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The thermoelectric power of copper at high temperature is calculated by a realistic model. 
The Fermi vector, Fermi velocity and wave functions are determined by APW. The phonon 
spectrum is calculated by the Born-von Karman atomic-force-constant model. The matrix 
elements of the electron-phonon interaction are given by the single. site approximation. It is 
found that the calculated value of the thermoelectric power has a positive sign and its 
magnitude is roughly equal to the observed one. 

§ I. Introduction 

The positive value of the thermoelectric power (TEP) of noble metals has 
been a subject of a lively discussion in recent years.1l-Sl It seems to us, 
however, that a correct answer was already guessed,9l'10l or was already given,Sl 
though semiquantitatively. The remaining task is to' evaluate it from the first 
principle and to see whether the result is in good agreement with experiment. 
This task is not easy, however, even when the problem is limited to evaluation 
of TEP at high temperature. For a complete answer, it is requiTed to have a 
detailed knowledge of the electronic states on the Fermi surface and of the 
perturbation potential by which the electrons are scattered. The former problem 
will be solved by the band calculation and the answer will be almost unique, 
but it is difficult to determine the latter with a full con:fi.den~e. Rather, we must 
rely on a model with a limited v11lidity. Therefore, if a calculation of TEP 
depends critically upon the model of the electron-phonon interaction (E-PH), 
then we shall be at a loss. As will be mentioned later, however, the real situa
tion at copper is not so bad. If some plausible models of E-PH are adopted, 
the calculated value of TEP of copper by each model is found to be rather in
sensitive to the model. It will be concluded in the present paper that the 
theoretical value of TEP of copper has a positive sign and its magnitude is roughly 
equal to the observed one. 

§ 2. Method of calculation 

We shall follow the method of calculation developed m the paper of 
Hasegawa and Kasuya,8l which will be referred to as I:IK. The electrical con
ductivity will be given by (HK (12)) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

0
/4

/1
1
1
0
/1

8
2
1
5
6
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Thermoelectric Power of Copper 1111 

(1) 

where S is the area of the Fermi surface, Vk and "Ck are the velocity and the 

relaxation time of each Bloch state on the Fermi surface with the wave vector 

k and <Z) is the mean free path defined by (1). In the following, integration 

over the Fermi surface is always replaced by summation over 30 X 48 points on 

the Fermi surface. Then, <Z> is 

(2) 

where S=30 X 48 iJS. and lt is the mean free path at the point i. Hasegawa and 

Kasuya solved the Boltzmann equation by Taylor's method2l with the vector mean 

free path A(k) defined by -ck= (vk·A(k))/v.k2• (See HK (7)"--'(10).) The transi

tion matrix between the initial state k and the final state k' on the Fermi surface 

is given by (HK (6)) 

where q is the wave vector of phonons in the first Brillouin zone: 

q=k'-k+G.,.. 

(3) 

(4) 

Here, M is the ion mass, N is the number of ions in the unit volume, kB is the 

Boltzmann constant,. Tis the absolute temperature and Gn is one of the reciprocal 

lattice vectors. Following HK we shall calculate a by Taylor's method. A 

more conventional method is also usable to calculate the relaxation time. As is 

well known, it gives 

1/-ck= s{(vk'-vk) 2j2vkVk'}Q(k', k)dSk,jltvk'· (5) 

As a matter of convenience, we shall use the reduced velocity <vk) instead of 

vk, which is defined by <vk) =vk/vF, then we see easily that <Z> or a is propor

tional to VF2• Here, VF is the mean velocity on the Fermi surface. Then, let 

us introduce L, by Lt=l./vi, and' then 
I 

(6) 

