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Introduction
Thermoelectric Phenomena:
Background and Applications

Over the past decade, there has been
heightened interest in the field of thermo-
electrics, driven by the need for more effi-
cient materials for electronic refrigeration
and power generation.1,2 Some of the re-
search efforts focus on minimizing the lat-
tice thermal conductivity, while other
efforts focus on materials that exhibit large
power factors. Proposed industrial and
military applications of thermoelectric

(TE) materials are generating increased
activity in this field by demanding higher-
performance high-temperature TE mate-
rials than those that are currently in use.
The demand for alternative energy tech-
nologies to reduce our dependence on 
fossil fuels leads to important regimes 
of research, including that of high-
temperature energy harvesting via the
direct recovery of waste heat and its con-
version into useful electrical energy. Thus,
the development of higher-performance

TE materials is becoming ever more im-
portant. Power-generation applications
are currently being investigated by the au-
tomotive industry as a means to develop
electrical power from waste engine heat
from the radiator and exhaust systems for
use in next-generation vehicles. In addi-
tion, TE refrigeration applications include
seat coolers for comfort and electronic
component cooling. Of course, the deep-
space applications of NASA’s Voyager
and Cassini missions using radioisotope
thermoelectric generators (RTGs) are well
established (see Reference 3 and the article
by Yang and Caillat in this issue). A key
factor in developing these technologies is
the development of higher-performance
TE materials, either completely new mate-
rials or through more ingenious materials
engineering of existing materials.

Thermoelectric refrigeration is an envi-
ronmentally “green” method of small-
scale, localized cooling in computers,
infrared detectors, electronics, and opto-
electronics as well as many other applica-
tions. However, most of the electronics
and optoelectronics technologies typically
require only small-scale or localized spot
cooling of small components that do not
impose a large heat load. If significant eco-
nomical cooling can be achieved, the re-
sulting “cold computing” could produce
speed gains of 30–200% in some computer
processors based on complementary
metal oxide semiconductor (CMOS) tech-
nology. Cooling of the processors is per-
ceived by many to be the fundamental
limit to electronic system performance.4
Thus, the potential payoff for the develop-
ment of low-temperature TE refrigeration
devices is great, and the requirement for
compounds with properties optimized
over wide temperature ranges has led to a
much expanded interest in new TE mate-
rials. Recent utilization of Peltier coolers
(see next section) for the refrigeration of
biological specimens and samples is an
emerging TE application.

The development and potential of bulk
materials for TE applications is an active
area of research. High-temperature bulk
materials such as skutterudites, clathrates,
half-Heusler alloys, and complex chalco-
genides are being investigated (see the ar-
ticle by Nolas et al. in this issue). These
materials possess complex crystal struc-
tures and exhibit properties that are favor-
able for potential thermoelectric materials.
For example, skutterudites and clathrates
are cage-like materials that have voids in
which “rattler” atoms are inserted to sig-
nificantly lower the thermal conductivity
due to the rattling atoms’ ability to scatter
phonons. Recently, ceramic oxide mate-
rials have also shown potential as high-
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temperature TE materials (see Koumoto
et al. in this issue). The potential of
nanomaterials and their role in TE re-
search are an emerging area of interest
(see Rao et al. in this issue). Bulk material
applications are demanding new break-
throughs in both materials and device en-
gineering (see Yang and Caillat in this
issue). The role of thin-film properties, ap-
plications, and recent results is also very
important (see Böttner et al. in this issue).
A more complete overview of state-of-the-
art materials, a theoretical and experimen-
tal discussion of the basic principles, and
an overview of some of the recent devel-
opments and materials are given in texts
by Tritt2 and Nolas.5

