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We study thermoelectric power under strong magnetic field �TPM� in carbon nanotubes �CNTs� and
quantum wires �QWs� of nonlinear optical, optoelectronic, and related materials. The corresponding
results for QWs of III-V, ternary, and quaternary compounds form a special case of our generalized
analysis. The TPM has also been investigated in QWs of II-VI, IV-VI, stressed materials, n-GaP,
p-PtSb2, n-GaSb, and bismuth on the basis of the appropriate carrier dispersion laws in the
respective cases. It has been found, taking QWs of n-CdGeAs2, n-Cd3As2, n-InAs, n-InSb, n-GaAs,
n-Hg1−xCdxTe, n-In1−xGaxAsyP1−y lattice-matched to InP, p-CdS, n-PbTe, n-PbSnTe, n-Pb1−xSnxSe,
stressed n-InSb, n-GaP, p-PtSb2, n-GaSb, and bismuth as examples, that the respective TPM in the
QWs of the aforementioned materials exhibits increasing quantum steps with the decreasing
electron statistics with different numerical values, and the nature of the variations are totally
band-structure-dependent. In CNTs, the TPM exhibits periodic oscillations with decreasing
amplitudes for increasing electron statistics, and its nature is radically different as compared with the
corresponding TPM of QWs since they depend exclusively on the respective band structures
emphasizing the different signatures of the two entirely different one-dimensional nanostructured
systems in various cases. The well-known expression of the TPM for wide gap materials has been
obtained as a special case under certain limiting conditions, and this compatibility is an indirect test
for our generalized formalism. In addition, we have suggested the experimental methods of
determining the Einstein relation for the diffusivity-mobility ratio and the carrier contribution to the
elastic constants for materials having arbitrary dispersion laws. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2827365�

I. INTRODUCTION

Since Iijima’s discovery,1 carbon nanotubes �CNTs�
have been recognized as fascinating materials with nano-
meter dimensions uncovering new phenomena in different
areas of low-dimensional science and technology. The re-
markable physical properties of these quantum materials
make them ideal candidates to reveal new phenomena in na-
noelectronics. The CNTs find wide applications in
conductive2,3 and high strength composites,4 chemical
sensors,5 field emission displays,6,7 hydrogen storage
media,8,9 nanotweezeres,10 nanogears,11 nanocantilever
devices,12 nanomotors13 and nanoelectronic devices.14,15

Single-walled carbon nanotubes �SWNTs� appear to be ex-
cellent materials for single molecule electronics,16–18 nano-

tube based diodes,19 single electron transistors,20 random ac-
cess memory cells,21 logic circuits,22 and in other
nanosystems. In this context, it may be noted that with the
advent of molecular-beam epitaxy, fine line lithography, and
other experimental techniques, low-dimensional structures
having quantum confinement of one, two, and three dimen-
sions �such as quantum wells, wires, and dots� have attracted
much attention not only for their potential in uncovering new
phenomena in nanoscience, but also for their interesting ap-
plications in nanotechnology.23–25

In QWs, the restriction of the motion of the carriers in
the two directions may be viewed as carrier confinement by
two infinitely deep one-dimensional �1D� rectangular poten-
tial wells, leading to quantization �known as quantizing size
effect� of the wave vectors along the two orthogonal direc-
tions, allowing 1D electron transport representing new physi-
cal features not exhibited in bulk semiconductors. The low-
dimensional heterostructures based on various materials are
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widely investigated because of the enhancement of carrier
mobility. An enormous range of important applications in the
quantum regime, together with a rapid increase in computing
power, have generated much interest in the analysis of nano-
structured devices for investigating their properties.26–29 Ex-
amples of such new applications include various quantum
wires,30–34 quantum resistors,35 resonant tunneling diodes
and band filters,36,37 quantum switches,38 quantum
sensors,39–41 quantum logic gates,42,43 quantum transistors
and subtuners,44–46 heterojunction field-effect transistors
�FETs�,47 high-speed digital networks,48 high-frequency mi-
crowave circuits,49 optical modulators,50 optical switching
systems,51 and other devices. Though extensive work has
already been done for both the CNTs and QWs, it appears
from the literature that the TPM for both the CNTs and the
QWs has yet to be investigated in detail.

It is well known that the TPM is a very important
relation52 since the entropy �a very important thermodynamic
property that cannot be experimentally determined� can be
known from this relation by knowing the experimental val-
ues of the electron concentration. The TPM is more accurate
than any two of the individual relations for the electron con-
centration or the entropy, which is considered to be the two
most widely used quantities in investigating the thermody-
namics of the electronic materials. Besides, in recent years
with the advent of the quantum Hall effect,53 there has been
considerable interest in studying the TPM for various com-
pounds having different band structures.54–63 It is worth re-
marking that the analysis of the thermopower generates in-
formation about the band structure, the density-of-states
function, and the effective mass of the carriers.59 The classi-
cal TPM �G� equation is given by G= ��2kB /3e� �kB and e
are Boltzmann’s constant and the magnitude of the carrier
charge, respectively� and is well known in the literature.59 In
this conventional form, it appears that the TPM depends only
on the fundamental constants and is independent of tempera-
ture and carrier concentration under the condition of carrier
nondegeneracy. Askerov et al.63 showed that the TPM is in-
dependent of scattering mechanisms and depends only on the
dispersions laws of the carriers.

It is well known from the fundamental work of
Zawadzki61 that the TPM for electronic materials having de-
generate electron concentration is essentially determined by
their respective energy band structures. It has, therefore, dif-
ferent values in different materials and varies with the dop-
ing, the magnitude of the reciprocal quantizing magnetic
field under magnetic quantization, the quantizing electric
field as in inversion layers, the nanothickness as in quantum
wells and quantum-well wires, and with the superlattice pe-
riod as in quantum confined superlattices of small gap semi-
conductors with graded interfaces having various carrier en-
ergy spectra. Some of the significant features that have
emerged from these studies are as follows:

�a� The TPM decreases monotonically with the increase in
electron concentration.

�b� The TPM decreases with doping in heavily doped
semiconductors forming band tails.

�c� The nature of variations is significantly influenced by

the spectrum constants of various materials having dif-
ferent band structures.

�d� The TPM oscillates with inverse quantizing magnetic
field due to the Shubnikov–de Haas effect.

�e� The TPM decreases with the magnitude of the quantiz-
ing electric field in inversion layers.

�f� The TPM exhibits composite oscillations with signifi-
cantly different values in superlattices and various
other quantized structures.

In this article, we have studied the TPM in CNTs and
also in QWs of nonlinear optical, III-V, ternaries, quaterna-
ries, II-VI, IV-VI, stressed materials, n-GaP, p-PtSb2,
n-GaSb, and bismuth on the basis of their respective carrier
energy spectra. In this context, it may be noted that the non-
linear optical materials are also known as tetragonal com-
pounds due to their crystal structure.64 These materials are
being used increasingly in light-emitting diodes, Hall pick-
ups, and thermal detectors.65–67 Rowe and Shay68 demon-
strated that the quasicubic model69 can be used to explain the
observed splitting and symmetry properties of the conduction
and valence bands at the zone center of the k space of the
aforementioned compounds. The s-like conduction band is
singly degenerate and the p-like valence bands are triply de-
generate. The latter splits into three subbands because of the
spin-orbit and the crystal-field interactions. The large contri-
bution of the crystal-field splitting occurs from the noncubic
potential.70 The experimental data on the absorption
constants,71 the effective mass,72 and the optical third-order
susceptibility73 have produced strong evidence that the con-
duction band in the same compound corresponds to a single
ellipsoid of revolution at the zone center in k space.

Considering the crystal potential in the Hamiltonian, and
special features of the nonlinear optical compounds, Kildal74

proposed the energy spectrum of the conduction electrons
under the assumptions of the isotropic momentum matrix
element and the isotropic spin orbit splitting constant, re-
spectively, although the anisotropies in the two aforemen-
tioned band parameters are the significant physical features
of said compounds.75

In Sec. II A, we have formulated the expressions of the
TPM in CNTs by formulating the respective expressions of
the electron statistics for both �n,n� and �n,0� tubes, respec-
tively. In Sec. II B, we have studied the TPM in QWs of
nonlinear optical materials by formulating the generalized
dispersion relation of the conduction electrons, considering
the anisotropies of the effective electron masses and the spin-
orbit splitting of the valance band together with the proper
inclusion of crystal-field splitting in the Hamiltonian through
the k · p formalism. In Sec. II C, it has been shown that the
corresponding results for the QWs of III-V, ternary, and qua-
ternary materials form special cases of our generalized analy-
sis as derived in Sec. II B. The III-V materials are being used
increasingly in integrated optoelectronics,76 passive filter
devices,77 distributed feedback lasers, and Bragg reflectors.78

