermoelas-
tically (as is shown in Sec. IV C 1), and, for convenience,
can take "0;xx � "0;yy � "0.

We consider two cases, a stress-free surface with a
specified in-plane strain (�0 � 0 and "0 specified), and
a specified surface-normal stress with a vanishing in-
plane strain ("0 � 0 and �0 specified). Any elastic state
pertinent to the thermoelastic problem can be obtained as
an appropriately weighted sum of these two solutions. For
the general case, where both �0 and "0 are nonzero, one of
the important results of this appendix, ,j defined in
Eq. (16), can be written

,j 	
X3
i�1

"0;ii;j � Sj"0 
 sj�0: (A1)

The combination of elastic constants Sj and sj are ob-
tained in this Appendix, Eqs. (A8) and (A15),
respectively.

1. Specified in-plane strain, stress-free surface

For a stress-free surface of the mass, as would be the
case for a Q measurement, we have �0 � 0 and "0 speci-
fied. Noting that the under these assumptions the con-
tinuity condition on the normal stress implies that
�0;zz;s � �0;zz;f � �0 � 0, the only unknown field com-
ponents are "0;zz;f, "0;zz;s, �0;xx;f � �0;yy;f 	 �0;k;f, and
�0;k;s. The symmetry of the problem allowed us to take
�0;xx � �0;yy 	 �0;k.
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Begin with Hooke’s law, Eq. 5.14 of [10]:

"0;zz;j �
1

Ej
��0;zz;j � �j��0;xx;j 
 �0;yy;j��

�
�2�j
Ej

�0;k;j: (A2)

where we recall the notation that a subscript j � f; s
stands for a quantity evaluated in the film or substrate,
respectively. Summing the expressions for the in-plane
strains in [10], it follows that

"0;xx;j
"0;yy;j�
1

Ej
��0;xx;j
�0;yy;j��j��0;xx;j
�0;yy;j��

(A3)

or equivalently

"0 �
1� �j
Ej

�0;k;j: (A4)

Finally, going back to Eq. (A2) with Eq. (A4), we find

"0;zz;j �
�2�j
1� �j

"0: (A5)

It is convenient to summarize these results for the zeroth-
order elastic fields in the form given in Eq. (23),

"0;ii;j � A0;ii;j"0; �0;ii;j � B0;ii;j"0; (A6)

where

A0;xx;j � A0;yy;j � 1;

A0;zz;j �
�2�j
1� �j

B0;xx;j � B0;yy;j �
Ej

1� �j
;

B0;zz;j � 0 (A7)

A result, used in Eq. (13), is the evaluation of a sum
over strains introduced in Eq. (16), which, with Eqs. (A1)
and (A7), becomes

Sj"0 	
X3
i�1

"0;ii;j �
X3
i�1

A0;ii;j"0 �
2�1� 2�j�

1� �j
"0: (A8)

Another result, used in Eq. (29) to evaluate the energy
stored in the film is

Uf 	
X3
i�1

B0;ii;fA0;ii;f �
2Ef

1� �f
: (A9)
2. Specified surface-normal stress,
vanishing in-plane strain

For a specified surface-normal stress, as would be the
case for calculating thermal noise, we have �0;zz;f � �0.
082003
To make this case complementary to that in Appendix A
1, we assume vanishing in-plane strains, i.e. "0;xx �
"0;yy 	 ?0 � 0 in both the film and the substrate. Noting
that the under these assumptions the continuity condition
on the normal stress implies that �0;zz;s � �0;zz;f � �0, so
the only unknown field components are "0;zz;j and
�0;xx;j � �0;yy;j 	 �0;k;j, for j � f; s. The analysis is
similar to that in Appendix A 1. Begin with Eq. 5.14 of
[10]:

"0;xx;j �
1

Ej
��0;xx;j � �j��0;yy;j 
 �0;zz;j�� (A10)

which can be solved with �0;xx;j � �0;yy;j 	 �0;k;j to yield

�0;k;j �
�j

1� �j
�0: (A11)

With another of Eqs. 5.14 from [10]:

"0;zz;j �
1

Ej
��0;zz;j � �j��0;xx;j 
 �0;yy;j�� (A12)

and Eq. (A11) we obtain

"0;zz;j �
�0
Ej

�1� 2�j��1
 �j�

1� �j
: (A13)

We can again collect the results of this section in the form
given in Eqs. (23),

"0;ii;j � a0;ii;j�0;

�0;ii;j � b0;ii;j�0;

a0;xx;j � a0;yy;j � 0;

a0;zz;j �
�1� 2�j��1
 �j�

1� �j

1

Ej

b0;xx;j � b0;yy;j �
�j

1� �j
;

b0;zz;j � 1: (A14)