Seebeck and Peltier Effects
A discussion of thermoelectric effects

and devices should start with one of the
most fundamental TE phenomena, the
Seebeck effect, or thermopower.6–8 In the
early 1800s, Seebeck observed that when
two dissimilar materials are joined to-
gether and the junctions are held at differ-
ent temperatures (T and T � ΔT), a voltage
difference (ΔV) develops that is propor-
tional to the temperature difference (ΔT).6
The ratio of the voltage developed to the
temperature gradient (ΔV/ΔT) is related
to an intrinsic property of the materials
called the Seebeck coefficient, α. The 
Seebeck coefficient is very low for metals
(only a few �V/K) and much larger 
for semiconductors (typically a few hun-
dred �V/K).9 A related effect—the Peltier
effect—was discovered a few years later
by Peltier,10 who observed that when an
electrical current is passed through the
junction of two dissimilar materials, heat
is either absorbed or rejected at the junc-
tion, depending on the direction of the
current. This effect is due largely to the
difference in Fermi energies of the two
materials. These two effects are related to
each other, as shown in the definition of
the Peltier coefficient, Π  � αT. The rate at
which the Peltier heat is liberated or re-
jected at the junction (QP) is given by QP �
αIT, where I is the current through the
junction and T is the temperature in
kelvin. There are also a number of ther-
momagnetic effects such as the Hall,
Ettingshausen, and Nernst effects that are
beyond the scope of this article. The
reader is referred to the text by Nolas 
et al.5 for a discussion of these effects.

Definition and Description of the
Figure of Merit and Thermoelectric
Performance

The potential of a material for TE appli-
cations is determined in large part by a

measure of the material’s figure of merit,
ZT:*

(1)

where α is the Seebeck coefficient, σ is the
electrical conductivity, ρ is the electrical
resistivity, and κ is the total thermal con-
ductivity (κ � κL � κE, the lattice and elec-
tronic contributions, respectively). The
power factor, α2σT (or α2Τ/ρ), is typically
optimized in narrow-gap semiconducting
materials as a function of carrier concen-
tration (typically �1019 carriers/cm3),
through doping, to give the largest ZT.9
High-mobility carriers are most desirable,
in order to have the highest electrical con-
ductivity for a given carrier concentration.
The ZT for a single material is somewhat
meaningless, since an array of TE couples
is utilized in a device or module.

There are two materials in the TE cou-
ple, which is shown in Figure 1, an n-type
and a p-type. Ignoring parasitic contribu-
tions that reduce the device performance,
such as contact resistance and radiation ef-
fects, the resulting figure of merit for the
couple (based solely on the TE materials)
is given by

(2)

The coefficient of performance φ (refriger-
ation mode) and the efficiency η (power-
generation mode) of the TE couple are
directly related to the figure of merit
shown in Equation 3 for the efficiency. The
efficiency (η) of the TE couple is given by
the power input to the load (W) over the
net heat flow rate (QH), where QH is posi-
tive for heat flow from the source to the
sink:

(3)

where TH is the hot-side temperature, TC is
the cold-side temperature, and TM is the
average temperature. Thus, one can see

�
TH � TC

TH
� �1 � ZTM�1/2 � 1

�1 � ZTM�1/2 � �TC�TH��,

η �
W

QH

ZT �
�αp � αn�2T

��ρnκn�1/2 � �ρpκp�1/2	
.

ZT �
α2σT

κ
�

α2T
ρκ

,

that η is proportional to (1 � ZTM)1/2 and
that the efficiency would approach the
Carnot efficiency if ZT were to approach
infinity.

Thermoelectric Modules: Devices
The Peltier effect is the basis for many

modern-day TE refrigeration devices, and
the Seebeck effect is the basis for TE
power-generation devices. The versatility
of TE materials is illustrated in Figure 1,
which shows a TE couple composed of 
an n-type (negative thermopower and
electron carriers) and a p-type (positive
thermopower and hole carriers) semicon-
ductor material connected through 
metallic electrical contact pads. Both re-
frigeration and power generation may be
accomplished using the same module, as
shown in Figure 1. A TE module or device
is built up of an array of these couples,
arranged electrically in series and ther-
mally in parallel. Thermoelectric energy
conversion utilizes the Seebeck effect,
wherein a temperature gradient is im-
posed across the device, resulting in a
voltage that can be used to drive a current
through a load resistance or device. This is
the direct conversion of heat into electric-
ity. Conversely, the Peltier heat generated
when an electric current is passed through
a TE material provides a temperature gra-
dient, with heat being absorbed on the
cold side, transferred through (or pumped
by) the TE materials, and rejected at the
sink, thus providing a refrigeration capa-
bility. The advantages of TE solid-state en-
ergy conversion are compactness,
quietness (no moving parts), and localized
heating or cooling. In addition, energy in
the form of waste heat (0% efficiency) that
would normally be lost may be converted
into useful electrical energy (�7–8% effi-
ciency) using a TE power-generation de-
vice.

