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Abstract
Background  In self-correlation lock-in thermography for thermoelastic stress analysis (TSA), the acquisition position of 
the reference signal affects the accuracy of the obtained stress amplitude distribution. When the reference signal is not large 
enough compared to the noise, the stress amplitude distribution may be incorrect.
Objective  This study proposes a method that does not require a reference signal and frequency analysis to obtain the stress 
amplitude distribution with comparable or higher accuracy than that obtained using self-correlation lock-in thermography.
Methods  An observation matrix is generated from the temporal variation across all thermographic pixels to describe the 
thermal fluctuations due to stress. Thereafter, stress amplitude distribution and the original load signal are extracted from 
the observation matrix using singular value decomposition (SVD). The proposed method is called SVD thermo-component 
analysis. To investigate the effectiveness of the proposed method, the reconstructed load signal and stress distribution are 
obtained from the captured thermal images for the specimen under a sinusoidal load.
Results  The stress amplitude distribution obtained using the proposed method is equivalent to that obtained using conven-
tional lock-in thermography with the original load signal as the reference signal. In addition, the reconstructed load signal 
obtained using the proposed method successfully represents the original load signal.
Conclusions  SVD thermo-component analysis does not require prior knowlege of the evaluated mechanical structure to 
select a suitable reference-signal acquisition position as in self-correlation lock-in thermography. Therefore, the proposed 
TSA method reduce analysis failures compared to the conventional method.

Keywords  Infrared thermography · Thermoelastic stress analysis · Self-correlation lock-in thermography · Singular value 
decomposition

Introduction

The number of structures close to their design life is increas-
ing, and the increase in maintenance work is becoming a 
problem. For example, many highway steel bridges, which 
withstand the heavy traffic of automobiles traveling at high 
speeds and delivering large loads, were built around the same 
time. The fatigue cracks in the structure caused during service 

may lead to serious accidents if the defect is left unaddressed. 
An efficient non-destructive evaluation method is required 
for large-scale structures, such as highway steel bridges and 
airplanes. Contact-type non-destructive inspection methods, 
such as the ultrasonic inspection method, requires a long 
period of time for inspection. Infrared thermography enables 
the remote and non-destructive inspection of cracks and inter-
nal defects from thermal images based on heat dissipation 
using infrared flash and several heating devices [1–3]. Fur-
thermore, thermoelastic stress analysis using infrared ther-
mography (TSA) helps obtain a stress amplitude distribution 
map based on the thermoelastic effect [4–6]. The temperature 
changes due to thermoelastic stress are very small and below 
the temperature resolution of infrared thermography equip-
ment. Therefore, the lock-in algorithm is utilized for TSA. 
Lock-in thermography is performed via the frequency analysis 
of the periodic sinusoidal temperature change measured when 
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a periodic load is applied [7–9]. Pitarresi et al. [10] applied 
low-cost infrared thermography with micro-bolometers and 
a lock-in algorithm to TSA. When a random or impulse load 
is applied to the measured structure, TSA based on frequency 
analysis cannot be applied.

To enable measurement with random load, the random 
lock-in method has been developed to evaluate the magni-
tude of temperature change due to the thermoelastic effect 
using the least squares method for the reference signal 
obtained from the sensor installed near the measurement site 
[11]. Furthermore, the self-correlation (self-reference) lock-
in TSA method, which uses temperature change at a specific 
position in a thermal image as the reference signal, has been 
developed [12, 13]. Since self-correlation lock-in thermogra-
phy does not require the reference signal from the real sensor 
installed into the measurement site, this method is suitable 
for remote field measurements. Sakagami et al. [14, 15] used 
self-correlation lock-in thermography to evaluate the propa-
gation of fatigue cracks in the welded joints of steel bridges. 
Galietti et  al. [16] proposed another signal processing 
method for TSA under a random load, where the frequency 
analysis is performed for the reference signal selected at a 
certain pixel in the thermal image, and the measured ther-
mographic signal is assumed to be approximated with a 
harmonic signal based on the results of frequency analysis. 
However, as shown in this paper, it is found that the quality 
of the reference signal in self-correlation lock-in thermog-
raphy affects the stress amplitude distribution.

