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Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test mass

Yuk Tung Liu and Kip S. Thorne
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 16 February 2000; published 20 November 2000!

An analysis is given of thermoelastic noise~thermal noise due to thermoelastic dissipation! in finite sized
test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and
plausible beam-spot radii, the increase is&10 percent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noise~noise associated with dissipation which is ho-
mogeneous and described by an imaginary part of the Young’s modulus! in finite sized test masses. Correction
of these errors increases the homogeneous thermal noise by&5 percent for LIGO-II-type configurations.

PACS number~s!: 04.80.Nn, 05.40.2a
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I. INTRODUCTION AND SUMMARY

Internal thermal noiseis one of the most dangerous noi
sources in a laser interferometer gravitational wave dete
in the frequency range;10 Hz to;200 Hz. It is caused by
a fluctuational redistribution of thermal energy inside each
the detector’s mirror-endowed test masses. This energy
distribution produces a fluctuational change of the t
mass’s shape and thence a change of the position of its
rored face, which in turn mimics a gravity-wave-induc
motion of the test mass’s center of mass@1#.

The fluctuation-dissipation theorem@2# describes a rela
tionship between thermal noise and the energy dissipa
~entropy increase! that occurs inside the test mass, when
front of the test mass is subjected to an oscillatory driv
force @Eq. ~3! below#. There are various types of intern
thermal noise, each one associated with a specific dissipa
mechanism. Until recently, gravitational-wave experiment
have focused almost exclusively onhomogeneous therma
noise@1#—i.e., noise associated with all forms of dissipati
that are describable by an imaginary part of the Youn
modulus which is homogeneous inside the test mass~e.g.,
dissipation due to homogeneously distributed impurities
dislocations!. Thermoelastic dissipation~dissipation due to
heat flow down temperature gradients, which are produ
by inhomogeneous compression and expansion of the
mass material! is not homogeneous; but until recently it wa
thought thatthermoelastic noise~thermal noise associate
with thermoelastic dissipation! would be negligible in Laser-
Interferometer Gravitational Wave Observatory~LIGO! test
masses, compared to homogeneous thermal noise.

Indeed, this is so in the fused silica test masses of LIG
detectors—i.e. of the first detectors that will operate in LIG
@3#. However, a careful analysis late last year by Bragins
Gorodetsky and Vyatchanin@4# ~BGV! showed rather con
vincingly that for the sapphire test masses currently plan
for LIGO-II ~the second generation detectors in LIGO!, ther-
moelastic noise will be significantly larger than homog
neous thermal noise, and in fact will be so large as to s
nificantly constrain the performance of LIGO-II detectors
the frequency band between;10 Hz and;200 Hz.

The BGV computation of thermoelastic noise was ba
on an idealization in which each test mass has an arbitra
0556-2821/2000/62~12!/122002~10!/$15.00 62 1220
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large radius and length compared to the size of the ligh
beam spot on the mirrored test-mass face. In this limit
case, BGV showed that the spectral densitySh( f ) of the
thermoelastic gravitational-wave noise scales as the inv
cube of the beam-spot radiusr o , Sh}1/r o

3 , so it is desirable
to maker o large. However, whenr o is no longer small com-
pared to the test-mass size, the BGV analysis breaks do

The principal purpose of this paper is to explore, quan
tatively, the sign and magnitude of that breakdown. As
shall see, that breakdown~i.e., finite size of the test masse!
increasesthe thermoelastic noise; but for expected bea
spot radii (r 0&3/10 the test-mass radiusa), the increase is
modest (&10 percent!.

A second purpose of this paper is to show how the BG
analysis of thermoelastic noise can be simplified consid
ably; and@adapting techniques due to Bondu, Hello and V
net @5# ~BHV!#, to show how to generalize the BGV analys
to finite sized test masses.

A third purpose is to point out and correct errors in t
BHV formulas for homogeneous thermal noise in finite siz
test masses~formulas that are currently used in designing te
masses and predicting the performance of gravitational w
detectors!. The corrections of the BHV formulas increas
homogeneous thermal noise by&5 percent for beam-spo
radii &3/10 the test-mass radiusa, and thus are primarily of
conceptual importance, not practical importance.

In Sec. II, we outline our method of computing the
moelastic noise, in Sec. III we use our method to verify t
BGV result for thermoelastic noise in the limit of arbitraril
large test masses, in Sec. IV we compute the thermoela
noise in finite sized test masses and estimate the accura
our analysis, in Sec. V we correct the errors in the BH
computation of conventional, homogeneous thermal no
and in Sec. VI we make some concluding remarks.