The best TE materials currently used in
devices have ZT 1. This value has been
a practical upper limit for more than 30
years, yet there are no theoretical or ther-
modynamic reasons for ZT 1 as an
upper barrier. As seen from Equation 1,
ZT may be increased by decreasing κL or
by increasing either α or σ. However, σ is
tied to the electronic thermal conductivity,
κE, through the Wiedemann–Franz rela-
tionship, and the ratio is essentially con-
stant at a given temperature.

Some of the goals of current research ef-
forts are to find new materials that either
raise the current efficiency of TE devices
(i.e., increase ZT) or have the capability of
operating in new and broader tempera-
ture regimes, especially at lower tempera-
tures (T � 250 K) and higher temperatures
(T � 400 K). Over the past 30 years, 







*The expressions for figure of merit, Z and ZT,
are used interchangeably in the field of thermo-
electrics. Z is the figure of merit with units of
1/K (1/T), and ZT is the dimensionless (unit-
less) figure of merit. Both must specify the tem-
perature at which the quoted value was
obtained.
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alloys based on the Bi2Te3 system
[(Bi1–xSbx)2(Te1–xSex)3] and the Si1–yGey sys-
tem have been extensively studied and
optimized for their use as TE materials to
perform in a variety of solid-state TE re-
frigeration and power-generation applica-
tions.11,12 These traditional TE materials
have undergone extensive investigation,
and there appears to be little room for fu-
ture improvement in the common bulk
structures. However, recent results on
nanostructures of traditional TE materials
have shown a promising new direction for
these materials. In addition, entirely new
classes of compounds will have to be in-
vestigated. Figure 2 shows ZT as a func-
tion of temperature for the Bi2Te3 and
Si1–yGey materials as well as many of the
more recent bulk materials that have been
developed over the last decade. The ZT of
more exotic structures such as superlat-
tices and quantum dot structures are not
shown here but are addressed in the ar-
ticle by Böttner et al. in this issue.

Transport Properties
The thermopower, or Seebeck coeffi-

cient, can be thought of as the heat per car-
rier over temperature or, more simply, the
entropy per carrier, α C/q, where C is
the specific heat and q is the charge of the
carrier.7 For the case of a classical gas, each
particle has an energy of 3/2(kBT), where
kB is the Boltzmann constant. The ther-
mopower is thus approximately kB/e,
where e is the charge of the electron. For
metals, the heat per carrier is essentially a
product of the electronic specific heat and
the temperature divided by the number of




carriers (N), that is, α CelT/N, and then
α is approximately

(4)

where EF is the Fermi energy (related to
the chemical potential of the material).

α 

Cel

q

 �kB

e �kBT
EF

,




The Fermi energy is basically the energy
such that at T 0, all the states above 
this energy are vacant and all the 
states below are occupied. The quantity
kB/e 87 �V/K is a constant that repre-
sents the thermopower of a classical elec-
tron gas. Metals have thermopower values
of much less than 87 �V/K (on the order
of 1–10 �V/K) and decrease with decreas-
ing temperature, that is, EF �� kBT).

In a semiconductor, a charged particle
must first be excited across an energy gap
Eg. In this case, the thermopower is ap-
proximated by

(5)

Thus, the thermopower is larger than the
characteristic value of 87 �V/K and in-
creases with decreasing temperature.
Semiconductors can exhibit either electron
conduction (negative thermopower) or
hole conduction (positive thermopower).
The thermopower for different carrier
types is given by a weighted average 
of their electrical conductivity values 
(σn and σp):

(6)

It is necessary to dope the semiconductors
with either donor or acceptor states to

α 

�αnσn � αpσp�

�σn � σp�
.

α 

Cel

q

 �kB

e � Eg

kBT
.







Figure 1. Diagram of a Peltier thermoelectric couple made of an n-type and a p-type
thermoelectric material. Refrigeration or power-generation modes are possible, depending
on the configuration. I is current.

Figure 2. Figure of merit ZT shown as a function of temperature for several bulk
thermoelectric materials.
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allow extrinsic conduction of the appro-
priate carrier type, electrons or holes, re-
spectively. It is apparent that the total
thermopower will be lower than that of ei-
ther of the individual contributions, unless
the direct bandgap is large enough—
typically on the order of 10(kBT)—to 
effectively minimize minority carrier con-
tributions. Typical thermopower values
required for good TE performance are on
the order of 150–250 �V/K or greater.

