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Nanocomposites are promising candidates for the next generation of thermoelectric materials since they exhibit

extremely low thermal conductivities as a result of phonon scattering on the boundaries of the various material

phases. The nanoinclusions, however, should not degrade the thermoelectric power factor, and ideally should

increase it, so that benefits to the ZT figure of merit can be achieved. In this work we employ the nonequilibrium

Green’s function quantum transport method to calculate the electronic and thermoelectric coefficients of materials

embedded with nanoinclusions. For computational effectiveness we consider two-dimensional nanoribbon

geometries, however, the method includes the details of geometry, electron-phonon interactions, quantization,

tunneling, and the ballistic to diffusive nature of transport, all combined in a unified approach. This makes it

a convenient and accurate way to understand electronic and thermoelectric transport in nanomaterials, beyond

semiclassical approximations, and beyond approximations that deal with the complexities of the geometry. We

show that the presence of nanoinclusions within a matrix material offers opportunities for only weak energy

filtering, significantly lower in comparison to superlattices, and thus only moderate power factor improvements.

However, we describe how such nanocomposites can be optimized to limit degradation in the thermoelectric

power factor and elaborate on the conditions that achieve the aforementioned mild improvements. Importantly,

we show that under certain conditions, the power factor is independent of the density of nanoinclusions, meaning

that materials with large nanoinclusion densities which provide very low thermal conductivities can also retain

large power factors and result in large ZT figures of merit.

DOI: 10.1103/PhysRevB.96.195425

I. INTRODUCTION

Thermoelectric materials convert heat from temperature

gradients into electrical voltages and vice versa. The perfor-

mance of such materials is quantified by the dimensionless fig-

ure of merit: ZT = σS2T/(κe + κℓ) where σ is the electrical

conductivity, S is the Seebeck coefficient, T is the temperature,

κe is the electronic thermal conductivity, κℓ is the lattice

thermal conductivity, and σS2 is known as the power factor

(PF). Traditionally, ZT has been approximately 1 in the limited

range of materials used in commercial applications, which

are mostly semiconductor doped alloys of antimony and

BiTe at room temperature [1], and PbTe or SiGe at higher

temperatures [2].

More recently numerous other bulk materials have been

studied or characterized such as transition-metal dichalco-

genides (TMDC) [3–6] skutterudites [7–9], phonon-glass-

electron crystal structures [10], and half-Heuslers [11–13].

A large number of these materials demonstrate ZT above 1,

primarily by the reduction of the thermal conductivity, κ [14].

Many methods also exist for reducing κ beyond bulk values.

These include superlattices [15], alloying [16], heavy doping

[17], nanoporous materials [18–20], and nanograining [21,22].

One of the most widespread methods for the reduction of

the thermal conductivity has been the use of nanoinclusions

[23–28]. These cause scattering of short-wavelength phonons

and can produce significant reductions in κ . This is because

in common thermoelectric materials, such as PbTe, a large

*s.foster@warwick.ac.uk

portion of the phonons have mean-free paths for scattering

on the order of nanometers [29]. This technique is therefore

widely used to enhance thermoelectric performance in a broad

range of materials, including BiTe [30,31], PbTe [23,32,33],

SiGe [16,34,35], ZnSb [25,36], FeSi [37], MnSi [38], SnTe

[39], PbS [40], CuSe [41], YbCoSb [42], and ZrNiSn [43].

Indeed, by embedding nanoinclusions within PbTe in a hier-

archical manner, record high ZT = 2.2 values were achieved

due to drastic reductions in κ , but also due to retaining high

power factors [23]. Reference [44], in particular, denotes the

importance of matrix/inclusion band alignment to retain the

original conductivity of the material and avoid degradation in

the power factor.

While the impact of nanoinclusions on the thermal con-

ductivity is well documented [18,45], previous works are not

as clear on their impact on the power factor, with results

varying significantly, from only small influence [30,31,34,46],

to large potential improvements [25,36,42,47]. Thus, it is

imperative that a high level of understanding on the influence

of nanoinclusions on the power factor, both qualitative and

quantitative, is also established, if ZT is to be maximized. How-

ever, the complexity of the electronic transport, combining

semiclassical effects, quantum effects, ballistic and diffusive

regimes, as well as the geometry details, makes accurate

modeling a difficult task. Several works in the literature

use semiclassical models, simplified geometries, and various

approximations to provide understanding of transport in such

systems [28,46–48].

In this work we show how the nonequilibrium Green’s-

function (NEGF) simulation method can be employed to

calculate the electron transport properties in 2D nanostructures

2469-9950/2017/96(19)/195425(12) 195425-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.195425


FOSTER, THESBERG, AND NEOPHYTOU PHYSICAL REVIEW B 96, 195425 (2017)

in a fully quantum-mechanical way that includes the details

of geometry, electron-phonon interactions, quantization, tun-

neling, and the ballistic to diffusive nature of transport, all

combined in a unified simulation approach. Such simulations

are very demanding, thus for computational effectiveness

we consider 30 nm×60 nm two-dimensional (2D) nanoribbon

channels embedded with nanoinclusions in a regular hexagonal

configuration. These short channels are, however, large enough

to capture all essential transport physics as we will explain.

We present a detailed study of the influence of nanoinclusions

on the PF of nanocomposite materials. We show that, unfor-

tunately, the presence of potential barriers originating from

nanoinclusions within a matrix material offers opportunities

for only moderate power factor improvements, resulting from

their inability to act as effective energy filters, a behavior

very different than that of superlattice structures. We describe,

however, how such nanocomposites can be optimized to limit

PF degradation and even achieve mild improvements. We

show that the key design elements for this PF resilience is

to begin with a degenerately doped matrix material in which

the Fermi level is placed 1–2kBT into the bands, and then insert

nanoinclusions of barrier heights between the Fermi level

and conduction-band edge. This introduces a small filtering

effect which improves the Seebeck coefficient and is more

effective when the nanoinclusions are large enough to prevent

quantum tunneling. Importantly, we also show that under these

conditions, the power factor is independent of the density of

nanoinclusions, even slightly benefiting at higher densities

(where strong reduction in κ is also anticipated). This provides

opportunities for dense nanoparticle materials with low κ and

still acceptable PFs, thus high ZT figures of merit.

