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Thermoelastic deformations can have a significant effect on the contact between elastic
bodies, particularly in cases where the thermal boundary conditions at the interface are
influenced by the contact pressure. In the classical Hertzian problem, the size of the
contact area depends on the magnitude and direction of heat flow between the bodies.
Idealized thermal boundary conditions can lead to ill-posed steady-state problems, but
this difficulty is resolved by assuming a pressure-dependent thermal contact resistance.
Steady states of the system can be unstable even when they are unique, in which case
the behavior is either oscillatory or involves the steady motion of a contact pressure
wave along the interface. Analytical and numerical perturbation methods have been
developed to investigate the stability problem. These results find applications in heat
transfer processes involving solid-solid contact, including the solidification of castings.
In brakes and clutches, the heat generated at the sliding interface causes thermal
distortion leading to `̀ frictionally excited thermoelastic instability’ ’ or `̀ TEI,’’ in which
contact becomes localized in `̀ hot spots’’ at the interface. Recent results enable us to
make good predictions of the conditions under which this occurs.

When two conforming bodies are placed in contact, the contact pressure distribu-

tion is sensitive to comparatively small changes in surface profile. Thermoelastic

deformations, though generally small, can therefore have a major effect on systems

involving contact. Further interesting effects are introduced if the thermal bound-

ary conditions at the interface are influenced by the mechanical contact conditions.
The thermal and thermoelastic problems are then coupled through the boundary

conditions, and as a consequence the steady-state solution may be nonunique

and r or unstable.

Thermoelastic contact problems of this class are found in many applications }
one of the most important being sliding systems such as brakes, clutches, and seals,

where thermoelastic effects are driven by frictional heat generation that depends

w xon the local pressure 1, 2 . However, coupled problems are also obtained for the
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static conduction of heat across an interface between two thermoelastic bodies

because the extent of the contact area influences the heat conduction problem and
depends in turn on the thermoelastic distortion. Even if there is full contact

between the two bodies, there will generally be a thermal contact resistance at the

interface that varies with local contact pressure and we shall show later that this

can be a source of thermoelastic contact instability. Conduction across a solid r solid

interface forms part of the heat flow path in many heat transfer applications, which

can therefore exhibit erratic or nonuniform behavior as a result of such effects. For
example, in the nominally one-dimensional solidification of a metal against a plane

mold, thermoelastic contact between the partially solidified casting and the mold

can become unstable, leading to significantly nonuniform pressure distribution and

w xalloy composition 3, 4 .

THE HERTZ PROBLEM

The subject of elastic contact dates back to the classical results of Hertz for the

contact of two large bodies with quadratic profiles. A corresponding thermoelastic

problem will be obtained if the extremities of the two bodies are maintained at

different temperatures T , T , respectively, so that heat is conducted between1 2

them. Most of the heat flow will pass through the contact area, and it is therefore

convenient to start with the idealized problem in which no heat flows across the
s .exposed surfaces, while there is perfect thermal contact continuity of temperature

throughout the contact area. If we restrict attention to the axisymmetric case so

that the contact area is a circle, we can take the radius a of this circle as an

independent variable and hence solve the heat conduction problem, after which we
solve a thermoelastic contact problem for the contact pressure distribution and in

particular the contact force P needed to establish a contact area of radius a. The

resulting relationship is

s .P 8 R q R a 4 K K1 2 1 2
s . s . s .s q d y d T yT 11 2 2 12 t /3R R p K q KMa 1 2 1 2

w x5 , where R , R are the radii of the contacting bodies,1 2

s 2 . s 2 .1 1 y n 1 y n1 2
s .s q 2

M E E1 2

s .a 1q n
s .d s 3

K

is the thermal distortivity; a , K, E, n are the coefficient of thermal expansion,

thermal conductivity, Young’ s modulus, and Poisson’s ratio; and the suffices refer

to bodies 1, 2, respectively.
s .It is readily verified that Eq. 1 reduces to the classical Hertzian result for the

case where T s T , so there is no heat flow. Another limit of some interest arises2 1
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s .if R , R ` , in which case the second term in Eq. 1 becomes zero and we1 2