For high-temperature applications, it is
important to minimize the contribution of
minority carriers in order to maintain a
high thermopower. In addition, the ther-
mal stability of the materials is an essential
aspect. Atomic diffusion within the mate-
rials and interdiffusion of contacts can se-
riously deteriorate the properties of a
given material at high temperatures. As-
pects of this are discussed elsewhere.2,5

These materials and devices are expected
to operate at elevated temperatures for
long periods of time without deterioration
of their properties or performance. The ef-
fects of diffusion and thermal annealing
are important to thoroughly investigate
and understand in any set of potential TE
materials over the expected operating
temperature range of the materials.

The description of electrical conductiv-
ity for metals and semiconductors has
been covered extensively in many texts on
solid-state physics, and the reader is re-
ferred there.13 There are a significant num-
ber of carriers and states available for
conduction in metals, typically n 1022

carriers/cm3. The electrical conductivity is
then very large for metals, on the order of
106(Ω cm)–1. Again, for semiconductors,
the carriers must be thermally excited
across a gap for conduction to occur, as
shown from the activated behavior that is
derived for the temperature-dependence
of the electrical conductivity [σ
σ0exp(–Eg/kBT)]. There are two primary
ways to achieve a high conductivity in a
semiconductor, either by having a very
small gap to excite across (Eg/kBT) or by
having very high-mobility carriers, as dis-
cussed later. Typical values of the electri-
cal conductivity for a good TE material are
on the order of about 103(Ω cm)–1.

The thermal conductivity κ is related to
the transfer of heat through a material, ei-
ther by the electrons or by quantized vi-
brations of the lattice, called phonons,
such that κ � κL � κE, as mentioned ear-
lier. The electrical conductivity and the
thermal conductivity are interrelated, in
that σ is tied to κE through the Wiedemann–
Franz relationship: κE � L0σT, where the
Lorentz number L0 � 2.45 × 10–8 W Ω/K2

[or L0 � 2.45 × 10–8(V2/K2)]. The lattice
thermal conductivity is discussed later 







in this article, in the section on minimum
thermal conductivity. Typical thermal
conductivity values for a good TE mate-
rial are κ � 2 W m–1 K–1, and typically,
κL κE.

Investigating New Thermoelectric
Materials
The “Phonon-Glass/Electron-
Crystal”Approach

Slack has described the chemical char-
acteristics of candidates for a good TE ma-
terial.14 He states that the candidates
should be narrow-bandgap semiconduc-
tors with high-mobility carriers. Mahan
has also described the characteristics of
good TE materials,15,16 agreeing with Slack
that the candidate material is typically a
narrow-bandgap semiconductor [Eg
10(kBT), or 0.25 eV at 300 K]. Also, the 
mobility of the carriers must remain high
(� 2000 cm2/V s), while the lattice ther-
mal conductivity must be minimized. In
semiconductors, the Seebeck coefficient
and electrical conductivity (both in the nu-
merator of ZT) are strong functions of the
doping level and chemical composition.
These quantities must therefore be opti-
mized for good TE performance. The ther-
mal conductivity of complex materials can
often be modified by chemical substitu-
tions, and the lattice thermal conductivity
needs to be as low as possible. Under-
standing these various effects and select-
ing optimization strategies can be an
exceedingly difficult problem, because in
complex materials there are often many
possible degrees of freedom. Slack sug-
gested that the best TE material would be-
have as a “phonon-glass/electron-crystal”
(PGEC); that is, it would have the electri-
cal properties of a crystalline material and
the thermal properties of an amorphous
or glass-like material. Materials engineer-
ing and the crystal chemistry approach to
good TE materials are discussed later.

Minimum Thermal Conductivity
In many areas of research related to new

TE materials, attempts are being made to
reduce the lattice part of the thermal con-
ductivity to essentially its minimum
value, that is, where a minimum lattice
thermal conductivity is achieved (when
all the phonons have a mean free path es-
sentially equal to the interatomic spacing
of the constituent atoms). This is being at-
tempted by scattering phonons in differ-
ent frequency ranges using a variety of
methods such as mass fluctuation scatter-
ing (a mixed crystal, in ternary and qua-
ternary compounds), “rattling” scattering,
grain-boundary scattering (due to the size
of the grains), and interface scattering in
thin films or multilayer systems.