Thus, the goal of this work is to illuminate aspects of the

thermoelectric power factor in nanostructures for which sev-

eral contradicting reports are encountered in the literature. The

paper is organized as follows: In Sec. II we describe our NEGF

approach including our calibration procedure and indicate the

geometries we study. In Sec. III we present our results. In

Sec. IV we discuss the results, and in Sec. V we conclude.

II. APPROACH

To compute the electronic transport, we have developed

a 2D quantum transport simulator based on the nonequilib-

rium Green’s-function (NEGF) formalism including electron-

acoustic phonon scattering in the self-consistent Born approxi-

mation [49,50]. This approach can capture all relevant quantum

effects such as quantization, energy mixing, interferences, and

tunneling, as well as all geometrical complexities, which can

be important in transport through disordered materials.

The system is treated as a 2D channel within the effective-

mass approximation, where we use a uniform m∗ = m0 in the

entire channel, where m0 is the rest mass of the electron. The

nanoinclusions are modeled as potential barriers of cylindrical

shape within the matrix material as shown in the schematic of

Fig. 1(c). We consider regular hexagonal placement of the

nanoinclusions, but in the discussion section we elaborate

on the possible effects of their random placement based on

our findings. The NEGF theory is described adequately in

various places in the literature [49–51] so we do not include

it here. Most work on NEGF in the literature is applied to

FIG. 1. (a) Calibration of the simulations’ scattering parameters.

The scattering strength is increased in an L = 15-nm channel until

the conductance falls to half of the ballistic value (dashed-black line),

thereby setting the mean-free path of the electrons to 15 nm. (b) The

power factor (defined as GS2) of a pristine (without nanoinclusions)

channel as the Fermi level is scanned across the bands. (c) A schematic

of a typical geometry we consider. VB is the barrier height, d is the

nanoinclusion diameter, and EF is the Fermi level. (d) A comparison

of the transmissions for an empty channel under ballistic coherent

conditions (blue line), a channel with nanoinclusions under coherent

transport (light-blue line), an empty channel under phonon scattering

transport conditions (red line), and a channel with nanoinclusions

under phonon-scattering transport conditions (light-red line).

1D systems due to computational limitations, however in this

work we expand the formalism to 2D systems of widths W =

30 nm and lengths L = 60 nm [see Fig. 1(c)]. The recursive

Green’s function (RGF) formalism is used to calculate the

relevant elements of the Green’s function, and the Sancho-

Rubio algorithm is used to compute the self-energies of the

contacts [52].

The effect of electron scattering with acoustic phonons

in NEGF is modeled by including a self-energy on the

diagonal elements of the Hamiltonian. This approximation

has been shown to be quantitatively valid for many systems

[53], such as electrons in silicon [54], transport in carbon

nanotubes [49], and many more, and captures the essential

transport features. The convergence criteria for the ensuing

self-consistent calculation is chosen to be current conservation,

i.e., we consider convergence is achieved when the current is

conserved along the length of the channel to within 1%. The

strength of the electron-phonon coupling is given by D0, which

we consider uniform across the entire channel. This parameter,

which has units of eV2, represents the weighting of the Green’s

Function contributions to the scattering self-energy. Its relation

to the deformation potential can be found in Refs. [49] and [55].

The power factor GS2 is obtained using the expression

I = G�V + SG�T. (1)

For each value of the power factor, the simulation is

run twice, initially with a small potential difference and no

temperature difference (�T = 0), which yields the conduc-

tance (G = I(�T=0)/�V ), then again with a small temperature

difference and no potential difference (�V = 0), which yields
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the Seebeck coefficient (S = I(�V=0)/G�T ). This method is

validated in Ref. [56]. The sharp features of the system required

a large number (∼100) of convergence steps. Figure 1(c) shows

a typical band diagram of the nanocomposite under considera-

tion. The Fermi level is denoted by the dashed red line. Current

flows through the nanoinclusion barriers and over them.

Channel calibration. Previous theoretical and experimental

works [21,22,55,57,58] have shown that degenerately doped

materials, once nanostructured to improve filtering, could pro-

vide significant power factor increases. Placing the Fermi level

well into the bands improves conductivity, which compensates

for the reduction that is caused by nanostructuring. Thus, in this

work as well, as a starting point, we place the Fermi level high

into the bands at 2kBT above the conduction-band edge. We

assume room temperature T = 300 K throughout the paper.

The value of D0 is then chosen such that the conductance of

an L = 15-nm-long pristine channel is found to be 50% of the

ballistic value. This effectively amounts to fixing a mean-free

path of 15 nm for the system, a value that is comparable

to common semiconductors such as silicon [59–61]. The

appropriate D0 was found to be D0 = 0.0026 eV [2] as shown

in Fig. 1(a). Thus, with such a mean-free path, the L = 60-nm

channel length we consider is large enough to result in

diffusive transport in the material we simulate, although in

the discussion section we also elaborate on the features of

ballistic transport. The conduction band is set at EC = 0.00 eV

and the Fermi level, unless otherwise stated, is placed at

EF = 0.05 eV. It should be noted that the chosen value of D0

only produces a mean-free path (as defined here) of exactly 15

nm when EF = 0.05 eV as this is the Fermi level used during

the calibration. As the Fermi level moves, the average energy of

the electrons changes and consequently so does the mean-free

path, deviating somewhat linearly as the EF changes. We can

then extract the power factor as shown in Fig. 1(b) versus the

reduced Fermi level ηF, i.e., the position of the Fermi level with

respect to the band edge, ηF = (EF−EC)/kBT . As expected,

the maximum power factor is observed when the Fermi level

is in the vicinity of the band edge [62].

With regard to the transport properties, in Fig. 1(d) we show

the transmission function of the nanocomposite channel under

four different conditions: (i) coherent (ballistic) transport

for a pristine channel (blue “staircase” line), (ii) coherent

transport for a channel with nanoinclusions (light-blue line),

(iii) incoherent transport for a pristine channel (red line), and

(iv) incoherent transport for a channel with nanoinclusions

(light-red line). The barrier height of the nanoinclusions is

set to VB = 0.01 eV and the Fermi level at EF = 0.05 eV.

