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1 Introduction

A striking feature of holography is that it provides a prescription for calculating transport

coefficients of strongly coupled systems by analysing small perturbations about the black

holes that describe the equilibrium state. In this paper we will be interested in strongly

coupled CFTs at finite temperature, T , and chemical potential, µ, with respect to an

abelian global symmetry, which are described by asymptotically AdS black holes which

are electrically charged if µ 6= 0. The addition of a small electric field Ei and/or thermal

gradient∇iT will induce an electric current J i and a heat current Qi = T ti−µJ i, where T ab
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is the stress tensor and i labels a spatial index. At linearised order we have the generalised

Ohm/Fourier law: (
J

Q

)
=

(
σ αT

ᾱT κ̄T

)(
E

−(∇T )/T

)
. (1.1)

In this expression the matrix σ is the electrical conductivity, α, ᾱ are the thermoelectric

conductivities and κ̄ is the thermal conductivity.

Much work has been done on obtaining the AC conductivities, particularly σ, in a

variety of different contexts, by allowing for perturbations with a time dependence of the

form e−iωt and then imposing ingoing boundary conditions at the black hole event horizon.

These calculations, reviewed in [1, 2], utilise the fact that the conductivities are related to

retarded Green’s functions via iωσ = GRJJ(ω) etc. The DC conductivities, if they are finite,

can then be obtained by carefully taking the ω → 0 limit.

Here we want to directly calculate the DC response. It has been known for some time

that for the case for translationally invariant CFTs with µ = 0 that are described by the

AdS-Schwarzschild black brane solution [3], it is possible to obtain an expression for σDC
in terms of horizon data, somewhat analogous to the result for the shear viscosity [4, 5].

However, when µ 6= 0 a consideration of the standard AdS-RN black brane, describing

a translationally invariant system, reveals that this is not always the case. Specifically,

the translation invariance and finite charge density imply that the DC conductivities are

infinite. More precisely, the real parts of the AC conductivities have a delta function at

zero frequency.

Nonetheless, for holographic lattices associated with black holes with broken transla-

tion invariance, or more generally when there is a mechanism for momentum dissipation,

the associated DC conductivities will be finite and one might hope to obtain a result in

terms of black hole horizon data. This was recently confirmed for the electric conductivity

σ for a class of holographic Q-lattices in [6].1 Such Q-lattices were introduced in [14] and

break translation invariance periodically while preserving a homogeneous metric. This is

a significant technical simplification since the black holes can be constructed by solving

ODEs instead of PDEs2 as in the constructions [15, 18–22]. It was shown in [6] that the

electrical conductivity σ can be expressed in terms of horizon data and here we generalise

this analysis to obtain analogous expressions for α, ᾱ and κ̄. A key step in our derivation

is to manipulate the bulk equations of motion to obtain expressions for the electric and

heat currents that are independent of the holographic radial coordinate and hence can be

evaluated at the black hole horizon.

For illustration we will mostly consider holographic Q-lattices inD = 4 bulk dimensions

which break translation invariance in either one or both of the two spatial directions of

1Similar results were obtained in [7, 8], using a different approach based on massive gravity, extending [9–

11]. A related result for inhomogeneous lattices, for small lattice strength, was obtained in [12]. Very

recently the methods of [6] were used to obtain the electrical DC conductivity in the presence of a magnetic

field in [13].
2For the special case of D= 5, helical lattices can also be constructed by solving ODEs [15], extend-

ing [16, 17].
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the dual CFT. In particular, our analysis will cover both isotropic and anisotropic cases.

The matrices σ, α, κ̄ are diagonal and furthermore, since the backgrounds are time-reversal

invariant, we have a symmetric conductivity matrix with ᾱ = α. It is straightforward to

generalise our analysis to holographic Q-lattices in other dimensions and indeed our final

result can be cast in a D independent manner. Our approach can also be extended to other

holographic lattices, including inhomogeneous lattices [23].

Our results give the DC conductivities for all temperatures. They also provide a

convenient tool to extract the low-temperature scaling behaviours of the DC conductivities

when the far IR behaviour of the T = 0 ground states are known. This allows one to

determine, for example, if the ground state is exhibiting metallic or insulating behaviour

with respect to the electric conductivity. Specifically, one can construct “small” black holes,

by heating up the zero temperature IR ground states and then extract the low-temperature

behaviour of the DC conductivity.

The low temperature scaling behaviour of the electrical conductivity was also discussed

in [24] using the memory matrix formalism. The results here and in [6] complement and

extend this illuminating work within a holographic setting. Specifically, the memory matrix

formalism requires that the T = 0 ground states are translationally invariant and that the

strength of the lattice is small, whereas our approach has no such restrictions.

For the class of black holes that we consider we find, in general, that we can write

κ̄

α
=
Ts

q
, L̄ ≡ κ̄

σT
≤ s2

q2
, (1.2)

where s and q are the entropy density and electric charge of the black holes, respectively.

In situations where the memory matrix formalism applies, using the results of [25] we can

rewrite these as

κ̄

α
=
χQP
χJP

, L̄ ≤ 1

T 2

χ2
QP

χ2
JP

, (1.3)

where in the notation of [25], χ are static susceptibilities involving the operators for the

total momentum P , electric current J and heat current Q.

We will illustrate our results for some known examples, including the isotropic and

anisotropic Q-lattice black holes constructed in [6, 14]. These include solutions where,

at T = 0, the black holes approach AdS2 × RD−2 in the far IR, perturbed by irrelevant

operators. We obtain low-temperature scaling behaviours for the full DC conductivity

matrix that are determined by the scaling dimension, ∆(k1), of the least irrelevant IR

operator, thus generalising the results of [24]. We find that

σ ∼ T 2−2∆(k1), α ∼ T 2−2∆(k1), κ̄ ∼ T 3−2∆(k1) . (1.4)

with ∆(k1) > 1. We see that while σ and α will diverge at T = 0, κ̄ will go to zero, if

1 < ∆(k1) < 3/2, a constant, if ∆(k1) = 3/2, and diverge if 3/2 < ∆(k1). We also calculate

κ ≡ κ̄− α2T/σ, the thermal conductivity at zero electric current, a quantity that is more

readily measurable than κ̄. Interestingly, we find that for these AdS2 × R2 ground states

we have κ ∼ T independent of ∆(k1).
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The Q-lattice black hole solutions of [6, 14] also include black holes which at T =

0 approach other IR solutions3 which break translation invariance and can be electrical

insulators or metals depending on whether σ is zero or non-zero respectively. Here we will

find that the insulating ground states and, somewhat surprisingly, also the metallic ground

states, are both thermal insulators with κ, κ̄ = 0 at T = 0. This suggests that the non-

vanishing electrical conductivity of these metals can be thought of, loosely, as arising from

the evolution of charged particle-hole pairs, possibly pair produced, in an electric field.

