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Thermoelectric coefficients of n-doped silicon from first-principles via the solution of the Boltzmann
transport equation

Mattia Fiorentini and Nicola Bonini∗
Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

(Dated: October 24, 2016)

We present a first-principles computational approach to calculate thermoelectric transport coefficients via
the exact solution of the linearised Boltzmann transport equation, also including the effect of non-equilibrium
phonon populations induced by a temperature gradient. We use density functional theory and density functional
perturbation theory for an accurate description of the electronic and vibrational properties of a system, includ-
ing electron-phonon interactions; carriers’ scattering rates are computed using standard perturbation theory. We
exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient
sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable con-
jugate gradient scheme. We discuss the application of this approach to n-doped silicon. In particular, we discuss
a number of thermoelectric properties such as thermal and electrical conductivities of electrons, Lorenz number
and Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations.
This approach gives results in good agreement with experimental data and provides a detailed characterization
of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the
exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of
different flavours of relaxation time approximation, as well as of models that are popular in the thermoelectric
community to estimate transport coefficients.

PACS numbers: 84.60.Rb, 72.20.Pa

I. INTRODUCTION

A detailed understanding of electrical transport and energy
dissipation phenomena is crucial for the discovery and the de-
velopment of high-performance materials and devices for ap-
plications ranging from nanoelectronics to energy conversion
technologies.

For this, there is nowadays a growing demand for accurate
and efficient computational tools to compute electrical trans-
port coefficients from first-principles.1 The challenge here is a
proper description of the dynamics of carriers, while account-
ing for the relevant carriers’ scattering mechanisms. In this
context, the Boltzmann transport equation (BE) offers a con-
venient framework for a detailed microscopic description of
transport in metals and semiconductors. However, achieving
the full predictive power of this theory requires the exact solu-
tion of the BE, that is a complex integro-differential equation,
as well as accurate materials’ parameters, including electronic
band structures and electron-phonon and electron-defect scat-
tering terms.

Different flavours of relaxation-time approximation are of-
ten used to tackle the complexity of the BE, but their accu-
racy in predicting the changes of properties with tempera-
ture or carrier concentration is not always satisfactory: for in-
stance, Xu and Verstraete2 have recently shown that the con-
stant relaxation-time approximation, a popular and quite suc-
cessful scheme to estimate electronic transport coefficients,
provides qualitatively wrong results for the Seebeck coefficient
of a relatively simple system such as bulk lithium.

Only in recent years the first efforts have been put forward
to solve numerically the BE beyond the relaxation-time ap-
proximation and using ab initio materials’ parameters. For
instance, Wang and coworkers3 computed the thermoelectric
properties of n-doped silicon from the numerical solution of

the linearized Boltzmann equation where the electronic band
structure and average intervalley deformation potentials were
computed from first-principles, while semiempirical models
were used for intravalley scattering, charged impurity scatter-
ing and electron-plasmon coupling. In a more recent work, Li4
studied the transport properties of n-doped Si, Al and n-doped
MoS2 by solving the linearised BE using a standard iterative
technique and including ab initio bands and electron-phonon
scattering obtained from a linear interpolation of the ab initio
electron-phonon matrix elements computed on a coarse grid.
Despite these advances, the calculation of thermo-electric
transport properties fully from-first-principles still represents
a challenge, even in the case of simple metals or semiconduc-
tors.
In this paper we present a first-principles computational

infrastructure to calculate electrical transport coefficients of
materials from the exact solution of the linearized BE. We
use density functional theory (DFT) and density functional
perturbation theory (DFPT) for an accurate description of
the electronic and vibrational properties of a system, includ-
ing electron-phonon interactions; carriers’ scattering rates
are computed using standard perturbation theory. We ex-
ploit Wannier interpolation5,6 for both electronic bands and
electron-phonon matrix elements for an efficient sampling of
the Brillouin zone, and the solution of the Boltzmann equation
is achieved via a fast and stable conjugate gradient scheme.
We discuss the application of this general methodology to

n-doped silicon. In particular, we discuss a number of thermo-
electric properties such as thermal and electrical conductivi-
ties of electrons, Seebeck coefficient and Lorenz number in a
range of temperatures and donor concentrations, also includ-
ing the effects related to nonequilibrium phonon populations
induced by a temperature gradient.
Silicon represents an excellent test case to validate our ap-
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proach as its electronic transport properties have been exten-
sively studied in the past. In particular, there are several
theoretical works focussing on transport coefficients of sili-
con computed using semiempirical models (see, for instance,
Ref. 7) as well as using ab initio scattering terms within the
relaxation time approximation8–11 or within the exact solu-
tion of the BE.3,4 In addition to this, the role of the coupled
electron-phonon dynamics on the thermoelectric properties of
silicon has very recently attracted renewed interest.11–13 In-
deed, in this material there is a substantial enhancement, even
at room temperature and in heavily doped samples, of the See-
beck coefficient induced by the drag exerted on charge carriers
from phonons diffusing along a temperature gradient (phonon
drag). In the past this topic has not received much attention
beyond the initial experimental14 and theoretical15 works, but
with current interest in thermoelectric energy conversion this
effect might represent an interesting route to enhance thermo-
electric performance.11