The lattice thermal conductivity is given
by κL (1/3)(vsCLph), where vs is the ve-
locity of sound, C is the heat capacity, and
Lph is the mean free path of the phonons.
At high temperatures (T � �300 K), the
sound velocity and the heat capacity are
essentially temperature-independent in
typical materials. Therefore, the magnitude
and the temperature-dependence of κL are
basically determined by the mean free path
of the phonons. Slack defined the minimum
thermal conductivity (κmin) as the thermal
conductivity when the mean free path is
essentially limited by the interatomic dis-
tance between the atoms within the crys-
tal.17 Typical analysis of κmin results in
values of κmin 0.25–0.5 W m–1 K–1.14,17

Minimum Thermopower
There are certain practical limits for

each of the parameters used to calculate
ZT. These practical limits must be possible
in order to achieve a material viable for
thermoelectric applications. For example,
in Bi2Te3, in order to achieve a ZT 1 at T
� 320 K, σ 1 mΩ cm, α 225 �V/K,
and κ 1.5 W m–1 K–1. We have already
discussed the ZT “barrier,” which in effect
is given by minimizing the thermal con-
ductivity. It is practical to investigate ma-
terials where the electronic and lattice
terms are comparable, on the order of
0.75–1 W m–1 K–1. Let us look at the hypo-
thetical situation of a material in which 
the lattice thermal conductivity is zero 
(κL � 0). We will also assume the scatter-
ing in this system is elastic and that the
Wiedemann–Franz relationship, slightly
rearranged [κE/σ � L0T], is well behaved
in this material. Then we can rewrite
Equation 1 as

ZT � α2T/ρκE � α2/L0. (7)

Therefore, for a material to be a viable TE
material, it must possess a minimum ther-
mopower that is directly related to the
value of ZT and L0. Given this description,
in order to achieve a certain value of ZT,
the material would require that α � (L0)0.5

� 157 �V/K for ZT � 1, and α � (2L0)0.5 �
225 �V/K for ZT � 2. Of course, any
“real” material will possess a finite κL, and
these values for the thermopower will
have to be higher to achieve the projected
values of ZT.

Solid-State Crystal Chemistry
Approaches to Advanced
Thermoelectric Materials

Thermoelectrics has always been a ma-
terials design problem involving intricate
tuning of structure–property relationships
in complex solids through principles of
solid-state chemistry and physics. The dis-
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cussion thus far indicates that new mate-
rials must be able to eventually achieve
certain minimum values of important pa-
rameters in order to be considered as a po-
tential TE material. It does not matter if a
material has a κL κmin; if it cannot be
“tuned” or doped in order to attain a min-
imum thermopower (150 �V/K), it will
not be able to achieve ZT 1.

Classical Approach: Bulk Binary
Semiconductors

Within the framework of simple elec-
tronic band structure of solids, in general,
metals are poor TE materials. Hence, most
of the early TE work put much emphasis
on semiconductors.18 As stated earlier, in
order to have a maximum ratio of electri-
cal to thermal conductivity, the material
should have a low carrier concentration,
on the order of 1018–1019 cm3, with very
high mobilities. Crystal structure and
bonding strongly influence the mobility.
Materials with diamond or zinc-blende
structures with a high degree of covalent
bonding frequently have high mobilities
(e.g., Si, Ge, InSb), but also exhibit high
thermal conductivity values. On the other
hand, low lattice thermal conductivities
are found in conjunction with low Debye
temperatures and high anharmonic lattice
vibrations. These conditions are best satis-
fied by highly covalent intermetallic com-
pounds and alloys of the heavy elements
such as Pb, Hg, Bi, Tl, or Sb, and S, Se, or Te.
Once a material system has been selected
with a favorable electrical-to-thermal con-
ductivity ratio, one optimizes the compo-
sition to further enhance the ZT by doping
the material to maximize the density of
states at the Fermi level and achieve a high
Seebeck coefficient.

The most studied TE material, Bi2Te3,
crystallizes in a layer structure (Figure 3)
with rhombohedral–hexagonal symmetry
with space group R m (D5

3d). The hexa-
gonal unit cell dimensions at room tem-
perature are a � 3.8 Å and c � 30.5 Å. The
layers stacked along the c-axis are

··· Te–Bi–Te–Bi–Te ··· Te–Bi–Te–Bi–Te ···.