We also consider some other examples which involve linear massless axions which lead

to momentum dissipation [8, 26–28] (see also [6, 7]). Although these solutions share some

similarities with the Q-lattice black holes of [6, 14], they differ in several respects. While

the Q-lattice is a periodic deformation of the UV physics by relevant operators of the CFT,

the linear massless axion is a non-periodic deformation using marginal operators. In the

case that the linear axion black hole solutions approach AdS2 × RD−2 in the far IR, the

linear axionic deformation is still present, in contrast to the Q-lattice where it vanishes

as an irrelevant deformation. We find that for the linear axion black holes of [8, 27, 28]

that κ̄ → 0 as T → 0. More specifically for the D = 5 black holes of [27, 28], describing

anisotropic N = 4 super Yang-Mills plasma, we find that κ̄ ∼ T 7/3.

The plan of the rest of the paper is as follows. In section 2 we introduce the holographic

models and black holes that we will consider in this paper. In section 3 we first calculate σ

and ᾱ by deforming the black holes with an applied electric field but with no source for the

heat current. This calculation highlights the utility of using a time-like killing vector in the

bulk in order to obtain the key expression for the heat current in terms of horizon data.

We then complement this analysis by considering a thermal gradient in order to calculate

κ̄ and α. Section 4 illustrates our results with some black hole solutions that have been

constructed previously. Section 5 concludes. We have three appendices.

2 The holographic black holes

2.1 The Holographic models

We will mostly focus on holographic models in D = 4 spacetime dimensions which are dual

to d = 3 CFTs with a global U(1) symmetry. The D = 4 fields include a metric and a gauge

field, which are dual to the stress tensor and the U(1) current of the CFT, respectively.

We will also include a real scalar field, φ, and two real “axion” fields, χi, which are dual

to additional scalar operators in the CFT. The action is given by

S =

∫
d4x
√
−g
[
R− 1

2

[
(∂φ)2 + Φ1(φ)(∂χ1)2 + Φ2(φ)(∂χ2)2

]
− V (φ)− Z(φ)

4
F 2

]
, (2.1)

which involves four functions, Φi, V and Z, of the real scalar field φ and we demand

Φi, Z ≥ 0. Also, we have set 16πG = 1. We assume the model admits a unit radius

AdS4 vacuum with φ = 0 (in particular V (0) = −6) and we shall choose Z(0) = 1 for

convenience. The action is invariant under the global symmetries corresponding to shifts

of the axion fields.
3Some of these IR solutions were also discussed in [7].
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For a holographic Q-lattice we are interested in the cases where the fields χi are

necessarily periodic. These models arise when Φi ∼ φ2 near φ = 0. For example, for

a single axion (i.e. setting χ2 = 0), we could consider Φ1 = φ2 and then φ, χ1 are the

norm and phase of a complex scalar field. Furthermore we would choose the mass of this

complex field, by choosing V , so that the complex field is dual to a relevant operator with

dimension ∆ < 3. A deformation of the CFT by this complex operator with χ1 linear

in a spatial direction would necessarily comprise a periodic deformation and hence what

we call a holographic lattice. Indeed decomposing the complex field into two real fields,

reveals that the construction has two real periodic lattices in the same spatial direction

with a phase shift of π/2. This was precisely the construction of the anisotropic Q-lattices

in [14]. Similarly the models with two χi can arise from two complex scalar fields with a

Z2 symmetry that equates their norms; these constructions lead to isotropic Q-lattices as

considered in [6].

Our model also includes other types of black hole solutions where the χi are, instead,

massless fields, and are dual to marginal operators with ∆ = 3. These models arise when

Φi(0) 6= 0. For example, the case when Φi = 1 has been considered in [8]. Another case is

for a single axion (i.e. setting χ2 = 0) and Φ1 = e2φ, corresponding to the axion and dilaton

of string theory after performing a dimensional reduction of type IIB supergravity on a

five-dimensional Einstein space, and anisotropic black holes have been studied in [27–29].

In these cases, the linear axions do not give a periodic deformation of the CFT and hence

should not be considered as holographic lattices. Nevertheless, like the Q-lattices, they do

incorporate momentum dissipation and have finite DC conductivities.

It is straightforward to generalise our results to other spacetime dimensions. For

example, in D = 5 we could add an additional axion field χ3 along with a coupling Φ3(φ),

in the obvious way. Our final result for the DC conductivities (see (3.24)) will be written

in a way that is also valid for this case too.

2.2 The black hole backgrounds

The solutions that we shall consider all lie within the ansatz

ds2 = −U dt2 + U−1 dr2 + e2V1dx2
1 + e2V2dx2

2,

A = a dt, χ1 = k1 x1, χ2 = k2 x2 , (2.2)

where U, Vi, a and φ are functions of r only. In general the solutions are anisotropic,

with V1 6= V2, but isotropic solutions with V1 = V2 are possible when we can choose

k2
1Φ1(φ) = k2

2Φ2(φ).

We will assume that there is a regular event horizon at r = r+ with the following

expansions

U ∼ 4πT (r − r+) + . . . , Vi ∼ Vi+ + . . . ,

a ∼ a+(r − r+) + . . . , φ ∼ φ+ + . . . , (2.3)
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where T is the temperature of the black hole. Below we will use ingoing Eddington-

Finklestein coordinates (v, r) where

v = t+
1

4πT
ln(r − r+) . (2.4)

As r →∞, the location of the AdS4 boundary, we assume that

U ∼ r2 + . . . , e2Vi ∼ r2 + . . . ,

a ∼ µ− qr−1 + . . . , φ ∼ λr∆−3 + . . . , (2.5)

For the case of the Q-lattice, as discussed above, we would demand that ∆ < 3 and λ

denotes the strength of the Q-lattice deformation (assuming a standard quantisation for

the scalar). For the Q-lattice black holes the axions are periodic, χi = χi + 2π, and these

UV boundary conditions explicitly break the translation symmetry in a periodic manner.

The UV data specifying these black holes is given by T/µ, k1/µ, k2/µ and λ/µ3−∆. For

the case of massless linear axions, as discussed above, φ can also be massless or absent and

the axions are not periodic.

It is useful to obtain a general expression for the electric charge of the black holes in

terms of horizon data. The current density Ja = (J t, Jx, Jy) in the dual field theory has

the form

Ja =
√
−gZ(φ)F ar , (2.6)

where the right hand side is evaluated at the boundary r →∞. The only non-zero compo-

nent of the equation of motion for the gauge-field is in the t-direction and can be written√
−g∇µ(Z(φ)Fµt) = ∂r(

√
−gZ(φ)F rt) = 0. Thus we can write

q ≡ J t = eV1+V2Z(φ)a′ . (2.7)

where q is the charge of the black hole and the right hand side can be evaluated at any

value of r including r = r+. We note that the charge q depends on the UV data of the

Q-lattices including the temperature of the black hole.