The self-correlation lock-in thermography in TSA, which 
uses a dynamic thermographic signal at a specific position 
or region in the thermal image as a reference signal, is easily 
affected by the acquisition position of the reference signal. 
The operator is required to understand the deformation of 
the measurement structure and component to select the ref-
erence point.

This study aims to propose a new TSA method that gener-
ates stress distribution and recostructed load signal by sin-
gular value decomposition (SVD) from the thermal image 
sequence without using the reference signal, which is called 
SVD thermo-component analysis. Rajic [17] developed a 
pulse thermography inspection using SVD called principal 
component thermography (PCT) and applied it to the detec-
tion of structural defects. When flash heating is applied to 
a component, the heat conduction behavior is measured in 
the thickness direction of the component, and the change 
in heat conduction due to the defect appears as the change 
in the thermal image. The characteristics of the change in 
thermal image are extracted using SVD. PCT emphasizes the 
contrast on the thermal image caused by the defect.

When SVD is applied to an infrared video of an object 
under loading, it is decomposed into the temperature signal 
contained in the video and the feature distribution according 
to the temperature signal. The temperature signal of the first 

component corresponds to the load signal that is the cause 
of the thermoelastic effect, and the image is considered to 
correspond to the stress distribution. SVD extractes various 
signal components, such as the second and third compo-
nents, that is considered to reflect temperature signals other 
than thermoelastic temperature change, such as temperature 
signals due to other load modes and signals due to energy 
dissipation. Therefore, developed method is called SVD 
thermo-component analysis.

In this paper, lock-in thermography and self-correlation  
thermography are introduced, the problems in self- 
correlation thermography are discussed, and the principle 
of SVD thermo-component analysis for TSA is explained. 
Furthermore, the experiment performed for conducting a 
basic study on the applicability of SVD thermo-component 
analysis for TSA is presented. In the experiment, a sinusoi-
dal load was applied to a specimen with a circular hole, and 
using SVD thermo-component analysis, the load signal was 
reconstructed, and stress distribution was calculated. The 
accuracy of the reconstructed signal and calculated stress 
distribution using SVD thermo-component analysis are 
verified by comparison with the stress distribution obtained 
using the conventional lock-in method.

Principal of Svd Thermo‑component 
Analysis

Thermoelastic Stress Analysis

When a load is applied to a material, small temperature 
changes are observed on the material surface due to the ther-
moelastic effect. The relation between temperature change 
ΔT  and the change in the accumulated stress Δσ can be 
expressed as:

where � is the coefficient of thermal linear expansion, � is 
the density, Cp is the isopiestic specific heat, k is the ther-
moelastic modulus, and T  is the absolute temperature of the 
material [12]. When a sinusoidal load signal with a constant 
amplitude and frequency fref is applied to the specimen, the 
sinusoidal surface temperature ψ (p, t) can be measured. 
The measured dynamic thermal image can be approximated 
as follows:

where p = (x, y) is the pixel position in the thermal image; 
fmeas is the measurement frequency; a(p) is the mean compo-
nent of the thermal image at pixel p; b(p) is the magnitude of 

(1)ΔT = −
�

�Cp
TΔ� = −kTΔ�,

(2)�(p, t) = a(p) + b(p) cos

(
2�t

fref

fmeas

+ �

)
,
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the sinusoidal temperature change at pixel p, which indicates 
the stress distribution based on equation (1); and θ is the 
phase between fref and ψ (p, t).