The Bi and Te layers are held together by
strong covalent bonds, whereas the bond-
ing between adjacent Te layers is of the
van der Waals type. This weak binding be-
tween the Te layers accounts for the ease
of cleavage along the plane perpendicular
to the c-axis and the anisotropic thermal
and electrical transport properties of
Bi2Te3. For example, the thermal conduc-
tivity along the plane perpendicular to the
c-axis (1.5 W m–1 K–1) is nearly twice that of
the value along the c-axis direction (0.7 W

3







m–1 K–1). When grown from a melt or by
zone refining, the Bi2Te3 crystals are al-
ways nonstoichiometric and show p-type
behavior. On the other hand, n-type mate-
rials could be grown from the melt con-
taining excess Te, iodine, or bromine. The
thermal conductivity values of both p- and
n-type Bi2Te3 are �1.9 W m–1 K–1, giving a
ZT of about 0.6 near room temperature.
Ioffe9 suggested that alloying could fur-
ther reduce the lattice thermal conductiv-
ity of Bi2Te3 through the scattering of
short-wavelength acoustic phonons. The
optimum compositions for thermoelectric
cooling devices are normally Bi2Te2.7Se0.3
(n-type) and Bi0.5Sb1.5Te3 (p-type) with 
ZT 1 near room temperature.

In contrast to Bi2Te3, PbTe crystallizes in
a cubic NaCl-type crystal structure, and
the TE properties are isotropic. Both p-
type and n-type thermoelements can be
produced by doping of acceptors (e.g.,
Na2Te or K2Te) or donors (PbI2, PbBr2, or
Ge2Te3). In analogy with the Bi2Te3, the
solid-solution compositions (e.g., PbTe-
SnTe) have been made to lower the lattice
thermal conductivity.19 The ZT value of
PbTe solid solutions is low near room tem-
perature but rises to ZT 0.7 at 700 K,





making PbTe a prime candidate for power
generation in that temperature range. 
It is possible to achieve ZT in excess of
unity at 700 K in structurally related solid-
solution compositions, AgSbTe2 (80%)-
GeTe(20%), known as TAGS (alloys
containing Te, Ag, Ge, Sb). However, due
to high-temperature stability issues, these
compositions are not currently favored in
TE devices.

Neither Si nor Ge is a good TE material,
as the lattice thermal conductivity is very
large (150 W m–1 K–1 for Si and 63 W m–1

K–1 for Ge). The lattice thermal conductiv-
ity can be substantially reduced by alloy
formation between the two elements. The
best alloy composition is Si0.7Ge0.3; its ther-
mal conductivity is about 10 W m–1 K–1,
and the reduction relative to Si and Ge 
is apparently due to the increased
phonon–phonon and phonon–electron
scattering.19 Remarkably, such a large re-
duction does not unduly reduce the car-
rier mobility, and ZT 0.6–0.7 could be
realized at elevated temperatures. Due to
their exceptional stability at high temper-
atures (�1200 K), these alloys are of inter-
est to NASA for use in RTGs in deep-space
probes.




Figure 3. Crystal structure of the state-of-the-art thermoelectric material, Bi2Te3.The blue
atoms are Bi and the pink atoms are Te.
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Modern Solid-State Chemistry
Design Concepts for High-ZT
Materials
Complex Inorganic Structures. Most of
the earlier investigations mentioned so far
focused on binary intermetallic semicon-
ductor systems. Recent approaches to
high-performance bulk TE materials focus
on ternary and quaternary chalcogenides
containing heavy atoms with low-
dimensional or isotropic complex struc-
tures to take advantage of the large carrier
effective masses and low lattice thermal
conductivity associated with such sys-
tems.20 Along these lines, CsBi4Te6 pos-
sessing the layered structure has been
identified as a material showing a ZT of
0.8 at 225 K, which is 40% greater than that
of the Bi2–xSbxTe3–ySey alloys.21 Other po-
tential low-temperature TE materials 
currently under investigation are low-
dimensional semiconducting or semimetal-
lic doped layered pentatellurides (ZrTe5
and HfTe5).22 These compounds have a
structure similar to Bi2Te3, with van der
Waals gaps between the individual layers.
Although doped pentatellurides exhibit
very high power factors (exceeding the
optimally doped Bi2Te3 solid solutions) in
the low-temperature range (�250 K), their
thermal conductivity is relatively high
(�4–8 W m–1 K–1), and the materials need
to be compositionally tuned further to
make them useful as thermoelectrics.