As for the ,matrix element Mq~ (k', k), HK chose a phenomenological way 

(HK (3) )', but we shall proceed along another line. First, let us introduce the 

so-called "single site approximation", although it may be an oversimplified 

model. The matrix element in this approximation may be written as 

(7) 

where C/Jk(r) and C/Jk'(r) are the Bloch function of the initial and the final state, 

respectively, e(q, ~) is the polarization vector of phonon and V(r) is the self

consistent muffin-tin potential which is used to calculate the band energy E(k) 
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1112 J. Yamashita and S. Asano 

and the wave function ¢k(r) by KKR or APW method. The constant potential 
outside the inscribed sphere will be denoted by V0• Following Mott and Jones 
we may transform the matrix element as a function of the logarithmic derivative 
of the radial wave function Rz (r1 ; EF), or of the phase shift r;z (EF). Here, EF 
is the Fermi energy and r 1 is the radius of the inscribed sphere. The APW 
wave function is defined as follows: 

¢k(r) =:Ean(k)exp(iknr) 111 outer region, 

¢k(r) = L:;a.(k)Rz(r; EF)C.(O, cp) 111 the inscribed sphere, 

where kn=k+Gn, C.(O, cp) is the normalized cubic harmonics. The index V 
specifies the angular part of the wave function in the following order: (1, y, z, 
x, xy, yz, z 2 - (1/2) (x2 +y2), xz, x 2 -y2, y 3 - (3/5)y, xyz, y(z2 -x2), z 3 - (3/5)z, 
x(y2 -z2), z(x2 -y2), x 3 - (3/5)x and so on.) For convenience Rz(r; EF) is 
normalized in the inscribed sphere and the total charge is nor_malized to one per 
electron in the Wigner-Seitz cell. Then, the coefficients an(k) are normalized 
so as to give the amount of charge outside the inscribed sphere, and a. (k) are 
normalized so as to give the amount of charge in the inscribed sphere. The 
derivation of the matrix element Mqe(k', k) was already given in several 
papers/1)-!4) so that we shall show only a part of them as an illustration: 

(8) 

In order to express M 1 in a compact form, let us introduce a notation 

(9) 

Then M. Is written as 

M.= -Asp (1/ v'3)a(1, 3) -AP~H2/ v'15)a(3, 7) + (1/ v'5)a(2,6) 

+ (1/ v'5) a( 4, 8)}- Aa1 {(1/ v''i) (a(5, 11) +a.(8, 14) + a(9, 15)) 

+ (3/ v'35)a(7, 13)- ( v'3j35) (a(6, 10) +a(8, 16))}. (10) 

The electron~ phonon coupling constants A 1, !+I are defined as follows: 

where 

B (l, l + 1) = Uz (iCrt) -tan r;znz (!Crt)) (jl+1(1Cr1) -tan r;z+Inz+I (1Cr1)) (12) 

and /C= (EF-Vo) 112• This matrix element of E-PH does not converge to the 
expected value of - (2/3)EF at q = 0, in the sense of the pseudopotential theory. 
In order to hold this condition it might be better to add the perturbation potential 
J7 (-Qe2/r) outside the inscribed sphere. Then the matrix element M, is modified 
to MAT, defined by 

MAT,=M.+S., 

where S. is g1ven by (in rydberg unit), 
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Thermoelectric Power of Copper 1113 

S, = -~~am (k') an (k) Knm, ,(8nQ/ Kn2m) sin (Knmr;) / Knmr;e (Knm). (13) 
n m 

Here Knm = I km'- knl and e (x) is the usual dielectric function of free electron 

gas modified only by the effective· mass ,m *. There are two ways to hold the 

condition at q = 0 mentioned before. One is to take Q = 1 but m * is adjusted 

and the other is to take m* = 1 but Q is adjusted. 