3 Calculating the DC conductivities

3.1 Calculating σ and ᾱ

In this subsection we recall the derivation of [6] for σ and extend it to obtain ᾱ. Specifically,

we switch on a constant electric field in the x1 direction, with magnitude E, and no source

for the heat current. For the black holes of interest, this will generate electric and heat

currents just in the x1 direction, which we will label J ≡ Jx1 and Q ≡ Qx1 , respectively.

From (1.1) we see that expressions for σ and ᾱ (more precisely σx1x1 and ᾱx1x1) can be

obtained once we have obtained expressions for J and Q. The following derivation will lead

to expressions for σ and ᾱ in terms of horizon data. We can obtain the DC conductivity

in the x2 direction, when they are finite, in an identical manner.

– 6 –
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We consider the following small perturbation about the class of black hole solutions

that we considered in the last section

Ax1 = −Et+ δax1(r) ,

gtx1 = δgtx1(r) ,

grx1 = e2V1δhrx1(r) ,

χ1 = k1x1 + δχ1(r) , (3.1)

which one can check is consistent with the linearised equations of motion.

We first show that the linearised gauge-equations of motion imply that the current J is

constant and hence obtain an expression in terms of horizon data. Specifically, the only non-

trivial component of the gauge equation of motion is the x1 component and it can be written

in the form ∂r(
√
−gZ(φ)F rx1) = 0. Using (2.6) we deduce that J = −

√
−gZ(φ)F rx1 is a

constant. Explicitly we have

J = −eV2−V1Z(φ)Uδa′x1 − qe
−2V1δgtx1 , (3.2)

where the right-hand side can be evaluated at any value of r, including at the black hole

horizon at r = r+.

We next consider the linearised Einstein equations. We find one equation which we

can algebraically solve for δhrx1 giving

δhrx1 =
Eqe−V1−V2

k2
1Φ1(φ)U

+
δχ′1
k1

, (3.3)

as well as the following second order ODE

δg′′tx1 + (−V1
′ + V2

′)δg′tx1 −
(

2V ′1(V ′1 + V ′2) + 2V ′′1 +
e−2V1k1

2Φ1(φ)

U

)
δgtx1

+e−V1−V2qδa′x1 = 0 . (3.4)

We also note that (3.3) implies the equation of motion for δχ1.

Before studying these further we first discuss the boundary conditions that must be

imposed on the linearised perturbation at infinity and at the black hole horizon. Observe

that δχ1 only appears in (3.3); we will assume that δχ1 is analytic at the black hole event

horizon and falls off sufficiently fast at infinity. To ensure that the perturbation is regular

as r → r+ i.e. at the black hole horizon, we need to switch from the coordinates (t, r),

which are ill-defined there, and employ Eddington-Finklestein coordinates (v, r), with v

defined in (2.4). Specifically, in the (t, r) coordinates, the gauge-field will be well defined

if we demand that

δax1 ∼ −
E

4πT
ln(r − r+) +O(r − r+) , (3.5)

since then the full gauge-field perturbation in (3.1) has the regular expansion Ax1 ∼ −Ev+

. . . in the Eddington-Finklestein coordinates. Notice that near the horizon we have δa′x1 ∼

– 7 –
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−E
U + . . . , a result that we will use below. For the metric perturbation, we see from (3.3)

that δhrx1 is diverging; this can be remedied by demanding that δgtx1 behaves as

δgtx1 ∼ −
EqeV1−V2

k2
1Φ1(φ)

|r=r+ +O(r − r+) . (3.6)

Notice that this behaviour for δa′x1 and δgtx1 is consistent with (3.4).

We next consider the behaviour as r → ∞. From the expression for the gauge-field

in (3.1) we see that we have a deformation of an electric field in the x1 direction with

strength E. We also have the fall-off of δax1 ∼ Jr−1 which together with (3.5) completely

specifies δax1 . Now, (3.4) has two independent solutions, one of which behaves as r2 and the

other as r−1; in order to have no additional deformations, associated with sources for the

heat current, we demand that the coefficient of the former vanishes. Observe that since we

have also specified the boundary condition of δgtx1 at the horizon this completely specifies

the solution of (3.4). In addition, notice from (3.3) that for suitable choices of δχ1 the

fall-off of δhrx1 as r →∞ can be as weak as desired and with vanishing non-normalisable

source for δχ1.

At this stage we have obtained a perturbation which is well defined in the bulk, includ-

ing the horizon and we can use it to obtain the DC conductivities σ and ᾱ. The DC electric

conductivity is given by σ = J/E. To obtain our final result we now simply evaluate the

right hand side of (3.2) at the black hole event horizon r = r+. Doing so we obtain the

expression found in [6]:

σ =

[
e−V1+V2Z(φ) +

eV1+V2Z(φ)2(a′)2

k1
2Φ1(φ)

]
r=r+

,

=

[
Z(φ)s

4πe2V1
+

4πq2

k1
2Φ1(φ)s

]
r=r+

, (3.7)

where s = 4πeV1+V2 is the entropy density of the unperturbed black holes.

To obtain a similar expression for ᾱ we need to obtain an expression for the heat current

Q analogous to (3.2). In essence (we also need to use the gauge equation of motion) we

need to find a first integral of the equation of motion (3.4). While this can be guessed,

the underlying reason4 can be clarified by introducing a two-form associated with the

Killing vector field ∂t. We first observe that if k is an arbitrary Killing vector, and hence

∇µkν = ∇[µkν], which satisfies LkF = Lkφ = Lkχi = 0, then we can define a two-form

G by

Gµν = ∇µkν +
1

2
Z(φ)k[µF ν]σAσ +

1

4
(ψ − 2θ)Z(φ)Fµν , (3.8)

where ψ and θ are defined by LkA = dψ and ikF = dθ. It has the important property that

∇νGµν = −V
2
kµ , (3.9)

when the equations of motion are satisfied. A derivation is provided in appendix A.

4Note that this would be obscure in the approach to calculate the DC conductivity used in [7–10], where

a time dependence of the form e−iωt is assumed for the electric field and then later the ω → 0 limit is taken.
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Focussing now on the Killing vector k = ∂t, we consider the x1 component of (3.9)

to deduce that ∂r(
√
−gGrx1) = 0 and hence that

√
−gGx1r is a constant. We choose

θ = −Ex1 − a and ψ = −Ex1, where we have fixed some free integration constants for

convenience, to conclude that at linearised order we can write

Q ≡ 2
√
−gGrx1 ,

= 2
√
−g∇rkx1 + a

√
−gF rx1 ,

= e−V1+V2U2

(
δgtx1
U

)′
− aJ , (3.10)

where Q is a constant. Since Q is a constant we can evaluate the right hand side at any

value of r. In particular, if we evaluate at the boundary r →∞, we find that Q is indeed

the heat current. The last term is simply −µJ while, as we explain in appendix B, the first

term is T tx1 = r5T̄ tx1 where T̄µν is the holographic stress tensor of [30] and hence