The ballistic transmission of the pristine channel shows the

usual staircase shape, with an increment every time a new

subband is reached in energy. A large drop is observed when

the nanoinclusions are added in the geometry, where resonance

features are also evident. Those features are removed when

phonon scattering is included, and the transmission is reduced

even more when nanoinclusions are added in addition to

phonon scattering.

An interesting feature from these results is the fact that the

transmission suffers significantly once the nanoinclusions are

added, even at energies much higher than the barrier height,

and we elaborate on this more in the Discussion section,

Sec. IV. This is in contrast to a common approximation that

energies above the barrier are not severely affected and are

considered to be restored to their pristine material value. The

transmission in this case is dominated by the regions of high

resistance, which are the nanoinclusions. In the nanoinclusion

regions, the bands that contribute to transmission begin just

above VB, i.e., it is as if the ballistic transmission is shifted

downward by the number of bands it has at VB. Since in two

dimensions there are numerous numbers of subbands at lower

energies, the reduction in the transmission is strong, and it is

not recovered even at energies much higher than VB.

III. RESULTS

Once the calibration is completed we proceed to consider

geometries which include circular nanoinclusions (NIs) of dif-

ferent barrier heights VB, different NI densities, and different

NI diameters. The channel width was kept at W = 30 nm, and

the length at L = 60 nm in all cases.

Influence of barrier height VB and Fermi level position EF.

The first investigation we perform is on the influences of (i) the

nanoinclusion barrier height VB, and (ii) the Fermi level EF

on the thermoelectric coefficients, conductance G, Seebeck

coefficient S, and power factor GS2. Transport in an 8×4

hexagonal array of nanoinclusions of diameter d = 3 nm [as

indicated in the inset of Fig. 2(c)] is simulated at five different

Fermi levels, EF = − 0.025 eV (purple lines), EF = 0 eV

(green lines), EF = 0.025 eV (black lines), EF = 0.05 eV (red

lines), and EF = 0.075 eV (blue lines). For each Fermi level,

we vary the nanoinclusion barrier height from VB = 0 eV

to VB = 0.1 eV in steps of 0.01 eV. These are similar band

offset values that one encounters in promising thermoelectric

materials, for example, PbSe/CdSe with a valence-band offset

of 0.06 eV, PbSe/ZnSe with a valence-band offset of 0.13 eV,

and PbS/CdS with a valence-band offset of again 0.13 eV

[44]. The comprehensive results are shown in Figs. 2(a)–2(c)

for the conductance G, the Seebeck coefficient S, and the power

factor GS2, respectively. As can be observed in Fig. 2(a),

the conductance G shows the expected decrease at all Fermi

levels as VB is increased, due to the potential barriers blocking

the electron flow. For higher barriers G saturates, with the

saturation being observed more evidently ∼2kBT above the

Fermi level, i.e., the saturation tends to shift to the right with

increasing EF. Increasing the Fermi level increases the con-

ductance as well, since higher velocity states are increasingly

occupied. Naturally, as the Fermi level increases, the Seebeck

coefficient in Fig. 2(b) drops almost linearly [comparing the

different lines in Fig. 2(b)] following the usual reverse trend

compared to G. The Seebeck coefficient is proportional to

the average energy of the current flow with respect to the

Fermi level S ∝ 〈E − EF〉, which is reduced as the Fermi

level is raised until degenerate conditions are reached. At each

individual constant Fermi-level line, the Seebeck coefficient

only slightly increases with VB, a sign of weak energy filtering,

before it saturates as also observed in the case of G.

The corresponding power factors are shown in Fig. 2(c).

Comparing the lines that correspond to the various Fermi

levels, a large variation in the power factor is observed in

the left of Fig. 2(c), for small nanoinclusion barrier heights.

As VB increases, the power factors follow a declining trend

and finally all lines saturate at a lower value compared to the

195425-3



FOSTER, THESBERG, AND NEOPHYTOU PHYSICAL REVIEW B 96, 195425 (2017)

FIG. 2. The thermoelectric coefficients of an L = 60-nm channel

with an 8×4 hexagonal arrangement of nanoinclusions [inset of (c)]

and acoustic-phonon-scattering transport conditions vs nanoinclusion

barrier height VB. (a) The conductance. (b) The Seebeck coefficient.

(c) The power factor defined as GS2. Five different Fermi levels

are considered: EF = −0.025 eV (purple-diamond lines), EF = 0 eV

(green-star lines), EF = 0.025 eV (black-cross lines), EF = 0.05 eV

(red-square lines), and EF = 0.075 eV (blue-circle lines).

pristine material power factors. One important observation that

can be detected from Fig. 2(c) is that the highest power factor

is observed for the channel where the Fermi level is placed

around the conduction-band edge, or somewhat higher (green

and black lines, EF = 0 eV, 0.025 eV), but more importantly

when the band edges of the matrix and the nanoinclusions are

aligned (i.e., VB = 0 eV). This clearly shows that in principle

the introduction of energy filtering potential barriers by the use

of nanoinclusions cannot increase the power factor. This is of

course if one considers a material with an optimized Fermi

level position at EF ∼ EC to begin with, which is rarely the

case in practice. If one considers, however, that the position

of the Fermi level is in general not at the optimal point, then

there is a possibility of moderate power factor improvements

of the order of ∼10% (red, blue lines). The power factor lines

in Fig. 2(c) for EF > EC indicate that as the barrier heights VB

of the nanoinclusions increase, a maximum is reached when

VB is approximately halfway between EF and EC, producing

a 5–10% increase in the power factors. Raising VB even

further takes away this increase and forces the power factor to

saturate at a lower level (to around 50% of the initial PF). This

requirement for small band offsets to retain high conductivity

has previously been identified in Refs. [14,44,63,64] but its

effect on the power factor had not yet been quantified.