The structure of the paper is as follows. In the Sec. II, we
present the theoretical framework for transport. The results
for the transport coefficients on n-doped silicon are presented
and discussed in Sec. III. The details of the BE solver, the
convergence and the performance of the numerical techniques
are discussed in the appendices.

II. METHODOLOGY

A. Boltzmann transport in linear response

When an electric field E and a temperature gradient ∇rT
are present across a material, the steady-state distribution
function fm(k) of charge carriers at band m and wave vector k
can be described by the BE16

vmk ⋅ ∇rT
)fm(k)
)T

− e
ℏ
E ⋅ ∇kfm(k) =

(

�fm(k)
�t

)

coll
, (1)

where e is the electronic charge, vmk = ∇k�mk∕ℏ is the electron
velocity (where �mk is the quasiparticle energy). The term on
the right is the collision term given by

(

�fm(k)
�t

)

coll
= 1
Nk

∑

m′k′

{

fm′ (k′)Wm′k′→mk

×
[

1 − fm(k)
]

− fm(k)Wmk→m′k′
[

1 − fm′ (k′)
]}

.

where Nk is the number of k-points in the Brillouin zone
(BZ) andWmk→m′k′ is the probability per unit time for an elec-
tron in a state m, k to be scattered into an empty state m′, k′
(the details of Wmk→m′k′ for the different scattering mecha-
nisms are given in Sec. II B).

If the external fields are weak, it is possible to write
the steady-state distribution in terms of the equilibrium one,
f 0m(k), and a term that is linear in the perturbing fields,

fm(k) = f 0m(k) −
)f 0m(k)
)�mk

�m(k) (2)

In this way it is possible to derive the linearised Boltzmann
equation (BE) that can be solved to obtain �m(k)

−
)f 0m(k)
)�mk

vmk ⋅
[

Ee +
∇rT
T

(

�mk − �
)

]

= 1
kBTNk

∑

m′k′
Π0m′k′,mk

[

�m′ (k′) − �m(k)
]

(3)

where � is the chemical potential and we have usedΠ0m′k′,mk =
f 0m′ (k

′)
[

1 − f 0m(k)
]

Wm′k′→mk. This equation can be written
in the matrix form b = Ax, where b is the left-end side of
Eq. 3, x = �m(k) and the matrixA is

Ai′i =
1

kBTNk

[

Π0i′i − �i′i
∑

i′′
Π0i′′i

]

where i = {m,k}. A is symmetric and positive semidefinite.16
The expressions for the charge current, je, and the heat cur-

rent, j� , are

je =
2e
V Nk

∑

mk
vmk

)f 0m(k)
)�mk

�m(k), (4a)

j� = −
2

V Nk

∑

mk

(

�mk − �
)

vmk
)f 0m(k)
)�mk

�m(k) (4b)

where V is the volume of the unit cell. In linear response the
electric and thermal current densities are related to the external
fields via transport coefficients

je = �
[

E + ST
(

−
∇rT
T

)]

, (5a)

j� = �E + �T
(

−
∇rT
T

)

. (5b)

It has to be remarked that in this formalism E = ∇r(� − �∕e)
is the effective electric field arising from both an electric and
chemical potential gradient and should be regarded as the elec-
trochemical field. Also, in principle the transport coefficients
are tensors,17 but they are scalars in the case of silicon.
The quantities on which wewill focus on for n-doped silicon

are: the electrical resistivity �e = 1∕� (where � is the electri-
cal conductivity), the electron mobility �e = �∕en (where n is
the carrier concentration), the Seebeck coefficient S and the
Lorenz number L = ke∕�T (where ke = � − �S is the thermal
conductivity of the electrons).
In order to establish a link with the relaxation-time approx-

imation, it is possible to rewrite �m(k) in this way:

�m(k) = −vmk ⋅
[

Ee�em(k) +
∇rT
T

(

�mk − �
)

�tm(k)
]

(6)

where we have introduced two effective transport relaxation
times �em(k) and �

t
m(k) that are determined from the solution
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of the BE’s that include only the electric field and only the ther-
mal gradient, respectively. With this definition, the transport
coefficients have familiar forms:18

� = − 2e2
V Nk

∑

mk

)f 0m(k)
)�mk

[v||m(k)]
2�em(k) (7a)

�S = 2e
TV Nk

∑

mk

)f 0m(k)
)�mk

[v||m(k)]
2 (�mk − �

)

�tm(k) (7b)

� = 2e
V Nk

∑

mk

)f 0m(k)
)�mk

[v||m(k)]
2 (�mk − �

)

�em(k) (7c)

� = − 2
TV Nk

∑

mk

)f 0m(k)
)�mk

[v||m(k)]
2 (�mk − �

)2 �tm(k) (7d)

where v||m(k) is the component of the velocity along the applied
field.