When the load signal is sinusoidal with constant ampli-
tude, the magnitude of the measured dynamic thermal sig-
nal and phase corresponding to the reference signal can be 
obtained based on Fourier transform. The sine and cosine 
signals with the same frequency as that of the reference 
signal measured from the load cell, strain gauge, and test-
ing controller are generated, and signal processing with the 
measured temperature change is performed as follows [7–9]:

where P is the number of pixels in the thermal image, and 
F is the number of measured frames. The b(p) and phase of 
the sinusoidal signal in ψ can be obtained using the follow-
ing equation [7–9]:

Since this signal processing is based on Fourier trans-
form, this method is called the frequency analysis method. 
When a sinusoidal constant stress amplitude fatigue test is 
performed in a laboratory, the stress distribution acting on 
the specimen can be accurately evaluated.

If the load signal is a random waveform (variable ampli-
tude and load multi frequency loadings) or only one highly 
damaging load application, the above frequency analysis 
method cannot evaluate the magnitude of the load. There-
fore, the lock-in method using the least squares method has 
been developed.

Random Lock‑in Thermography using the Original 
Load Signal

In equation (1), the load is a function of time, and the equa-
tion for each pixel on the thermal image is shown below:

where a(p) is the stationary component of the infrared ther-
mal image at pixel p. a(p) indicates the temperature distri-
bution on the surface of the object when no load is applied 
(i.e., f (t) = 0 ) and mainly depends on the environmental 
temperature or emissivity of the surface of the object. b(p) 
corresponds to the stress distribution in equation (5). If the 

(3)

Δ�sin(p) =
2

F

F∑
t=1

�(p, t) ⋅ sin

(
2�t

fref

fmeas

)

Δ�cos(p) =
2
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,

(4)
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Δ�sin(p)

)2
+
(
Δ�sin(p)

)2
,

�(p) = tan−1
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)2
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)2
)
.

(5)�(p, t) = a(p) + b(p)f (t), p = 1 − P, t = 1 − F,

original load signal f (t) in equation (5) is measured using a 
conventional sensor (e.g., strain gauge) attached to the target 
object, a(p) and b(p) can be obtained from the measured 
thermal image using the least squares method. The sum of 
the squares of the differences between the measured data and 
the approximate model can be obtained for the F available 
frames as follows [13]:

where a(p) and b(p) minimize Δ(a(p), b(p)) and are obtained 
by differentiating equation (6) with respect to a(p) or b(p) 
and setting the result to 0. By solving the simultaneous equa-
tions, we can easily obtain a(p) or b(p) as follows:

where subscript L indicates that a(p) and b(p) are obtained 
using the measured load signal f (t) . This method is called 
random lock-in thermography [4]. Stress distribution can 
be obtained even from a random load that is measured sepa-
rately using a sensor via random lock-in thermography.

Self‑correlation Lock‑in Thermography

In random lock-in thermography, the reference signal f(t) is 
obtained using the sensor set near the measurement point. 
If the sensor cannot be installed near the measurement 
point, the temperature signal ψ (s, t) near the measurement 
point can be used as the reference signal f(t). This method 
is called self-correlation lock-in thermography. By substitut-
ing �(s, t) for f (t) in equations (7) and (8), a(p) and b(p) can 
be obtained as follows:

where subscript s indicates that a(p) and b(p) are obtained 
using the self-correlation lock-in method, which provides a 
stress distribution using only thermal images. The accuracy 
of stress distribution depends on the position of the refer-
ence signal. The temperature change of the reference signal 
is expressed as:

(6)Δ(a(p), b(p)) =
∑F

t=1
(�(p, t) − a(p) − b(p)f (t))2

(7)bL(p) =
F
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∑F
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F
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,
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F
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�(s, t)

F
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By substituting equation (11) in equation (9), we obtain:

By comparing equation (12) with equation (7) and nor-
malizing bL(p) with b(s) in equation (8), bS(p) is obtained. 
�(s, t) should follow equation (5) and provide the correct 
information to replace the input load signal f (t). When f 
(t) is close to 0, the equation becomes unstable. Conse-
quently, a very small temperature change at the reference 
position s with a weak correlation with the load signal 
provides an incorrect stress distribution.