In the following we shall denote the single site approximation as Model I 

and the modified one as Model II. As will be shown later, there is no large 

difference between these two. The model proposed by Lee and Nowak (Model 

LN) 16l' 16l has the same form of the matrix element as Model I, but the values 

of the coupling constants A are widely 

different from ours. For the purpose 

of illustration, the two sets of values 

of tan rj!, Nowak's and ours, are shown 

in Table I. Our values are obtained 

from the real crystal potential and a 

characteristic feature is the large 

value of the d-phase shift, while 

Nowak used a kind of pseudopoten-

Table I. Phase shifts of copper at the 

Fermi energy. 

tan ~o 

tan ~1 

tan ~2 

tan ~s 

Nowak 

0.898 

0.238 

-0.025 

present paper 

-0.0818 

0.0854 

.-0.132 

-0.0003 

tial and the d-phase shift is quite small, but the s- and P-phase shift are much 

larger. In Table II the two sets of values of A are also shown-. Since the 

Model LN is quite different from ours, we want to introduce some models 

between them, in which the constants Apa and Aa1 are not much different from 

the previous ones, but the value of A,P may be much different. These phenomeno

logical models will be denoted by Models III and IV. 

Table II. The value of the coupling constants of electron-phonon 

interaction in various models. 

Model I I Model II I Model III I Model IV I Model LN 

A,p 0.14 0.14 -0.15 -0.20 -0.565 

Apa -0.30 -0,30 -0.35 -0.35 -0.366 

Aaf 2.4 2.4 2.0 2.0 0.45 

m* - I 0.815 1.0 1.0 -

Q - 1.0 1.5 1.5 I -

The phonon spectrum is calculated by the Born-von Karmap. atomic-force

constant model. The force constants are those given by Nicklow et al,17l 

The band· structure of copper is determined by KK~ with the X a potential. 

The value of a is taken as 2/3. This self-consistent potential is capable to well 

reproduce the observed shape of the Fermi surface, but the potential is slightly 

modified to be l-dependent so as to reproduce the observed shape of the 'Fermi 

surface with sufficient accuracy. In practice, the Fermi vectors are determined 
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1114 J. Yamashita and S. Asano 

by Halse's formula. 18> For calculation of the electrical conductivity, 30 points 
are se_lected -on the 1/48 of the Fermi sarface. The band energy and the wave 
functions of these states are calculated by APW. They have the same energy 
EF in the p~actical sense. The Fermi velocity is determined both by Halse's 
formula and by the band calculation at the same 30 points as before. The values 
of the Fermi velocity obtained by Halse's formula are smaller than those by the 
band calculation, becat:tse the correction due to the electron-phonon interaction 
is included in the former. The average value of the ratio Vi: (band) jv.., (Halse) 
at 30 points is evaluated as 1.08. The same kind of the argument has been 
made by Nowark and Lee19> and their corresponding value is 1.10. The band 
velocity will be used in the present paper. The area of the Fermi surface is 
also evaluated by .the aid of Halse's formula. The electrical conductivity is 
evaluated from the mean free path at 30 points. It is also- evaluated from 6 
points suitably selected on the 1/48 of the Fermi surface. It is possible- to make 
the value of the conductivity from 6 points only 0.96 times of that from the 30 
points. The six k vectors, their band velocity, the enhancement factor due to 
E-PH and the character of the wave functions are shown in. Table III. It is 
remarkable that the amount of charge outside the in-scribed sphere is much smaller 
than that expected from the free electron picture. Further, the d-components of 
the_ wave function have a considerable amplitude on the Fermi surface, and even 
the !-components are important through the contribution from the d-f scattering 
to resistivity. 

Table III. The six k vectors on the Fermi surface, their velocity, their 
enhancement factor due to E-PH, the components of wave fun~tions. 
The notations s, p, d,f and out mean the amount of charge of s, p, 
d and f character in the inscribed sphere and the amount of charge 
outside the inscribed sphere, respectively. 