We have used n-Hg1−xCdxTe and n-In1−xGaxAsyP1−y lattice
matched to InP as examples of ternary and quaternary com-
pounds, respectively. The n-Hg1−xCdxTe is a classic narrow-
gap compound and is an important optoelectronic material
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because its band gap can be varied to cover a spectral range
from 0.8 �m to over 30 �m by adjusting the alloy
composition.79 This compound finds extensive applications
in infrared detector materials80 and photovoltaic detector
arrays81 in the 8−12 �m wave bands. The above uses have
spurred an Hg1−xCdxTe technology for the production of
high-mobility single crystals, with specially prepared surface
layers that are also ideally suitable for narrow subband phys-
ics because the relevant material constants are within the
reach of experiment.82 The quaternary compounds also find
extensive applications in optoelectronics, high electron mo-
bility transistors, visible heterostructure compound lasers, in-
frared light-emitting diodes, lasers for fiber optic systems,83

tandem solar cells,84 avalanche photodetectors,85 long-
wavelength light sources, detectors in optical fiber
communications,86 and new types of optical devices.87 The
expressions for electron concentration per unit length �n1D�
and the TPM for QWs whose energy band structures are
defined by the two-band model of Kane and that of parabolic
energy bands have further been formulated under certain lim-
iting conditions for the purpose of relative assessment. To
perform numerical computations, n-CdGeAs2 and n-Cd3As2

have been used as examples of nonlinear optical and tetrag-
onal compounds.88 The TPM has also been investigated nu-
merically by taking n-InAs, n-InSb, and n-GaAs as examples
of III-V compounds and n-Hg1−xCdxTe and
n-In1−xGaxAsyP1−y lattice-matched to InP as examples of ter-
nary and quaternary materials in accordance with the three-
and the two-band models of Kane together with the parabolic
energy bands, respectively, for the purpose of relative com-
parison among the above-mentioned models.

The II-VI compounds find extensive applications in in-
frared detectors,89 ultrahigh-speed bipolar transistors,90 optic
fiber communications,91 and advanced microwave devices.92

These compounds possess the appropriate direct band gap to
produce light-emitting diodes and lasers from blue to red
wavelengths. The Hopfield model describes the dispersion
relation of both the carriers of II-VI materials where the
splitting of the two-spin states by the spin-orbit coupling and
the crystalline field has been taken into account.93 In Sec.
II D, we shall study the TPM in QWs of II-VI compounds on
the basis of the Hopfield model by formulating the appropri-
ate carrier statistics and taking CdS as an example.

In Sec. II E, we shall study the TPM in QWs of IV-VI
materials, which are being widely used in thermoelectric de-
vices, superlattices, and other quantum effect devices.94 The
dispersion relation of the carriers in IV-VI compounds has
been formulated by Dimmock94 by including the contribu-
tions of the transverse and longitudinal effective masses of
the external bands, which arises from the k ·p perturbations
with the other bands, taken to the second order together with
the special anisotropic properties of the energy band struc-
tures of the above-mentioned compounds. For the purpose of
numerical computations, we have used PbTe, PbSnTe, and
Pb1−xSnxSe as examples of IV-VI compounds. In recent
years, there has been considerable interest in studying the
various electronic properties of stressed compounds because

of their important physical features.95 In Sec. II F, we have
formulated the TPM in QWs of stressed compounds, taking
stressed n-InSb as an example.

The n-GaP, platinum antimonide, and gallium anti-
monide occupy significant positions in the realm of quantum
effect devices due to their important physical properties and
the corresponding dispersion relations.96,110,111 We have stud-
ied the TPM for the QWs of n-GaP, p-PtSb2, and n-GaSb in
Secs. II G, II H, and II I, respectively, by considering the
appropriate carrier energy spectra.

It is well known that the carrier energy spectra in bis-
muth differ considerably from simple spherical surfaces of
the degenerate electron gas, and several models have been
developed to describe the energy band structure of Bi. Earlier
works97,98 demonstrated that the ellipsoidal parabolic model
or the one-band model could describe the carrier properties
of Bi. Shoenberg97 indicated that the de Haas–Van Alphen
and cyclotron resonance experiments supported the one-band
model, although the latter work showed that Bi could be
described by the two-band nonparabolic ellipsoidal Lax
model since the magnetic field dependence of many physical
parameters of Bi supports the above model.99 The magneto-
optical results100 and the ultrasonic quantum oscillation
data101 favor the Lax ellipsoidal nonparabolic model,102

whereas Kao,102 Dinger and Lawson,103 and Koch and
Jensen104 indicated that the Cohen model105 is in better
agreement with the experimental results. It may be noted that
the Hybrid model of Bi as proposed by Takaoka et al.106 also
explains many important physical properties. Besides, Mc-
Clure and Choi107 presented a new model of Bi that fits the
data for a large number of magneto-oscillatory and resonance
experiments. In Sec. II J, we have formulated the TPM in
QWs of Bi in accordance with the aforementioned energy
band models for the purpose of relative assessment. In the
Sec. II K, we have suggested the experimental methods of
determination of the Einstein relation for the diffusivity-
mobility ratio and the carrier contribution to the elastic con-
stants for materials having arbitrary carrier energy spectra.

II. THEORETICAL BACKGROUND

A. Investigation of the TPM in „n, n… and „n, 0… CNTs

For the �n, n� and �n, 0� tubes, the energy dispersion
relations are given by108

Em�ky� = � t�1 + 4 cos
m�

n
cos

kya

2
+ 4 cos2kya

2
,

�1�

−
�

a
� ky �

�

a
�

and

Em�kx� = � t�1 + 4 cos
�3kxa

n
cos

m�

n
+ 4 cos2m�

n
,

�2�
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−
�

�3a
� kx �

�

�3a
,

where the notations are defined in Refs. 108 and 109. Using
Eqs. �1� and �2�, the electron concentration per unit length
�n1D� can be written as

n1D =
4

�a
�A1�EF,m,n� + B1�EF,m,n�� �3�

and

n1D =
4

a��3
�A2�EF,m,n� + B2�EF,m,n�� , �4�

where

A1�EF,m,n� = cos−1� 1
2 ��A2 − 1 + �EF/t�2 − A�� ,

A = cos�m�

n
� ,

EF is the Fermi energy,

B1�EF,m,n� = �
r=1

S0

ZrA1�EF,m,n� ,

r is the set of real positive integers whose upper limit is S0,

Zr = 2�kBT�2r�1 − 21−2r���2r�
�2r

�EF
2r ,

T is the temperature, ��2r� is the zeta function of order 2r,

A2�EF,m,n� = cos−1	�4A�−1
�EF

t
�2

− 1 − 4A2�� ,

and

B2�EF,m,n� = �
r=1

S0

ZrA2�EF,m,n� .

The TPM in this case can, in general, be expressed as60

G =
�2kB

2T

3en1D
� �n1D

�EF
� . �5�

Combining Eqs. �3�–�5�, the expressions of the TPM for
the �n, n� and �n, 0� tubes can be written as

G =
�2kB

2T

3e
�A1��EF,m,n� + B1��EF,m,n�

A1�EF,m,n� + B1�EF,m,n�
� �6�

and

G =
�2kB

2T

3e
�A2��EF,m,n� + B2��EF,m,n�

A2�EF,m,n� + B2�EF,m,n�
� , �7�

where the primes denote the differentiation of the respective
differentiable functions with respect to EF.

B. Investigation of the TPM in QWs of nonlinear
optical materials

The form of the k ·p matrix for the nonlinear optical
materials can be written as

H = 	H1 H2

H2
+ H1

� , �8�

where

H1 = 

Eg 0 P�kz 0

0 �− 2��/3� ��2��/3� 0

P�kz ��2��/3� − �� + 1
3��� 0

0 0 0 0
� �9�

and

H2 = 

0 − f ,+ 0 f ,−

f ,+ 0 0 0

0 0 0 0

f ,+ 0 0 0
� , �10�

in which Eg is the band gap, P� and P� are the momentum
matrix elements parallel and perpendicular to the direction of
the c-axis, respectively, � is the crystal-field splitting con-
stant, �� and �� are the spin-orbit splitting constants parallel
and perpendicular to the direction of the c axis, respectively,
f�= �P� /�2��kx� iky�, and i=�−1.

The diagonalization of the above matrix leads to the ex-
pression of the electron dispersion law in bulk specimens of
nonlinear materials as

��E� = f1�E�ks
2 + f2�E�kz

2, �11�

where

��E� = �E�E + Eg���E + Eg��E + Eg + ��� + ��E + Eg

+ 1
3���� + 2

9E�E + Eg����
2 − ��

2 �� ,

f1�E� = �	2Eg�Eg + ����2m�
* �Eg + 2

3����−1����E + Eg

+ 1
3��� + �E + Eg��E + Eg + 2

3��� + 1
9 ���

2

− ��
2 ��, ks

2 = kx
2 + ky

2,

f2�E� = �	2Eg�Eg + ����2m�
*�Eg + 2

3����−1�

��E + Eg��E + Eg + 2

3���� ,

E is the electron energy measured from the edge of the con-
duction band in the vertically upward direction in the ab-
sence of any quantization, 	�h /2�, h is Planck’s constant,
and

m�
* and m�

* are the effective electron masses at the edge of
the conduction band parallel and perpendicular to the direc-
tion of the c axis, respectively.