A result, used in Eq. (13), is the evaluation of a sum
over strains introduced in Eq. (16), which, with Eqs. (A1)
and (A14) can be written

sj�0 	
X3
i�1

"0;ii;j �
X3
i�1

a0;ii;j�0

�
�1� 2�j��1
 �j�

1� �j

1

Ej
�0: (A15)

Another result, used in Eq. (40) to evaluate the energy
stored in the film is

uf 	
X3
i�1

b0;ii;fa0;ii;f �
�1� 2�f��1
 �f�

Ef�1� �f�
: (A16)
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APPENDIX B: THE THERMAL FIELDS FOR
TWO IMPORTANT CASES

The unknown coefficients in the homogeneous parts of
the thermal fields, Eqs. (18), can be obtained from the
particular solutions, Eqs. (20), and the boundary condi-
tions, Eqs. (17). Continuity of the thermal field at z � l
requires

�p;f�l� 
 �1f cosh�/fl� � �p;s 
 �1se�/sl (B1)

while continuity of the thermal flux requires

kf��
0
p;f�l� 
 �1f/f sinh�/fl�� � �ks�1s/se

�/sl: (B2)

Simultaneous solution of these equations yields

�1;f �
��p;s � �p;f�l�� � �R=/f��0p;f�l�

cosh�/fl� 
 R sinh�/fl�
(B3)

and

�1;s�

�e/sl
��p;s��p;f�l��Rsinh�/fl�
�R=/f�cosh�/fl��

0
p;f�l�

cosh�/fl�
Rsinh�/fl�
:

(B4)

where R 	 kf/f=ks/s. To make further progress, it is
necessary to find the particular solutions for specific
cases. We consider here two cases of interest, a uniform
film on a uniform substrate, and a periodic film on a
uniform substrate.

1. Uniform film on uniform substrate

Consider first both the film and substrate to be uniform.
By inspection of the thermal field equation, Eq. (14),
particular solutions for this case are constant and given
by

�p;j�z� � �-j: (B5)

With Eq. (B5) for the particular solutions, the coefficients
in the homogeneous solutions in film and substrate from
Eqs. (B3) and (B4) become

�1;f �
�-

cosh�/fl� 
 R sinh�/fl�
(B6)

and

�1;s � �e/sl
�-R sinh�/fl�

cosh�/fl� 
 R sinh�/fl�
: (B7)

where �- 	 -f � -s.

2. Modulated film on uniform substrate

In the case of a nonuniform film, the expression for the
particular solution is somewhat more complicated.
Assume a film whose thermal conductivity takes the form
082003
�f�z� � /�f 
 �m cos�Kmz�; (B8)

in which case with Eq. (15) -f�z� takes the form

-f�z� � -f 
 -m cos�Kmz� (B9)

where

-f 	
Ef /�fT

Cf

,f

1� 2�f
and -m 	

Ef�mT

Cf

,f

1� 2�f
:

(B10)

With Eq. (B9), the thermal field equation Eq. (14) takes
the form

@2�p;f�z�

@z2
�

i!
�f

��p;f�z� 
 -f 
 -m cos�Kmz��

� /2f��p;f�z� 
 -f 
 -m cos�Kmz�� (B11)

where the definition /2f � i!=�f from Eq. (19) was used
to obtain the second form. The particular solution has two
terms, a constant part similar to that in Eq. (B5) for the
uniform case, and one that has a spatial variation that
follows the thermal expansion coefficient. To obtain the
periodic part, take an ansatz �p;f�z� � q cos�Kmz�. With
this ansatz in Eq. (B11) we obtain

�/2f 
 K2m�q � �/2f-m (B12)

Combining with the constant part we obtain the total
particular solution in the film,

�p;f�z� � �-f � -m

/2f
/2f 
 K2m

cos�Kmz�: (B13)

For the assumed uniform substrate, the particular solu-
tion is like that in Eq. (B5), i.e.

�p;s � �-s: (B14)

With Eqs. (B13) and (14) for the particular solutions, the
coefficients in the homogeneous solutions in film and
substrate from Eqs. (B3) and (B4) become

�1;f �
�-

cosh�/fl� 
 R sinh�/fl�

 -m

/2f
/2f 
 K2m

�
cos�Kml� � �RKm=/f� sin�Kml�

cosh�/fl� 
 R sinh�/fl�
(B15)

and
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�1;s���-e/sl
Rsinh�/fl�

cosh�/fl�
Rsinh�/fl�

�-mRe
/sl

/2f
/2f
K2m

�
cos�Kml�sinh�/fl���Km=/f�sin�Kml�cosh�/fl�

cosh�/fl�
Rsinh�/fl�
:

(B16)

where �- 	 -f � -s.