No. I kz k. I Vb&nd/Vrree ~ (1 + .!) I S p d f 
1 0.00586 0.42287 0.32894 0.716 1.134 - 0.0592 0.3866 0.3354 0.0050 
2 0.59710 0.44128 0.21518 0.774 1.076 0.1212 0.2636 0.4478 0.0028 
3 0.67239 0.30090 0;21340 - 0.819 1.066 0.1422 0.2467 0.4550 0.0020 
4 0.59843 0-44226 0.08303 0.751 1.034 0.1625 0.1838 0.5193 0;0014 
5 0.68952 0.30774 0.08426 0.804 1.041 .0.1652 0.2155 0.4762 0.0018 
6 0.77360 0.15933 0.07449 0.864 1.116 0.1668 0.3116 0.3415 0.0064 

§ 3. Results 

(A) resistivity 

out 

0.2138 

0.1646 

0.1541 

0.1330 

0.1413 

0.1737 

Resistivity is calculated by Taylor's method. The mean Jr.ee path is a:lso 
calculated from (5). Both methods give almost the same value of the resistivity. 
The difference is at most 5% and such difference is insignificant in the present 
paper. The results on resistivity are shown in Table IV. The numerical values 
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Thermoelectric Power of Copper 1115 

Table IV. Resistivity of copper calculated by various models and its experimental value. 

T 

295 

50 

ratio 

No. 

1 

2 

3 

4 

5 

6 

T 

290 

50 

Model I Model II I Model III I Model IV I Model LN I experiment 

1.45 1.78 1.68 1.68 1.36 

0.077 0.091 0.066 .0.060 0.043 

19 20 25 28 32 

Table V. Anisotropy in the relaxation time at the six points on the Fermi 

surface in various models. The left is the values at 295K and the right 

is the value at 50K. The unit is '10-14 sec. 

1.70 

0.050 

34 

Model II Model III Model IV Model LN 

2.08 30.0 2.49 47.4 2.58 52.9 3.67 

2.96 55.5 3.09 76.9 3.10 81.4 4.00 

3.09 58.8 3.18 81.5 3.17 86.4 3.95 

3.84 89.3 3.65 104 3.59 106 4.29 

3.52 73.8 3.47 94.3 3.43 97.6 4.04 

·2.49 43.6 2.82 68.0 2.83 73.2 3.30 

Table VI. The thermoelectric power. Here ~ is defined in (14) and th is the 

third term in. (15). The experimental value of ~ at room temperature is -1.6. 

105.6 

122.8 

128.2 

139.3 

131.0 

102.2 

Model I Model II· Model III Model IV I Model LN 

th 
I ~ th 

I ~ th 
I 

~ th 
I ~ I 

th 
I ~ 

-2.2 

I 

-1.6 -2.5 -1.9 

I 

-1.8 

I 

-1.2 

I 

-1.7 -1.1 

I 

-1.9 

I 

-1.3 

- - -3.3 -2.7 -2.7 -2.1 - - - -

of the relaxation t,ime at six points mentioned before are also shown in Table V. 

As seen from Table IV, the agreement between theory and experiment is good 

in all cases at room temperature, but the temperature dependence of resistivity 

is slightly different by the models. As for the temperature dependence, Model 

LN seems to be the best. The difference comes from the x-dependence of re

sistivity. Here, x denotes the difference in the wave vectors divided by 2kF. 

x= Jk' -kJ/2kF. 

It is instructive to analyse the total resistivity to each component coming from the 

different region of x. The formula (5) is used for the purpose and Ax, the width 

of a fraction, is taken as 0.025. A smooth curve is drawn from the original 

histogram. They are shown in Figs. 1, 2, 3 and 4 corresponding to Models II, 

III, IV and LN. The characteristic feature of Fig. 1 is a large and sharp peak 

near x = 1, which means that the effective scattering by E-PH is dominant only 

near x=l. Only the states in the neck region and near the A-axis are able to 

make a transition with the largest value of x(x>1) because of the limitation 

of the shape 'of the Fermi surface. In Models I and II the relaxation time is 
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1116 J. Yamashita and S. Asano 

sp 

lk:..k 112kr-

Fig. 1. Resistivity due to the transition with 

lk' -kl/2kF in Model II (relative scale). 
The curve is drawn from the original 
histogram. 