obtain the limiting contact radius

K q K p P1 2
s .a s 40 X t / s . s .K K 4M d y d T yT1 2 1 2 2 1

In other words, the contact of two plane surfaces will lead to a finite circular

contact area that of course is sustained because in this state the thermoelastic

distortion causes a `̀ bulge’’ in body 1 at the contact area.
s .s .When d y d T y T - 0 } that is, when the heat flows into the material1 2 2 1

s .with the lower distortivity } Eq. 1 predicts that the thermoelastic distortion will

cause an increase in the contact radius and hence a decrease in the resistance to

heat flow between the bodies afforded by the constriction. However, a closer

examination of the solution in this case shows a small region of unacceptable

w xtensile contact tractions near rs a. Comninou and Dundurs 6 examined the
asymptotic stress and temperature fields near a transition between perfect thermal

contact and separation with complete insulation and showed that this transition

always leads to such a violation of the unilateral inequalities if the heat flows into

the material with the lower distortivity. We conclude that no solution exists to the

steady-state problem as posed, for this direction of heat flow.

EXISTENCE AND UNIQUENESS

This paradox is easier to understand in the context of a simple one-dimensional

model. Figure 1 shows a thermoelastic rod built into a rigid wall at A and

separated from a second rigid wall at B by a small gap g. If the temperature of
wall A is now increased, the temperature of the rod will increase until the gap

shrinks to zero. We would normally anticipate contact at B for temperatures

beyond this critical condition; but as soon as contact occurs, heat will flow along

the rod, reducing its mean temperature and hence the thermal expansion. Elemen-

Figure 1. One-dimensional rod

model.
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w xtary calculations 7 show that there is a range of temperatures T , T for whichA B

the assumption of perfect thermal contact leads to tensile contact tractions and the
s .assumption of separation leads to interpenetration of material a negative gap . In

other words, there is no steady-state solution satisfying the ideal thermal boundary

conditions.

It should be emphasized that the classical existence and uniqueness proofs for

heat conduction and thermoelasticity do not apply to this coupled problem. If the

temperature field is known there is a unique solution to the corresponding contact

problem and if the solution of the contact problem is known there is a unique

solution to the heat conduction problem, but neither of these conditions is met

because each stage requires the previous solution to be known, as shown in Fig-

w xure 2. Duvaut 8 showed that an existence theorem can be proved for the coupled

problem if a more realistic boundary condition is used in which there is a thermal

contact resistance at the interface that varies inversely with the contact pressure.

The thermal resistance at the interface between two contacting solids has been

w x w xa subject of extensive experimental 9, 10 and theoretical 11, 12 investigations.

The resistance can be attributed to two principal sources } the roughness of the

contacting solids, which causes intimate contact to be restricted to microscopic

`̀actual contact areas,’’ and the presence of low-conductivity surface films. Both

experimental measurements and theoretical predictions are notoriously sensitive to

minor changes in conditions or assumptions, but there is general agreement that

the resistance is a monotonically decreasing function of contact pressure } a result
s .that can be confirmed very easily by touching a hot or cold object, first with light

w xfinger pressure and then with a firm grip. Duvaut 8 also proved the uniqueness of

the steady-state solution under the condition that this pressure dependence is

sufficiently weak, but reported experimental measurements show that this condi-

tion is unlikely to be met in practice.

Figure 2. Coupling between the ther-

mal and mechanical problems.
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w xBarber et al. 13 showed that the rod model of Figure 1 always has at least one

steady-state solution with the more general boundary condition.

ÃT
s .Qs 5

s .R p , g

Ãwhere Q is the heat flux across the interface, T is the temperature drop across it,
s .and the contact resistance R p, g is a fairly general continuous monotonic

function of contact pressure p or gap g. Duvaut’s boundary condition is a special
case of this form, but the idealized conditions of perfect thermal contact or perfect

insulation is not, because it exhibits a discontinuity in resistance at the transition

from contact to separation } that is, when ps 0 and gs 0. A more rigorous proof

w xof existence under these conditions was given by Andrews et al. 14 , who also

examined the effect of discontinuitie s in the resistance function.