The 1D electron energy spectrum in QWs of nonlinear
optical compounds can be expressed as

��E� = f1�E���nx,ny� + f2�E�kz
2, �12�

where ��nx ,ny�= �nx� /dx�2+ �ny� /dy�2, nx�=1,2 ,3 , . . .�, and
ny�=1,2 ,3 , . . .� are the size quantum numbers along the x and
y directions, respectively, and dx and dy are the nanothick-
ness along the respective directions.

The carrier statistics in this case can be expressed as
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n1D =
2

�
�
nx=1

nxmax

�
ny=1

nymax

�T1�EF,nx,ny� + T2�EF,nx,ny�� , �13�

where

T1�EF,nx,ny� � ��1�EF� − f1�EF���nx,ny�
f2�EF�

�1/2

,

T2�EF,nx,ny� � �
r=1

so

Zr�T1�EF,nx,ny�� .

Therefore, combining Eqs. �5� and �13�, we get

G = ��2kB
2T

3e
� �

nx=1

nxmax

�
ny=1

nymax

�T1��EF,nx,ny� + T2��EF,nx,ny��

�
nx=1

nxmax

�
ny=1

nymax

�T1�EF,nx,ny� + T2�EF,nx,ny��

.

�14�

C. Investigation of TPM for QWs of III-V, ternary, and
quaternary materials

�a� Under the conditions �� =��=� �the isotropic spin

orbiting constant�, �=0, and m�
*=m�

* =m* �the isotropic ef-
fective electron mass at the edge of the conduction band�,
Eq. �11� assumes the form

	2k2

2m* = I�E�, I�E� �
E�E + Eg��E + Eg + ���Eg + 2

3��
Eg�Eg + ���E + Eg + 2

3�� .

�15�

Equation �15� describes the dispersion relation of the
conduction electrons in III-V, ternary, and quaternary mate-
rials and is well known in the literature as the three-band
model of Kane, which should be used as such for studying
the electronic properties of such compounds where the spin-
orbit splitting constant is of the order of the band gap.109

The 1D dispersion relation in this case is given by

	2��nx,ny�
2m* +

	2kz
2

2m* = I�E� . �16�

The 1D electron statistics can thus be written as

n1D = �2�2m*

�	
� �

nx=1

nxmax

�
ny=1

nymax

�T3�EF,nx,ny� + T4�EF,nx,ny�� ,

�17�

where

T3�EF,nx,ny� � �I�EF� −
	2

2m*��nx,ny��1/2

and

T4�EF,nx,ny� � �
r=1

s0

ZrT3�EF,nx,ny� .

The use of Eqs. �5� and �17� leads to the expression of
the TPM in this case as

G = ��2kB
2T

3e
� �

nx=1

nxmax

�
ny=1

nymax

�T3��EF,nx,ny� + T4��EF,nx,ny��

�
nx=1

nxmax

�
ny=1

nymax

�T3�EF,nx,ny� + T4�EF,nx,ny��

.

�18�

�b� Under the inequalities��Eg or ��Eg, Eq. �15� as-
sumes the form

E�1 + �0E� =
	2k2

2m* , �0 � 1/Eg. �19�

Equation �19� is known as the two-band model of Kane
and should be as such for studying the electronic properties
of such Kane materials �e.g., InSb� whose energy band struc-
tures satisfy the aforementioned constraints.

The 1D electron statistics in this case is given by

n1D = �2�2m*

�	
� �

nx=1

nxmax

�
ny=1

nymax

�T5�EF,nx,ny� + T6�EF,nx,ny�� ,

�20�

where

T5�EF,nx,ny� � �EF�1 + �0EF� −
	2

2m*��nx,ny��1/2

and

T6�EF,nx,ny� � �
r=1

s0

ZrT5�EF,nx,ny� .

The use of Eqs. �5� and �20� leads to the expression of
the TPM in this case as

G = ��2kB
2T

3e
� �

nx=1

nxmax

�
ny=1

nymax

�T5��EF,nx,ny� + T6��EF,nx,ny��

�
nx=1

nxmax

�
ny=1

nymax

�T5�EF,nx,ny� + T6�EF,nx,ny��

.

�21�

�c� For �0→0, Eq. �19� assumes the well-known form of
the electron dispersion law of wide-gap materials as

E =
	2k2

2m* . �22�

Thus under the condition �0→0, the expressions of n1D

and TPM for QWs in this case can be written from Eqs. �20�
and �21� respectively, as

n1D = 2��2�m*kBT

h
� �

nx=1

nxmax

�
ny=1

nymax

�F−1/2�
1�� �23�

and
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G = ��2kB

3e
� �

nx=1

nxmax

�
ny=1

nymax

�F−3/2�
1��

�
nx=1

nxmax

�
ny=1

nymax

�F−1/2�
1��

, �24�

where 
1= �kBT�−1�EF− ��	2 /2m*���nx ,ny��� and Ft�
1� is
the one-parameter Fermi-Dirac integral of order t0, which
can be written as117

Ft0
�
1� = � 1

��t0 + 1���0

�

yt0�1 + exp�y − 
1��−1dy ,

�25�
y � − 1,

where ��t0+1� is the complete Gamma function for all t0,
analytically continued as a complex contour integral around
the negative axis,

Ft0
�
1� = At0�

�−��

�0+�

yt0�1 + exp�− y − 
1��−1dy , �26�

in which

At0
=

��− t0�
2��− 1

.

Converting the summations over nx and ny to the corre-
sponding integrations over the above-mentioned variables,
from Eq. �24� we can write

G =
�2kB

3e

�F−1/2�EF/kBT��
�F1/2�EF/kBT��

. �27�

Under the condition of carrier nondegeneracy, Eq. �27�
gets simplified into the classical TPM equation as given in
the Introduction.

D. Investigation of TPM for QWs of II-VI materials

The dispersion relation of the conduction electrons in
bulk specimens of II-VI compounds in accordance with the
Hopfield model can be expressed as93

E = Aoks
2 + Bokz

2 � Coks, �28�

where Ao�	2 /2m�
* , Bo�	2 /2m�

*, and Co represents the
splitting of the two-spin states by the spin-orbit coupling and
the crystalline field. For QWs of II-VI materials, the 1D dis-
persion relation assumes the form

E = Ao��nx,ny� + Bokz
2 � Co

���nx,ny� . �29�

The use of Eq. �29� leads to the expression of the elec-
tron concentration per unit length as

n1D = � kBT

�B0
�1/2

�
nx=1

nxmax

�
ny=1

nymax

�F−1/2�
2,+� + F−1/2�
2,−�� , �30�

where


2,� = �kBT�−1�EF − �Ao��nx,ny� � Co
���nx,ny��� .

Using Eqs. �5� and �30�, the TPM in QWs in this case
can be expressed as

G = ��2kB

3e
� �

nx=1

nxmax

�
ny=1

nymax

�F−3/2�
2,+� + F−3/2�
2,−��

�
nx=1

nxmax

�
ny=1

nymax

�F−1/2�
2,+� + F−1/2�
2,−��

. �31�

Under the conditions Co→0 and m�
*=m�

* =m*, Eq. �31�
gets simplified to the well-known form as given by Eq. �24�.

E. Investigation of TPM for QWs of IV-VI
compounds

The dispersion relation of the conduction electrons in
IV-VI materials can be expressed following Dimmock as94

��−
Eg

2
−

	2ks
2

2mt
− −

	2kz
2

2ml
−��� +

Eg

2
+

	2ks
2

2mt
+ +

	2kz
2

2ml
+�

= P�
2 ks

2 + P�
2kz

2, �32�

where � is the electron energy as measured from the center
of the band gap Eg, and mt

� and ml
� represent the contribu-

tions of the transverse and longitudinal effective masses of
the external L6

+ and L6
− bands arising from the k ·p perturba-

tions with the other bands taken to the second order, respec-
tively.

Substituting

P�
2 =

	2Eg

2mt
* ,

P�
2 =

	2Eg

2ml
* ,

and

� = E +
Eg

2

�where mt
* and ml

* are the transverse and longitudinal effec-
tive masses at k=0� in Eq. �32�, we can write

�E −
	2ks

2

2mt
− −

	2kz
2

2ml
−��1 + �oE + �o

	2ks
2

2mt
+ + �o

	2kz
2

2ml
+�

=
	2ks

2

2mt
* +

	2kz
2

2ml
* . �33�

The 1D dispersion relation in QWs of IV-VI compounds
assumes the form
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E�1 + �0E� + �0E	 x

x4
+

	2

2x5
�ny�

dy
�2� + �0E

	2

2x6
�nz�

dz
�2

− �1 + �0E�	 x

x1
+

	2

2x2
�ny�

dy
�2� − �0	 x

x1
+

	2

2x2
�ny�

dy
�2�	 x

x4

+
	2

2x5
�ny�

dy
�2� − �0	 x

x1
+

	2

2x2
�ny�

dy
�2� 	2

2x6
�nz�

dz
�2

− �1 + �0E�
	2

2x3
�nz�

dz
�2

− �0
	2

2x3
�nz�

dz
�2	 x

x4
+

	2

2x5
�ny�

dy
�2�

− �0
	2

2x3
�nz�

dz
�2 	2

2x6
�nz�

dz
�2

=
x

m1
+

	2

2m2
�ny�

dy
�2

+
	2

2m3
�nz�

dz
�2

, �34�

where

x =
	2kx

2

2
,

x4 = mt
+,

x5 =
mt

+ + 2ml
+

3
,

x6 =
3mt

+ml
+

2ml
+ + mt

+ ,

x1 = mt
−,

x2 =
mt

− + 2ml
−

3
,

x3 =
3mt

−ml
−

2ml
− + mt

− ,

m1 = mt
*,

m2 =
mt

* + 2ml
*

3
,

and

m3 =
3ml

*mt
*

mt
* + 2ml

* .