Recently, cubic quaternary compounds
with a complex formula AgnPbmMnTem+2n

(M � Sb, Bi), crystallizing in the PbTe
structure, have been reported.23 The com-
position AgPb10SbTe12 shows an excep-
tionally high ZT value (�2) at elevated
temperature (shown in Figure 2). This is
due to the very low total thermal conduc-
tivity of the bulk material, possibly arising
from compositional modulations (seen as
“nanodots”) similar to the one found in
superlattices. If this is verified, it provides
an additional “knob” to turn to achieve
high ZT in bulk materials. Another 
group of materials under investigation 
are half-Heusler alloys, with the general
formula MNiSn (M � Zr, Hf, Ti). A
complex composition of the type
Zr0.5Hf0.5Ni0.5Pd0.5Sn0.99Sb0.01 shows a ZT of
0.7 at T 800 K, highlighting the intricate
balance in structure, composition, and prop-
erty relationships in these compounds.24

The β-Zn4Sb3 system has been reinvesti-
gated for TE power-generation applica-
tions at the Jet Propulsion Laboratory.25

Crystal Structures with “Rattlers.” The
method of lowering the lattice thermal
conductivity through mixed-crystal or
solid-solution formation does not always
produce enough phonon scattering to




lower the lattice thermal conductivity to
κmin. Slack’s concept of a “phonon-
glass/electron-crystal,” described earlier,
avoids this limitation. The concept of κmin
is successfully verified in crystal struc-
tures with large empty cages or voids
where atoms can be partially or com-
pletely filled in such a way that they “rat-
tle,” resulting in the scattering of the
acoustic phonons. This approach espe-
cially works well in highly covalent semi-
conductor materials based on clathrates
(Si, Ge, or Sn) and void structures formed
by heavy elements of low electronegativ-
ity differences (e.g., CoSb3-based skutteru-
dites). Some doped skutterudites show
exceptionally high ZT values at elevated
temperatures (ZT 1.5 at 600–800 K).
The structure–property relationships of
these materials are discussed in the article
by Nolas et al. in this issue.

Oxide Thermoelectrics. There are nu-
merous oxides with metal atoms in their
common oxidation states that are stable at
elevated temperatures and show electrical
properties ranging from insulating to su-
perconducting. Nevertheless, oxides have
received very little attention for TE appli-
cations. This is due to their strong ionic
character, with narrow conduction band-
widths arising from weak orbital overlap,
leading to localized electrons with low
carrier mobilities. This situation changed
with the unexpected discovery of good TE
properties in a strongly correlated layered
oxide, NaCo2O4.26 This oxide attains ZT 

0.7–0.8 at 1000 K. Inspired by the striking
TE performance of NaCo2O4, most of the
current studies are focused on Co-based
layered oxides, such as Ca3Co4O9 and
Bi2Sr3Co2Oy, crystallizing in “misfit”
(lattice-mismatched) layered structures.26

Among the n-type oxides, Al-doped ZnO
(Al0.02Zn0.98O) shows reasonably good TE
performance (ZT 0.3 at 1000 K).27

Rare-Earth Intermetallics with High
Power Factors. As mentioned earlier,
metallic compounds are not suitable for
TE applications. The exceptions to this
rule are intermetallic compounds contain-
ing rare-earth elements (e.g., Ce and Yb),
with localized magnetic moments where
the Seebeck coefficient can approach
�100 �V/K with metal-like conductivi-
ties.28,29 In these compounds, the 4f levels
lie near the Fermi energy and form nar-
row non-parabolic bands, resulting in a
large density of states at the Fermi level
and large Seebeck coefficient values. The
highest Seebeck values are found in cubic
YbAl3 (n-type) and CePd3 (p-type). YbAl3
shows a very high power factor
(120–180 �W/cm K2, or 3.6–5.4 W m–1 K–1)







at room temperature (300 K), which is
nearly 4–5 times larger than that observed
in optimized Bi2Te3-based thermo-
electrics.30 Unfortunately, the large ther-
mal conductivity (15–22 W m–1 K–1)
lowers the ZT to about 0.2 at room tem-
perature. Recently, the lattice thermal con-
ductivity of this system has been lowered
by doping Mn in the interstitial positions,
resulting in the increase of ZT to about 0.4
at room temperature.31 As mentioned ear-
lier, ZT � 1 requires a minimum Seebeck
coefficient value of 156 μV/K. The corre-
lated metal with the highest Seebeck coef-
ficient is CePd3, which has a maximum of
125 �V/K at 140 K.29 Future investigations
should focus on increasing the Seebeck co-
efficients of these materials above
�150 �V/K through compositional and
structural tuning.