NONUNIQUENESS AND STABILITY

The rod model of Figure 1 exhibits multiple solutions for certain temperature

ranges when T ) T . The stability of these solutions can be investigated byB A

superposing an infinitesimal perturbation on the steady state and examining the

conditions under which such a perturbation can grow exponentially in time. For

example, in the rod model, we assume a temperature field of the form

s . s . s . bt s .T x, t s T x q T x e 60 1

s .where T x is the temperature distribution in the steady state. Substituting this0

s .expression into the heat conduction equation leads to a solution for T x apart1

from an arbitrary multiplying constant, after which the solution of the contact
problem gives the perturbation in contact pressure or gap. The final stage is to

s .perform a linear perturbation on the contact resistance equation 5 to obtain

Ã s . s .D Ts Q R9 p D pq R D Q 70 0 0

Ã Ãwhere D T, D p, D Q are the perturbations in T, p, Q, respectively, and Q , R are0 0

the heat flux and contact resistance in the steady state. Substituting the perturba-

tion quantities into this equation yields a set of homogeneous equations that have

a nontrivial solution only for certain eigenvalues of the exponential growth rate b.

If we assume that an arbitrary initial perturbation could be expressed in the form
of an eigenfunction series } that is, that the set of eigenfunctions is complete on

the domain defined by the body } it follows that the general transient solution near

the steady state can be written as such a series and hence that the system is

unstable if and only if one or more of the eigenvalues b has positive real part.

For the rod model, an odd number of steady-state solutions is always obtained
s .usually 1 or 3 and they can be shown to be alternately stable and unstable, with

w xunique solutions being invariably stable 13 . However, this simple behavior is a
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Figure 3. One-dimensional model involving two different materials.

consequence of the fact that only one thermoelastic material is involved. The

slightly more complex problem of two contacting rods, shown in Figure 3, also
exhibits ranges of unique and multiple steady-state solutions, but there is now no

correlation with the stability behavior and indeed conditions can be found where

w xunique steady states are unstable 15 . In such cases, transient numerical simula-

tion of the problem predicts an oscillatory state in which the contact pressure

cycles between high and low values or between contact and separation. There is

reason to believe that this mechanism may be responsible for reported erratic
behavior of systems involving the conduction of heat across an interface between

w xtwo thermoelastic bodies 16, 17 .

Two- and Three-Dimensional Stability Problems

Similar behavior is observed in thermoelastic contact in two and three dimensions,
though different techniques are generally needed to solve the corresponding

stability problem. If contact occurs on an infinite plane, as in the contact of two

half-planes, the eigenmodes must vary sinusoidally in the direction of the interface

and the mathematical problem for each Fourier mode is analogous to that for the

w xone-dimensional rod problem 18 . Similar methods, but involving Fourier series,

can be used when the problem involves axisymmetric bodies such as the contact of
two thin-walled cylinders on a common end face as shown in Figure 4. For some

material combinations, the trivial steady-state solution involving uniform pressure

w xis unique but unstable for sufficiently high heat flux q . Transient simulations 190

in such cases show that an arbitrarily small initial perturbation is sufficient to

precipitate an unstable transition to a state involving one or more contact and

separation regions that move along the interface at constant speed, along with the
associated thermal and mechanical fields.

Similar analytical methods have been used to investigate the stability of

systems involving the contact of layers and thin-walled concentric cylinders. In this

case, the dominant eigenmode } i.e., that which goes unstable at the lowest value
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Figure 4. Thermoelastic contact of two thin-walled cylinders on

an end face.

of Q } generally involves a wavelength that is between two and five times the0

w xlayer thickness 20 .

Numerical Solution of Stability Problems

If the contact area is bounded and not axisymmetric, analytical techniques are of

limited value for determining the stability boundary, but in the linear range we can
still argue that stability is governed by a perturbation that increases exponentially

with time. As before, we therefore postulate that the temperature field is given by

s . s . s . b t s .T x, y, z, t s T x, y, z q T x, y, z e 80 1

where T is the steady-state solution and T is the eigenfunction of the tempera-0 1

ture perturbation. Corresponding expressions can be written for the stress and
s .displacement components. When Eq. 8 is substituted into the heat conduction

equation

1 ­ T
2 s .= Ts 9

k ­ t

where k is the thermal diffusivity, we obtain the modified equation

bT12 s .= T s 101
k

for the perturbation term. This is a linear equation in the spatial coordinates x, y,

z only with b as a parameter; and it can be discretized by the finite element
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w xmethod 21 . Imposition of the corresponding perturbed boundary conditions leads

to a linear eigenvalue problem for the growth rate b.
If the dominant eigenvalue can be assumed to be real, the stability boundary

corresponds to the lowest heat flux giving an eigenvalue bs 0 } in other words, to

a condition under which the homogeneous perturbation problem has a nontrivial

steady-state solution. This permits a more direct solution of the stability problem in

which the stability boundary is obtained directly. However, the restriction to real

growth rates is a serious one because the evidence suggests that complex roots are

w xdominant in many problems involving the contact of dissimilar materials 20 .