APPENDIX C. SOLVING FOR THE
THERMOELASTICALLY GENERATED

ELASTIC FIELDS

Given the solution Eqs. (20) for the oscillatory thermal
field, we must solve for the thermally driven elastic fields,
�1�z� and "1�z�, whose imaginary parts lead to the dis-
sipation in which we are interested. The boundary con-
ditions are �1;zz � 0 at the stress-free surface z � 0,
"1;xx � "1;yy � 0 for z ! 1, and continuity of the in-
plane strains "1;xx and "1;yy, and the normal stress �1;zz,
at the boundary between the film and substrate.

The point of departure is the equation of elastic equi-
librium, Eq. 7.8 of [10],

d
dz

�"xx 
 "yy 
 2�1� ��"zz � 2�1
 ����� � 0 (C1)

adapted here by dividing Landau’s� by three to convert it
from volumetric to linear expansion, replacing �r� with
r���� to accommodate a possible spatial variation in the
thermal expansion coefficient, and specializing to stress
and strain fields that depend only on z. Hooke’s law in the
presence of a nonuniform temperature field ��z�, Eq. 6.2
of [10] is:

�zz �
E

1
 �

�
"zz 


�
1� 2�

�"xx 
 "yy 
 "zz�
�
�

E��
1� 2�

:

(C2)

With the boundary condition�1;zz � 0, Eq. (C2) results in

"1;zz;j � �
�j

1� �j
�"1;xx;j 
 "1;yy;j� 


1
 �j
1� �j

�j�j: (C3)

Inserting Eq. (C3) into Eq. (C1), we find

d
dz

��1� 2�j��"1;xx;j 
 "1;yy;j�� � 0:

Noting the continuity of the in-plane strains, and their
vanishing at infinity, we conclude �"1;xx;j 
 "1;yy;j� � 0.
With this result, Eq. (C3) becomes

"1;zz;j �
1
 �j
1� �j

�j�j: (C4)

With the Hooke’s law expression for �xx analogous to
Eq. (C2) for �zz, and inserting Eq. (C4), we obtain
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�1;xx;j � �
Ej�j�j
1� �j

(C5)

and by symmetry �1;yy;j � �1;xx;j.
These results constitute a consistent set of first-order

elastic fields. It is convenient to summarize them in the
form:

"1;ii;j�z� � A1;ii;j�j�j; �1;ii;j�z� � B1;ii;j�j�j; (C6)

where

A1;xx;j � A1;yy;j � 0; A1;zz;j �
1
 �j
1� �j

B1;xx;j � B1;yy;j � �
Ej

1� �j
; B1;zz;j � 0: (C7)

Combinations of these parameters used in calculating
the dissipated power, Dj and dj in Eqs. (26), can be
evaluated with Eqs. (A7) and (C7) as

Dj 	
X3
i�1

�B0;ii;jA1;ii;j � B1;ii;jA0;ii;j� �
2Ej

1� �j
; (C8)

and with Eqs. (A14) and (C7) as

dj 	
X3
i�1

�b0;ii;jA1;ii;j � B1;ii;ja0;ii;j� �
1
 �j
1� �j

: (C9)
APPENDIX D: AVERAGING MATERIAL
PROPERTIES IN A PERIODIC MULTILAYER

In cases of practical interest, the optical coating is a
multilayer rather than a homogeneous film. The analysis
in Sections IV C 2 and IV C 3 indicated that for realistic
cases either for Q measurements or for thermoelastic
noise, the thermal diffusion length is large compared to
the period of the multilayer. Hence, an analysis that treats
the film as an effective homogeneous medium with suit-
ably averaged properties should yield a result of adequate
accuracy. It is then necessary to form the appropriate
average of the various material properties involved. For
simplicity, we take the coating to consist of alternating
layers of two types of material, labeled a and b, of
thicknesses da and db, respectively. We define the volume
averaging operator by

�X�avg 	
da

da 
 db
Xa 


db
da 
 db

Xb: (D1)
1. Thermal field averaging

Consider first the heat equation. Define an average
temperature in the film, �F�z�, where we use the subscript
F to indicate a quantity in the film suitably averaged over
a period of the structure (averaging will be different for
different quantities), under the assumption that the dis-
-17
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tance over which this averaged quantity varies signifi-
cantly is much greater than the period da 
 db. Since the
temperature field is continuous at the boundaries between
the layers, �F�z� � �a�z� � �b�z�. To obtain an averaged
heat equation for the propagation of �F, begin with
Eq. (14), here rewritten in a more convenient form,

i!Cq�q�z� �
@
@z

	
kq
@�q
@z



� �i!Cq-q; (D2)

where q � a; b indicates a quantity evaluated in layer a or
b, respectively. Averaging the first and last terms over a
period of the structure is trivial. The second term requires
more care. Noting that the continuity of the heat flux
requires that ka@�a=@z � kb@�b=@z � �k@�=@z�avg, im-
plicitly defining the averaged thermal conductivity kF
by writing the average heat flux as

kF

	
@�F
@z



avg

	

	
k
@�
@z



avg
;

and solving for kF, we find

k�1F � �k�1�avg: (D3)