The use of Eq. �33� leads to the expression of n1D as

n1D =
2gv

�	�a1
�
ny=1

nymax

�
nz=1

nzmax

�T7�EF,ny,nz� + T8�EF,ny,nz�� ,

�34��

where gv is the valley degeneracy,

T7�EF,ny,nz� = ��b1
2�EF,ny,nz� + 4a1c1�EF,ny,nz�

− b1�EF,ny,nz��1/2,

a1 =
�0

x1x4
,

b1�EF,ny,nz� = 
− �0EF

x4
+

1 + �0EF

x1
+ �0	 	2

2x2x4
�ny�

dy
�2

+
	2

2x1x5
�ny�

dy
�2� +

�0	2

2x1x6
�nz�

dz
�2

+
�0	2

2x3x4
�nz�

dz
�2

+
1

m1
� ,

c1�EF,ny,nz� = 
EF�1 + �0EF� + �0EF
	2

2x5
�ny�

dy
�2

+ �0EF
	2

2x6
�nz�

dz
�2

− �1 + �0EF�	 	2

2x2
�ny�

dy
�2� − �0

	4

4x2x5
�ny�

dy
�4

− �0
	4

4x2x6
�ny�

dy
�2�nz�

dz
�2

− �1 + �0EF�
	2

2x3
�nz�

dz
�2

− �0
	4

4x3x5
�ny�

dy
�2�nz�

dz
�2

− �0
	4

4x3x6
�ny�

dy
�2�nz�

dz
�2

−
	2

2m2
�ny�

dy
�2

−
	2

2m3
�nz�

dz
�2� ,

and

T8�EF,nx,ny� � �
r=1

s0

ZrT7�EF,nx,ny� .

Thus, using Eqs. �5� and �34�, the expression of the TPM
for QWs of IV-VI compounds can be written as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T7��EF,ny,nz� + T8��EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T7�EF,ny,nz� + T8�EF,ny,nz��

.

�35�
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Under the conditions ml
�→�, mt

�→�, and ml
*=mt

*

=m*, Eq. �32� gets simplified into the form as given by Eq.
�19�.

F. Investigation of TPM for QWs stressed compounds

The dispersion relation of the conduction electrons in
bulk specimens of stressed materials can be written as95

kx
2

�a*�E��2 +
ky

2

�b*�E��2 +
kz

2

�c*�E��2 = 1, �36�

where

�a*�E��2 =
k0

*�E�
A0

*�E� + 1
2D0

*�E�
,

k0
*�E� = �E − C1

c� −
2C2

2�xy
2

3Eg�
� 3Eg�

2B2
*2 ,

� is the trace of the strain tensor �̂, which can be written as

�̂ = ��xx �xy o

�xy �yy o

o o �zz
� ,

�xx, �xy, �yy, and �zz are its various elements, C1
c is the

conduction-band deformation potential constant, C2
c is a con-

stant that describes the strain interaction between the con-

duction and the valance bands, Eg�=E+ Ā, Ā=Eg−C1
c�, B2

* is
the momentum matrix element,

A0
*�E� = �1 −

�a0 + C1
c��

Eg�
+

3b0�xx

2Eg�
−

b0�

2Eg�
� ,

a0=−�x0+2y0� /3, b0= �x0−y0� /3, where x0, y0, and Z are the
matrix elements of the strain projection operator,

D0
*�E� =

�3d�xy

Eg�
,

d = 2Z/�3,

�b*�E��2 =
k0

*�E�

�A0
*�E� − 1

2D0
*�E�� ,

�c*�E��2 =
k0

*�E�
L�E�

,

and

L�E� = �1 +
�a0 + C1

c��
Eg�

+
3b0�zz

2Eg�
−

b0�

2Eg�
� .

The 1D electron energy spectrum in QWs of stressed
materials assumes the form

kx
2

�a*�E��2 +
1

�b*�E��2 �ny�/dy�2 +
1

�c*�E��2 �nz�/dz�2 = 1.

�37�

Using Eq. �37�, the electron concentration per unit length
can be written as

n1D = � 2

�
� �

ny=1

nymax

�
nz=1

nzmax

�T9�EF,ny,nz� + T10�EF,ny,nz�� , �38�

where

T9�EF,ny,nz� = a*�EF��1 − ��b*�EF��−2�ny�/dy�2�

− ��c*�EF��−2�nz�/dz�2��1/2

and

T10�EF,ny,nz� � �
r=1

so

ZrT9�EF,ny,nz� .

Using Eqs. �5� and �38�, the TPM is given by

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T9��EF,ny,nz� + T10� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T9�EF,ny,nz� + T10�EF,ny,nz��

.

�39�

In the absence of stress together with the substitution
B2

*2=3	2�Eg /4m*�, Eq. �36� assumes the same form as given
by Eq. �19�.

G. Investigations of TPM for QWs of n-GaP

The dispersion relation of the conduction electrons in
bulk specimens of n-GaP is given by96

E =
	2ks

2

2m
t
* +

	2

2m
l
* ��ks

2 + kz
2 + k0

2� − �	4k0
2

m
l
*2 �ks

2 + kz
2�

+ �VG�2�1/2

−
	2

2m
l
*k0

2 + �VG� , �40�

where, k0, �VG�, and � are constants of the energy spectrum.
The 1D dispersion relation in QWs of n-GaP can be

expressed as

E = �1ks0
2 + C2�nz�/dz�2 + �VG� − �D1ks0

2 + �VG�2

+ D1�nz�/dz�2� , �41�

where

�1 = � 	2

2mt
* +

	2�

2ml
*� ,

ks0
2 = kx

2 + �ny�

dy
�2

,

C2 =
	2

2ml
* ,

and

D1 = �	4ko
2/�ml

*�2� .
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Using Eq. �41�, the electron concentration per unit length
in QWs of n-GaP assumes the form

n1D = � 2gv

��1
� �

ny=1

nymax

�
nz=1

nzmax

�T11�EF,ny,nz� + T12�EF,ny,nz�� ,

�42�

where

T11�EF,ny,nz� = 	��2�1�EF − t1� + D1� − ��2a�EF − t1�

+ D1�2 − 4�1
2��EF − t1�2 − t2��1/2��2�1

2�−1

− �ny�

dy
�2�1/2

,

t1 = �VG� + C2�nz�/dz�2,

t2 = ��VG�2 + D1�nz�/dz�2� ,

and

T12�EF,ny,nz� = �
r=1

So

Zr�T11�EF,ny,nz�� .

The use of Eqs. �5� and �42� leads to the expression of
the TPM for QWs of n-GaP as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T11� �EF,ny,nz� + T12� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T11�EF,ny,nz� + T12�EF,ny,nz��

.

�43�

Under the conditions k0=0, �VG�=0, mt
*=ml

*=m*, and
�=0, Eq. �40� assumes the form as given by Eq. �22�.

H. Investigation of the TPM for the QWs of p-type
platinum antimonide „p-PtSb2…

The dispersion relation of the carriers in p-type PtSb2

can be written as110

�E + �1
a2

4
k2 − l1ks

2a2

4
��E + �0� − �1

a2

4
k2 − n�

a2

4
ks

2�
= I0

a4

16
k4, �44�

where �1, l1, �0�, �1, n�, and I0 are the energy band constants
and a is the lattice constant as defined in Ref. 110.

Inserting the negative signs of l1 and n�, we get

�E + �1�ks
2 + �2�kz

2��E + �0� + �3�ks
2 − �4�kz

2� = I1�kz
2 + ks

2�2,

�45�

where

�1� = ��1
a2

4
− l1

a2

4
� ,

�2� = �1
a2

4
,

�3� = �n�
a2

4
− �1

a2

4
� ,

�4� = n�
a2

4
,

I1 = I0�a

4
�2

.

The use of Eq. �45� leads to the expression of the 1D
dispersion law in QWs of p-PtSb2 as

kx
2 + �ny�

dy
�2

= �2N1�−1�N2�E,nz�

+ �N2
2�E,nz� + 4N1N3�E,nz�� , �46�

where

N1 = �I1 − �1��3�� ,

N2�E,nz� = 	�3�E − �1�
E + �0� − �4��nz�

dz
�2

+ �2��3��nz�

dz
�2

− 2I1�nz�

dz
�2�� ,

N3�E,nz� = 
E	E + �0� − �4��nz�

dz
�2� + �2��nz�

dz
�2


	E + �0� − �4��nz�

dz
�2� − I1�nz�

dz
�4� .