Q = T tx1 − µJ . (3.11)

We can also evaluate at the black hole horizon and at leading order in (r − r+) we de-

duce that

Q = −4πTe−V1+V2δgtx1 . (3.12)

Then using (3.6) we conclude that ᾱ = Q/E can be expressed in terms of horizon data of

the black holes as

ᾱ =

[
4πq

k1
2Φ1(φ)

]
r=r+

. (3.13)

3.2 Calculating α and κ̄

We now want to consider perturbations which have a source for the heat current. This

will allow us to obtain expressions for α and κ̄. To do this we will consider the following

linearised perturbation about the black hole solutions that we considered in section 2:

Ax1 = tδf1(r) + δax1(r) ,

gtx1 = tδf2(r) + δgtx1(r) ,

grx1 = e2V1δhrx1(r) ,

χ1 = k1x1 + δχ1(r) . (3.14)

We first consider the gauge equations of motion

∂r
(√
−gZ(φ)F x1r

)
= 0 , (3.15)

where

√
−gZ(φ)F x1r = −eV2−V1Z(φ)

[(
Uδa′x1 + a′δgtx1

)
+ t
(
Uδf ′1 + a′δf2

)]
, (3.16)

– 9 –
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and we observe the explicit linear time dependence. We also find that one of the Einstein

equations, combined with the gauge equations of motion, is equivalent to the condition

that Q̃ is independent of r where

Q̃ ≡ e−V1+V2U2

[(
δgtx1
U

)′
+ t

(
δf2

U

)′]
− a
√
−gZ(φ)F x1r . (3.17)

The remaining Einstein equation can be solved for δhrx1 :

δhrx1 =
qδf1e

−V1−V2

k2
1Φ1(φ)U

+
e2V1(e−2V1δf2)′

k2
1UΦ1

+
δχ′1
k1

. (3.18)

At this point we can observe that if we choose

δf1 = −E + ζa(r) ,

δf2 = −ζU(r) , (3.19)

for constants E, ζ then all time dependence drops out of (3.15), (3.17). Equivalently, this

choice of f1, f2 solves the full linearised equations of motion. We also note that when ζ = 0

then we have exactly the same set-up as in the last subsection.

Proceeding with this choice for δf1 and δf2 we find that (3.18) now implies the equation

of motion for δχ1. We also find that defining

J ≡ −eV2−V1Z(φ)
(
Uδa′x1 + a′δgtx1

)
,

Q ≡ e−V1+V2U2
(
U−1δgtx

)′ − aJ , (3.20)

then both J and Q are constants. By evaluating at r →∞, it is clear that J is the current

in the x1 direction. In appendix B we will explain why Q is the time-independent part of

the heat current in the x1 direction.

We now analyse regularity conditions at the black hole event horizon. For the gauge-

field, as in the last subsection, we again need to impose that

δax1 ∼ −
E

4πT
ln(r − r+) + . . . , (3.21)

where the dots refer to terms analytic in (r−r+). Again allowing δχ1 to be a constant on the

horizon, we see from (3.18) that δhrx is diverging like ∼ U−1 at the horizon. By switching

to Kruskal coordinates we can ensure regularity of the linearised metric perturbation by

choosing the behaviour of δgtx to behave near the horizon as

δgtx ∼ Ue2V1δhrx|r=r+ −
ζU

4πT
ln(r − r+) + . . . . (3.22)

Observe (unlike in the last subsection) that this implies conditions on the leading and the

sub-leading terms in the expansion abut r = r+. Remarkably (3.21), (3.22) are consistent

with the second order equations for δax1 and δgtx1 with first integrals as in (3.20). Fur-

thermore, we can demand that the fall-off of δgtx1(r) ∼ r−1 and δax1(r) ∼ Jr−1 at infinity,

which is consistent with (3.20). To fully specify the perturbation, as in the last subsection,
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we suitably choose δχ1 so that the fall-off of δhrx1 as r → ∞ is as weak as desired, with

vanishing non-normalisable source for δχ1. Most importantly, we find that the expansions

of the perturbation can be developed with the constants J,Q given at the horizon by

J =

[
E

(
e−V1+V2Z(φ) +

eV1+V2Z(φ)2(a′)2

k2
1Φ(φ)

)
+ ζ

eV1+V2Z(φ)a′U ′

k2
1Φ(φ)

]
r=r+

,

Q =

[
E
eV1+V2Z(φ)a′U ′

k2
1Φ(φ)

+ ζ
eV1+V2(U ′)2

k2
1Φ(φ)

]
r=r+

, (3.23)

and we note that we need to use the background equations of motion to get these expres-

sions.

At this point we have obtained a linearised perturbation about the black holes solu-

tions that is well defined on the black hole horizon and contains pieces that have a linear

dependence in time. These time dependent pieces comprise the only holographic sources

at the boundary at r →∞. We have seen in the previous subsection that when ζ = 0 that

E parametrizes an electric field deformation. As we explain in appendix B and C, upon

setting E = 0 we can deduce that ζ parameterises a time dependent source for the heat

current. Furthermore, using the results of appendix C, with independent E, ζ we can now

calculate the full DC conductivity matrix, in the x1 direction:

σ =
∂

∂E
J =

[
Z(φ)s

4πe2V1
+

4πq2

k1
2Φ1(φ)s

]
r=r+

,

ᾱ =
1

T

∂

∂E
Q =

[
4πq

k1
2Φ1(φ)

]
r=r+

,

α =
1

T

∂

∂ζ
J =

[
4πq

k1
2Φ1(φ)

]
r=r+

,

κ̄ =
1

T

∂

∂ζ
Q =

[
4πsT

k1
2Φ1(φ)

]
r=r+

. (3.24)

It is a satisfying check that we find α = ᾱ and hence a symmetric conductivity matrix.

3.3 Comments

Although we have carried out the derivation in D = 4 space-time dimensions, the final

expressions (3.24) are also valid in other space-time dimensions. For example, inD = 5 they

are valid when the model (2.1) is generalised to have another axion χ3 with an associated

function Φ3(φ). The black hole ansatz (2.2) should also be generalised to have χ3 = k3x3,

with isotropic black holes, with V1 = V2 = V3, only possible when k2
1Φ1(φ) = k2

2Φ2(φ) =

k2
3Φ3(φ).

We next note that if one is interested in electrically neutral black holes then the

results (3.24) are also valid if we set q = 0. For example, for the D = 4 AdS-Schwarzschild

black hole we get σ = Zs/(4πe2V1), for constant Z, recovering the result of [3]. The fact

that the first term in σ is non-zero for neutral black holes with k1 = 0 suggests that, loosely

speaking, it is associated with current flow arising from the evolution of charged particle-

hole pairs, possibly pair created, in an electric field. We should, however, bear in mind that
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there are no quasi-particles. Similarly, the second term, as well as the expressions for α, κ̄,

which diverge as k1 → 0 can be then associated with momentum dissipation. In fact, for

general q, the first term in σ has a simple interpretation as the conductivity in the absence

of heat flows, i.e. with Q = 0. Specifically, we have(
J

E

)
Q=0

≡ σ − αᾱT

κ̄
=

[
Z(φ)s

4πe2V1

]
r=r+

(3.25)

where the first equality immediately follows from (1.1) and the second from (3.24).