Influence of the nanoinclusion density. The next investi-

gation we perform is to illustrate the influence of the NI

density on the thermoelectric coefficients. Figure 3 shows

the thermoelectric coefficients G, S, and PF, again versus

nanoinclusion barrier height VB for four different geometries

of increasing density as shown in the insets of Fig. 3(c). These

four simulated geometries are a 2×4 array (green lines), a

4×4 array (black lines), a 6×4 array (blue lines), and an

8×4 array (red lines). The Fermi level is again placed at

EF = 0.05 eV [dashed-red line in Fig. 3(c)]. Figure 3(a) shows

that, as before, the conductance G falls as VB increases, and,

as expected, G also falls as the number of nanoinclusions

in the channel is increased. Likewise, as the number of

nanoinclusions increases, the effect of energy filtering is

increased and an improvement in S is observed. The increase

is of the order of 10% for the 2×4 channel, and is increased to

approximately 25% for the 8×4 channel as seen in Fig. 3(b).

As VB increases, we initially see a linear rise in S. At barrier

heights VB, somewhere between the conduction-band edge

and the Fermi level S peaks. For larger VB it decreases slowly

before saturating for barrier heights much above the Fermi

level. It is interesting to observe that in this region, both G and

S are simultaneously decreasing, a counterintuitive effect—we

provide an explanation for this later. Figure 3(c) shows the

result of these features on the power factor. From zero barrier

heights up until VB ∼ kBT , a small increase in the power

factors is observed, with a maximum of the order of 10% for the

8×4 channel (red line). As VB increases even further, the power

factor then falls to values below the pristine channel value for

all channels. Although for small barrier heights of VB < kBT

the density has little effect on the power factor, the fact that

the PF increases, and is even independent of NI density, is

quite important. It indicates that the density of nanostructured

materials with nanoinclusions can be optimized for maximal

reduction in the thermal conductivity, fine-tuning the distances

between the nanoinclusions in order to be of the length scale

of the phonon mean-free path without causing any adverse

effects on the power factor. At higher VB, on the other hand,

the detrimental effect of density is more important, with the

decrease from pristine material power factor ranging from 17%
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FIG. 3. The thermoelectric coefficients of an L = 60-nm channel

with EF = 0.05 eV (dashed red line) and acoustic-phonon-scattering

transport conditions vs nanoinclusion barrier height VB. (a) The

conductance. (b) The Seebeck coefficient. (c) The power factor

defined as GS2. Hexagonal arrays of four different nanoinclusion

densities are considered as shown in the inset of (c): 2×4 array (green

lines), 4×4 array (black lines), 6×4 array (blue lines), and 8×4 array

(red lines).

for the 2×4 array to 40% for the 8×4 array as the barrier height

is increased to VB = 0.1 eV.

The results in Figs. 2 and 3 indicate that although the

possibility of using nanocomposites with nanoinclusions

embedded within a matrix material to improve the power

factor is limited, importantly, neither will the careful use of

FIG. 4. The distribution of the energy of the current flow for

an L = 60-nm channel with an 8×4 array of nanoinclusions and

EF = 0.05 eV. The stars denote the average energy of the current

flow. A zoomed-in version of these is shown in the inset. Six

different nanoinclusion barrier heights are shown: VB = 0 eV (black),

VB = 0.02 eV (red), VB = 0.04 eV (blue), VB = 0.06 eV (green),

VB = 0.08 eV (purple), and VB = 0.1 eV (brown). The dotted line

in the inset indicates from right to left the trend of increase in VB.

such nanoinclusions limit the power factor significantly. The

main reason for using such nanostructures is to provide ZT

improvements by reducing the thermal conductivity of the

material, and the results of Figs. 2 and 3 show that such

structures can provide resilience to the power factor, as well

as showing the possibility of slight benefits. Note here that in

our simulations we only consider acoustic-phonon scattering.

The presence of impurity scattering as well as variation in

the thermal conductivities of the different regions can also

improve the Seebeck coefficient even further as explained

in Refs. [21,58,65,66], which might allow for higher power

factors compared to what we compute here.

A nonintuitive point to elucidate here is the simultaneous

drop in both G and S as the barrier height VB of the

nanoinclusions is increased. What is nonintuitive is that in

general these two quantities follow a reverse trend, i.e., as

G is decreased at the presence of large VB, we would have

expected S to increase. The fact that both quantities drop

causes a large degradation to the power factor, and limits the

filtering capabilities of such nanocomposites. To understand

this simultaneous decrease we must consider what happens to

the average energy of the current flow as VB increases, since

this determines the Seebeck coefficient S ∝ 〈E − EF〉 [56].

The x axis of Fig. 4 shows the distribution of the energy of the

current flow, E×I (E), with the average marked with a star,

for six different barrier heights, VB = 0 eV (black line), VB =

0.02 eV (red line), VB = 0.04 eV (blue line), VB = 0.06 eV

(green line), VB = 0.08 eV (purple line), VB = 0.1 eV (brown

line). The inset of Fig. 4 zooms around the average energy of

the current flow. As VB is initially raised, some of the lower

energy electrons are cut off while higher energy electrons are

less affected, raising the average energy of the current, and

thus, raising the Seebeck coefficient (see from black to red to

blue lines in the inset of Fig. 4). This behavior continues as

long as VB is below the EF, i.e., VB < EF. It is important to note

that electrons with energies less than the barrier height can still

contribute to the current by flowing around the nanoinclusion

barriers (which is a different scenario compared to superlattice
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structures which are commonly employed for thermoelectric

energy filtering). Thus, as VB continues to increase, lower

energy electrons continue to flow around the barriers and so

their contribution is hardly affected because the change in

the barrier affects only much larger energies. Higher energy

electrons, however, then begin to be cut off and the average

energy begins to fall again (see from blue to green to purple

to brown line in the inset of Fig. 4), as does the Seebeck

coefficient. Eventually, VB is high enough that it affects all

energies similarly, and the majority of the current flows around

the nanoinclusions. Therefore, additional increases in VB have

little effect, and the Seebeck coefficient saturates.