SP 

0.5 1.0 

Fig. 3. The same as Fig. 1 in Model IV. 

sp 

0.5 1.0 

Fig. 2. The same as Fig. 1 in Model III. 

Sf' 

0.5 1.0 

Fig. 4. The same as Fig. 1 in Model LN. 

quite short in the neck region and near the ,J-axis as compared with that in other 
region. Moreover, in such transitions of large x, phonons of a rather small wave 
vector will participate, so that such transitions do not decay out easily at low 
temperature. This is the reason why Models I and II fail to give a c~rrect 

temperature dependence at low temperature. The character of Fig. 4 is quite 
different. The large peak near x = 1 disappears, but a broad peak appears around 
x = 0.8. This looks like similar to the character in alkali metals, K, Rb and Cs.10l 

The anisotropy of the relaxation time is also much reduced in Model LN, because 
the large angle scattering is much reduced as compared with Models I and II. 

The high probability of the large angle scattering is the result of the 
dominant P-d and d-f scattering because of the large d-phase shift on the Fermi 
surface of Cu. The pseudopotential theory of both Harrison20> and Moriarty21> 

also give the similar pr~diction. Roughly speaking, the Fermi surface o.f Cu is 
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Thermoelectric Power of Copper 1117 

a sphere of the radius kF, so that the difference in the initial and the final k
value in the backward scattering is close to 2kF. In the case of many transition 
metals which have very complicated Fermi surfaces, the backward scattering 
does not always mean the large variation in the absolute value of k. 
(B) thermoelectric power 

The diffusion term in the thermoelectric power is given by 

Q =- (7N3) (ks2TiieiEtree) (Erree· f) log (J (E) lfJE)EF 

=- (7N3) (Rs 2 TiieiEtree)~, (14) 

where Etree is the Fermi energy of the free electron gas whose density is equal 
to that of the conduction electrons in copper. The evaluation of ~ is carried 
out in the following way. The six points mentioned before are selected and the 
k vector is extended to its normal direction and the six vectors are newly de
termined whose energy is EF+ .JE (.JE = 0.027 Ryd). Then, the wave functions 
at these k points are determined again by APW. The electron velocity is calcu
lated at the 30 points. mentioned before on the 1148 ·of the energy surface of 
EF +.JE by APW. In order to evaluate the quantity (11 S) (.JS I .JE) or S + .JS, 
where S is the area of the Fermi surface and S + .JS is the area of the surface of 
EF+.JE, ·we choose 550 points on the 1148 of Halse's Fermi surface and con-
struct the new surface of EF+.JE(.JE=0.01 Ryd) by extending each kF vector to 
itsnormal direction by .Jk='.JEI2vF(k). Here vF(k) denotes the Halse Fermi 
velocity. Then the area S + .JS is determined by a numerical integration. 

It is convenient to divide ~ into three parts: 

~=Etree· {(11S) (.JSI.JE) + (21vF) (.Jvi.JE) 

+ (11 :E L 1) (.J :E L,l .JE) }EF. 
i t 

(15) 

As for the first and second terms in (15) Ziman has evaluated the value of 
Etree· [(11S) (.JSI .JE)EF+ (1lvF) (.Jvl .JE)EF] by the eight cone model as 0.45/l 
while it is 1.5 in the free electron model. The large reduction of the positive 
factor in ~ has a decisive meaning to get a correct value of ~ of copper. In 
our calculation the value of the first term in (15) is 0.2 and that of the second 
term is 0.4, so that our value is slightly smaller than Ziman's. In fact, it is not 
easy to evaluate (.JSI .JE) with sufficient accuracy, because the large part of the 
gain in .JS throughout the belly region is compensated by the loss of the area 

in the neck region. The accuracy of the value (.Jv I .JE) is also limited, because 
an accurate evaluation of the second derivative of the energy on the Fermi sur
face is required. The value of th,is factor is also negative at the neck region 
and positive at the belly, so that it results in a large compensation as a whole. 