B. Sources of electronic scattering

The main ingredients that determine the transport charac-
teristics of a material are the transition probabilities per unit
time, Wmk→m′k′ on the right-hand side of Eq. 3. Below we
discuss the transition probabilities for the sources of electronic
scattering that we used to simulate the transport properties of
n-doped silicon.

1. Electron-phonon coupling

Under the assumption that lattice vibrations are in thermal
equilibrium, the transition probability due to electron-phonon
scattering is given by16

W el−ph
mk→m′k+q

= 2�
ℏ

∑

�
|g�mm′ (k; q)|

2

×
{

n0�(q) �
[

�m′k+q − �mk − ℏ!�(q)
]

+
[

n0�(q) + 1
]

�
[

�m′k+q − �mk + ℏ!�(q)
]}

(8)

where!�(q) and n0�(q) are the phonon frequency and the equi-
librium distribution of the phonon mode of branch index � and
wave vector q, and the electron-phonon matrix elements are
given by

g�mm′ (k; q) =
√

ℏ
2M!�(q)

⟨mk+ q|)�qV |m
′k⟩ (9)

where |m′k⟩ and |mk+ q⟩ are the Bloch eigenstates,M is the
atomicmass and )�qV is the derivative of theKohn-Sham self-
consistent potential with respect to the atomic displacement
corresponding to a phonon mode � at q.

2. Ionized impurities

Even though it is nowadays possible to compute form first-
principles the interaction between charge carriers and ionized
impurities in semiconductors,8,19 in this workwe rely on a sim-
ple analytical model developed by Brooks and Herring (BH).7
In this model the transition probability per unit time is given
by

W el−imp
mk→m′k+q

=
2�Z2nie4

ℏVws(�r�0)2
�
(

�m′k+q − �mk
)

(

�s2 + |q|2
)2

, (10)

whereZe is the charge of the impurity, ni is the impurity den-
sity, �r and �0 are the relative and the vacuum permittivity. In
the Debye approach,20 for non-degenerate semiconductors, the
reciprocal of the screening length, �s, is given by

�s =

√

e2ni
�r�0kBT

. (11)

In this work we focus on n-doped silicon and assume that all
the donor impurities are completely ionised, i.e. the donor
density is equal to the free carriers’ concentration.

C. Phonon drag

The assumption of thermal equilibrium of the lattice is not
strictly valid anymore when a temperature gradient is present
across a material. In this case, non-equilibrium phonon pop-
ulations can leave a fingerprint on the thermoelectric coeffi-
cients. This effect was first predicted by Gurevich in 1945,21
and, only later, experiments on germanium22,23 and silicon14
clearly revealed the related anomalous peak in the Seebeck co-
efficient at low temperatures.
In order to accurately account for this effect, in principle one

should solve the coupled BE’s for the electrons and phonons.
An alternative approach to this computationally demanding
effort was proposed by Cantrell et al.24 in the context of a
relaxation time approximation and it exploits the possibility
to partially decouple the electron and phonon transport for
weak electron-phonon coupling. This approach has been re-
cently implemented and used in silicon within an ab initio
framework.11 In this work we proceed along a similar line but
in the context of the exact solution of the BE. In particular, we
partially decouple the two BE equations under the assumption
that the non-equilibrium phonon populations that arise in pres-
ence of a temperature gradient can be computed neglecting the
electron-phonon scattering in the BE for phonons. This ap-
proximation is reasonable in silicon at carriers’ concentration
lower than 1019 cm−3 as in this regime the thermal conductiv-
ity is the same as in undoped silicon.25 In this way it is pos-
sible to compute the steady-state correction to the equilibrium
phonon populations, �n�(q), from the BE for phonons, and in-
clude them into the full BE for the electrons. By considering
only the first order deviation of the distribution functions, it
is possible to obtain12 a linearised BE for electrons that is the
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same as Eq. 3 apart an additional term on the left-hand side
given by

(

�fm(k)
�t

)

Ph drag
= −2�

ℏ
∑

�,qm′
|g�mm′ (k; q)|

2

×
{

�n�(q) �
[

�m′k+q − �mk − ℏ!�(q)
]

+�n�(−q) �
[

�m′k+q − �mk + ℏ!�(q)
]} [

f 0m′ (k+ q) − f 0m(k)
]

(12)

This term is the driving force that is responsible for an addi-
tional electrical current in the same direction as the heat flow,
as if the charge carriers were dragged along by phonons. This
effect results in a phonon drag contribution to the Seebeck ef-
fect that adds to the standard diffusive part. In this work we
compute �n�(q) using the single-mode relaxation time approx-
imation

�n�(q) = −��(q)
c�(q) ⋅ ∇rT
kBT 2

ℏ!�(q)n0�(q)
[

n0�(q) + 1
]

(13)

where ��(q), c�(q) are the anharmonic phonon lifetime and
the group velocity of the phonon mode � at q, respectively.