We can then write the averaged Eq. (D2) in a form
analogous to Eq. (14),

i!�F�z� � �F
@2�F
@z2

� �i!-F; (D4)

where the averaged film properties are

CF 	 �C�avg �F 	 kF=CF

-F 	
�C-�avg
CF

�
1

CF

	
E�T,
1� 2�



avg

(D5)

where we used Eq. (15) for -. With these averaged quan-
tities in place of those of the uniform film, i.e., taking
Xf ! XF, we can immediately transcribe all the previous
results for the temperature field in the uniform film with-
out further analysis. It is also convenient to define
a thermal diffusion time for the averaged film of thick-
ness l,


F 	 l2=�F: (D6)
2. Elastic fields in a multilayer

Averaging of the elastic properties is more straightfor-
ward. The zeroth-order elastic fields already taken as
invariant through the region of interest, i.e., the in-plane
dilation "0 	 �"0;xx 
 "0;yy�=2 and the axial stress �0 	
�0;zz, remain invariant in the multilayer, so they are
obviously equal to their average.

The calculation of the remaining components of the
elastic field then follows exactly as given in Appendix A,
so that the correct result for the fields in material q � a; b
in a modulated film can be obtained from the correspond-
082003
ing expression for the zeroth-order field in a uniform film
j � f by replacing j ! q. For example, for the case "0
specified and �0 � 0 we simply have, analogously to
Eq. (A6)

"0;ii;q � A0;ii;q"0; �0;ii;q � B0;ii;q"0; (D7)

where

A0;xx;q � A0;yy;q � 1; A0;zz;q �
�2�q
1� �q

B0;xx;q � B0;yy;q �
Eq

1� �q
; B0;zz;q � 0: (D8)

The same approach provides the results for
a0;ii;q; b0;ii;q;,0;ii;q; Sq; sq, from the corresponding expres-
sions in Eqs. (A14), (A1), (A8), and (A15), respectively.

For the power stored in the film, analogous to Eq. (A9),
we must average the energy stored in the components of
the multilayer,

UF �

	
2E
1� �



avg
: (D9)

By similar arguments as were applied to the zeroth-
order fields, the first-order fields analogous to those ob-
tained for a uniform film in Appendix C, can be obtained
from the corresponding expression for the first-order field
in a uniform film j � f by replacing j ! q. For example,
analogously to Eqs. (C6),

"1;ii;q�z� � A1;ii;q�q�F�z�; �1;ii;q�z� � B1;ii;q�q�F�z�;

(D10)

where

A1;xx;q � A1;yy;q � 0; A1;zz;q �
1
 �q
1� �q

B1;xx;q � B1;yy;q � �
Eq

1� �q
; B1;zz;q � 0: (D11)

The combinations of these parameters used in calculating
the dissipated power, Dq and dq, analogous to Eqs. (C8)
and (C9), are obtained similarly.

3. Averaging the dissipated power

To find the averaged dissipated power, start with
Eq. (27). Noting that the temperature is continuous and
slowly varying over a period of the structure, we can
write

Pdiss
area

�
!
2

�
��D"0 
 d�0���avg

Z 1

0
Im���F�z��dz


 �Ds"0 
 ds�0�
Z 1

l
Im���s�z��dz

�
:

Note that in making this approximation, we exclude cases
where the thermal diffusion length approaches the layer
-18
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period, but do allow the thermal length to be less than to
the total thickness of the multilayer. This is not a very
restrictive assumption: for typical mirror films of �20
layer pairs, frequencies up to �104 above the dissipation
peak are allowed [see Eq. (62)]. Comparing with Eq. (27),
we see that any result for a uniform film can be trans-
formed into the corresponding result for the averaged
film by replacing

�Df"0 
 df�0��f ! ��D"0 
 d�0���avg; (D13)

where the elastic quantities required are given in
082003
Eqs. (C8) and (C9), and the averaging operation is
defined in Eq. (D1); we again replace the thermal
properties with the averaged ones given in Eqs. (D3)
and (D5), i.e. Xf ! XF. Since the dissipated power
is the key quantity from which all the end results of
this paper devolve, only straightforward substitution
and algebraic manipulation are required to obtain
those results for the averaged film. The results so obtained
for the dissipation factor � and spectral density of
thermoelastic noise Sx�f� are given in Eqs. (42) and
(72), respectively.
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