As the component a(p) is not explicitly stated in equa-
tion (12), the time average of f (t) , 

−

f (t) |t , cannot be used 
to calculate b(s) . The fluctuation in the reference signal, 
f ∗(t) , is expressed as:

Similarly, fluctuation of the temperature change with 
respect to the time average �∗(p, t) is expressed as:

where 
−

�(p, t) |t is the time average of �(p, t) . By substituting 
f ∗(t) and �∗(p, t) in equation (9), the time-averaged values, −

f (t) |t and 
−

�(p, t) |t , disappear, and bS(p) can be obtained as 
follows:

In self-correlation lock-in thermography, each pixel 
value b(p) in the stress distribution map involves fluctua-
tions f ∗(t) and �∗(p, t) . Similarly, by substituting f ∗(t) and 
�∗(p, t) in equation (7), bL(p) can be obtained as follows:

which is similar to equation  (15) but without b(s) in 
the denominator. Therefore, b(p) is related only to f ∗(t) 
and �∗(p, t) in both random and self-correlation lock-in 
thermography.

SVD Thermo‑Component Analysis

In the field of computer vision, Kanade and Poelman [18] 
reported that the three-dimensional trajectory of the camera 

(11)�(s, t) = a(s) + b(s)f (t).

(12)bS(p) =
F
∑F

t=1
�(p, t)f (t) −

∑F
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b(s)(F
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�∑F

t=1
f (t)

�2

)

.

(13)f ∗(t) = f (t) − f (t)|t.

(14)�∗(p, t) = �(p, t) − �(p, t)|t,

(15)bS(p) =

∑F

t=1
�∗(p, t)f ∗(t)

b(s)
∑F

t=1
f ∗(t)2

.

(16)bL(p) =

∑F

t=1
�∗(p, t)f ∗(t)

∑F

t=1
f ∗(t)2

,

and the three-dimensional shape of the object could be restored 
by applying SVD to the video sequence. Using a similar idea, 
we propose a method to reconstruct the load signals and stress 
amplitude distribution maps from time-vaarying infrared 
images. If �(s, t) at pixel s , which shows a large temperature 
fluctuation, is used as the reference signal instead of the load 
signal f (t) in self-correlation lock-in thermography, the correct 
stress distribution can be obtained. It is not always possible to 
determine the position where a suitable �(s, t) can be obtained 
for correct analysis. Therefore, a method to calculate stress 
distribution without selecting the reference signal by applying 
SVD to thermal images is proposed. The proposed method 
is called “SVD thermo-component analysis.” Thermal image 
fluctuation �∗(p, t) using equations (5) and (14) is presented 
as follows:

Let us define a P × F observation matrix 𝚿∗ , with columns 
representing the pixel positions of the observed thermal image, 
rows representing time, and elements being the thermal image 
fluctuation �∗(p, t).

The observation matrix 𝚿∗ can be represented in terms of 
equation (14) as follows:

As the observation matrix 𝚿∗ is the product of b in the 
P × 1 matrix and f* in the 1 × F matrix, its rank must be 
1, and its SVD is given by:

(17)

�∗(p, t) = �(p, t)−
−

�(p, t)|t= a(p) + b(p)f (t) −

(
a(p) + b(p)

−

f (t) |t
)

= b(p)

(
f (t)−

−

f (t) |t
)

= b(p)f ∗(t)

(18)𝚿
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where U is the P × P vertical eigenvector matrix, up is the P
-dimensional unit vector, VT is the F × F horizontal eigen-
vector matrix, vt is the F-dimensional unit vector, � is the 
P × F eigenvalue matrix, and �1 ≥ ⋯ ≥ �F ≥ 0 . As the rank 
of 𝚿∗ is 1, the eigenvalues obtained using SVD should be 
zero except for �1 . Even if 𝚿∗ includes noise, the other eigen-
values should be sufficiently smaller than �1 . Thus, when the 
eigenvalues other than σ1 are set to 0 in equation (22), the 
observation matrix becomes:

By comparing the terms in the right hand side of equa-
tions (23) and (19), it is evident that vector u1 corresponds 
to vector b and vector v1 corresponds to vector f∗:

In the proposed SVD thermo-component analysis, the 
coefficient proportional to the stress at each pixel bV (p) 
is obtained as u1(p) , which is an element of the p th row 
of vector u1.