It is interesting to observe that for the class of black holes we are considering we always

have the simple relation

κ̄

α
=
Ts

q
. (3.26)

Next we recall that κ̄ is the thermal conductivity at zero electric field. We can also de-

fine κ, the thermal conductivity at zero electric current, a quantity that is more readily

measurable. From (1.1) we deduce that κ ≡ κ̄− αᾱT/σ and hence

κ =

[
4πsTe2V2Z(φ)

q2 + k2
1e

2V2Z(φ)Φ1(φ)

]
r=r+

. (3.27)

Unlike κ̄, we see that κ is well defined if we set k2
1Φ1(φ) → 0. Additional quantities of

interest are the ratios of thermal conductivities to electric conductivities. We find

L̄ ≡ κ̄

σT
=

[
s2

q2 + k2
1e

2V2Z(φ)Φ1(φ)

]
r=r+

,

L ≡ κ

σT
=

[
k2

1e
2V2s2Z(φ)Φ1(φ)(

q2 + k2
1e

2V2Z(φ)Φ1(φ)
)2
]
r=r+

. (3.28)

For Fermi liquids the ability of the quasi particles to transport heat is determined by their

ability to transport charge and L is a constant,5 as encapsulated in the Widemann-Franz

law. Deviations from this behaviour is a possible indication of strong interactions. It is also

interesting to observe that L̄ and κ approach finite limits as k1 → 0, while L approaches

zero and κ̄ diverges. We also note that we have the following bound

L̄ ≤ s2

q2
, (3.29)

for all of the black holes we have been considering. Notice that this bound approaches

saturation when the second term in the σ in (3.24) dominates the first.

In the next subsection we will obtain the thermoelectric DC conductivities for various

examples that have been discussed in the literature. It is interesting to obtain the low-

temperature scaling behaviours for the different ground states that can arise. We find

examples in which the two terms in σ in (3.24) both scale in the same way. We also find

5In fact when there is purely elastic scattering (either for very low T for T above the Debye temperature

where there is elastic phonon scattering) L = π2/3(kB/e)
2.
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examples, which we might call “pair evolution dominated”, in which the first term in (3.24)

dominates the second. For both of these classes we find that κ and κ̄ scale in the same

way. There is a third class of examples, which we might call “dissipation dominated”, in

which the second term in (3.24) dominates the first. In this case κ and κ̄ scale in different

ways and we approach saturation of (3.29). We will define the state to be metallic if it

conducts at T = 0 and electrically insulating if, instead, σ = 0. Note that for almost all

metallic states we will in fact have6 σ →∞ as T → 0.

We end this section by commenting on the very high temperature behaviour of the

conductivities. When T is much bigger than µ, ki and the scale fixed by the lattice de-

formation strength λ, we can approximate the lattice black holes by the D = 4 AdS-

Schwarzschild black hole with U = r2 − r3
+/r, e

2Vi ∼ r2 in (2.2). With r+ ∝ T we

conclude that s ∼ T d−1, q ∼ T . Focussing on the case Φi ∼ φ2 as φ → 0 (the case of

periodic axions), we can solve the Laplacian for φ by first scaling the radial coordinate

r = r+ρ. At leading order in r+ there is no dependence on r+ nor on k. We therefore have

the solution with behaviour φ(ρ = 1) is a constant independent of r+, and, as ρ → ∞,

φ(ρ) ∼ Aρ∆−3 = r3−∆
+ Ar∆−3, where A is some constant. Now since we want the defor-

mation at infinity to be held fixed when we take the high temperature limit, we should

rescale this solution by a factor of r∆−3
+ . Thus, at the horizon, r = r+, we have φ→ T∆−3

and hence Φi(φ)|r=r+ ∼ φ2|r=r+ ∼ T 2(∆−3). We thus conclude that the scaling in σ is

dominated by the second term in (3.24) (dissipation dominated), and

σ ∼ T 2(3−∆), α ∼ σT, κ̄ ∼ σT 3, κ ∼ T 3 , (3.30)

as T → ∞. This result is also valid for the case of linear axions with ∆ = 3. Note, in

particular, that when ∆ < 3 we have a divergent σ as T →∞. This can be contrasted with

the behaviour of the optical conductivity σ(ω) which approaches a constant as ω → ∞.

For the case of metals, in which the DC conductivity σ is diverging at low temperatures,

the fact that it also diverges at high temperatures when ∆ < 3 implies that there will be a

minimum conductivity at finite some temperature. This is reminiscent of the Mott-Ioffe-

Regel bound [31, 32], but here, of course, we have no quasi-particles.

4 Examples

We illustrate our formulae for the DC conductivity using some AdS black holes that exhibit

momentum dissipation which have been discussed in the literature. The simplest are the

analytic isotropic solutions of [8] with massless linear axions and so we present these first.

We then discuss the anisotropic black holes with massless linear axions of [27, 28] followed

by the Q-lattice black holes of [6, 14], all of which have been constructed numerically.

6Note that for arbitrarily small T , but T 6= 0, we have σ is finite and hence so is J . Thus, J can be

made small by choosing E to be small enough and the set-up is suitable for extracting the linear response.
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4.1 Models with massless axions

4.1.1 Analytic isotropic solutions

A simple class of D = 4 isotropic black hole solutions for (2.1) with massless axions

arises when

φ = 0, Φi = 1, Z = 1, V = −6 . (4.1)

Indeed the solutions were constructed analytically in [8, 33] and are given by

ds2 = −fdt2 +
dr2

f
+ r2(dx2

1 + dx2
2) ,

A = µ(1− r0

r
) ,

χ1 = kx1, χ2 = kx2 , (4.2)

where f = r2 − k2/2−m0/r + µ2r2
0/4r

2 with m0 = r3
0 + r0(µ2 − 2k2)/4. The temperature

of these black holes is related to r0, the radial location of the black hole horizon, via

r0 =
2π

3

(
T +

√
T 2 +

3(µ2 + 2k2)

16π2

)
. (4.3)

At zero temperature the black hole approach AdS2 × R2 in the far IR. Note that since

Φi = 1 the fields χi do not have to be periodically identified for these black holes.

Using the formulae that we derived above we deduce that

σ = 1 +
µ2

k2
, α =

4πµ

k2
r0, κ̄ =

(4π)2

k2
Tr2

0 , (4.4)

as well as

L̄ =
(4π)2

(µ2 + k2)
r2

0 , L =
(4π)2k2

(µ2 + k2)2
r2

0 , (4.5)

which are also valid for the case µ = 0. It is interesting to observe that while the electric

conductivity σ is finite at T = 0, corresponding to metallic behaviour, the thermal con-

ductivity κ̄ is going to zero. Notice that for these black holes the two terms in σ in (3.24)

both scale in the same way at low-temperatures.