Engineered Crystal Lattices. The ap-
proaches in bulk materials research rely
heavily on the thermodynamic stability of
the phases at a given condition, whereas
thin-film deposition can yield metastable
“designer” phases with unique properties.
Quantum well systems (0D, 1D, and 2D)
take advantage of their low-dimensional
character through physical confinements
in quantum dots, nanowires, and thin-film
structures to enhance the electronic prop-
erties of a given material.32 In addition,
nanostructured semiconductor materials
could scatter mid- to long-wavelength
phonons and thereby reduce the lattice
thermal conductivity to κmin.

Researchers at the Research Triangle In-
stitute (RTI) have demonstrated a signifi-
cant enhancement in ZT through the
construction of Bi2Te3/Sb2Te3 superlat-
tices.33 These materials exhibited ZT 2.4
at T 330 K. The enhancement is attrib-
uted to creating a “nanoengineered” ma-
terial that is efficient in thermal insulation
while remaining a good electrical conduc-
tor. The thermal insulation arises from a
complex localized behavior for phonons,
while the electron transmission is facilitated
by optimal choice of band offsets in these
semiconductor heterostructures. Also, there
have been reports on PbTe/PbTeSe quantum
dot structures that yield ZT 1.3–1.6.34

These materials have been grown as thick
films that are then “floated off” the sub-
strate to yield freestanding films, which
were measured to yield these results. The
enhancement in ZT in the superlattice ma-
terials appears to be more from a reduc-
tion in the lattice thermal conductivity
than an increase in power factor.

Summary
Currently, there are no theoretical or

thermodynamic limits to the possible 
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values of ZT. Given the current need for
alternative energy technologies and mate-
rials to replace the shrinking supply of
fossil fuels, the effort is becoming more ur-
gent. Energy-related research will grow
rapidly over the next few years, and
higher-performance thermoelectric mate-
rials and devices are direly needed. Slack
estimated that an optimized phonon-
glass/electron-crystal material could pos-
sibly exhibit values of ZT 4.14 This gives
encouragement that such materials may
be possible and could address many of
our energy-related problems. Thus, a 
systematic search and subsequent thor-
ough investigation may eventually yield
these much-needed materials for the next
generation of TE devices.

Although many strategies are being em-
ployed in hopes of identifying novel TE
materials, the PGEC approach appears to
be the best, as will become apparent in the
following articles. One has to decide
whether “holey” semiconductors (mate-
rials with cages, such as skutterudites or
clathrates) or “unholey” semiconductors
(such as SiGe or PbTe) are the best to pur-
sue, and which tuning parameters are
available to improve these materials.35 To
date, none of the new materials has dis-
placed the current state-of-the-art mate-
rials (Bi2Te3, PbTe, or SiGe) in acommercial
TE device. These materials have held that
distinction for more than 30 years.

However, given the many materials yet
to be investigated, there is certainly much
more work ahead and promise for devel-
oping higher-efficiency thermoelectric
materials and devices. While the results
are very exciting, thin films may be most
appropriate for small-scale electronic and
optoelectronics applications where small
heat loads or low levels of power genera-
tion are more appropriate. To address
large-scale refrigeration (home refrigerators)
or power-generation (automotive or in-
dustrial) requirements, higher-perform-
ance bulk materials will have to be
developed.

Certainly, theoretical guidance, in terms
of band structure calculations and model-
ing, will be essential to identifying the
most promising TE materials. In addition,
rapid yet accurate characterization of ma-
terials and verification of results are also
essential in order to effectively advance
this field of research. A multidisciplinary




approach will be required to develop
higher-efficiency thermoelectric materials
and devices. The techniques used to de-
velop “designer materials” needed for
thermoelectrics will most likely prove im-
portant in other areas of materials re-
search as well.
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