D. Computational details

We used DFT and DFPT as implemented in the Quantum-
ESPRESSO distribution26 within the local-density approxi-
mation (LDA)27 to compute the electronic and vibrational
properties including the electron-phonon coupling matrix el-
ements. We used a norm-conserving pseudopotential and a
plane-wave expansion up to a 30 Ry cutoff. Brillouin-zone
sampling was performed on 12×12×12Monkhorst-Packmesh
for all charge density and phonon calculations. We used a theo-
retical lattice parameter of 5.41 Å. All the quantities �mk, vmk,
and g�mm′ (k; q) have been first calculated on grids of 10×10×10
k-points and 5 × 5 × 5 q-points. Then we have used a first-
principles interpolation scheme6 based on maximally local-
ized Wannier functions,5 as implemented in the Wannier9028
and EPW29 packages to compute transport quantities on very
dense meshes up to 110 × 110 × 110. Wannier interpolation
has been used successfully in recent works on the electrical
transport properties of graphene,30 phosphorene,31 silicon11
and bulk metals.32

Even though the Wannier interpolation of the electron-
phonon matrix elements is computationally efficient, it is quite
time consuming when many k-points are required to achieve
converged transport coefficients. To reduce the computational
burden, we have adopted a double grid scheme, in which the
electron-phonon couplingmatrix elements computed viaWan-
nier interpolation are stored on a fine mesh in reciprocal space
(NEPC×NEPC×NEPC), and an ultra fine grid (Nf ×Nf ×Nf ,
with Nf = p ⋅NEPC and p = 1, 2, 3) is used to solve the BE
and compute the transport quantities. For the points in the ul-
tra fine grid we only compute electronic bands and phonon fre-
quencies, and use the electron-phonon matrix elements at the

closest points in theNEPC×NEPC×NEPC grid. This choice is
motivated by the fact that the electron-phononmatrix elements
are a rather smooth function in the Brillouin zone while the
transition probabilities (involving delta functions and products
of distribution functions) exhibit a more oscillatory behavior.
The delta functions in the transition probabilities are replaced
with gaussians. Converged transport properties were obtained
withNEPC = 70, p = 3 and a gaussian width of 4meV. Doping
has been simulated within the rigid band approximation via a
shift of the chemical potential. The convergence of the trans-
port properties with respect to the grids and gaussian width
is discussed in App. B. The solution of the BE is achieved
with an in-house parallel code that uses a fast and stable pre-
conditioned Conjugate Gradient (CG) algorithm.33 A similar
approach has been used for the solution of the BE for phonons
by Fugallo et al.34. App. A discusses the accuracy and the
performance of the BE solver.
The anharmonic phonon lifetimes needed to compute the

contribution of the phonon drag to the transport coefficients
were computed within the single mode relaxation time approx-
imate and from the third order force constants used in Refs. 35
and 36. In this work we have recalculated the lifetimes on a
(70 × 70 × 70) mesh of q-points using a gaussian width of
0.25 meV.

III. RESULTS

A. Mobility and resistivity

In Figs. 1 and 2we present our results for the electronmobil-
ity of n-doped silicon. The room temperature results (Fig. 1)
show that for carrier concentrations lower than 1015 cm−3, the
mobility is mainly limited by electron-phonon interactions; at
higher carriers concentrations, instead, the mobility decreases
as a result of an increased electron-impurity scattering. As the
temperature increases the mobility decreases (Fig. 2) mainly
because of a stronger electron-phonon scattering. Our pre-
dicted electron mobility is in reasonable agreement with the
reported experimental data as a function of doping and temper-
ature. It is however clear that our results tend to overestimate
the experimental results (but note that the uncertainty in the
experimental data is quite large, around 10% at low doping).
This could be related to an underestimation of the electron-
phonon coupling computed within standard DFT at the level
of LDA. Indeed, similar shortcomings of LDA have been re-
ported quite recently for other materials, including simple sp-
bonded compounds, such as graphene30 and diamond.38 It is
important to point out that the discrepancy at high doping with
the experimental data could also be related to additional scat-
tering mechanisms involving electron-plasmon interactions39
that we have not included in this work.
It is interesting to compare our results with previous DFT-

based theoretical work. Focussing on the room temperature,
low doping regime our prediction for the phonon-limited mo-
bility is 1750 cm2V −1s−1. Our result is slightly closer to
experiments than the value of 1860 cm2V −1s−1 reported in
Ref. 4, where the BE is numerically solved. This difference is