Simultaneously, the fluctuation from the time average 
of the load signal f (t) , which is the input of equation (7), 
is recovered using equation (24) of the proposed method. 
The recovered fluctuation f ∗

V
(t) is given by:

Using SVD, the observation matrix 𝚿∗ is decomposed 
to obtain bV (p) , which represents the stress distribution 
map, and f ∗

V
(t) , which is proportional to the fluctuation of 

the average load signal. SVD thermo-component analysis 
provides stress distribution while extracting and recover-
ing the load signal using the temporal information of the 
thermal image.

For the thermal images with P pixels and F measured 
thermal image frames, equation (5) should be calculated 
for P × F elements. The number of unknown parameters, 
{a(p)}p=1−P, {b(p)}p=1−P , and {f (t)}t=1−F , is 2P + F . There-
fore, if F > 2P∕(P − 1) , the corresponding simultaneous 
equations should be solved, and the proposed method 
should be stably executed using SVD.
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(23)𝚿
∗ ≅ �1u1v

T
1
.

(24)
� = �1

�
∗ = �1.

(25)bV (p) = u1(p).

(27)f ∗
V
(t) = v1(t).

Experiments

The load signal was reconstructed and the stress distri-
bution corresponding to the signal was calculated using 
SVD thermo-component analysis. To examine the validity 
of results using SVD thermo-component analysis, as a 
basic examination, an experiment was conducted wherein 
a sinusoidal load signal was given to the specimen using 
a fatigue testing machine. It was also easy to compare the 
load signal reconstructed using SVD and the input load 
signal in the graph. The experimental setup and analysis 
procedure are shown in Fig. 1. A sinusoidal cyclical load 
was applied to a specimen, and the thermal images of the 
specimen surface were captured using infrared thermog-
raphy equipment driven by an external synchronization 
signal. The control device of the fatigue testing machine 
supplied a load signal to the load cell and the synchro-
nization signal generator, which related the data of the 
load signal and the synchronization signal for recording 
in a computer. The observation matrix of equation (21) 
was generated from the captured thermal image. There-
after, the observation matrix was decomposed into a 
reconstructed load signal and relative stress amplitude 
distribution using SVD. The stress amplitude of the refer-
ence point of the relative stress distribution was obtained 
by calculating the amplitude of the reconstructed sig-
nal from the measured temperature change at the refer-
ence point using the least squares method. The relative 
stress amplitude distribution map was converted into an 
absolute-value map of stress using the stress amplitude 
at the reference point. In this study, reduction of com-
puter calculation load of observation matrix ganaration 
process is introduced. Details of this process is described 
in Appendix.

The aluminum alloy (A5052) specimen used in the exper-
iments is shown in Fig. 2. A hole with a diameter of 11 mm 
was made in the center of the specimen to generate stress 
concentration. The surface of the specimen was patinted 
with black heat resistant paint. An area of approximately 
30 mm × 30 mm around the hole (red rectangle in Fig. 2) was 
captured using infrared thermography equipment. The num-
ber of pixels of the thermography equipment was 320 × 256 
pixels, and one pixel size was approximately 0.094 mm.

The loading frequency was 5 Hz, stress ratio was − 1, 
Nominal stress amplitude at the minimum cross section of 
the specimen without considering stress concentration due 
to the circular hole was 50 MPa, and frame rate of infrared 
thermography equipment was 100 fps. The frame rate of 
the infrared thermography equipment is set high enough to 
reconstruct the waveform of loading signal with respect to 
the loading frequency. Tables 1 and 2 list the mechanical and 



342	 Experimental Mechanics (2023) 63:337–347

thermal properties of the specimen material and the specifi-
cations for infrared thermography equipment, respectively. 
Two-hundred frames of the thermal image were used for 
SVD thermal-component analysis. For comparison with the 

result of SVD thermo-component analysis, stress distribu-
tion maps were obtained using conventional lock-in ther-
mography, random lock-in thermography, self-correlation 
lock-in thermography from the same 200 thermal images.