SOLIDIFICATION PROBLEMS

During the casting process, heat is conducted across a solid r solid interface from

the partially solidified casting into the mold. The thermal resistance at this

interface plays an important role in the evolution of solidification and the develop-

w xment of the final grain structure and residual stress. Ho and Pehlke 22 deduced

values of thermal contact resistance from temperature measurements during

solidification experiments and found that the resistance generally increases signifi-
cantly as solidification proceeds. A possible explanation for this phenomenon is

w xsuggested by Richmond and Tien 23 , who showed that thermoelastic shrinkage of

the casting will cause air gaps to form at some locations on the interface. In

addition, the cast surface initially conforms with the contacting mold and relative

tangential motion due to thermoelastic distortion may reduce the extent of inti-

w xmate contact between the surfaces 24 .
As in the thermoelastic contact of two solids, we should anticipate the

possibility of instability associated with the pressure dependence of the contact

resistance, and indeed there is ample experimental evidence of waviness in the

development of the solidification front in nominally uniform solidification that is

w xprobably attributable to this mechanism 3, 25 . This leads to a corresponding

nonuniformity in the morphology and concentrations in the solidification of alloys
and can even cause remelting in regions where air gaps develop.

Analysis of the stability of solidification presents a new feature in that the
s .unperturbed or zeroth-order solution T in Eq. 8 is itself a function of time, since0

solidification is inherently a transient process. Thus, the usual methods of pertur-

bation analysis cannot be used and the concept of instability needs redefinition,
since an arbitrarily small initial perturbation would not have time to grow to

serious proportions during the process. Algebraic solutions have been obtained for

w xa variety of idealized problems, mostly involving pure metals 4, 26, 27 . It should

be noted that the zeroth-order process is inherently nonlinear because of the

moving solidification boundary, but for small perturbations the perturbation prob-

lem is linear, being defined by sets of equations containing the spatial derivatives
of the zeroth-orde r solution. This leads to a set of linear equations with coefficients

that vary in a known way in both time and space. The zeroth-orde r problem can

possess fairly general nonlinearities, such as those resulting from the use of
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w xtemperature-dependent material propertie s 28 . These effects can be important

because properties can vary quite extensively at temperatures near the melting
point.

THERMOELASTICITY IN SLIDING CONTACT

If we start with Hertzian contact and then allow one body to slide over the other,
two new features enter into the process } frictional heat is generated at the

interface and the contact area must now move over at least one of the bodies. The

latter effect can be quantified in terms of a Peclet number

Va
s .Pe s 11

k

where a is a representative linear dimension of the contact area and V its velocity

relative to the body. Typical Peclet numbers in engineering applications are very

large and usually permit a simplification in which the conduction of heat in the

plane of the contact area can be neglected. The magnitude of thermoelastic effects

in sliding contact problems is governed by the dimensionless material parameter

E a
s .Hs 12

s .r c 1 y n

w x29 , where r is the density and c is the thermal capacity. This parameter is close

to unity for a wide range of structural materials, despite considerable disparity in

the contributory propertie s.

w xHills and Barber 30 gave an analytical solution for the two-dimensional

sliding Hertzian problem, using a thermoelastic Green’s function to reduce the
problem to the solution of an integral equation with a Bessel function kernel. A

remarkable feature of their results was that no steady-state solution could be found

in certain ranges of the applied load and sliding speed without violating the

unilateral contact constraints. Similar results were demonstrated by Yevtushenko

w xand Ukhanska 31 for the same problem with an interfacial contact resistance,

w xwhich was not a function of pressure. Jang 32 showed that similar problems arise
in the simpler case in which the contacting bodies are replaced by elastic founda-

tions. He developed a numerical algorithm for the transient problem in this case

and showed that the contact area tends to break down into a number of smaller

regions as sliding progresses. Even more surprising is the fact that this process

appears to continue without limit, leading to larger and larger numbers of smaller

contact areas.