II. METHOD OF CALCULATION

Our analysis of thermoelastic noise is a simplification
one of the procedures developed by BGV: Appendix C
Ref. @4#. The foundation of the analysis is Levin’s@6# ‘‘di-
rect’’ method of computing thermal noise~of which ther-
©2000 The American Physical Society02-1
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YUK TUNG LIU AND KIP S. THORNE PHYSICAL REVIEW D62 122002
moelastic noise is a special case!:
Levin begins by noting that the gravitational-wave dete

tor’s laser beam reads out a difference of generalized p
tions q(t) of the detector’s four test masses, with eachq
given by an average, over the beam spot’s Gaussian po
profile, of the normal displacementdz[uz of the test-mass
face:

q5E
0

aE
0

2p e2r 2/r o
2

pr o
2~12e2a2/r o

2
!
dz~r ,f!rdfdr

.E
0

aE
0

2pe2r 2/r o
2

pr o
2

dz~r ,f!rdfdr. ~1!

Here (r ,f) are circular polar coordinates centered on
beam-spot center~which we presume to be at the center
the circular test-mass face!, r o is the radius at which the
spot’s power flux has dropped to 1/e of its central value, and

a is the test-mass radius.~The factore2a2/r o
2

must be!1 in
order to keep diffraction losses small, so we shall appro

mate 12e2a2/r o
2

by unity throughout this paper.! Levin then
appeals to a very general formulation of the fluctuatio
dissipation theorem, due to Callan and Welton@2#, to show
that the test-mass thermal noise can be computed by the
lowing thought experiment:

We imagine applying a sinusoidally oscillating pressur

P5Fo

e2r 2/r o
2

pr o
2

cos~vt ! ~2!

to one face of the test mass. HereFo is a constant force
amplitude,v52p f is the angular frequency at which on
wants to know the spectral density of thermal noise, and
pressure distribution~2! has precisely the same spatial profi
as that of the generalized coordinateq, whose thermal noise
Sq( f ) one wishes to compute.

The oscillating pressureP feeds energy into the test mas
where it gets dissipated by thermoelastic heat flow. We co
pute the rate of this energy dissipation,Wdiss, averaged over
the period 2p/v of the pressure oscillations.1 Then the
fluctuation-dissipation theorem states that the spectral d
sity of the noiseSq( f ) is given by

Sq~ f !5
8kBTWdiss

Fo
2v2

~3!

†Eq. ~2! of Ref. @6#‡; herekB is Boltzmann’s constant. The
interferometer’s gravitational-wave signalh(t) is the differ-
ence of the generalized positionsq of the four test masses
divided by the interferometer arm lengthL. Correspondingly

1It is here that our analysis is simpler than that of BGV. Instead
computingWdissand using Eq.~3! for the thermal noise, BGV com
pute the imaginary partI(x) of the test-mass susceptibilityx
~which is much harder to compute thanWdiss) and then evaluateSq

in terms ofI(x) @their Eq.~14!#.
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the contribution of the test-mass thermoelastic noise to
gravitational-wave noise is 1/L2 times the sum ofSq( f ) over
the four test masses~which might have different beam-spo
sizes and thus different noises!:

Sh~ f !5 (
A51

4 SqA
~ f !

L2
. ~4!

The rateWdiss of thermoelastic dissipation is given by th
following standard expression†first term of Eq. ~35.1! of
Landau and Lifshitz@7#, cited henceforth as LL‡:

Wdiss5 K TdS

dt L 5 K E k

T
~¹W dT!2rdfdrdzL . ~5!

Here the integral is over the entire test-mass interior us
cylindrical coordinates;T is the unperturbed temperature
the test-mass material anddT is the temperature perturbatio
produced by the oscillating pressure;dS/dt is the rate of
increase of the test mass’s entropy due to the flux of h
2k¹W dT flowing down the temperature gradient¹W dT, k is
the material’s coefficient of thermal conductivity, an
^•••& denotes an average over the pressure’s oscillation
riod 1/f 52p/v. ~For conceptual clarity we explicitly write
the averagê •••& throughout this paper, even though
practice it gives just a simple factor^cos2 vt&51/2.!

To compute the thermal noise, then, we must calculate
oscillating temperature perturbationdT(r ,f,z,t) inside the
test mass, perform the integral~5! over the test-mass interio
and the time average to obtain the dissipation rate, then p
that rate into Eq.~3! and then Eq.~4!.

The computation of the oscillating temperature pertur
tion is made fairly simple by two well-justified approxima
tions @4#:

First: The radius and length of the test mass area;H
;14 cm and the speeds of sound in the test-mass mat
are cs;5 km/s, so the time required for sound to trav
across the test mass istsound;30 ms, which is;300 times
shorter than the gravitational-wave~and pressure-oscillation!
period tgw51/f ;0.01 s. Thistsound!tgw means that we
can approximate the oscillations of stress and strain in
test mass, induced by the oscillating pressureP, as quasi-
static. It seems reasonable to expect this approximation
produce a fractional error

«quasistatic&
tsound

tgw
5

f

f sound
;

1

300
~6!

in our final answer for the thermoelastic noiseSq( f ). Here

f sound5
1

tsound
;

cs

min~a,H !
.30 000 Hz ~7!

for the currently contemplated LIGO-II test masses: sapph
with a;H;14 cm.