Influence of quantum tunneling. An important effect that

needs to be considered in evaluating the influence of nanoin-

clusions on the power factor of nanocomposites is quantum-

mechanical tunneling. In prior works related to the effect of

tunneling in superlattices, we have shown that tunneling is

detrimental to the Seebeck coefficient as it makes potential

barriers transparent and takes away any benefits that energy

filtering could provide to the power factor [65,66]. We have

shown that in the case of superlattices tunneling becomes

important when the thicknesses of the barriers drop below

1–2 nm (for channels with effective mass m∗ = m0). Here,

we compare the case of nanoinclusions of small diameters

d ∼ 1 nm which would be strongly influenced by tunneling,

versus the case of structures with larger diameters d ∼ 3 nm,

which we expect not to be influenced by tunneling to such a

degree. Figure 5 shows the effect of nanoinclusion diameter on

the thermoelectric coefficients G, S, and PF for the d = 1.5 nm

nanoinclusions (red lines, S1) and d = 3 nm nanoinclusions

(black lines, S2) for the geometry with 8×4 nanoinclusion

arrays [first two insets of Fig. 5(c)]. As before, G falls with

increasing VB in both diameter cases, but the fall is more

marked for nanoinclusions of larger diameters, which hinder

transport more [Fig. 5(a)]. The smaller diameter nanoinclu-

sions not only occupy less space that obscures transport, but

quantum tunneling causes them to become semitransparent

and allow some current to flow through them. Likewise, due to

their transparent nature they do not cause large changes in the

Seebeck coefficient as shown by the red line in Fig. 5(b) (only

a ∼5% increase is observed at high VB), thus, only a weak

energy filtering effect is observed. Consequently, the power

factor results in Fig. 5(c) for the d = 1.5-nm nanoinclusions

do not show any beneficial effect on the power factor for

any of the barrier heights. The beneficial effects of energy

filtering are only seen for the larger diameter of d = 3 nm,

although, as explained earlier, this only appears to occur up

to a barrier height approximately halfway between EC and

EF. Beyond this VB, the degradation in G outweighs the gains

in S, and the power factor falls even further below that of

the NIs with diameter d = 1.5 nm. These results demonstrate

that, as with superlattices [65,66], quantum tunneling has a

detrimental impact on the energy filtering effect and, thus, on

any potential Seebeck coefficient improvements. To prevent

this, diameters of d > 3 nm should be used to obtain power

factor enhancements (the diameters of course need to be

adjusted according to the effective mass of the carriers in the

specific material under consideration).

In order to further understand the influence of tunneling

versus density of nanoinclusions, in Fig. 5 we also plot the

FIG. 5. The thermoelectric coefficients of L = 60-nm channels

[insets of (c)] with 8×4 array of nanoinclusions vs nanoinclusion

barrier height VB, for two different nanoinclusion diameters: d =

1.5 nm (red lines) and d = 3 nm (black lines), and a 15×7 array with

d = 1.5 nm (blue lines) whose density is equivalent to the 8×4 array

with d = 3 nm. (a) The conductance. (b) The Seebeck coefficient. (c)

The power factor defined as GS2.

situation where we keep the areal density of nanoinclusions

the same as that of the d = 3-nm 8×4 array channel (S2),

using a lot more nanoinclusions of diameter d = 1.5 nm as

shown in the third inset of Fig. 5(c). Now we have a 15×7

array channel (S3) where the total area of included material

is approximately the same across the two structures. The
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FIG. 6. The transmission vs energy for the channels shown in the

inset of Fig. 5(c): 8×4 arrays of d = 1.5 nm (red lines) and d = 3 nm

(black lines), and a 15×7 array with d = 1.5 nm whose density is

equivalent to the 8×4 array with d = 3 nm (blue lines). (a) The case

for nanoinclusions with VB = 0.02 eV barrier height, i.e., before the

EF, where the power factor reaches the maximum point in Fig. 5(c).

(b) The case for nanoinclusions with VB = 0.07 eV barrier height,

i.e., after the EF, where the power factor starts to saturate in Fig. 5(c).

thermoelectric coefficients for this case are shown in Fig. 5

by the blue lines. Quite interestingly, this channel behaves

very close to the d = 3-nm 8×4 array channel, indicating that

at first order one can consider that the overall areal density

of nanoinclusions has a stronger impact in determining the

thermoelectric performance, compared to the actual size and

their distribution. Although the d = 1.5-nm nanoinclusions

will still be semitransparent, in this case they are many, and are

placed in close proximity, in distances smaller than the carriers’

relaxation length. This introduces quantum reflections and

interferences, which introduce a larger resistance (lower G)

and increase the energy filtering effect (higher S). Figures 6(a)

and 6(b) show the transmission probability versus energy

for the three channels at low VB = 0.02 eV and high VB =

0.07 eV. Indeed, the transmissions of this channel (blue lines)

follow closely those of the channel with large d = 3-nm NIs

(black lines). A higher Seebeck coefficient is observed for

this channel (blue line) at higher VB in Fig. 5(b) because the

transmission shows sharper variations around the Fermi level

[Fig. 6(b)]. If now one looks carefully back in the PF results

of Fig. 5(c) (blue line), it can be seen that such a channel is

the worst of both previously examined channel cases, with no

noticeable power factor improvement for low VB (in contrast

to what is shown by the black line), and large PF degradation

at high VB (even stronger than what is shown by the black

line). Thus, an important recommendation at this point is that

nanoinclusions with low barrier heights and larger diameters

are preferable for power factor resilience.

IV. DISCUSSION

Features of the electron flow. To better understand the

electronic transport and transmission [as previously shown

in Fig. 1(d)] through the structures we consider, we show in

Fig. 7(a) a color plot of the component of the current flow along

the length of the structure. Results are taken from the d = 3-nm

8×4 channel with VB = 0.02 eV and EF = 0.05 eV. The blue

regions indicate the nanoinclusions (where through them the

current is low), whereas the yellow regions indicate the matrix

material (where the current is high). Note that this spatially

varying current is still conserved in the transport direction at

all energies independently, i.e., if we integrate along the width

direction at every point along the length we get the same value.