The formulation of the TPM requires the expression of
1D carrier concentration per unit length, which can, in turn,
be written as

n1D = �2gv

�
� �

ny=1

nymax

�
nz=1

nzmax

�T13�EF,ny,nz� + T14�EF,ny,nz�� ,

�47�

where

T13�EF,ny,nz� = 	�4�EF,nz� − �ny�

dy
�2�1/2

,

�4�EF,nz� = �N2�EF,nz� + �N2
2�EF,nz� + 4N1N3�EF,nz��


�2N1�−1,

and

T14�EF,ny,nz� = �
r=1

S

Zr�T13�EF,ny,nz�� .

The use of Eqs. �5� and �47� leads to the expression of
the TPM in this case as
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G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T13� �EF,ny,nz� + T14� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T13�EF,ny,nz� + T14�EF,ny,nz��

.

�48�

I. Investigation of the TPM for the QWs of
n-GaSb

The dispersion relation of the conduction-band electrons
in bulk specimens of n-GaSb can be written as111

E = �−
Eg

2
+

Eg

2
�1 + �0k2�1/2 +

�0	2k2

2mo

+
v0f1�k�	2

2mo
�

�0f2�k�	2

2mo
� , �49�

where �0=4P2�Eg+ 2
3���Eg

2�Eg+���−1, P is the momentum
matrix element, f1�k�=k−2�kx

2ky
2+ky

2kz
2+kz

2kx
2� represents the

warping of the Fermi surface, f2�k�= ��k2�kx
2ky

2+ky
2kz

2+kz
2kx

2�
−9kx

2ky
2kz

2�1/2k−1� represents the inversion asymmetry splitting
of the conduction band, and �0, v0, and �0 represent the
constants of the electron spectrum in this case.

The use of the method of the spherical averaging112 leads
to the simplified expression of the above-mentioned disper-
sion relation as

k2 = A5�E� , �50�

in which

A5�E� = �2S1
2�−1��S1�1 + 2�0E� − �0� − ��0

2 − 4�0S1�1

+ 2�0E� + 4S1
2�1 − 20�0E − 28�0

2E2��1/2� ,

where

S1 = ��0	2

m0
���0 + 0.1�0 + 0.856�0� .

Using Eq. �50�, the 1D dispersion relation in QWs of
n-GaSb can be written as

kx
2 = A5�E� − �ny�

dy
�2

− �nz�

dz
�2

. �51�

The expression of electron concentration per unit length
in QWs of n-GaSb can, in turn, be written as

n1D = � 2

�
� �

ny=1

nymax

�
nz=1

nzmax

�T15�EF,ny,nz� + T16�EF,ny,nz�� , �52�

where

T15�EF,ny,nz� = 	A5�EF� − �ny�

dy
�2

− �nz�

dz
�2�1/2

and

T16�EF,ny,nz� = �
r=1

so

Zr�T15�EF,ny,nz�� .

The use of Eqs. �5� and �52� leads to the expression of
the TPM in this case as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T15� �EF,ny,nz� + T16� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T15�EF,ny,nz� + T16�EF,ny,nz��

.

�53�

Under the substitutions �0=0, v0=0, �0=0, and

P2 =
	2

2m*
Eg�Eg + ��

�Eg + 2
3�� ,

Eq. �49� gets simplified into that given by Eq. �19�.

J. Investigation of the TPM for the QWs of Bi
in accordance with the McClure and Choi,
the Hybrid, the Cohen, the Lax, and the parabolic
ellipsoidal models

1. The McClure and Choi model

The dispersion relation of the carriers in Bi can be writ-
ten, following McClure and Choi,107 as

E�1 + �0E� =
px

2

2m1
+

py
2

2m2
+

pz
2

2m3
+

py
2

2m2
�0E
1 − �m2

m2�
��

+
py

4�0

4m2m2�
−

�0px
2py

2

4m1m2
−

�0py
2pz

2

4m2m3
, �54�

where pi=	ki; i=x,y, and z; m1, m2, and m3 are the effective
carrier masses at the band edge along the x, y, and z direc-
tions, respectively; and m2� is the effective-mass tensor com-
ponent at the top of the valence band �for electrons� or at the
bottom of the conduction band �for holes�.

The 1D dispersion relation in QWs of Bi can be ex-
pressed as

kx
2	 	2

2m1
− � �0	2

4m1m2
�ny�

dy
�2��

+ �nz�

dz
�2	 	2

2m3
− � �0	2

4m2m3
�ny�

dy
�2��

= E�1 + �0E� −
�0

4m2m2�
�	ny�

dy
�4

− �0E
1 − �m2

m2�
��


�	ny�

dy
�2

. �55�

Using Eq. �55�, the electron concentration per unit length
for QWs of Bi can be written as

n1D = �2gv

�
� �

ny=1

nymax

�
nz=1

nzmax

�T17�EF,ny,nz� + T18�EF,ny,nz�� ,

�56�

where
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T17�EF,ny,nz�

= 
	EF�1 + �0EF� −
�0

4m2m2�
�	ny�

dy
�4

− �0EF
1 − �m2

m2�
���	ny�

dy
�2

− �nz�

dz
�2	 	2

2m3
− � �0	2

4m2m3
�ny�

dy
�2����1/2


	 	2

2m1
−

�0	2

4m1m2
�ny�

dy
�2�−1/2

and

T18�EF,ny,nz� = �
r=1

so

Zr�T17�EF,ny,nz�� .

Using Eqs. �5� and �56�, the expression of the TPM in
this case can be written as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T17� �EF,ny,nz� + T18� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T17�EF,ny,nz� + T18�EF,ny,nz��

.

�57�

Under the condition �0→0 and m1=m2=m3=m*, Eq.
�54� gets simplified to Eq. �22�.

2. The Hybrid model

The electron dispersion law in bulk specimens of Bi in
accordance with the Hybrid model106 can be represented as

E�1 + �0E� =
�0�E�	2ky

2

2M2
+

�0�0	4ky
4

4M2
2 +

	2kx
2

2m1
+

	2kz
2

2m3
,

�58�

in which

�0�E� = �1 + �0E�1 − �0� + �0� ,

�0 =
M2

m2
,

�0 =
M2

M2�
,

and the other notations are defined in Ref. 106.
The 1D electron dispersion relation assumes the form

	2kx
2

2m1
+

	2

2m3
�nz�

dz
�2

= E�1 + �0E� −
�0�E�	2

2M2
�ny�

dy
�2

− ��0�0	4

4M2
2 �ny�

dy
�4� . �59�

The use of Eq. �59� leads to the expression of the elec-
tron concentration per unit length in QWs for Bi in this case
as

n1D = �2gv

�

�2m1

	
� �

ny=1

nymax

�
nz=1

nzmax

�T19�EF,ny,nz�

+ T20�EF,ny,nz�� , �60�

in which

T19�EF,ny,nz� = 	EF�1 + �0EF� −
�0�E�	2

2M2
�ny�

dy
�2

−
�0�0

4M2
2 	4�ny�

dy
�4

−
	2

2m3
�nz�

dz
�2�1/2

and

T20�EF,ny,nz� = �
r=1

so

Zr�T19�EF,ny,nz�� .

Using Eqs. �5� and �60�, the expression of the TPM in
this case assumes the form

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T19� �EF,ny,nz� + T20� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T19�EF,ny,nz� + T20�EF,ny,nz��

.

�61�

3. The Cohen model

In accordance with the Cohen model,105 the dispersion
law of the carriers in Bi is given by

E�1 + �0E� =
px

2

2m1
+

pz
2

2m3
−

�0Epy
2

2m2�
+

py
2�1 + �0E�

2m2

+
�0py

4

4m2m2�
. �62�

The 1D dispersion relation in QWs for Bi can be ex-
pressed as

E�1 + �0E� +
�0E	2

2m2�
�ny�

dy
�2

−
�1 + �0E�	2

2m2
�ny�

dy
�2

−
�0	4

4m2m2�
�ny�

dy
�4

−
	2

2m3
�nz�

dz
�2

=
	2kx

2

2m1
. �63�

The use of Eq. �63� leads to the expression of the 1D
carrier statistics of QWs for Bi in this case as

n1D = �2gv

�

�2m1

	
� �

ny=1

nymax

�
nz=1

nzmax

�T21�EF,ny,nz�

+ T22�EF,ny,nz�� �64�

in which
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T21�EF,ny,nz� = 	EF�1 + �0EF� +
�0EF	2

2m2�
�ny�

dy
�2

− � �1 + �0EF�	2

2m2
�


�ny�

dy
�2

− � �0	4

4m2m2�
�ny�

dy
�4�

− 	 	2

2m3
�nz�

dz
�2��1/2

and

T22�EF,ny,nz� = �
r=1

so

Zr�T21�EF,ny,nz�� .

The use of Eqs. �5� and �64� leads to the expression of
the TPM of QWs of Bi as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T21� �EF,ny,nz� + T22� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T21�EF,ny,nz� + T22�EF,ny,nz��

.