Results

Stress Amplitude Distribution

The stress amplitude distribution maps obtained using each 
method are shown in Fig. 3. The positions p1 and p2 on 
Fig. 3(a) are used as the reference-signal acquisition position 
in self-correlation lock-in thermography.

It can be observed that the map bV (p) obtained via SVD 
thermo-component analysis (Fig. 3(a)) is quite similar to the 
maps bL(p) and bs(p) obtained via random lock-in thermog-
raphy (Fig. 3(b)) and self-correlation lock-in thermography, 
respectively, using the reference signal acquired at position p1 
(Fig. 3(c)). Figure 3(d) shows the stress amplitude distribu-
tion bS(p) generated via self-correlation lock-in thermography 

Fig. 1   Experimental setup and analysis procedure

Fig. 2   Specimen and field of view (red rectangle) for thermography

Table 1   Specimen specifications for the experiment

Parameter Value

Specimen material A5052 alloy
Density, � 2680 kg ∕m3

Specific heat, c 963 J/kg·K
Linear expansion coefficient, α 23.6 × 10−6 K−1

Young's modulus, E 70.6 GPa



343Experimental Mechanics (2023) 63:337–347	

using the reference signal acquired at position p2 . The map in 
Fig. 3(d) is very different from the other stress distributions.

The horizontal line profiles of the stress distribution 
obtained using each method are shown in Fig. 4. The posi-
tion of these profiles is indicated by the horizontal line on 
Fig. 3(a). The line profile of the stress distribution obtained 
using SVD thermo-component analysis is similar to that 
obtained using random lock-in thermography and self-
correlation thermography with the reference signal at p1 . 
However, the line profile obtained using self-correlation 
lock-in thermography with the reference signal at p2 is 
significantly wavy and considerably deviates from that 
obtained using other method.

Reconstructed Reference Signal

The reconstructed reference signal obtained using SVD 
thermo-component analysis and the reference signal used in 
self-correlation lock-in thermography are shown in Fig. 5. 
In Fig. 5(a), the fluctuation in the reconstructed reference 
signal is compared with that in the original load signal, 

which is used as the reference signal in random lock-in 
thermography. It is observed that SVD thermo-component 
analysis can restore the fluctuation in the load signal with 
only infrared images. Figure 5(b) and (c) show the refer-
ence signal using the stress distribution of Fig. 3(c) and 
(d), respectively, obtained using self-correlation lock-in 
thermography. It is observed that the fluctuation in the 
reference signal at point p1 is similar to that in the origi-
nal load signal, while the signal at point p2 is significantly 
different from the original load signal. It is also observed 
that the accuracy of stress distribution obtained using self-
correlation lock-in thermography is affected by the quality 
of the reference signal.

Table 2   Specifications of infrared thermography equipment (FLIR 
SC7500)

Parameter Value

Sensor type InSb
Noise equivalent temperature difference  < 0.02 °C
Image resolution 320 × 256 pixels
Maximum frame rate (frame rate used) 350 fps (100 fps)

Fig. 3   Stress amplitude dis-
tribution map. (a) Results of 
the proposed method showing 
coefficient bV (p) . (b) Results of 
random lock-in thermography 
showing coefficient bL(p) . (c) 
Result of self-reference lock-in 
thermography using �(p

1

, t) as 
reference. (d) Results of self-
reference lock-in thermography 
using �(p

2

, t) as reference

Fig. 4   Horizontal stress profile of each method
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Comparison Between Evaluated Methods

To objectively evaluate the stress distribution calculated 
using each method, the average error of each pixel d with 
respect to the reference image was calculated as follows:

where b1(p) and b2(p) indicate the stress amplitude distribution. 
The value d represents the average of the differences between 