4.1.2 Anisotropic neutral black holes in D = 5

We next consider the anisotropic black holes in D = 5 with a single massless axion field,

linear in the x1 direction, that were constructed in [27, 28] extending [26]. These black

holes are electrically neutral with no gauge field (i.e. Z = 0) and have

Φi = e2φ, V = −12 . (4.6)

As T → 0 the solutions approach Lifshitz solutions in the far IR that are supported by

the linear axion. The low temperature behaviour of κ̄ can be extracted from the finite
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temperature Lifshitz solutions which were found in [26]. The entropy density scales with

temperature as s ∼ T 8/3 while the scalar scales as e2φ ∼ T 4/3. Hence we conclude that as

T → 0, in the direction x1 of the linear axion,

κ̄ ∼ T 7/3 . (4.7)

Thus these black holes are dual to ground states which are thermally insulating in the

direction of the linear axion. In the other spatial directions, x2 and x3, they are ideal

thermal conductors with infinite κ̄.

For the black holes constructed in [27, 28] one can also ask about the electric conductiv-

ity. It is natural to consider this question within the context of the bosonic part of D = 5

minimal supergravity coupled to the axion-dilaton considered in [27, 28]. By extending

the arguments in [34] one can show that this theory arises as a consistent Kaluza-Klein

truncation of D = 10 string theory on an internal manifold M5 associated with any su-

persymmetric AdS5 × M5 solution of the D = 10 supergravity theory. Now minimal

supergravity has a kinetic term for the Maxwell field combined with a Chern-Simons term.

However, for the calculation of the DC conductivity for the class of black holes considered

in [27, 28], the Chern-Simons term plays no role and we can still use the formula for σ

given in (3.24) with q = 0 and Z = 1. By carrying out a similar analysis as above we find

that the low-temperature scaling of the electrical conductivity in the x1 direction is given

by σ ∼ T 4/3 while in the x2 and x3 directions it is given by σ ∼ T 2/3.

4.2 Holographic Q-lattices

Various holographic Q-lattice black hole solutions were constructed in [6, 14], both isotropic

and anisotropic. Some of these approachAdS2×R2 in the IR at T = 0 while others approach

new IR ground states which were independently found in [7].

4.2.1 Q-lattice black holes with AdS2 × R2 in the IR at T = 0

Consider Q-lattice deformations which at zero temperature approach electrically charged

AdS2 × R2 solutions in the near horizon limit. As T → 0, these black holes will have

eVi |r=r+ , Z|r=r+ , q and s all approaching non-zero constant values. On the other hand, for

the holographic Q-lattice black holes (unlike the solutions in section 4.1.1 above) as T → 0

we have Φ1(φ) → 0 near the horizon. More precisely, we have Φ1(φ) ∼ T 2∆(k1)−2 where

∆(k1) > 1 is the dimension of the irrelevant operator arising from perturbations of the

scalar field φ about the AdS2 × R2 background.7 Explicit details of this calculation are

presented in the examples of [6, 14]. Thus we immediately deduce that the low temperature

scaling of σ is dominated by the second term in (3.24) (i.e. is “dissipation dominated”) and

we have

σ ∼ T 2−2∆(k1), α ∼ T 2−2∆(k1), κ̄ ∼ T 3−2∆(k1) . (4.8)

7Since there is a renormalisation of length scales from the UV to the IR, the k1 appearing in ∆(k1) is

not the UV lattice momentum k1.
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The result for σ agrees with the arguments of [24], using the memory matrix formalism,

which are valid for small lattice perturbations about translationally invariant IR ground

states. It is interesting to observe that while σ and α will diverge at T = 0, κ̄ will go to

zero, if 1 < ∆(k1) < 3/2, a constant, if ∆(k1) = 3/2, and diverge if 3/2 < ∆(k1). We also

find that as T → 0 we approach a saturation of the bound on L̄ given in (3.29):

L̄→ s2

q2
. (4.9)

We also find the following low-temperature scaling behaviours

κ ∼ T, L ∼ T 2∆(k1)−2 . (4.10)

Notice that κ̄ and κ scale in different ways, as do L̄ and L.

Finally, we note that reference [25] used the memory matrix formalism to argue that

these holographic black holes will have, approximately,

L̄ ∼ 1

T 2

χ2
QP

χ2
JP

, (4.11)

where, in the notation of [25], χ are static susceptibilities involving the operators for the

total momentum P , electric current J and heat current Q. Similarly, using the results and

notation of [25] we conclude that these holographic black holes have, approximately,

κ̄

α
∼
χQP
χJP

. (4.12)

4.2.2 The Q-lattice black holes of [6]

Various holographic Q-lattice black hole solutions were discussed in [6]. The most explicit

constructions, presented in sections 2 and 3 of [6], involved anisotropic lattices with a

single axion field i.e. Φ2 = χ2 = 0 and specific choices for Φ1, V and Z that involved a free

parameter γ with −1 < γ. Depending on the value of γ it was shown that there can be

metal-insulator as well as metal-metal transitions driven by the strength of the holographic

lattice deformation.

In some cases at T = 0 the black holes approach AdS2 × R2 in the far IR, with non-

vanishing entropy density. In other cases the T = 0 black holes approach new ground states,

breaking translation invariance, which were presented in section 2 of [6] (and also in [7]).

By analysing the small temperature behaviour of these ground states by heating them

up (i.e. by constructing small black hole solutions) some calculation reveals the following

scaling behaviours as T/µ→ 0:

σ ∼ T
(1+γ)(3−γ)
9+2γ+γ2 , α ∼ T

4(1+γ)

9+2γ+γ2 , κ, κ̄ ∼ T
2(7+4γ+γ2)

9+2γ+γ2 , L, L̄ ∼ T
2(1+γ)2

9+2γ+γ2 . (4.13)

Note that for σ, both terms in (3.24) scale in the same way. In addition q scales like T 0

as does the other term appearing in the denominator of (3.27) and (3.28). By considering

σ we deduce that for −1 < γ < 3 the ground states are insulators, while if 3 ≤ γ they are
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metals. Observe that for −1 < γ the exponents in α and L̄, L are greater than zero, while

the exponent for κ̄, κ is greater than one. The fact that κ̄, κ→ 0 at T = 0 says that a heat

gradient does not give rise to transport. On the other hand if 3 ≤ γ there is transport of

charge. This indicates that the latter transport can be loosely thought of as due to the

evolution of charged particle/anti-particle pairs (even though these metals are not “pair

creation dominated” as defined below (3.29)).