Second:The time scale for diffusive heat flow to alter th
temperature distribution,tT;CVrr o

2/k;100 s, is ;104

times longer than the pressure-oscillation periodtgw ~here
CV.7.93106 erg g21 K21 is the specific heat per uni

f
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THERMOELASTIC NOISE AND HOMOGENEOUS THERMAL . . . PHYSICAL REVIEW D62 122002
mass at constant volume,r.4.0 g/cm3 is the density,r o
;4 cm is the spot size and k
.4.03106 erg cm21 s21 K21 is the thermal conductiv-
ity, and our values are for a sapphire test mass!. This tT
@tgw means that, when computing the oscillating tempe
ture distribution, we can approximate the oscillations
stress, strain and temperature asadiabatic ~negligible diffu-
sive heat flow!. The only place that heat flow must be co
sidered is in the volume integral~5! for the dissipation. The
dominant contribution to that volume integral will com
from a region with radius;r o and thickness;r o near the
beam spot. The region of the integral in which the adiaba
approximation breaks down is predominantly a thin ‘‘boun
ary layer’’ near the beam spot with radiusr o and thickness of
order the distance that substantial heat can flow in a t
;tgw51/f , i.e., thickness of order

r heat5A k

CVr f
.0.4 mmA100 Hz

f
for sapphire.

~8!

This region of adiabatic breakdown is a fraction;r heat/r o of
the region that contributes substantially to the integral, so
expect a fractional error

«adiabatic;
r heat

r o
;0.01 ~9!

in Sq( f ) due to breakdown of the adiabatic approximation
Thequasistaticapproximation permits us, at any mome

of time t, to compute the test mass’s internal displacem
field uW , and most importantly its expansion

Q5¹W •uW , ~10!

from the equations of static stress balance†Eq. ~7.4! of LL
@7#‡

~122s!¹2uW 1¹W ~¹W •uW !50 ~11!

~wheres is the Poisson ratio!, with the boundary condition
that the normal pressure on the test-mass face beP(r ,t) @Eq.
~2!# and that all other non-tangential stresses vanish at
test-mass surface. OnceQ has been computed, we can eva
ate the temperature perturbationdT from the law ofadia-
batic temperature change†Eq. ~6.5! of LL @7#‡

dT5
2a lET

CVr~122s!
Q; ~12!

here a l is the linear thermal expansion coefficient,E is
Young’s modulus andCV is the specific heat per unit mass
constant volume.2 This temperature perturbation can then
plugged into Eq.~5! to obtain the dissipationWdiss as an
integral over the gradient of the expansion

2LL use the volumetric thermal expansion coefficienta53a l and
the specific heat per unit volumeCv5rCV .
12200
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Wdiss5kTS Ea l

~122s!CVr D 2K E ~¹W Q!2rdfdrdzL .

~13!

This Wdiss can be inserted into Eq.~3! to obtain the ther-
moelastic noise.

III. INFINITE TEST MASSES

A. Dissipation and noise computed via BGV techniques

We illustrate the above computational procedure by us
it to verify the BGV @4# result for thermoelastic noise in th
case where each test mass is arbitrarily large compared to
spot size.

Following BGV, we approximate the test mass as an
finite half space. Then the solution to the quasistatic stre
balance equation~11! is given by a Green’s-function expres
sion @LL Eq. ~8.18! with Fx5Fy50, Fz5P(r ,f)#,
integrated over the surface of the test mass. Taking the
vergence of that expression@or, equivalently, taking the di-
vergence of Eq.~39! of BGV#, we obtain the following equa-
tion for the pressure-induced expansion:

Q52
~11s!~122s!Fo

p2r o
2E

cos~vt !

3zE E
2`

1`

dx8dy8
e2(x821y82)/r o

2

@~x2x8!21~y2y8!21z2#3/2
,

~14!

where we have converted from polar coordinates to Carte
coordinates. Following a clever procedure implicit in th
BGV analysis@in going from their Eq.~39! to ~40!#, we
insert into the integral~14! an integral of the Dirac delta
function written as

E
2`

1`

d~x2x82x9!dx95
1

2pE E
2`

1`

eikx(x2x82x9)dkxdx9

~15!

and a similar expression for*d(y2y82y9)dy9, and we re-
write x2x8 and y2y8 in the denominator asx9 and y9,
thereby obtaining a new version of Eq.~14! with integrals
over kx ,ky ,x8,y8,x9,y9. The integrals overx8,y8,x9,y9 are
then readily carried out analytically~they are well-known
Fourier transforms!, to yield Eq.~40! of BGV:3

Q52
~11s!~122s!Fo

2p2E
cosvt

3E E
2`

1`

e2k'
2 r o

2/4e2k'zei (kxx1kyy)dkxdky , ~16!