5

10
15

10
16

10
17

10
18

10
19

Carrier concentration [cm
-3

]

0

200

400

600

800

1000

1200

1400

1600

1800
E

le
ct

ro
n

 M
o

b
il

it
y

 [
cm

2
 V

-1
s-1

]

Exact BE solution: all scattering mech.

             "              : phonons only

             "              : ionized impurities only

Exp. data

FIG. 1. Electron mobility as a function of carrier concentration at
T = 300 K. The solid red line is obtained by solving the BE that
includes both impurity and phonon scattering. The dashed green line
(dot-dashed blue line) is from the solution of the BE with just phonon
(charged impurity) scattering. The experimental data are taken from
Ref. 37.

probably related to the different interpolation schemes (Wan-
nier vs linear interpolation) of the electron-phonon matrix el-
ements and the result of a different sampling of the BZ. The
comparison with DFT-based results obtained within the relax-
ation time approximation shows that our result is somehow in
between the reported values of 1970 cm2V −1s−1 (see Ref. 8)
and around 1550 cm2V −1s−1 (see Ref. 11). While the dis-
crepancies with respect to Ref. 8 could be related to a different
sampling of the BZ, it is not easy to identify the origin of the
differences with the results of Ref. 11, in which both the inter-
polation scheme and the k-point grids used are very close to
the ones used in this work. However, it is interesting to point
out that, as shown in App. C, the use of the relaxation time
approximation as in Ref. 11 gives electron mobilities that are
4-5% lower than the prediction from the exact solution of the
BE, making the discrepancy between the two works slightly
less pronounced.

It is interesting at this point to analyse in more detail the
contribution of the different scattering channels to the electri-
cal transport. As shown in Fig. 1, information about the role of
different mechanisms can be obtained switching on and off in-
teractions when solving the BE. This analysis however is only
qualitative as the effects are not additive. In order to provide
a quantitative estimate of the contributions from the different
scattering channels, a possibility is to focus on the electrical
resistivity and exploit the variational formula16

�e =
V

4e2kBT

∑

mk,m′k′
[

�m(k) − �m′ (k′)
]2 Π0mk,m′k′

[

∑

mk v
||

m(k)�m(k)
)f 0m(k)
)�mk

]2
(14)

This formula has its minimum value (the steady-state electri-
cal resistivity) when �m(k) is the solution of the BE, and it is
often used to determine an upper bound to the resistivity when
using trial functions. In this case, however, we insert in Eq. 14
the solution of the BE and exploit the fact that in Eq. 14 the
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FIG. 3. Electrical resistivity as a function of carrier concentration at
T = 300 K. Experimental data from Ref. 43.

different contributions from the scattering mechanisms are ad-
ditive. The electrical resistivity at room temperature is shown
in Fig. 3: our results reproduce well the experimental data as a
function of carrier concentration. In Fig. 4 we present the re-
sults of the analysis based on Eq. 14 of the different contribu-
tions to the resistivity in the low and high doping regimes. At
low doping, the role of impurities is negligible and the main
contribution (around 55%) comes from intra-valley acoustic
phonon scattering. The remaining 45% is from inter-valley
transitions. It is interesting to observe that around 35% of
these contributions are due to scattering with inter-valley op-
tical phonon modes. At higher doping (in a regime in which
screening effects are weak), charged impurity scattering be-
comes dominant, accounting for almost 70% of the resistivity.
Inter-valley channels also increase their importance relatively
to intra-valley ones.
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FIG. 4. Relative contribution of the different scattering mechanisms
to electrical resistivity at T = 300 K. Carriers’ concentrations are
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TO2 and vertical lines for LA and LO. The phonon energies of the
different modes are also shown.