In Fig. 7(b) we show a cross section of the L-directed current

through two of the nanoinclusions [shown by the dashed-black

line in Fig. 7(a)] at four different energies: E = 0.01 eV (below

the VB, green line), E = 0.02 eV (at the VB, black line),

E = 0.05 eV (at the EF, blue line), E = 0.075 eV (above the

EF, purple line). From Fig. 7(a) it can be seen that the current is

reduced where the nanoinclusions are situated (blue areas), but

the area affected by the nanoinclusions is not quite the same as

the nanoinclusion itself. Due to quantum tunneling, the sides

of the nanoinclusion are semitransparent, narrowing the

affected area, while in the direction of current flow, the affected

area is elongated due to reflections off the nanoinclusion face.

This can also be seen in Fig. 7(b) where there is a dip in

the current at the position of the nanoinclusion and beyond.

Crucially, this occurs at all energies where current is still

flowing, showing that electrons with energies much higher

than VB are still significantly affected as they pass over the

barrier. More detail on this is given in Fig. 7(c) where we

plot the current as it varies in energy at two different points

in the channel: (i) at the center of one of the nanoinclusions

[blue line, position shown by the dotted blue line in Fig. 7(b)],

and (ii) in the pristine matrix material (black line, position

shown by the dotted black line in Fig. 7(b)]. The barrier height

is shown by the dashed black line and Fermi level by the

dashed red line. It might have been expected that flow below

VB would be cut off and flow above it unaffected. What we see

from Fig. 7(c) however is that current still flows through the

nanoinclusion at lower energies by quantum tunneling, and at

higher energies (even as high as ∼2kBT above VB) the current

has not yet reached the pristine matrix material level. Due to

this far-reaching effect of the nanoinclusion, it also appears

that there is no clear relation between the optimal VB and the

position of EF in the results above, other than the optimal VB

for maximizing the power factor appears to be approximately

halfway between the band edge and the Fermi level. We next

discuss this effect with comparison to superlattices.

Nanoinclusions vs Superlattices (SLs) - transport features.

Other than the reduction of thermal conductivity, the incorpo-

ration of nanoinclusions would have been expected to provide
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FIG. 7. (a) Color map of the current flow directed along the

length of the channel (L directed) through an 8×4 hexagonal array

of nanoinclusions (d = 3 nm, VB = 0.02 eV). Nanoinclusions can be

seen as the blue areas and the matrix material as the yellow and

green areas. (b) The channel length directed current along the dashed

black line shown in (a) at four different energies, below the barrier

at E = 0.01 eV (green line), at the barrier E = 0.02 eV (black line),

at the Fermi level E = 0.05 eV (blue line), and above the barrier

and Fermi level at E = 0.075 eV (purple line). The location of the

first nanoinclusion (NI), which extends for 3 nm, is denoted. (c)

The current flow at two points in the structure: at the center of a

nanoinclusion (blue line, position shown by dotted blue line in (b) at

L ∼ 40 nm) and in the pristine matrix [black line, position shown by

dotted black line in (b) at L ∼ 46 nm]. The barrier height is shown

by the dashed black line and Fermi level by the dashed red line.

an energy filtering effect and consequently improve the power

factor as is the case in transport through cross-plane superlat-

tices (SLs) composed of potential barriers and wells. In SLs,

the electrons in the wells have to overpass the heights of the

barriers. The higher the barrier, the stronger the reduction in the

conductance, which overall is exponential in nature, whereas

FIG. 8. The transmission vs energy for an L = 60 nm ballistic

coherent channel (no phonon scattering) for the following cases as

shown in the insets: (i) pristine material without nanoinclusions (red

line), (ii) material with an 8×4 hexagonal array of nanoinclusions

(blue line) with VB = 0.1 eV, and (iii) a superlattice material (black

line) with VB = 0.1 eV. The barrier height VB is marked by a dashed

black line. It can be seen that the superlattice is effective at cutting

out the contribution of low-energy electrons (achieving an increase

in the Seebeck coefficient) whereas the nanoinclusions act to reduce

the transmission uniformly in the entire energy region.

the Seebeck coefficient increases linearly with the barrier

height. It is interesting to compare how the presence of nanoin-

clusions and superlattice potential wells each influence elec-

tronic and thermoelectric transport. In Fig. 8 we plot the trans-

mission of a L = 60-nm channel under ballistic coherent con-

ditions for three cases as shown in the insets: (i) pristine chan-

nel (red line), (ii) channel with an 8×4 hexagonal array of NIs

(blue line) with barrier height VB = 0.1 eV and diameter d =

3 nm, and (iii) a SL structure of eight barriers of height VB =

0.1 eV and width W = 3 nm (black line). What is important to

note is the differing effects the two structures have on the low-

energy electrons below the barrier height. The SL structure ef-

fectively cuts off the current flow below VB = 0.1 eV, provid-

ing an energy filtering mechanism that increases the Seebeck

coefficient. The behavior in the presence of NIs is different,

because the charge carriers flow not only above the NI barriers,

but in between them as well. This means the NIs still allow

a finite transmission of carriers across low energies, and thus,

do not provide the energy filtering effect and large Seebeck

coefficients that can be achieved in superlattices [58,65,66].

At higher energies, however, the current does not return to

the ballistic value in either the nanoinclusion or the superlattice

case, in contrast to what is normally assumed. This might

explain why improvements in the power factor from superlat-

tices have yet to be realized, as the conductivity falls further

than expected with increasing barrier height. Note that this

is an effect that originates from the large mismatch between

the number of bands in the matrix material and the barrier,

and due to the large degree of quantum interferences. Thus,

we expect this to be stronger in two dimensions compared

to one dimension where only one (or fewer) subbands exist

in all regions of the structure, for example. We also note

that simplified models that consider simple step-function-

like transmissions (or even simple 1D transmissions) would

provide larger conductance and overestimate the performance.
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However, in the case where incoherent scattering is stronger,

this effect would be reduced.

As a comparison between the PF improvements in the two

geometries, however, in a superlattice, the power factor can be

optimized by placing the Fermi level high into the conduction

band (achieving good conductance). The introduction of the

barriers increases the Seebeck coefficient by using barriers

∼kBT above EF, and finally power factor improvements of the

order of ∼10–20% can be achieved [56]. In the case of channels

with nanoinclusions, on the other hand, as shown in Fig. 2(c),

due to the limited increase in S achieved with nanoinclusions,

a somewhat lower power factor enhancement is produced. For

nondegenerate conditions (EF = −0.025 eV and EF = 0 eV)

the conductance drops faster than the Seebeck coefficient rises,

and the nanoinclusions have no beneficial effect on the power

factor. For degenerate conditions (EF = 0.025 eV, EF =

0.05 eV, and EF = 0.075 eV) there is an initial benefit, but

in principle, power factor enhancements beyond the pristine

structure (with VB = 0 eV and EF = 0 eV) are not achieved.