3Note that our notation differs slightly from that of BGV: Ourx is
their z, our z is theirx, and they have factored out the cosvt, which
they write aseivt.
2-3
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wherek'[Akx
21ky

2.
It is straightforward to take the gradient of this expre

sion, square it~with one term an integral overkx ,ky and the
other overkx8 ,ky8), and integrate overx andy ~from 2` to

1`) and overz ~from 0 to`); the result is*(¹W Q)2dxdydz
expressed as an integral overx,y,z,kx ,ky ,kx8 ,ky8 . The inte-
grals can be done easily, first overz to get 1/(k'1k'8 ), then
over x andy to get Dirac delta functions, then over thek’s.
The result, when inserted into Eq.~13!, is

Wdiss5
~11s!2ka l

2T

A2pCV
2r2r o

3
Fo

2 . ~17!

By then inserting this into Eq.~3!, we obtain the BGV result
for the thermoelastic noise@their Eq.~12!#

Sq
ITM~ f !5

8~11s!2ka l
2kBT2

A2pCV
2r2r o

3v2
. ~18!

Here the superscript ITM means for an ‘‘infinite test mass

B. Derivation via BHV techniques

Equation~17! for Wdiss can also be derived in cylindrica
coordinates (r ,z,f) using the techniques of BHV@5#: The
displacementuW has components@BHV Eqs. ~5! and~6! with
the denominator in Eq.~5! corrected fromm to m1l and
with b5a; see passage following BHV Eq.~8!#

ur5E
0

`

a~k!S 12
l12m

l1m
1kzDe2kzJ1~kr !kdk,

uz5E
0

`

a~k!S 11
m

l1m
1kzDe2kzJ0~kr !kdk,

~19!

uf50,

where

a~k!5
e2k2r o

2/4

4pmk
Fo cosvt ~20!

@BHV Eq. ~11!, with the overall sign corrected from2 to 1,
with wo5A2r o cf. BHV Eq. ~2!, and withFocosvt inserted
because our method of applying the fluctuation-dissipa
theorem is dynamical while BHV’s method is static a
BHV set Fo51]. In Eqs. ~19! the Jn are Bessel functions
and l and m are the Lame´ coefficients~and m is also the
shear modulus!, which are related to the Young’s modulusE
and the Poisson ratios by

l5
Es

~122s!~11s!
, m5

E

2~11s!
. ~21!

The divergence of the displacement~19! is

Q52
2m

l1mE0

`

a~k!e2kzJ0~kr !k2dk. ~22!
12200
-

’

n

The nonzero components of the gradient of this expans
are

]Q

]r
5

2m

l1mE0

`

a~k!e2kzJ1~kr !k3dk, ~23a!

]Q

]z
5

2m

l1mE0

`

a~k!e2kzJ0~kr !k3dk.

~23b!

By squaring the gradient, integrating over the interior of t
test mass, and using the relations

E
0

`

Jn~kr !Jn~k8r !rdr 5
d~k2k8!

k
~24!

~which follow from the Fourier-Bessel integral!, and by re-
placing the Lame´ coefficients by the Poisson ratio an
Young’s modulus@Eqs. ~21!#, and inserting the resulting
*(¹W Q)2rdfdrdz into expression~13!, we obtain the same
result~17! as we got using BGV techniques. By inserting th
into Eq. ~13!, we obtain the thermoelastic noise~18!.

IV. FINITE SIZED TEST MASSES

A. BHV solution for displacement

Consider a finite sized, cylindrical test mass with radiua
and thicknessH, and with the Gaussian shaped light sp
centered on the cylinder’s circular face. For this case, Bon
Hello and Vinet~BHV! @5# have constructed a rather acc
rate but approximate solution of the static elasticity eq
tions. Unfortunately, their solution satisfies the wro
boundary conditions and thus must be corrected:

The error arises when BHV expand the Gaussian-sha
pressure~2! as a sum over Bessel functions. BHV incorrec
omit a uniform-pressure term from the sum. As a result,
pressure that they imagine applying to the test-mass
@their Eq.~18!#,

PBHV~r !5Fo cosvt (
m51

`

pmJ0~kmr ! ~25!

@whereJ0 is the Bessel function of order zero,km is related
to the m’th zero zm of the order-one Bessel functionJ1(x)
by km5zm /a, andpm are constant coefficients given below#,
has a vanishing surface integral

E
0

a

PBHV2prdr 50. ~26!