B. Seebeck coefficient

Fig. 5 shows the theoretical results for the Seebeck coef-
ficient as a function of carrier concentration at T = 300K .
The diffusive part of S is the largest contribution and deter-
mines the overall dependence on the carrier concentration.
The phonon drag adds up a nearly constant term that con-
tributes around 25% of the total S at T = 300K .
At low doping our results slightly underestimate the mea-

sured S but the overall agreement between theory and exper-
iment is good. The underestimation could be due to the fact
that i) the out-of-equilibrium phonon populations that produce
the phonon drag have been calculated using the single-mode
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FIG. 5. Seebeck coefficient as a function of carrier concentration at
T = 300 K. The solid red line is the total Seebeck coefficient, the
red dashed line is the diffusive contribution, the orange dotted line
is the CRTA result, the green dot-dash-dashed (blue dot-dot-dashed)
line is the diffusive S computed including only phonon (impurity)
scattering. The solid black diamonds are the experimental results,14
while the open diamonds represent the diffusive Seebeck extracted
from the experimental data.14,15

relaxation time approximation and anharmonic force constants
computed on a 3×3×3 supercell that tend to underestimate the
lattice thermal conductivity36, and ii) as already mentioned,
our calculations seem to slightly underestimate the strength of
the electron-phonon coupling.
At very high doping, for n ≳ 1019cm−3, our results are

higher than the experimental data. This is due to the fact
that we do not include the additional contribution of electron-
phonon scattering when computing the out-of-equilibrium
phonon populations. As noted in Ref. 11, at high doping this
saturation effect15 of charge carriers on phonons results in a
substantial decrease of the phonon drag contribution and the
Seebeck coefficient approaches the diffusive part of S.
It is interesting to note that the diffusive part of S agrees

quite well with the prediction of the constant relaxation time
approximation (CRTA), a popular and often quite successful
approximation implemented in codes such as Bolztrap44 and
Boltzwann.45 The reason for this is that the diffusive part of S
depends very little on the nature of the scattering mechanisms.
Indeed, as shown in Fig. 5, switching off phonon or impurity
scattering when solving the BE affects the result for S by less
than 8%.
In order to analyse the contribution of the different phonon

modes to the phonon drag part of S, we have solved the BE
restricting the term in Eq. 12 to different phonon frequency
windows and to specific phonon modes. The results of this
analysis are shown in Fig. 6. Our results indicate that low-
frequency acoustic phonon modes play a crucial role. For in-
stance, Fig. 6 shows that phonons with frequency below 50
cm−1 contribute to about 80% of the phonon drag effect, with
the longitudinal acoustic (LA) modes contributing almost 60%
of the total. These data confirm previous findings obtained
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on the basis of the relaxation time approximation.11 As sug-
gested in Ref. 11, an interesting strategy to enhance the zT
could be based on a phonon frequency filtering approach. For
instance, in silicon at room temperature phonons with frequen-
cies above 50 cm−1 contribute to about 80% of the thermal
conductivity.11,35 Engineered scattering of phonons above 50
cm−1 could therefore provide an effective way to strongly re-
duce the thermal conductivity while preserving the beneficial
effect of low-frequency phonons on the Seebeck coefficient.
This filtering approach could be based on impurity scattering
that is typically more effective for phonons at higher frequency
(see, for instance, Ref. 35 where this effect has been studied in
SiGe alloys). This strategy and, in particular, the possibility
to use nanoclusters as impurities is analysed in more details in
Ref. 11.
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FIG. 7. Seebeck coefficient as a function of temperature for n =
1.75 × 1014cm−3. The red open circles are the the total theoretical
Seebeck coefficient while the dashed red line is the diffusive part of
S. The black diamonds are the experimental data.14

10
15

10
16

10
17

10
18

10
19

10
20

Carrier concentration [cm
-3

]

10
-4

10
-3

10
-2

10
-5

10
-6

10
-7

T
h
er

m
al

 c
o
n
d
u
ct

iv
it

y
 [

W
 /

 (
cm

 K
)]

Exact BE sol.: all scattering + ph. drag

Exact BE sol.: all scattering (diffusive)

FIG. 8. Electronic thermal conductivity as a function of carrier con-
centration at T = 300K. The red solid line is from the solution of the
BE that includes all the scattering mechanisms and the phonon drag.
The blue long-dashed line is the same as the red solid line but without
the phonon drag.

Fig. 7 shows the Seebeck coefficient as a function of temper-
ature at low doping. It is clear that the phonon drag becomes
more important at low temperature, resulting in a larger cor-
rection to the diffusive S. As Fig. 6 shows, the disagreement
between theory and experiment becomes more pronounced at
low temperature. This is the result of the fact that the small
underestimation that we pointed out for the results at 300 K
becomes more marked at lower temperature. In particular, as
shown in Ref. 36, our results for the lattice thermal conduc-
tivity of silicon show slightly larger deviations at low temper-
atures. A more accurate estimate of the Seebeck coefficient
at low temperature would clearly require a more accurate cal-
culation of phonon transport in silicon, but this is beyond the
scope of this work.