In section 4 of [6] (and also in [7]) a different class of metallic and insulating ground

state solutions, isotropic in the spatial directions, were constructed which depended on

three constants c, α and γ. For reasons that were explained in [6], it was natural to focus

on the range

2 ≤ α <
√

4 + c, γ ≥ α− 4 . (4.14)

The far IR of the ground states are electrically neutral solutions to the equations of motion

with vanishing gauge-field, but the conditions (4.14) imply that one can shoot out with an

irrelevant or marginal operator to match on to the UV with µ 6= 0. By analysing the small

black hole solutions, we find the following low temperature behaviour. We find that q is

again independent of T and that

σ ∼ T−
2(α−2)γ

4+c−α2 , α ∼ T
4(α−2)

4+c−α2 , κ, κ̄ ∼ T
4+c−4α+α2

4+c−α2 , L, L̄ ∼ T
2(α−2)(γ+α)

4+c−α2 . (4.15)

The first term appearing in σ in (3.24) now dominates the second term (i.e. they are “pair-

evolution” dominated). Similarly the second term in the denominators of (3.27), (3.28)

dominate the first. By considering σ we deduce that for γ ≥ 0 or α = 2 the ground states

are electrical insulators, while if 3 ≤ γ they are metals. When α 6= 2 we always have

κ, κ̄ → 0 at T = 0 which again indicates that for the metallic states the transport in an

electric field might be viewed as arising from evolution of charged particle-hole pairs. A

special case is when α = 2 where both σ and κ, κ̄ go to a constant at T = 0. However, it

is not yet clear if solutions which asymptote to AdS4 exist when α = 2.

5 Final comments

The main result of this paper is an expression for the thermoelectric DC conductivity

matrix for a class of asymptotically AdS black holes in terms of black hole horizon data.

To achieve this we introduced sources for the electric and heat currents that are linear

in time. The full linearised perturbation also contains a time independent piece and we

showed that it was possible to obtain expressions for the time independent pieces of the

electric and heat currents as total derivatives in the radial direction which could then be

written in terms of horizon data. For the electric current this step arises directly from

the gauge equations of motion while for the heat current we saw that it arises from the

existence of time-like Killing vectors for the time independent perturbation. The final step

to obtain the conductivity was to ensure regularity of the perturbation at the black hole

horizon.

We obtained some general conditions on the conductivity including (1.2). For small

lattice deformations, for which the memory matrix applies, these can be recast as (1.3).
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Using our new results we obtained the thermoelectric DC conductivity for several explicit

examples finding some interesting results. For example, the zero temperature ground states

can be dissipation dominated, when the second term in σ in (3.24) dominates the first,

and then κ̄ and κ scale in different ways. These include examples in which the ground

states approach in the IR, AdS2 × R2 deformed by irrelevant operators. We also found

that the isotropic and the anisotropic ground states found in [6] which break translation

invariance, are all thermal insulators despite the fact that they can be electrically insulating

or conducting. The isotropic ground states are pair-evolution dominated, with the first term

in σ in (3.24) dominating the second, while for the anisotropic ground states the two terms

are equally important at low temperatures.

The black holes we have considered are homogeneous in the holographic directions.

While they can be spatially both isotropic and anisotropic, the conductivity matrix is

diagonal and furthermore the models have α = ᾱ because of the underlying time-reversal

invariance. However, our approach can be extended to more general set-ups as we will

explain in [23].

We end by briefly commenting on two papers that appeared very recently. In [35]

black holes involving a scalar field and interpolating between two AdS4 geometries were

constructed. These black holes fall within the class of solutions considered here and in [6]

and have zero charge density, q = 0. In particular, the formula for the DC conductivity

given in [6], which is valid in the q = 0 limit, implies that σ ∼ Z(φ). The model of [35]

is arranged so that Z(φ) → 0 in the far IR, leading to a vanishing electrical conductivity,

with a power law behaviour in T . Clearly the precise power will depend not only on the

IR scaling dimension of the operator dual to φ, but also on the choice of Z. Note, also,

that this model has no mechanism for momentum dissipation and hence there is a delta

function in the thermal conductivity. It is also worth noting that since Z → 0 in the IR, it

will not be possible to add charge to these systems and furthermore quantum corrections

will be important.

The second paper, [36], calculates the thermoelectric response in the context of massive

gravity, developing the work of [9, 10]. The optical conductivities were calculated numeri-

cally, and from this it was possible to extrapolate some behaviour of the DC conductivity.

Our results here indicate that it should also be possible to obtain analytic results for the

DC thermoelectric conductivities for the models considered in [36].
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A Killing vector identity

Suppose that k is a Killing vector. We have, by definition, ∇(µkν) = 0 and hence ∇µkν =

∇[µkν]. In addition we will suppose that we have LkF = Lkφ = Lkχi = 0. We will

work in D spacetime dimensions. We first observe that using the Bianchi identity we have

(ikd+ dik)F = d(ikF ) = 0 and hence

kµFµν = ∇νθ , (A.1)

for some function θ. Using this and the equation of motion for the gauge-field,

∇µ(Z(φ)Fµν) = 0, we deduce that

kρZ(φ)F 2
ρµ = ∇ρ(θZ(φ)Fµ

ρ) . (A.2)

By writing (LkF )µν = kµ∇µFνρ +∇νkµFµρ +∇ρkµFνµ = 0 we can similarly show

kµZ(φ)F 2 = 4∇ρ(Z(φ)k[µF ρ]νAν) + 2∇ρ(Z(φ)Fµρψ) , (A.3)

where ψ is defined via LkA = dψ.

We can now calculate

∇µ(∇νkµ) = Rνµk
µ ,

=
V

D − 2
kν +

1

2
kµZ(φ)F 2

µ
ν − 1

4(D − 2)
kνZ(φ)F 2 , (A.4)

where we used the Einstein equations and Lkχi = 0 to get the second line. We thus

conclude that when the equations of motion are satisfied we have

∇µGµν = − V

D − 2
kν , (A.5)

where the two-form G is given by

Gµν = ∇µkν +
1

D − 2
Z(φ)k[µF ν]σAσ +

1

2(D − 2)
(ψ − (D − 2)θ)Z(φ)Fµν . (A.6)

Note that we have

∂µ(
√
−gGµν) = − V

D − 2

√
−gkν , (A.7)

and if we have k = ∂t then we have the right hand side is zero unless ν = t.

B Holographic renormalisation and the heat current

The action (2.1) should be supplemented with suitable boundary terms. For illustration

we assume that we are considering a holographic Q-lattice and in the AdS4 vacuum the

field φ is dual to a relevant operator with dimension ∆ = 2. Then, for the solutions of

interest, we should use

Sct =

∫
d3x
√
−γ(2K − 4− 1

2
φ2 + . . . ) , (B.1)
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where K is the trace of the extrinsic curvature and we have neglected additional terms

involving the Ricci scalar which we don’t need. Following [30], the stress tensor and the

current are given by

1

2
T̄µν = −

[
Kµν −Kγµν +

1

2
(4 +

1

2
φ2)γµν + . . .