Frictionally Excited Thermoelastic Instability

One of the most technologically important areas involving thermoelastic contact is

that in which the thermal problem is driven by the frictional heat generated during
s .sliding. This coupled process is susceptible to thermoelastic instability TEI if the
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sliding speed is sufficiently high. If one of the two materials is a rigid nonconduc-
stor, the critical sliding speed V for a problem of any two-dimensional planecr

. w xstrain geometry can be written 33 in the form

s .CK 1 y n
s .V s 13cr

fE a a

where C is a dimensionless shape factor, a is a representative dimension of the

body, and f is the coefficient of friction. Above the critical speed, a nominally

uniform pressure distribution is unstable, giving way to localization of load and

w xheat generation and hence to hot spots at the sliding interface 34 . These in turn

can cause material damage and wear and are also a source of undesirable frictional

w xvibrations 35 . For the system to be stable, the critical speed must be greater than

the operating speed so, for example, it is generally desirable to use materials with

high conductivity and low elastic modulus and expansion coefficient. Similar

problems arise in the sliding contact of electrical brushes, where they are compli-

w xcated by electrical resistance heating 36 .

w xBurton et al. 37 developed the perturbation method, described in the `̀ Non-
Uniqueness and Stability’ ’ section of this paper, to investigate the stability of

contact between two sliding half-planes. This method has since been used for other

w xgeometries, including a solution by Lee and Barber 1 for a layer sliding between

two half-planes, as shown in Figure 5. Lee’s solution shows that eigenmodes have

the sinusoidal form

s . s . v s . 4 s .T x, y, t s f y cos m xyct 14

and the critical speed is a function of wavenumber m , as shown in Figure 6. For

most material combinations, the dominant eigenmode } i.e., that which goes unsta-

ble at the lowest critical speed } is an antisymmetric mode with a wavelength

related to the layer thickness. Antisymmetric eigenmodes correspond to cases in
which hot spots alternate on the two sides of the layer. These results have been

s .Figure 5. A layer 2 sliding between two
s .half-planes 1 .
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Figure 6. Stability chart for the

system of Figure 5 with typical

automotive brake materials.

shown to give quite good predictions of the critical speed and the number and

w xspacing of hot spots for automotive disk brakes and clutches 35 .

These analytical methods show that the unstable perturbation migrates with

respect to both bodies, unless one body is a nonconductor, in which case the

perturbation is stationary in the conductor. If the materials have very dissimilar

conductivities, the migration speed in the good conductor is small and the expan-

sion of this body dominates the growth of the perturbation, since little time is
available for the development of a deformed profile if the migration speed is large.

As a consequence, critical speeds are generally increased when the conductivities

of the two materials are comparable. For the special case of similar materials,

the perturbation would be expected to move at the mean speed of the sliding

w xcomponents 37 , but experimental results show that even in this case, the system

tends to select an unstable mode in which hot spots are stationary in one of the two

w xbodies 38 .

w xDu et al. 39 have implemented Burton’s perturbation method numerically

using the method described in the `̀Numerical Solution of Stability Problems’ ’ in

w xthis paper. Yi et al. 40 applied this method to the automotive disk brake geometry

and showed that focal hot spots tend to be produced in the disk, with a spacing

close to that predicted by Lee’s layer solution. A more direct approach to the
investigation of TEI is to use a numerical method to simulate the behavior of the

w xcoupled transient thermoelastic contact problem in time 2, 41 . A recent simula-

w xtion of Lee’s layer geometry 42 showed that the migration of the perturbation

ceases when separation occurs, leading eventually to hot spots that are stationary

in the better conductor. This result agrees with the limited amount of reported
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experimental data. An interesting result is that if heat transfer across the gap in

separation regions is introduced into the model, migration continues and hot spots
continue to migrate even in the steady state.

The simulation method is extremely computer-intensive, but it has the advan-

tage that it is readily adapted to practical loading cycles, which is of importance in

the application to transmission clutches, which experience intense periods of

operation with rapidly varying sliding speed. Analytical methods of treating some

w xidealized problems with variable sliding speed are discussed by Olesiak 43 and

w xYevtushenko and Chapovska 44 .

CONCLUSIONS

This brief review demonstrates that the thermomechanical coupling associated with

thermal boundary conditions that depend on contact pressure leads to an extraor-

dinarily rich variety of physical phenomena, none of which can occur in the

absence of coupling. Many of these effects are still imperfectly understood and

much research remains to be done.
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