C. Lorenz number

The Lorenz number (or Lorenz function) L = ke∕�T is an
important quantity in thermoelectrics research, as it provides
a way to separate the electronic thermal and lattice thermal
conductivity. Good thermoelectric compounds display a high
degree of electronic and structural complexity, and it is not ob-
vious that the Wiedemann-Franz law, derived for simple met-
als obeying elastic scattering, remains valid also in these com-
pounds. As the design and the optimization of thermoelectric
materials involve modifications to the electrical conductivity
or lattice thermal conductivity, a precise knowledge of this
quantity is important to accurately characterise and compare
different compounds and determine successful routes towards
higher thermoelectric performance.
The electronic contribution to the thermal conductivity, one

of the ingredients to compute L, is shown in Fig. 8. This
quantity increases with the carrier concentration, but even at
n = 1020cm−3 the room temperature electronic thermal con-
ductivity is only a small fraction (about 2%) of the lattice ther-
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mal conductivity of undoped silicon.
In Fig. 9 we show the Lorenz number L at T = 300 K as

a function of carrier concentration. At low doping L tends
to a constant value of 1.05 ×10−8 WΩ K−2. In the high
doping regime L increases with the carrier concentration,
but, in the range of doping investigated, it is much smaller
than the Lorenz number predicted for metallic systems by the
Wiedemann-Franz law (L = 2.44 × 10−8 W Ω /K2).

It is interesting to observe that while the Seebeck coefficient
depends very little on the nature of the scattering mechanisms,
the Lorenz number is instead quite sensitive: for instance, if we
focus on the results that do not include the phonon drag, in the
low doping regime the result obtained accounting for phonon
scattering is quite different from the values obtained with im-
purity scattering or using the CRTA. It is worth pointing out
that this dependence on the nature of the scattering terms has
also been noticed in the context of a simple model based on
a single parabolic band and power law relaxation times46,47.
The origin of this marked dependence on the scattering mech-
anisms is the result of the sensitivity ofke on the details of the
solution of the BE: the (� − �)2 in Eq. 7d and the �S term ac-
centuate the differences in the solutions of the BE with differ-
ent scattering mechanisms in a relevant energy window that is
much larger than that for S (Fig.13 clearly shows that the con-
vergence of S is achieved in a energy window much smaller
than for L).

The access to the exact solution of the BE for a realistic sys-
tem allows the assessment of simplified models to extract the
Lorenz number from experimental data. For instance, a recent
work48 proposes the use of an equation for L in terms of the
experimentally determined S: L = 1.5 + exp− |S|

116 (where L
is in 10−8 WΩK−2 and S in �V/K). This equation closely re-
produces the L obtained with a model that uses a single band
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FIG. 10. Lorenz number L as a function of Seebeck coefficient S at
T = 300 K. The red solid line (dashed blue line) is from the solution
of the BE with (without) the phonon drag. The green dot-dashed line
the model proposed in Ref. 48. The black dotted horizontal line is the
Wiedemann-Franz result.

with parabolic dispersion and an energy-dependent relaxation
time accounting for acoustic phonon scattering. Fig. 10 shows
the comparison of this model with our results. At low S up
to about 0.6 mV K−1, a range for S that is typical of good
thermoelectrics, the model is not too far from the exact re-
sult and it certainly provides a better estimate to L than the
Wiedemann-Franz law. At higher S the discrepancy becomes
more pronounced as our predicted L significantly decreases
and reaches an asymptotic value at high-Seebeck of around
10−8 WΩK−2.

IV. CONCLUSION

We have presented a detailed analysis of the thermoelec-
tric coefficients of n-doped silicon via the exact solution of the
linearised Boltzmann transport equation for electrons, also ac-
counting for the effect of non-equilibrium phonon populations
induced by a temperature gradient. We have discussed electron
mobility, Lorenz number and Seebeck coefficient in a range of
temperatures and carrier concentrations. The theoretical re-
sults compare reasonably well with the available experimental
data and provide a detailed characterization of the relative im-
portance of the different scattering mechanisms. We have also
analysed the accuracy of different flavours of relaxation time
approximations, as well as of a simplified model to extract the
Lorenz number from experimental data. The computational
approach that we have implemented is very general and can
be applied to doped semiconductors as well to metallic sys-
tems. We believe that along this route more compounds will
be systematically studied to gain a detailed microscopic under-
standing of their thermoelectric transport properties.
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Appendix A: Performance and accuracy of the BE solver

In order to solve the linear equation Ax = b we use the
preconditioned Conjugate Gradient method,33 where the di-
agonal of A is used as preconditioner. The performance of the
CG algorithm is shown in Fig. 11: the CG converges in 6 or
7 iterations, while with the addition of the preconditioning an
accurate solution is obtained already after 2-3 iterations. In
our experience standard iterative approaches49 converge very
slowly, especially in the presence of charged impurity scatter-
ing.