(27)d =

�∑P

p=1

�
b1(p) − b2(p)

�2
P

,

the two maps for each pixel; a lesser value of d indicates that 
the two maps are close. The stress distribution obtained using 
random lock-in thermography is used as the reference image. 
dL-V between bL(p) (shown in Fig. 3(b)) and bV (p)(shown in 
Fig. 3(a)) and dL-S1 between bL(p) and bS(p) (shown in Fig. 3(c)) 
were calculated. dL-S1 was 0.033 and dL-V was 0.011. This indi-
cates that SVD thermo-component analysis reconstructed the 
stress distribution map equivalent to the self-correlation lock-in 
thermography using a good reference signal.

Self-correlation lock-in thermography and the proposed 
method use the reference and reconstrution load signals as the 
input to determine stress distribution, respectively. Therefore, 
the degree of similarity among the reference signal used in self-
correlation lock-in thermography, reconstructed signal used in 
SVD thermo-component analysis, and original load signal was 
evaluated. The similarity between the one-dimensional signals 
f1(t) and f2(t) can be evaluated by calculating the zero-mean 
normalized cross-correlation (ZNCC) as follows:

Signal similatiry can be evaluated as a number from -1 to 
1 by Normalized Cross-Correlation (NCC). However, when 
the DC component fluctuates, the value of the normalized 
cross-correlation also fluctuates. ZNCC can stably evaluate 
the similarity by subtracting the average value of the obser-
vation signal value. The ZNCC between the reference signal 
f
(
p1, t

)
 of self-correlation lock-in thermography, shown as 

the green line in Fig. 5(b), and the original load signal f (t) , 
shown as the blue line in Fig. 5, was 0.966, and that between 
the load signal f (t) and the reconstructed signal f ∗

V
(t) using 

SVD thermo-component analysis, as shown in Fig. 5(a), was 
0.993. Therefore, the it can be seen that the signal recon-
structed using proposed method resembles the original load 
signal as much as better than the reference signal used in the 
self-correlation lock-in thermography. Table 3 shows d (the 

(28)
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Fig. 5   (a) Fluctuation in the load signal f ∗(t) and reconstructed fluc-
tuation in the load signal f ∗

V
(t) using the proposed method. (b) Fluc-

tuation in the load signal f ∗(t) and reference signal �(p
1

, t) . (c) Fluc-
tuation in the load signal f ∗(t) and reference signal �(p

2

, t)

Table 3   Average of the error 
for each pixel, d, of stress 
amplitude distribution and 
the ZNCC value of load and 
reference signals

Method of comparison Compared b images Average of the 
error for each 
pixel, d

Compared signals ZNCC

Proposed: Random lock-in bV(p) ∶ bL(p) 0.011 f (t), ∶ f∗
V
(t) 0.993

Self-correlation lock-in 
(good reference signal): 
Random lock-in

bV(p) ∶ bs(p)������(p
1

, t) 0.033 f (t), ∶ �(p
1

, t) 0.966

Self-correlation lock-in 
(bad reference signal): 
Random lock-in

bV(p) ∶ bs(p)������(p
2

, t) 0.214 f (t), ∶ �(p
2

, t) 0.279
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average of the error for each pixel), the ZNCC between the 
input load signal and the reconstructed load signal obtained 
using SVD, and the ZNCC between the input load signal and 
the reference signal obtained using self-correlation lock-in 
thermography.

Table 3 shows that the quality of the reference signal and 
the reconstructed signal affects the accuracy of the stress 
distrebution map. The value of d and ZNCC of the self-
correlation lock-in thermography using the good quality 
reference signal �(p1, t) is equivalent to those of the pro-
posed method, whereas the value of the self-correlation 
lock-in thermography using the poor quqlity reference signal 
�(p2, t) shows the low score. This indicates that the proposed 
method reconstructs the load signal using only the principal 
components, so the noise component is removed, and the 
stress distribution with high accuracy corresponding to the 
reconstructed load signal can be obtained.