It is, however, quite certain that the values of the first and the second term in 

(15) are much smaller than the corresponding value in the free electron model. 
The value of the third term in (15) depends upon the model and also temperature. 
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1118 J. Yamashita and S. Asano 

The calculation is carried out by the method mentioned previously and the results 

are shown in Table VI, while the observed value at room temperature is -1.6. 

As seen from the Table, the agreement between theory and experiment is reason

able irrespective of the models. We may say that according to theory the thermo

electric power of copper at high temperature has a positive sign and has a 

magnitude roughly equal to the observed one. As mensioned previously, the 

reason why the value of ~ is negative at copper was well anticipated by Ziman 

and Robinson and Dow and especially by Hasegawa and Kasuya. The reason is the 

increase in the rate of large angle scattering with increase of an electron energy 

near the Fermi surface. As an example, let us consider the case of Model LN, 

wh~re about 37% of the resistance comes from the large angle scattering with 

x>O.S. When the energy surface is raised by 0.027 Ryd, then the third term 

in (15) is evaluated as -1.9. If the contribution is divided into two parts, that 

is, from x<O.S and x>O.S, then the former is of 0.6 and the latter is of -2.5. 

The corresponding values in Model III are 0.2 and - 2.0, respectively. The 

increase in resistivity with increase of electron energy comes from two factors. 

One is the change in the length of the k vector and the other is the change in 

the wave functions. In order to see the former contribution, we make an arti

ficial calculation with increased k vectors and original wave functions. The 

value of ~ becomes - 0.8 instead of -1.9 in Model II. 

The value of ~ changes with temperature in the low temperature region 

(T<100°K) where the resistivity deviates much from a linear law of T, because 

the shape of the curve shown in Figs. 1~4 changes considerably with temperature. 

As seen from Table IV, the amount of change is not small, so that it is not safe 

to ascribe the deviation from a linear law in TEP at low temperature only to 

the phonon-drag effect, although the latter contribution seems to be larger than 

the former. It must be noted here that the correction term in TEP di'scussed 

by Tsuji6l and Bross and Hacker7l was not considered in the present paper. 

(C) the mass shift 

Here the thermal band mass is denoted by mth and the observed thermal 

mass is denoted by m~h· Then the mass shift due to E-PH is defined by 

m~h = (1 + l) mth· (16) 

The value of k is evaluated as 0.12 at Model II by the formula (19) in HK. 

The Models I, III and IV are not usable for the purpose, because the condition 

at q = 0 mentioned before is not satisfied by these models. N owak16l has calcu

lated l at Model LN by essentially the same method as ours and obtained the 

value 0.12. 

§ 4. Discussion 

The single site approximation seems to be usable for noble metals as the 

first approximation, but it is clearly an oversimplified model. It emphasizes the 
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large angle scattering too much. The effective perturbation may extend beyond the 
single site, and there. may be a correction term which enhances the small angle 
scattering as illustrated in Figs. 2 and 3. The pseudopotential approach of LN may 
be better than the single site approximation, although the underlying physical 
picture is not quite clear for us. It must be noted that the good result is ob
tained, only when the true wave functions are used for the matrix element of EP. 
The magnitude of Apa of Model LN is nearly equal to ours, and the main con
tribution to resistivity comes from the P-d scattering in both cases, but the origin 
is quite different. It is the large P-phase shift in Model LN, while it is the 
large d-phase shift in our models. (Since the d-phase shift is quite small, there 
is no trace of the d-bands near the Fermi surface in Model LN.) At present, 
Model LN and a model like the modified single site approximation as Model III 
or IV are recommendable. We do not know which one of them is closer to the 
real situation. 
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