In order to assess the accuracy of the solution of the BE, it
is interesting to numerically verify the validity of the Kelvin
relation, �S = �∕T . The lower panel of Fig. 11 shows that,
when phonons are in thermal equilibrium, the converged solu-
tions of the BE’s with temperature gradient and electric field
as driving forces satisfy the Kelvin relation; the CG algorithm
with preconditioning produces the converged result extremely
quickly. In passing, it is worth mentioning that, as shown in
Ref. 50, the Kelvin relations are satisfied also when the depar-
ture from equilibrium of both electron and phonon distribution
functions is taken into account. In this work however we are
not in the position to be able to verify directly this result as
we have neglected the effect of the electrons on the phonon
transport, an appropriate assumption only at low doping.

The BE solver implemented in this work has been fully par-
allelised for use on distributed memory clusters so that the col-
lision matrix A, that scales quadratically with the number of
electronic states, can be decomposed among the processes. An
efficient way to tile the matrix is the chessboard fashion, by
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FIG. 12. Electron mobility at room temperature and for n = 1.6 ×
1015cm−3 as function of number of k-points used to solve the BE.
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4 meV (circles) and 7 meV (squares). The results obtained with less
(more) than 104 (5×104) k-points on the x-axis are for p = 1 (p = 3);
the remaing points are for p = 2. The energy window used is 0.15 eV.

defining an MPI cartesian topology in which each process is
given a tile of the matrix. The main advantage of the cartesian
topology is that loading the collision matrix can be efficiently
distributed, reducing greatly time and memory consumption.

Appendix B: Sampling of the Brillouin zone

Herewe discuss the choice of the numerical parameters used
to compute transport coefficients. These parameters are i) the
meshNEPC ×NEPC ×NEPC of k-points on which we compute
the electron-phonon coupling matrix elements via Wannier in-
terpolation, ii) the fine grid Nf × Nf × Nf (where we use
Nf = p ⋅NEPC, with p = 1, 2 and 3) used to solve the BE and
compute the transport quantities, iii) the energy window from
the bottom of the conduction band used to restrict the number
of k-points, iv) the width �g of the gaussians used to replace
the delta functions in the transition probabilities.
In Fig. 12 we present the electron mobility as a function

of the number of k-points used to solve the BE. The different
symbols correspond to different values for NEPC, p, and �g .
Our results shows that even with aNEPC = 110 and p = 1 (that
is very computationally demanding) the convergence is not yet
fully achieved. However, increasing the effective mesh with
p = 2 and p = 3 gives stable mobilities, even when starting
from different NEPC (i.e. NEPC = 70, 90), which implies that
the electron-phonon matrices are accurately sampled already
with these meshes.

The choice of the energy window to select the states relevant
for transport depends on the thermoelectric transport coeffi-
cients under consideration. While a window of 0.15 eV is suf-
ficient to obtain converged results for the electron mobility51,
other coefficients require a larger window. For instance,
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Fig. 13 clearly shows that the accurate evaluation of the
Seebeck coefficient requires an energy window considerably
smaller than the one needed to compute the Lorenz number.
In addition, the energy window might also depend slightly on
the relevant scattering mechanisms. It is possible to see this
for the Lorenz number (a quantity that is much more sensitive
than the Seebeck coefficient to the scattering mechanisms in-
cluded in the BE): when only impurity scattering is considered
there is large contribution from electronic states quite far from
the bottom of the conduction band and the energy window re-
quired for the convergence is slightly larger than in the case in
which only phonon scattering is included.

Appendix C: Approximate approaches

Fig. 14 compares different approximate approaches within
the BE framework to estimate the phonon-limited electronmo-
bility at low doping. A popular approach is the relaxation time
approximation (RTA) in which a relaxation time is computed
using the formula

1
�RTAmk

= 2�
ℏ

1
Nq

∑

m′,�,q
|g�mm′ (k; q)|

2

×
{

[f 0m′ (k+ q) + n0�(q)] �
[

�m′k+q − �mk − ℏ!�(q)
]

+[1 + n0�(q) − f
0
m′ (k+ q)] �

[

�m′k+q − �mk + ℏ!�(q)
]}

(C1)
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variational formula Eq.14. The symbols are the experimental data as
in Fig. 2.

and it is then used in Eq. 7 to compute the transport coeffi-
cients. As shown in Fig. 14, this approach gives mobilities
that are around 4-5 % lower than the exact solution of the BE.
It is interesting to use �m(k) ∝ v

||

m(k)�RTAmk as a trial function in
the variational formula for the resistivity, Eq.14. Also in this
case the mobility is lower than the exact result (because of the
variational principle), but now the difference with respect to
the exact result is less than 1%. A simpler approach, in which
the trial function is only proportional to the velocity gives re-
sults that are fortuitously close to the experimental results but
much lower than the result obtained from the exact solution of
the BE.
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