Random variations in nanoinclusion parameters. In this

work we exclusively considered structures in which the

nanoinclusion geometry, diameter, and density were set in a

very specific way, i.e., regular hexagonal arrays of fixed diam-

eter. In reality the nanostructuring in nanocomposite materials

takes random forms. The specific location of nanoinclusions,

their size, the barrier height, and even their density cannot be

controlled precisely. Even the position of the Fermi level EF,

which is set by the doping, cannot be controlled precisely. In

superlattices, for example, we have shown in a previous work

that variations in the lengths of the various regions do not affect

the power factor significantly, however what is detrimental are

variations in the barrier heights (that degrade the conductivity)

and extremely thin, easy to tunnel barriers (which degrade

the Seebeck coefficient) [65,66]. Although in this work we do

not perform a full investigation of the influence of statistical

variations of the different structure parameters, from the results

in Figs. 2, 3, and 5, we can extract some expectations on the

effect of variations. If we concentrate at the low VB regions,

where the power factor does not suffer, the results in Fig. 3

indicate that variability in the nanoinclusion density does not

affect the power factor, which indicates that variability in the

geometry and positions of the nanoinclusions will also not

affect the power factor. Interestingly, the results seem tolerant

to significant changes in VB, which indicates that moderate

barrier height variations will also not affect the power factor

either, in contrast to the superlattice case. In superlattices

variability in the barrier heights is crucial because carriers need

to go through each individual barrier, and the height degrades

the conductivity exponentially, whereas in the NI case carriers

can actually flow around the nanoinclusions and avoid large

barriers. From Fig. 5 we can also observe that quantum

tunneling is not as important either, as the energy filtering

capabilities of nanoinclusions are limited anyway (in the case

of superlattices energy filtering is strong, and tunneling by

making the barriers transparent takes it away). From Fig. 2 we

can see that the only significant variation that can affect the

power factor of the nanocomposite at the low VB region is the

position of the Fermi level EF, which, however, is the case in all

materials, nanostructured or not. Another important variability

case that is beneficial to the power factor is the variation in

the lattice thermal conductivity between the different materials

that form the nanocomposite. In superlattices, for example, a

lower lattice thermal conductivity in the barrier regions which

have a higher local Seebeck coefficient, results in a larger

overall increase in the Seebeck coefficient [21,55,65]. We have

not investigated this effect here, however it might be the case

that such an effect might not be utilized strongly for NIs as

their filtering capabilities are weaker.

Diffusive to ballistic scattering conditions. The structures

studied up to this point have used a mean-free path (mfp) for

scattering of mfp = 15 nm and channel length L = 60 nm,

which resulted in transport being diffusive within the channel.

In reality, different materials can have different mfp’s, and

materials with very light effective masses could even be

ballistic in the relatively short channel we simulate. Thus,

to cover these cases, in Fig. 9 we investigate the main

outcomes when channels with different transport regimes are

considered: (i) ballistic transport (black lines), (ii) a channel

of larger mfp of 30 nm (blue lines), and (iii) a channel with

smaller effective mass (green lines). In Figs. 9(a)–9(c) we

show the conductance, Seebeck coefficient, and power factor,

respectively for the 8×4 hexagonal array of nanoinclusions of

diameter d = 3 nm and EF = 0.05 eV. With red lines we show

the corresponding results with mfp = 15 nm and m∗ = m0

(same as the red lines in Figs. 2 and 3).

It can be seen that variations in both the mean-free path

and the effective mass have some effect on G especially for

low VB, but their importance is reduced for larger barrier

heights. The effect on S, on the other hand, is negligible

for low VB because the energy of the current flow does not

change at first order with mfp or effective mass. Consequently

the PF is benefitted by ∼50% when doubling the mfp’s or

halving the channel material effective mass, which is expected.

Importantly, qualitatively the trend for both cases is very

similar to what was seen before. This consistency in the

behavior can also be seen from the transmission shown in the

inset of Fig. 9(b). This shows that the transmission features

vary only marginally between the three cases, with the lighter

mass and larger mfp channels having a somewhat larger

transmission. These results appear to show that the qualitative

trends presented previously are robust to variations in mean-

free path and effective mass, suggesting that our conclusions

could be applicable to a wide variety of material cases.

In the ballistic case (black lines), while G and the PF

increase significantly compared to the diffusive case, it should

be emphasized that even here all three parameters follow the

trends previously outlined. The fact that S is lower for low VB

has to do with the shape of the transmission [black line in the

inset of Fig. 9(b)], rising faster at lower energies, contributing

a greater number of lower energy electrons to the current flow

than seen in the diffusive channels.

Approximations and omissions. Finally, in this work,

for computational simplicity, we have applied the NEGF

formalism to short channel 2D nanoribbon structures of

sizes W = 30 nm and L = 60 nm embedded with hexagonally

placed nanoinclusions and showed how it is a very powerful

method that captures most of the important details for the

assessment of the power factor. In reality, most of the

experimentally realized structures are in three dimensions,

which would have made our simulations computationally
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FIG. 9. The thermoelectric coefficients of L = 60 nm channels

with an 8×4 array of nanoinclusions vs nanoinclusion barrier height

VB, for four different simulation conditions: Ballistic transport

(black-cross lines), mean-free path mfp = 30 nm and m∗ = m0

(blue-diamond lines), mean-free path mfp = 15 nm and m∗ = 0.5 m0

(green-star lines), and mean-free path mfp = 15 nm and m∗ = m0

(red-square lines—same as in Figs. 2 and 3). (a) The conductance.

(b) The Seebeck coefficient. (c) The power factor defined as GS2.