In other words, their applied pressure~25! is equal to the
desired pressureP(r ) @Eq. ~2!# minus an equal and opposit
net force Fo cos(vt) applied uniformly over the test-mas
face:

PBHV~r !5P~r !2p0Fo cosvt; ~27!

p0[
1

pa2 . ~28!
2-4
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@Recall that we are approximating 12e2a2/r 0
2

by unity; see
discussion following Eq.~1!.#

It is evident, then, that to get the correct distribution
elastic displacementuW inside the test mass, we must add
the BHV displacement a correction. This correction is t
displacement caused by the spatially uniform press
p0Fo cosvt on the test-mass face. That uniform press
causes the test mass to accelerate with acceleratioaW

5@(Fo cosvt)/M#eWz, whereM5pa2Hr is the mass of the
test mass andr is its density. In the reference frame of th
accelerating test mass, all parts of the test mass feel a ‘‘gr
tational’’ accelerationgeW z equal and opposite toaW , i.e. g5
2(Fo cosvt)/M ~which can be treated as quasistatic, thou
it oscillates at frequencyv). Thus, the displacement is th
same as would occur if the test mass were to reside in
gravitational fieldgeW z with a uniform pressure on its fac
counteracting the force of gravity. The solution for this d
placement is given by LL@7# ~problem 1, p. 18!.4 Translating
into our notation and converting from the Young’s modul
and Poisson ratio to the Lame´ coefficients via Eq.~21!, we
obtain

dur

Fo cosvt
5

lp0r

2m~3l12m! S 12
z

H D , ~29a!

duz

Fo cosvt
5

lp0r 2

4mH~3l12m!
2

~l1m!p0

m~3l12m! S z2
z2

2H D .

~29b!

The total corrected displacement, in cylindrical coor
nates, is

ur5ur
BHV1dur , uz5uz

BHV1duz , uf50, ~30!

whereuj
BHV is the BHV displacement@their Eqs.~15! plus

~25! and ~17! plus ~26!#:

ur
BHV~r ,z!

Fo cosvt
5

l12m

2m~3l12m!
~c0r 1c1rz!

1 (
m51

`

Am~z!J1~kmr !, ~31a!

4LL seek to solve a problem in which~in the presence of the
uniform gravitational acceleration!, instead of having a uniform
pressure applied to the face of the cylindrical test mass, the face
vanishing displacement. Their solution actually satisfies our des
boundary conditions but not theirs; therefore, they comment o
being inaccurate near the test-mass face. For our problem it is
curate.
12200
f

e
re
e

vi-

h

e
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-

uz
BHV~r ,z!

Fo cosvt
52

l

m~3l12m! S c0z1
c1z2

2 D
2

l12m

4m~3l12m!
c1r 2

1 (
m51

`

Bm~z!J0~kmr !, ~31b!

uf
BHV~r ,z!50. ~31c!

Here the coefficientsc0 andc1 are@equations following Eqs.
~24! and ~26! of BHV#

c056
a2

H2 (
m51

`
J0~zm!pm

zm
2 , c15

22c0

H
, ~32!

and Am and Bm are the following functions ofz @Eqs. ~19!
and ~20! of BHV#:

Am~z!5gme2kmz1dmekmz

1
kmz

2

l1m

l12m
~ame2kmz1bmekmz! ~33!

Bm~z!5F l13m

2~l12m!
bm2dmGekmz

1F l13m

2~l12m!
am1gmGe2kmz

1
kmz

2

l1m

l12m
~ame2kmz2bmekmz!, ~34!

where am , bm , gm and dm are constants given by@Eqs.
~21!–~24! of BHV#:

Qm5exp~22kmH ! ~35a!

am5
pm~l12m!

kmm~l1m!

12Qm12kmHQm

~12Qm!224km
2 H2Qm

~35b!

bm5
pm~l12m!Qm

kmm~l1m!

12Qm12kmH

~12Qm!224km
2 H2Qm

~35c!

gm52
pm

2kmm~l1m!

3
@2km

2 H2~l1m!12mkmH#Qm1m~12Qm!

~12Qm!224km
2 H2Qm

~35d!

as
d
it
c-
2-5
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dm52
pmQm

2kmm~l1m!

3
2km

2 H2~l1m!22mkmH2m~12Qm!

~12Qm!224km
2 H2Qm

, ~35e!

with @equation following Eq.~18! in BHV#

pm5
2

a2J0
2~zm!

E
0

ae2r 2/r o
2

pr o
2

J0~kmr !r dr . ~36!

In the spirit of our approximating 12e2a2/r o
2

by unity @dis-
cussion following Eq.~1!#, BHV suggest approximating th
upper limit of this integral bỳ ; the integral can then be
done analytically, giving@equation preceding Eq.~19! of
BHV#

pm5
exp~2km

2 r o
2/4!

pa2J0
2~zm!

. ~37!

This is a good approximation to the exact formula~36! for
smallm ~which turn out to give the dominant contribution
the noise!, but for largem it can severely underestimatepm .

B. Expansion and the integral of its squared gradient

It is straightforward to compute the expansionQ5¹W •uW
and the components of its gradient from expressions~29!,
~31! and ~30!; the results are

Q~r ,z!

Fo cosvt
52

p0

3l12m S 12
z

H D1
2~c01c1z!

3l12m

1 (
m51

`

@kmAm~z!1Bm8 ~z!#J0~kmr !, ~38!

and

]Q/]r

Fo cosvt
52 (

m51

`

km@kmAm~z!1Bm8 ~z!#J1~kmr !,

~39a!