]
,

J̄ν = −nµFµνZ(φ) , (B.2)

where the neglected term in the first line involves the components of the Einstein tensor

for the boundary metric which won’t contribute, and the right hand side of both lines are

evaluated at the boundary r →∞. Note that in our conventions, on-shell we have

δS =

∫
d3x
√
−γ
(

1

2
T̄µνδγµν + J̄µδAµ

)
. (B.3)

For the black hole backgrounds we have nµ = (0, 1/U1/2, 0, 0) and we find that

T̄ tt = U−1

(
4 +

1

2
φ2 − 2U1/2(V ′1 + V ′2)

)
,

T̄ xx = e−2V1

(
−4− 1

2
φ2 + U−1/2U ′ + 2U1/2V ′2

)
,

T̄ yy = e−2V2

(
−4− 1

2
φ2 + U−1/2U ′ + 2U1/2V ′1

)
,

J̄ t =
Z(φ)

U1/2
a′ . (B.4)

As r →∞ we have T̄µν ∼ r−5 and J̄µ ∼ r−3 so it is convenient to define

Tµν = r5T̄µν , Jµ = r3J̄µ . (B.5)

Note that this is consistent with the definition of Jµ given in (2.6).

We next consider the perturbation (3.14) about the background, but with a general

gtx1(t, r) for the moment, finding

T̄ tx1 =
e−2V1

U1/2

(
gtx1(t, r)[2V ′2 − U−1/2(4 +

φ2

2
)] + ∂rgtx1(t, r)

)
, (B.6)

It will be convenient, shortly, to note that8

U1/2eV1+V2
(
UT̄ tx1 − gtx1(t, r)T̄ x1x1

)
= e−V1+V2U2∂r

(
gtx1(t, r)

U

)
. (B.7)

We now consider the particular linearised time-dependence for the perturbation given

in (3.14). The most important pieces of the perturbation of relevance here are

Ax1 = −tE + tζa(r) + δax1(r) ,

gtx1(t, r) = −tζU + δgtx1(r) , (B.8)

8Observe, in passing, the similarity of the left hand side with equation (15) of [30].
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with δax1 , δgtx1(r) ∼ r−1 as r →∞. We are interested in obtaining the expectation values

for the Jx1 and T tx1 . Now in the text we showed the time-dependent sources given in (3.14)

give rise to a time-independent expression for Jx1 given in (3.20). However we obtain a

time-dependent source for T tx1 . Explicitly, from (B.6) we immediately obtain

T̄ tx1 = e−2V1U−1/2

(
δgtx1(r)[2V ′2 − U−1/2(4 +

φ2

2
)] + ∂rδgtx1(r)

)
− ζtT̄ x1x1 ,

≡ T̄ tx10 − ζtT̄ x1x1 . (B.9)

Returning now to (B.7) and substituting in (B.8) we find that all of the time dependence

drops out and hence we can conclude that

U1/2eV1+V2
(
UT̄ tx10 − δgtx1(r)T̄ x1x1

)
= e−V1+V2U2∂r

(
U−1δgtx1(r)

)
. (B.10)

Evaluating both sides at r →∞ we deduce that

r5T̄ tx10 = e−V1+V2U2∂r
(
U−1δgtx1(r)

)
|r→∞ . (B.11)

Recalling the expression for Q given in (3.20), we deduce that

T tx1 − µJx1 = Q− ζtT x1x1 (B.12)

We now ask how this time dependent response fits our expectations. The sources in

our perturbation (B.8) are time dependent. After substituting into (B.3) we deduce that

δS =

∫
d3x

[
(T tx1 − µJx1)(−ζt) + Jx1(−Et)

]
(B.13)

In particular, this shows that −ζ is parametrizing a time dependent source for the operator

(T tx1−µJx1). In appendix C we show that sources which are linear in time give a response,

captured in the expectation value of the operators, that contains, in general, a piece that

is linear in time and a time-independent piece - see equation (C.7). The time dependent

piece is determined by the associated Greens function matrix at zero frequency and defines

a static susceptibility. Since the only linear time dependence appears in (B.11) we deduce

that the only non-zero component of this matrix is the Qx1 , Qx1 component, where Qx1 =

T tx1 − µJx1 , with G̃Qx1Qx1 (0) = T x1x1 .

Our principle interest is the DC conductivity, as defined in terms of the spectral weight

in (C.6). From (C.7) we see that this is captured by the time-independent pieces of the

expectation values. Using the results of this appendix and those in the text, then leads to

the prescription that we employed in (3.24).

B.1 A complementary point of view

Let us consider the following coordinate transformation on the boundary:

t = t̄− ζt̄x̄1 ,

x1 = x̄1 . (B.14)
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At linearised order we find that in these co-ordinates we have

T t̄t̄ = (1 + 2ζx̄1)T tt , T x̄1x̄1 = T x1x1 , T t̄x̄1 = T tx10 ,

J t̄ = (1 + ζx̄1)J t , J x̄1 = Jx1 , (B.15)

and, in particular, the time-dependence has dropped out of the expectation values.

Let us now see how this coordinate transformation effects the asymptotic behaviour of

the bulk fields at r →∞:

ds2 = −U(1− 2ζx̄1)dt̄2 + r2dx̄2
1 . . . ,

A = a(1− ζx̄1)dt̄− t̄Edx̄1 + . . . . (B.16)

When E = 0 we can identify −ζ as a source for a static thermal gradient in the x̄1 direction,

(∂x̄1T )/T , with no source for the electric field. This again leads to the prescription that

we employed in (3.24).

C DC transport from linear sources in time

We consider a set of sources sA (t) associated with a set of operators φA. At the level of

linear response we have

〈φ (t)〉B =

∫
dt′GBA

(
t− t′

)
sA
(
t′
)
, (C.1)

where G is the associated retarded Green’s function and we will define the Fourier trans-

form as

GBA (t) =
1

2π

∫
dω G̃BA (ω) e−i ω t. (C.2)

We now examine the implications of sources linear in time sA (t) = cA t leading to

〈φ (t)〉B =
1

2π

∫
dt′ dω e−i ω (t−t′) t′ G̃BA (ω) cA . (C.3)

Using ∫
dt′ ei ω t

′
t′ = −2π i δ′ (ω) , (C.4)

we obtain

〈φ (t)〉B = i ∂ω

(
e−i ω t G̃BA (ω)

)
ω=0

cA

=
(
t G̃BA (0) + i G̃′BA (0)

)
cA. (C.5)

We next define the conductivity matrix σBA as the zero-frequency limit of the spectral

weight:

σBA = lim
ω→0

Im
G̃BA (ω)

ω
. (C.6)

Using the fact that the real and the imaginary parts of the Green’s function are even and

odd functions of ω, respectively, we can rewrite (C.5) as

〈φ (t)〉B =
(
t G̃BA (0)− σBA

)
cA. (C.7)
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