�65�

4. The Lax model

The electron energy spectra in bulk specimens of Bi in
accordance with the Lax model can be written as99

E�1 + �0E� =
px

2

2m1
+

py
2

2m2
+

pz
2

2m3
. �66�

The 1D electron dispersion law is given by

E�1 + �0E� −
	2

2m2
�ny�

dy
�2

−
	2

2m3
�nz�

dz
�2

=
	2kx

2

2m1
. �67�

The electron concentration per unit length can be written
as

n1D = �2gv

�

�2m1

	
� �

ny=1

nymax

�
nz=1

nzmax

�T23�EF,ny,nz�

+ T24�EF,ny,nz�� , �68�

in which

T23�EF,ny,nz�

= 	EF�1 + �0EF� − � 	2

2m2
�ny�

dy
�2�

− � 	2

2m3
�nz�

dz
�2��1/2

and

T24�EF,ny,nz� = �
r=1

so

Zr�T23�EF,ny,nz�� .

The use of Eqs. �5� and �68� leads to the expression of
the TPM of QWs of Bi as

G = ��2kB
2T

3e
� �

ny=1

nymax

�
nz=1

nzmax

�T23� �EF,ny,nz� + T24� �EF,ny,nz��

�
ny=1

nymax

�
nz=1

nzmax

�T23�EF,ny,nz� + T24�EF,ny,nz��

.

�69�

5. The parabolic ellipsoidal model

This type of band model in bulk specimens of Bi as-
sumes the form97,98

E =
px

2

2m1
+

py
2

2m2
+

pz
2

2m3
. �70�

The analytical forms of the electron statistics and the
TPM in this case are given by Eqs. �23� and �24�, where m*

should be replaced by m1,

�
nx=1

nxmax

�
ny=1

nymax

by

�
ny=1

nymax

�
nz=1

nzmax

,

and 
1 by

�kBT�−1
EF − 	 	2

2m2
�ny�

dy
�2

+
	2

2m3
�nz�

dz
�2�� .

K. The results of this paper find the following two
important applications in the areas of quantum effect
devices

�i� It is well known that the Einstein relation for the
diffusivity-mobility ratio �D /�� is an important quantity for
studying the transport properties of semiconductor devices
since the diffusion constant �a quantity very useful for device
analysis but whose exact experimental determination is
rather difficult� can be derived from this ratio if one knows
the experimental values of the mobility.113 The performance
of the electronic devices at device terminal and the speed of
operation of modern switching transistors are significantly
influenced by the degree of carrier degeneracy present in
these devices. The simplest way of analyzing such devices
taking into account the degeneracy of bands is to use the
appropriate Einstein relation to express the performance at
the device terminals and switching speed in terms of carrier
concentration.114 The Einstein relation can, in general, be
written as115

D

�
= �n0/e�� �n0

�EF
, �71�

where n0 is the electron concentration.
Using Eqs. �71� and �5�, we get
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D

�
= �2kBT/�3e2G� . �72�

Therefore, we can experimentally determine the D /�
ratio for any materials having arbitrary dispersion laws by
knowing the experimental values of G. Since G decreases
with increasing n0, from Eq. �72�, we can infer that the D /�
ratio will increase with an increase in n0, and this compat-
ibility is the direct test of our suggestion for an experimental
determination of the Einstein relation.

�ii� The knowledge of the carrier contribution to the elas-
tic constants ��C44 and �C456� is very important in studying
the mechanical properties of the materials in nanotechnology,
and has been investigated extensively in the literature.116 The
electronic contribution to the second- and third-order elastic
constants can be written as116

�C44 = −
G0

2

9

�n0

�EF
�73�

and

�C456 =
G0

3

27

�2n0

�EF
2 , �74�

where G0 is the deformation potential constant. Thus, using
Eqs. �5�, �73�, and �74�, we can write

�C44 = �− n0G0
2eG/�3�2kB

2T�� �75�

and

Therefore, the experimental graph of G versus n0 allows us
to determine the electronic contribution to the elastic con-
stants for materials having arbitrary carrier energy spectra.

Thus, we can summarize the whole mathematical back-
ground in the following way:

In this article, we have investigated the TPM in CNTs.
We have also studied the TPM in QWs of nonlinear optical
materials on the basis of a newly formulated electron disper-
sion law considering the anisotropies of the effective electron
masses, the spin-orbit splitting constants, and the influence
of crystal-field splitting within the framework of the k ·p
formalism. The corresponding results for the QWs of III-V,
ternary, and quaternary compounds form a special case of
our generalized analysis. The TPM has also been studied for
QWs of II-VI, IV-VI, stressed materials, n-GaP, p-PtSb2, and
n-GaSb compounds by using the models of Hopfield,93

Dimmock,94 Seiler,95 Rees,96 Emtage,110 and Seiler,111 re-
spectively. The TPM for the QWs of bismuth has further
been investigated in accordance with the McClure and Choi
model,107 the Hybrid model,106 the Cohen model,105 the Lax
model,99 and the parabolic ellipsoidal model,98 respectively.
The well-known expression of the TPM of wide gap materi-
als has been obtained as a special case of our generalized
analysis under certain limiting conditions from all the results.
This indirect test not only exhibits the mathematical compat-
ibility of our formulation, but it also indicates the fact that
our simple analysis is a more generalized one, since one can
obtain the corresponding results for bulk specimens of rela-
tively wide gap materials having parabolic energy bands un-
der certain limiting conditions from our present investiga-

tions. In addition, the results of this article find two specific
applications, namely the suggestions for the experimental de-
terminations of the Einstein relation for the diffusivity-to-
mobility ratio, and the carrier contribution to the elastic con-
stants for 1D systems having arbitrary carrier energy spectra
in the realm of nanoscience.

III. RESULTS AND DISCUSSION

Using Eqs. �5�, �13�, and �14� and Table I for numerical
values of the energy band constants, in Figs. 1�a� and 1�b�
we have plotted the TPM for QWs of n-CdGeAs2 and
n-Cd3As2 as a function of film thickness, at low tempera-
tures, where the quantum effects become prominent, in
which curves �a� and �b� have been drawn corresponding to
�=0 and ��0, respectively, for the purpose of assessing the
influence of crystal-field splitting on the TPM in QWs of
both materials. The TPM in accordance with the three-band
model of Kane �curve c, for the purpose of assessing the
combined influence of the crystal-field splitting and the
anisotropies of the effective electron mass and the spin-orbit
splitting of the valance bands�, the two-band model of Kane
�curve d, to assess the influence of the spin-orbit splitting
constant�, and the parabolic energy bands �curve e, to assess
the influence of band nonparabolicity� have been drawn for
relative assessment. In Figs. 1�c� and 1�d�, we have drawn
the TPM as a function of n1D for all the cases of Figs. 1�a�
and 1�b�. Using Eq. �5� together with Eqs. �3�, �6�, �4�, and

TABLE I. The numerical values of the energy band constants of the mate-
rials as used in this article.

�a� n-Cd3As2:118�Eg�=0.095 eV, �� =0.27 eV,��=0.25 eV,
m�

*=0.00697m0 m�
* =0.013933m0, and �=0.085 eV

�b� n-CdGeAs2:118 Eg=0.57 eV, �� =0.30 eV, ��=0.36 eV,
m�

*=0.034m0, m�
* =0.039m0, and �=−0.21 eV

�c� n-InAs:109 Eg=0.4180 eV, �=0.38 eV, and m*=0.0265m0

�d� n-InSb:109 Eg=0.2352 eV, �=0.81 eV, and m*=0.01359m0

�e� n-GaAs:109 Eg=1.55 eV, �=0.35 eV, and m*=0.07m0

�f� Hg1−xCdxTe:86 Eg= �−0.302+1.93x+5.35
10−4�1−2x�T−0.810x2

+0.832x3� eV, �= �0.63+0.24x−0.27x2� eV, and m*=0.1m0Eg �eV�−1

�g� In1−xGaxAsyP1−y:
87 Eg= �1.337−0.73y+0.13y2� eV, �= �0.114+0.26y

−0.22y2� eV, and m*= �0.08−0.039y�m0

�h� CdS:93 m�
*=0.7m0, m�

* =1.5m0, and �̄0=1.4
10−10 eV m
�i� n-PbTe:118 mt

−=0.070m0, ml
−=0.54m0, mt

+=0.010m0, ml
+=1.4m0, P�

=141 meV nm, P�=486 meV nm, gv=4, and Eg=190 meV
�j� n-PbSnTe:118 mt

−=0.063m0, ml
−=0.41m0, mt

+=0.089m0, ml
+=1.6m0, P�

=137 meV nm, P�=464 meV nm, gv=4, and Eg=90 meV
�k� n-Pb1−xSnxSe:118 x=0.31, gv=4, mt

−=0.143m0, ml
−=2.0m0,

mt
+=0.167m0, ml

+=0.286m0, P� =3.2
10−10 eV m, P�=4.1
10−10 eV m,
gv=4, and Eg=0.137 eV
�l� Stressed n-InSb:95 m*=0.048m0, Eg=0.081 eV, B2