]Q/]z

Fo cosvt
5

2c̃1

3l12m
1 (

m51

`

@kmAm8 ~z!

1Bm9 ~z!#J0~kmr !, ~39b!

where the primes denote derivatives with respect toz and the
coefficientc̃1 is

c̃15c11
p0

2H
. ~40!

Using the~nonstandard! orthogonality relations

E
0

a

r J1~kmr !J1~knr !dr5
a2

2
J0

2~zm!dmn , ~41!
12200
E
0

a

r J0~kmr !J0~knr !dr5
a2

2
J0

2~zm!dmn ,

~42!

E
0

a

r J0~kmr !dr50, ~43!

the volume integral of (¹W Q)2 can be evaluated analytically
The result, after some algebra and after averaging cos2 vt to
1/2, is

1

Fo
2K E ~¹W Q!2rdfdrdzL

5
2pa2c̃1

2H

~3l12m!2

1
pa2

2~l1m!2 (
m51

` kmpm
2 ~12Qm!J0

2~zm!

@~12Qm!224H2km
2 Qm#2

3@~12Qm!2~11Qm!18HkmQm~12Qm!

14H2km
2 Qm~11Qm!#. ~44!

C. Thermoelastic noise

Inserting Eq.~44! into Eq. ~13! and then into Eq.~3!, and
using Eqs.~21! for the Lamécoefficients, we obtain for the
spectral density of thermoelastic noise in a finite sized
mass:

Sq
FTM5CFTM

2 Sq
ITM . ~45!

HereSq
ITM is the BGV result~18! for the spectral density for

an infinite test mass, andCFTM
2 is the following finite-test-

mass correction to the spectral density:

CFTM
2 5

~2p!3/2r o
3

a3 H a5Hc̃1
2

~11s!2

1 (
m51

` a5kmpm
2 ~12Qm!J0

2~zm!

@~12Qm!224H2km
2 Qm#2

3@~12Qm!2~11Qm!18HkmQm~12Qm!

14H2km
2 Qm~11Qm!#J . ~46!

The square root,CFTM , of this finite-test-mass correctio
is plotted in Fig. 1 as a function of the test-mass thicknesH
and radiusa measured in units of the beam-spot radiusr o .
@One can easily show from Eq.~46! that CFTM depends on
H, a andr o only through the dimensionless ratiosH/r o and
a/r o , as must be the case on dimensional grounds.# Notice
that the noise is larger, at fixedr o , for large-a, small-H test
masses~thin disks! than for small-a, large-H test masses
~long cylinders!. However, for plausible parameters the d
ference is only a few tens of percent. The reason for
2-6
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greater noise in a thin disk is that it experiences greater
formation, when a force acts at the center of its face, t
does a long cylinder, and thus the integral~13!, to which the
noise is proportional, is larger.~See, e.g., Sec. 12 of@7#, or
Sec. 305 of@8#.!

The current ‘‘straw-man’’ ~‘‘reference’’! design for
LIGO-II includes sapphire test masses witha514 cm and
H512.2 cm. In Fig. 2 we plot the finite-test-mass correcti
CFTM as a function of beam-spot radiusr o ~in centimeters!
for such test masses~for which we use the BGV value
of the parameters a55.031026 K21, k54.03106

erg K21 cm21 s21, r 5 4.0 g /cm3, CV 5 7.93106 erg
g21 K21, E5431012 erg/cm3, s50.29). Although we
continue our plot up tor o56 cm, it may be impractical or
undesirable to operate withr o much larger than 4 cm. Two
reasons for this are:~i! Each time the light beam encounte

a test mass, a fraction;e2a2/r o
2

of its power is lost around
the test-mass sides~‘‘diffraction losses’’!; keeping this be-

FIG. 1. Contour plot of the correctionCFTM to the thermoelastic
amplitude noiseASq( f ) due to the finite size of the test mass@Eqs.
~45! and ~46!#. This correction is shown as a function of the te
mass radiusa and thicknessH, both measured in units of the beam
spot radiusr o ~the radius at which the light beam’s energy flux h
dropped to 1/e of its central value.!

FIG. 2. CorrectionCFTM to the thermoelastic amplitude noise
a function of the beam-spot radiusr o , for test masses with the
parameters currently being contemplated for LIGO-II: 30 kg s
phire cylinders with radiusa514 cm and thicknessH512.2 cm.
12200
e-
n

low ;10 ppm requiresr o&4 cm. ~ii ! There are practica
limitations R&50 km on the radii of curvature of the tes
mass mirrors; if the beam waist is half way between
mirrors of an arm’s optical cavity so the spot sizesr o are the
same on the two mirrors, and ifR is significantly larger than
the arm length L54 km, then the spot sizes arer o
.(l2LR/8p2)1/4 ~where l51.06 mm is the light wave-
length!, soR&50 km requiresr o&4 cm.