Inset of (b): The transmission probability vs energy in the four cases

for VB = 0 eV.

prohibitive. However, qualitatively, we believe our conclusions

still apply to 3D structures as well. In fact, in Ref. [66]

we considered the influence of random variations in the

placement of barriers in superlattices, and found that it makes

no difference in the power factor; thus we expect the main

conclusions to qualitatively carry over from a regular set of

structures to a more randomized colloidal placement with only

an average separation as well. Furthermore, extrapolating from

our findings, we expect that the influence of nanoinclusions on

energy filtering in three dimensions would be even smaller

since many more paths exist for the carriers to flow around the

nanoinclusions.

In addition, a certain number of approximations have

been made that we would like to elaborate on. First, the

nanoinclusions were treated in a very simplified way, just by

raising the potential barrier locally. Although this at first order

can mimic a nanoinclusion, in reality material deformations

exist in the vicinity of the inclusion, strain fields are built, and

the effective mass and band details vary, which could have

some quantitative influence on our results. Another omission

is that in this work we have only considered electron-acoustic

phonon scattering (in addition to the electron scattering on

nanoinclusions). Optical phonon scattering provides energy

relaxation and it is important for optimizing energy filtering

in superlattices where electrons absorb phonons to flow over

potential barriers and emit phonons in order to relax into the

wells [55,66]. In this case for nanocomposites, however, where

most of the charge flows around the nanoinclusions, we omit

optical phonons. The inclusion of optical phonons requires

an additional computational complexity, which we relax in

the interest of being able to simulate larger geometries that

more elucidate the effect of nanoinclusions. Electron-ionized

impurity scattering is an important mechanism, especially

in degenerately doped materials, which can also result in a

different energy dependence of the transmission function. In

general, although ionized impurity scattering results in signif-

icantly lower power factors to begin with, the stronger energy

variation in the transmission provides larger opportunities for

relative power factor improvements [58], thus we expect that if

that was included in our calculations the power factors would

be qualitatively lower, but the increase nanoinclusions could

provide would have been somewhat higher. In the case of

energy filtering over a barrier in a superlattice, for example, we

have previously shown that under ionized impurity scattering

power factor improvements could reach up to 30–40% [21,58],

whereas the relative improvement is half of that when only

electron-phonon scattering is considered in the calculations.

Finally, we also need to mention that the perfect barrier

shape we employ is just an approximation for ease in limiting

the number of simulations to be performed and for focusing on

the effects of geometry and density. In reality, in the vicinity

of the heterojunction there will be potential variations that

will affect the shape of the barrier, which as we show in

Refs. [64] and [65], could be important in determining the

PF. These potential variations are determined by the junction

details, but also by the doping of the different regions and

could only be captured accurately through self-consistent

calculations, which we do not consider in this work. Figure 10

illustrates various cases of how the barrier shape will look once

self-consistent electrostatics is considered (in this case through

1D simulation). In Fig. 10(a) we show the perfectly square

barrier we use in the simulations as inserted in the Hamiltonian

“by hand.” In Fig. 10(b) we show what the barrier will look like

when uniform doping (ND = 1.37×1020/cm3 places the EF at

EF = 0.05 eV) is applied in all domains—in that case Schottky

barriers are formed around the nanoinclusion. Figure 10(c)

shows what the barrier around the nanoinclusion looks like

when only the matrix material is doped, whereas the nanoin-
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FIG. 10. The shape of the barrier around the nanoinclusion for

different cases using 1D self-consistent calculations. (a) The perfectly

square barrier as used in the simulations. (b) The barrier shape when

uniform doping is applied in all domains—Schottky barriers are

formed around the nanoinclusion. (c) The barrier shape around the

nanoinclusion when only the matrix material is doped, whereas the

nanoinclusion remains undoped. (d) A case with variable doping

where the doping in the nanoinclusion is reduced to 30% of that in

the matrix material. In the latter case the barrier profile looks very

similar to the one simulated.

clusion remains undoped. Finally, Fig. 10(d) shows a case

with variable doping where the doping in the nanoinclusion is

reduced to 30% of that in the matrix material. In the latter case

the barrier profile looks very similar to the one simulated. In

each case, the barrier is of course different, and will impact

the results. The important point here, however, is that through

electrostatic and charging effects a different “effective barrier”

is produced and this is what we consider.

V. CONCLUSIONS

In conclusion, using the fully quantum-mechanical

nonequilibrium Green’s-function method, we calculated the

thermoelectric power factor of 2D nanoribbon channels with

embedded nanoinclusions modelled as potential barriers. We

explain why this method is most relevant, as it captures all

geometry details, important quantum-mechanical effects such

as tunneling and subband quantization, as well as relevant

transport regimes from diffusive to ballistic, and coherent

to incoherent. These are all important features that affect

transport through such structures and need to be captured for

an accurate understanding of their thermoelectric properties as

we showed in the results throughout the paper. Thus, this work

avoids approximations in geometry and in essential transport

features that could limit the proper design and optimization

of nanostructured thermoelectrics. An important message of

the paper is that we showed that, unfortunately, the addition

of nanoinclusions does not utilize energy filtering effectively,

and cannot provide higher power factors compared to an

optimized structure without nanoinclusions (in the optimal

pristine material case the Fermi level is placed around the

conduction-band edge). The introduction of nanoinclusions

reduces the conductance, but does not provide the corre-

sponding increase in the Seebeck coefficient. However, under

degenerate conditions, where the Fermi level is placed into the

conduction band, moderate increases in the power factor can

be achieved of the order of 5–10% if the nanoinclusion barrier

heights are between the Fermi level EF and the conduction

band EC. Importantly, however, we showed that in that case,

the mild power factor improvements are independent of the

nanoinclusion density, as long as the nanoinclusions are large

enough to prevent quantum tunneling. This indicates that larger

densities of relatively thick nanoinclusions can be utilized

to effectively reduce the lattice thermal conductivity without

degradation in the power factor. For larger barrier heights,

a nonintuitive simultaneous drop in the conductance and

Seebeck coefficient is observed, which degrades the power

factor significantly. Our results reveal that the filtering behavior

of materials with nanoinclusions are different compared to the

filtering behavior of cross-plane superlattices. Our conclusions

would be useful in the design of advanced nanostructured

thermoelectric materials.
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