*=14
10−11 eV m,
C1

c =4 eV, C2
c =3 eV, a0=−10 eV, b0=−2 eV, d=−5 eV, S11=0.6


10−3 �kbar�−1, S22=0.42
10−3 �kbar�−1, S33=0.39
10−3 �kbar�−1, and
S12=0.5
10−3 �kbar�−1

�m� n-GaP:96 m�
*=0.92m0, �=1, k0=1.7
1019 m−1, VG=0.21 eV, m�

*

=0.25m0, and gv=6
�n� PtSb2:110 �1=0.02 eV, l1=0.32 eV, �1=0.39 eV, n1=0.65 eV, a
=6.43 Å, I0=0.30 �eV�2, �0�=0.02 eV, and gv=6
�o� n-GaSb:111 Eg=0.81 eV, �=0.80 eV, P=9.48
10−10 eV m, �̄0=−2.1,
v̄0=−1.49, and �̄0=0.42
�p� Bismuth:107 Eg=0.0153 eV, m1=0.00581m0, m2=1.25m0, m3

=0.0113m0, m2�=0.36m0, M2=0.128m0, M2�=0.80m0, gv=3, and gs=2
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�7�, we have superimposed the plots of the TPM for the �n,
n� and �n, 0� carbon nanotubes as a function of n1D as shown
by curves �f� and �g� of Figs. 1�c� and 1�d�, respectively, for
the purpose of relative comparison.

It appears that the TPM increases with the increasing
film thickness in quantum steps with increasing step length
for the said materials. Furthermore, for both the �n, n� and �
n, 0� CNTs, the TPM is a decreasing oscillatory function
with increasing electron statistics, and the magnitude of the
TPM is lower than that of the TPM in QWs, which is appar-
ent from both Figs. 1�c� and 1�d� which show the character-
istic features of CNTs. The influence of quantum confine-
ment is immediately apparent from the all the curves of Figs.
1�a�–1�d�, since the TPM depends strongly on the film thick-
ness and electron concentration per unit length in a step-like
manner, which is in direct contrast with the corresponding
bulk specimens. Moreover, the TPM can become several or-
ders of magnitude lower than that of the corresponding bulk
specimens of the same materials, which is also a direct sig-
nature of quantum confinement. It appears from the curves
�a�–�e� of Figs. 1�c� and 1�d� that the TPM decreases with
the increasing n1D in a step-like manner for all types of band

models as considered here, although the widely different nu-
merical values are determined by the constants of the energy
spectra. The step functional dependence is due to the cross-
ing over of the Fermi level by the quantized subbands. For
each coincidence of a quantized level with the Fermi level,
there would be a discontinuity in the density-of-states func-
tion resulting in a change of the height of the steps. With
large values of film thickness, the height of the steps de-
creases and the TPM decreases with increasing electron sta-
tistics in a nonoscillatory manner. The height of the step and
the rate of increment are totally determined by the band
structure. The influence of crystal-field splitting is immedi-
ately apparent from comparing curves �a� and �b� for QWs
of both n-CdGeAs2 and n-Cd3As2 from Figs. 1�a�–1�d�. The
crystal-field splitting decreases the numerical values of the
TPM in both cases. The numerical values of the TPM in
accordance with the three-band model of Kane is greater
than that of the corresponding two-band model, which re-
flects the fact that the presence of the spin-orbit splitting
constants enhance the magnitude of the TPM in both cases. It
may be noted that the presence of the band nonparabolicity
in accordance with the two-band model of Kane enhances

FIG. 1. �a� Plot of the TPM as a function of film thickness for the QWs of n-CdGeAs2 in accordance with �a� the generalized proposed band model with �=0,
�b� the generalized band model with ��0, �c� the simplified three-band model of Kane, where, m*= ��m�

*+m�
* � /2� and �= ����

*+��
* � /2�, �d� the two-band

model of Kane, and �e� the parabolic energy bands. �b� Plot of the TPM as a function of film thickness for the QWs of n-Cd3As2 in accordance with �a� the
generalized proposed band model with �=0, �b� the generalized band model with ��0, �c� the simplified three-band model of Kane, where m*= ��m�

*

+m�
* � /2� and �= ����

*+��
* � /2�, �d� the two-band model of Kane, and �e� the parabolic energy bands. �c� Plot of the TPM as a function of electron

concentration per unit length for the QWs of n-CdGeAs2 in accordance with �a� the generalized proposed band model with �=0, �b� the generalized band
model with ��0, �c� the three-band model of Kane, where m*= ��m�

*+m�
* � /2� and �= ����

*+��
* � /2�, �d� the two-band model of Kane, and �e� the parabolic

energy bands. The curves �f� and �g� exhibit the corresponding plots for �n, n� and �n, 0� CNTs, respectively. �d� Plot of the TPM as a function of electron
concentration per unit length for the QWs of n-Cd3As2 in accordance with �a� the generalized proposed band model with �=0, �b� the generalized band model
with ��0, �c� the three-band model of Kane, where m*= ��m�

*+m�
* � /2� and �= ����

*+��
* � /2�, �d� the two-band model of Kane, and �e� the parabolic energy

bands. The curves �f� and �g� exhibit the corresponding plots for �n, n� and �n, 0� CNTs, respectively.
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the peaks of the steps for TPM for all cases of quantum
confinement. The appearance of the humps of the respective
curves is due to the redistribution of the electrons among the
quantized energy levels when the quantum numbers corre-
sponding to the highest occupied level change from one fixed
value to the other. With varying electron concentration, a
change is reflected in the TPM through the redistribution of
the electrons among the quantized levels. Although the TPM
varies with all the variables in all the limiting cases, as is
evident from all the curves of Figs. 1�a�–1�d�, the rates of
variations are totally band-structure-dependent. Thus, for two

types of one-dimensional systems, the natures of the varia-
tion of the TPM are also different, which exhibits the signa-
tures of the two entirely different two-dimensional quantum
confinements.

Using Eqs. �17�, �18�, �20�, �21�, �23�, and �24�, in Figs.
2�a�–2�e� we have plotted the TPM as a function of the film
thickness for QWs of n-InAs, n-GaAs, n-InSb, Hg1−xCdxTe,
and In1−xGaxAsyP1−y lattice matched to InP, in which the
plots �a�, �b�, and �c� represent the three-band model of
Kane, the two-band model of Kane, and that of the parabolic
energy band, respectively. Figures 2�a�–2�e� have further

FIG. 2. �a� Plot of the TPM as a function of film thickness for the QWs of n-InAs in accordance with �a� the three-band model of Kane, �b� the two-band
model of Kane, and �c� the parabolic energy bands. �b� Plot of the TPM as a function of film thickness for the QWs of n-GaAs in accordance with �a� the
three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands. �c� Plot of the TPM as a function of film thickness for the
QWs of n-InSb in accordance with �a� the three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands. �d� Plot of the TPM
as a function of film thickness for the QWs of Hg1−xCdxTe in accordance with �a� the three-band model of Kane, �b� the two-band model of Kane, and �c� the
parabolic energy bands. �e� Plot of the TPM as a function of film thickness for the QWs of In1−xGaxAsyP1−y lattice matched to InP in accordance with �a� the
three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands.
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been drawn as a function of electron concentration per unit
length for all the above-mentioned materials in Figs.
3�a�–3�e�, respectively, where we have superimposed the
plots of the TPM for the CNTs for the purpose of relative
comparisons. In Figs. 1�a�–3�e�, it appears that the numerical
values of the TPM in QWs are greatest for the ternary com-
pounds. The quantum jump in QWs is asymmetric as com-
pared with the corresponding symmetric and systematic pe-
riodic oscillations of the TPM for CNTs.

Using Eqs. �30�, �31�, �34�, and �35�, in Figs. 4�a� and

4�b� we have plotted the TPM as a function of film thickness
and electron concentration per unit length for QWs of II-VI
and IV-VI materials, respectively, where the plot �b� refers to

p-CdS in accordance with the Hopfield model with C0

�0 eV m, while the plot �a� corresponds to the same for

C0=0 eV m for the purpose of assessing the influence of the

splitting of the two-spin states by the spin-orbit coupling and
the crystalline field in this case. It appears from the above
figures that the influence of the term C0 is the increment of

FIG. 3. �a� Plot of the TPM as a function of electron concentration per unit length for the QWs of n-InAs in accordance with �a� the three-band model of Kane,
�b� the two-band model of Kane, and �c� the parabolic energy bands. The curves �d� and �e� are the corresponding plots for �n, n� and �n, 0� CNTs. �b� Plot
of the TPM as a function of electron concentration per unit length for the QWs of n-GaAs in accordance with �a� the three-band model of Kane, �b� the
two-band model of Kane, and �c� the parabolic energy bands. The curves �d� and �e� exhibit the corresponding plots for �n, n� and
�n, 0� CNTs, respectively. �c� Plot of the TPM as a function of electron concentration per unit length for the QWs of n-InSb in accordance with �a� the
three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands. The curves �d� and �e� exhibit the corresponding plots for �
n, n� and �n, 0� CNTs, respectively. �d� Plot of the TPM as a function of electron concentration per unit length for the QWs of Hg1−xCdxTe in accordance with
�a� the three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands. The curves �d� and �e� exhibit the corresponding plots
for �n, n� and �n, 0� CNTs, respectively. �e� Plot of the TPM as a function of electron concentration per unit length for the QWs of In1−xGaxAsyP1−y lattice
matched to InP in accordance with �a� the three-band model of Kane, �b� the two-band model of Kane, and �c� the parabolic energy bands. The curves �d� and
�e� exhibit the corresponding plots for �n, n� and �n, 0� CNTs, respectively.
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the quantum jumps of the oscillatory 1D TPM for QWs of
II-VI materials. From the superposition of the corresponding
TPM for CNTs, one can infer the relative difference in mag-
nitude and the nature of oscillations in this case. The curves
�c�, �d�, and �e� refer to n-PbTe, n-PbSnTe, and
n-Pb1−xSnxSe, respectively. From Fig. 4�b�, the influence of
the energy band parameters on the TPM for the three differ-
ent QWs of IV-VI materials as considered here and the rela-
tive comparison with that in CNTs are apparent from all the
plots.