For the plausible ranger o&4 cm, Fig. 2 shows that the
finite-test-mass correction to the amplitude noise is&10 per-
cent.

D. Errors in our analysis

There are three significant sources of error in our analy
We expect them to produce a net error inCFTM and thence in
the test-mass noiseASq

FTM that is &1 percent, for the ex-
pected LIGO-II parameter regime (a;14 cm, H
;12 cm, r o&4 cm). More specifically:

One error source is the quasistatic approximation.
have already estimated this as producing a fractional e
«quasistatic&0.003 inSh @Eq. ~6!#, and the error inASq will be
half this, &0.0015.

The second error source is the adiabatic approximat
We have already estimated that this produces a fractio
error«adiabatic;0.01 inSq @Eq. ~9!#, and the error inASq will
be half this,&0.005.

The third error source is one that we have not discuss
A failure of the elastic displacement~31! to satisfy the
boundary conditionTrr 50 on the test mass’s cylindrica
sides,r 5a. As was discussed by BHV@5#, the c0 and c1
terms in the displacement~31! are a correction to the
leading-order displacement, designed to improve the sa
faction of theTrr (a)50 boundary condition. We shall refe
to these terms as the ‘‘Saint-Venant correction’’@5#. In our
final answer forSq( f ) @Eqs.~45! and~46!#, this Saint-Venant
correction makes a fractional contribution&6 per cent, for
LIGO-II type test masses and plausible beam radiir o
&4 cm. The rms value ofTrr (a) with the Saint-Venant cor-
rection included is smaller than that without the Sai
Venant correction by about a factor 3, so it is reasonable
expect that the remaining error inSq( f ) due toTrr (a)Þ0 is
&1/3 of the Saint-Venant correction, i.e., a remaining fra
tional error

«SV&
1

3
30.0650.02. ~47!

The fractional error inASq will be half this, &0.01—which
is larger than the other two errors.

Combining these three errors in quadrature, we expect

formulas forASq
FTM to make a net fractional error of mag

nitude

dCFTM

CFTM
5

dASq
FTM

ASq
FTM

&0.01 ~48!-
2-7
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for LIGO-II-type test masses and beam-spot radiir o
&4 cm.

V. CONVENTIONAL THERMAL NOISE

Because of the boundary-condition error that BHV ma
in solving the elasticity equations~and because of an add
tional algebraic error discussed below!, their result for the
conventional thermal noise must be corrected.

The conventional thermal noise is given by Levin’s fo
mula ~3! with Wdiss the time-averaged dissipation produc
by an imaginary partI(E)5F(v)E of the Young’s modu-
lus:

Wdiss52vF~v!^U&

5vF~v!E ^lQ212mSi j Si j &rdrdfdz. ~49!

Here ^U& is the time-averaged elastic energy,Si j Si j is the
square of the strain associated with the displacementuW , there
is an implied sum overi and j, and the integral is over the
test-mass interior; cf. Eq.~12! of Ref. @6#.

The expansionQ is given by Eq.~38!, and the compo-
nents of the strain on the spherical, orthonormal ba
eW r , eWf , eW z are readily computable from the displaceme
~30!, ~29!, ~31! via @Eqs.~A.1!–~A.4! of BHV#

Srr 5ur ,r , Sff5
ur

r
, Szz5uz,z ,

Srz5Szr5
1

2
~uz,r1ur ,z!, ~50!

where commas denote partial derivatives. By evaluat
these strain components, inserting them and the expan
~38! into Eq. ~49!, averaging over time, integrating over th
test mass, and reexpressing the Lame´ coefficients in terms of
the Young’s modulus and Poisson ratio, we obtain

Wdiss5vF~v!~Uo1DU !Fo
2. ~51!

HereUo is given by

Uo5
~12s2!pa3

E (
m51

`

Um

pm
2 Jo

2~zm!

zm
, ~52!

with @equation following Eq.~29! of BHV#

Um5
12Qm

2 14kmHQm

~12Qm!224km
2 H2Qm

; ~53!

while DU is

DU5
a2

6pH3E
@p2H4p0

2112pH2sp0s172~12s!s2#,

~54!

with
12200
e

is
t

g
ion

s5pa2 (
m51

`
pmJ0~zm!

zm
2 . ~55!

When the approximation~37! is made forpm , Uo takes the
form given by BHV @their Eq.~30!#

Uo5
12s2

paE (
m51

`

Um

exp~2zm
2 r o

2/2a2!

zmJ0~zm!2 , ~56!

ands takes the form

s5 (
m51

` exp~2zm
2 r 0

2/4a2!

zm
2 J0~zm!

. ~57!

The approximations~56! and~57! are rather good for realis
tic parameter values, despite the fact that for largem Eq. ~37!
is a very poor approximation topm , because largem make
small contributions toUo ands.