The singular values obtained using SVD on the observa-
tion matrix from the captured thermal images is shown in 
Fig. 6. The singular value �1 , which indicates the principal 
component in the dynamic thermal images, is sufficiently 
larger than �2 . The reconstructed signal v2

T corresponding 
to the singular value σ2 is a signal based on other factor 
unrelated to the load signal. The larger σ1 compared to other 
singular components implies that the process of SVD gives 
a good reconstructed signal u1, which is close to the original 
load, and then provides a stable stress distribution bV (p). 
Therefore, the SVD process results in noise reduction, and 
the ratio of the singular values σ1 and σ2 is also effective in 
confirming the accuracy of TSA.

SVD thermo-component analysis does not require prior 
knowledge of the evaluated mechanical structure to select 
a suitable reference-signal acquisition position as in self-
correlation lock-in thermography.

Conclusion

A new method for TSA using SVD, called SVD thermal-
component analysis, was developed. Self-correlation lock-in 
thermography, which is developed for remote measurements 
under random loading, uses the temperature change at a spe-
cific position as the reference signal. The proposed method 
restores the signal related to the load signal and generates a 
stress amplitude distribution related to the reconstructed sig-
nal using SVD, which is applied to all thermal images over 
time. This new method does not need the reference signal.

In this study, a sinusoidal periodic load was applied to the 
specimen with a circular hole in the center in the laboratory. 
The load signal was reconstructed and stress amplitude dis-
tribution was calculated using SVD thermo-component anal-
ysis. The consistency between the reconstructed and original 
load signals and the accuracy of the obtained stress distribu-
tion were compared with those obtained using conventional 
lock-in methods, such as random lock-in thermography and 
self-correlation lock-in thermography, and simulated analy-
sis was conducted.

Authors will report the applicability of the proposed 
method to infrared measurement results for objects under 
non-sinusoidal loading or random loading, the analysis of 
mechanical stress and deformation using second and third 
thermal components in infrared video.

Appendix

To obtain the vector b , which becomes the stress distribu-
tion, and the vector f ∗ , which is the fluctuation value from 
the average of the load, SVD process is applied to the obser-
vation matrix 𝚿∗ ( P × T  matrix) in equation (15). When the 
size of infrared thermal image is a typical QVGA (Quarter 
Video Graphics Array) resolution (320 × 256 pixel2), the 
observation matrix becomes excessively large, and it is dif-
ficult to obtain a stress distribution in a practical processing 
time at the calculation cost of SVD. Thus, to reduce the 
number of rows in the observation matrix 𝚿∗ , as shown in 
Fig. 7, the calculation cost is reduced by setting sparse sam-
pling positions without using all the pixels of the thermal 
image.

Typically, the calculation time of SVD is proportional 
to the square of the number of rows and columns. When 
α% of the total number of pixels P is sparsely sampled, 𝚿∗ 
becomes the size of �

100
× P × T  , and the processing time is 

reduced by �2∕10000 times. If the observation points are 
evenly and sufficiently distributed on the infrared thermal 
image, a reliable vector f ∗ can be obtained as the vector v1 
of equation (21). However, the vector u1 obtained in this 
way cannot restore the value of the entire image. Only the 
value of the vector b at the sparsely sampled position can 

Fig. 6   Singular value distribution in SVD
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be reconstructed. We can restore bV (p) for the entire image 
using the reconstructed vector f ∗ as follows. Assuming 
that {�∗(p, t)} and {f ∗(t)} are known and {b(p)} is unknown, 
the sum of the squared times of the error Δ between the 
left and right terms can be obtained as follows:

b(p) is calculated so that Δ(b(p)) is minimized. If equa-
tion (26) is differentiated with respect to b(p) and set to 0, 
b(p) can be obtained as follows:

Using this subsampling method, the stress amplitude 
distribution can be obtained in a reasonable processing 
time. Table 4 shows an example of the calculation pro-
cessing time.
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