Using Eqs. �38�, �39�, �42�, �43�, �47�, �48�, �52�, and
�53�, we have plotted in Figs. 5�a� and 5�b� the TPM as a
function of film thickness and electron concentration per unit
length for QWs of stressed n-InSb ��a� and �b� represent the
plots both in the presence and absence of stress�, n-GaP
�curve �c��, PtSb2 �curve �d��, and n-GaSb �curve �e��, re-
spectively. For stressed n-InSb, in the presence of the stress,
the magnitude of the TPM is being decreased as compared
with the same under stress-free conditions. It is important to
note that the numerical values of the TPM in CNTs are less
than that in QWs of stressed materials.

The signatures of the totally two different types of TPM
in CNTs and QWs are apparent by comparing all the curves
of Figs. 5�a� and 5�b�, respectively. Figures 6�a� and 6�b�
exhibit the TPM as a function of film thickness and electron
concentration per unit length for all models of QWs of bis-
muth. The relative difference in magnitude and the nature of
oscillations can be assessed from all the figures and the su-
perposition of the corresponding TPMs for CNTs in this
case.

Since the experimental curves of n1D versus G are not
available in the literature to the best of our knowledge for the
present generalized systems, we cannot compare our theoret-
ical formulation with the experimental results, although the
generalized analysis as presented in this context can be
checked when the experimental results of G for the present
generalized systems would appear. If the direction normal to
the film were taken differently from that as assumed in this
work, the expressions for the TPM in quasi-one-dimensional
structures would be different analytically, since the basic dis-
persion laws of many important materials are anisotropic. In
formulating the generalized electron energy spectrum for

FIG. 4. �a� Plot of the TPM as a func-
tion of film thickness for the QWs of
CdS in accordance with the Hopfield
model where �a� C0=0 and �b� C0

�0. The curves �c�, �d�, and �e� ex-
hibit the TPM for the QWs of n-PbTe,
PbSnTe, and Pb1−xSnxSe, respectively.
�b� Plot of the TPM as a function of
electron concentration per unit length
for the QWs of CdS in accordance
with the Hopfield model where �a�
C0=0 and �b� C0�0. The curves �c�,
�d�, and �e� exhibit the TPM for QWs
of n-PbTe, PbSnTe, and Pb1−xSnxSe.
The curves �f� and �g� exhibit the cor-
responding plots for �n, n� and �n, 0�
CNTs, respectively.
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nonlinear optical materials, we have considered the crystal-
field splitting, the anisotropies in the momentum-matrix ele-
ments, and the spin-orbit splitting constants, respectively. In
the absence of the crystal-field splitting constant together
with the assumptions of isotropic effective electron mass and
isotropic spin-orbit splitting, our basic relation as given by
Eq. �12� converts into Eq. �15�. Equation �15� is the well-
known three-band model of Kane109 and is valid for III-V
compounds, in general. It should be used as such for study-
ing the electronic properties of n-InAs where the spin-orbit
splitting parameter ��� is of the order of the band gap �Eg�.
For many important materials, ��Eg or ��Eg, and under
these inequalities Eq. �15� assumes the form E�1+EEg

−1�
=	2k2 /2m*, which is the well-known two-band Kane
model.109 Also under the condition Eg→�, the above equa-
tion gets simplified to the well-known form of parabolic en-
ergy bands as E=	2k2 /2m*. The TPM has been studied for
QWs of II-VI, IV-VI, stressed materials, n-GaP, p-PtSb2, and
n-GaSb compounds in accordance with the models of
Hopfield,93 Dimmock,94 Seiler,95 Rees,96 Emtage,110 and
Seiler,111 respectively. Because of the importance of bismuth
in the whole field of nanoscience, we have further studied the

TPM in bismuth in accordance with the McClure and Choi
model,107 the Hybrid model,106 the Cohen model,105 the Lax
model,99 and the ellipsoidal parabolic model,98 respectively.

It is important to note that under certain limiting condi-
tions, all the results for all the models derived here have
transformed into the well-known classical TPM equation
valid for nondegenerate semiconductors having parabolic en-
ergy bands. This indirect test not only exhibits the math-
ematical compatibility of our formulation, but it also reflects
the fact that our simple analysis is a more generalized one,
since one can obtain the corresponding results for relatively
wide gap materials having parabolic energy bands under cer-
tain limiting conditions from our present generalized analy-
sis.

We have not considered other types of compounds or
external physical variables for numerical computations in or-
der to keep the presentation brief. With different sets of en-
ergy band parameters, we shall get different numerical values
of the TPM, though the nature of variations of the TPM as
shown here would be similar for other types of materials, and
the simplified analysis of this article exhibits the basic quali-
tative features of the TPM for such compounds. In this con-

FIG. 5. �a� Plot of the TPM as a func-
tion of film thickness for the QWs of
stressed InSb in accordance with �a�
the absence of stress and �b� the pres-
ence of stress. The curves �c�, �d�, and
�e� exhibit the TPM for QWs of
n-GaP, n-PtSb2, and n-GaSb, respec-
tively. �b� Plot of the TPM as a func-
tion of electron concentration per unit
length for the QWs of stressed InSb in
accordance with �a� the absence of
stress and �b� the presence of stress.
The curves �c�, �d�, and �e� exhibit the
TPM in QWs of n-GaP, n-PtSb2, and
n-GaSb, respectively. The curves �f�
and �g� are the corresponding plots for
�n, n� and �n, 0� CNTs, respectively.
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text, it may be pointed out that we have not considered the
many body and the hot-electron effects in this simplified the-
oretical formalism due to the absence of proper analytical
techniques for including them for the present generalized
system as considered in this article. Our simplified approach
will be useful for the purpose of relative comparison when
the methods for tackling the formidable problem of inclusion
of the many-body and hot-electron effects for the present
generalized system would appear. The inclusion of the
above-mentioned effects would certainly increase the accu-
racy of the results, although our suggestions for the experi-
mental determinations of the Einstein relation for the
diffusivity-to-mobility ratio and the carrier contribution to
the elastic constants are independent of incorporating the
above-mentioned effects, and the qualitative features of the
1D TPM would not change in the presence of the aforemen-
tioned effects.

It must be mentioned that a direct research application of
the quantized materials is in the area of band structure, and
the study of transport phenomena and the formulation of the

electronic properties of nanocompounds are based on the dis-
persion relations in such materials. The theoretical results of
our paper can be used to determine the TPM of the constitu-
ent bulk materials in the absence of quantum effects. The
objective of the present work is not solely to investigate the
1D TPM in various cases, but also to suggest experimental
determinations of the Einstein relation and the carrier contri-
bution to the elastic constants for materials having arbitrary
band structures, which, in turn, are again dimension-
independent. Finally, it may be noted that the purpose of this
article is not solely to study the signatures of the two entirely
different 1D quantized materials on the TPM for CNTs and
QWs of nonlinear optical materials, ternary, quaternary, II-
VI, IV-VI, stressed materials, GaP, p-PtSb2, n-GaSb, and Bi,
but also to formulate the appropriate electron statistics in its
most generalized form, since the transport and the related
phenomena in 1D systems having different band structures
are based on the temperature-dependent electron statistics in
such materials.

FIG. 6. �a� Plots of the TPM as a func-
tion of film thickness for QWs of Bi in
accordance with �a� the McClure and
Choi model, �b� the Hybrid model, �c�
the Cohen model, �d� the Lax model,
and �e� the parabolic ellipsoidal
model. �b� Plots of the TPM as a func-
tion of n1D for QWs of Bi in accor-
dance with �a� the McClure and Choi
model, �b� the Hybrid model, �c� the
Cohen model, �d� the Lax model, and
�e� the parabolic ellipsoidal. The
curves �f� and �g� exhibit the TPM for
the �n, n� and �n, 0� CNTs,
respectively.
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