Equations~54! and ~57! for DU differ from Eq. ~31! of
BHV for two reasons:~i! BHV used the wrong boundary
conditions at the test-mass face@see beginning of Sec. IV A
above#; correcting this leads to all the terms in Eq.~54! in-
volving po . ~ii ! BHV seem to have made an algebraic err
Eqs.~54! and~57! should agree with BHV Eq.~31! whenpo
is set to zero, but they do not; it might be that BHV accide
tally omitted theSff

2 term or theSrr
2 term when evaluating

Eq. ~49!.
Inserting Eq.~51! into Eq.~3!, we obtain the BHV expres-

sion for the conventional thermal noise@their equation fol-
lowing Eq. ~31!#

Sq
FTM~ f !5

8kBT

v
F~v!~Uo1DU !, ~58!

where ~to reiterate! Uo is given by Eqs.~52! @or ~56!# and
~53!, while DU is given by Eqs.~54! and ~55! @or ~57!#.

If the test mass is infinite in size, then the convention
thermal noise has the following form, derived by BHV@their
Eq. ~14! with wo5A2r o , which differs from the formula
derived earlier by Levin@6#—his Eq.~2!#:

Sq
ITM5

4kBT

v

12s2

A2pEro

F~v!. ~59!

As for thermoelastic noise, we define a finite-test-mass c
rection CFTM

2 to be the ratio of the finite-test-mass spect
density~58! to that ~59! for the infinite test mass:

CFTM
2 5

Sq
FTM

Sq
ITM

. ~60!

We plot the square root of this correction~i.e., the amplitude-
noise correction! as a function of beam-spot radiusr o in Fig.
3 for a LIGO-II type test mass. We show there two curv
CFTM as given by the BHV formulas, and as given by o
2-8
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corrected formulas. Note that the BHV errors have only
small influence: their noise was too low by a factor&5
percent whenr o&4 cm.

VI. CONCLUSION

In this paper we have sketched a fairly simple method
analyzing thermoelastic thermal noise in interferometric
tectors, we have used that method to derive formulas for
noise in cylindrical test masses with finite radius, thickne
and beam spots, and we have corrected the correspon
finite test-mass formulas for conventional thermal noise. O
formulas should be useful in optimizing the test-mass
signs for interferometric gravitational wave detectors.

Because thermoelastic noise arises from physical p
cesses associated with ordinary thermal fluctuations, the
conductivity and thermal expansion, and isnot influenced by
‘‘dirty’’ processes such as lattice defects and impurities~ex-
cept through the easily measured conductivity and exp
sion!, the predictions for thermoelastic noise should be v
reliable. Nevertheless, experimental tests of the theory wo
be useful and are being planned.

Other forms of thermal noise do rely in crucial, il
understood ways on dirty processes and thus are far
reliably understood than thermoelastic noise. This is es
cially the case of thermal noise associated with~inhomoge-
neous! dissipation in and just beneath the test mas
dielectric-mirror coatings†for which Levin @6# predicts, in
the infinite-test-mass limit, a dependenceSq}1/r o

2 on beam-

FIG. 3. CFTM5ASq
FTM/ASq

ITM, the finite-test-mass correction t
the conventional, homogeneous thermal noise, as a function o
beam-spot radiusr o , for test masses with the parameters curren
being contemplated for LIGO-II: 30 kg sapphire cylinders with r
dius a514 cm and thicknessH512.2 cm. The curve labeled
‘‘BHV’’ is the result derived in Ref.@5# @their Eqs.~29!, ~28!, and
equation following~31!#; the curve labeled ‘‘corrected’’ is our cor
rected version of their result@our Eqs.~58!, ~52! and ~54!#.
l
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spot radius, compared toSq}1/r o
3 for thermoelastic noise and

Sq}1/r o for conventional, homogeneous thermal noise‡. De-
tailed experimental studies of these other forms of therm
noise are much needed as part of the research and dev
ment for interferometric gravitational-wave detectors, a
are being planned.

In some of the planned experiments, very small be
radii r o and/or high frequenciesf may be used. For

r o&r o
heat[A k

CVr f

.0.4 mmA100 Hz

f
for sapphire, ~61!

the adiabatic approximation breaks down seriously@cf. Eq.
~9! and associated discussion# and our analysis of ther
moelastic noise must be redone taking account of the di
sive redistribution of temperature during the elastic osci
tions. Some foundations for doing this have been laid
BGV @4#. For frequencies

f * f sound[
cs

min~a,H !

.104 Hz
10 cm

min~a,H !
for sapphire ~62!

~wherecs is the sound speed!, the quasistatic approximatio
breaks down seriously@cf. Eq. ~6! and associated discus
sion#, and our analysis must be redone taking account of
finite propagation speed of the test mass’s elastic defor
tions.

After completing our analysis of thermoelastic noise
finite sized test masses, we learned that Sergey Vyatch
@9# has been carrying out an analysis of this same issue,
using somewhat different techniques. In writing the final v
sion of this paper, we have benefitted from email exchan
with him.
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